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As the increasing of neutrino energy or matter density, the neutrino oscillation in matter may undergo
“vacuum-dominated,” “resonance,” and “matter-dominated” three different stages successively. Neutrinos
endure very different matter effects, and therefore present very different oscillation behaviors in these three
different cases. In this paper, we focus on the less discussed matter-dominated case (i.e., jACCj ≫ jΔm2

31j),
study the effective neutrino mass and mixing parameters as well as neutrino oscillation probabilities in
dense matter using the perturbation theory. We find that as the matter parameter jACCj growing larger, the
effective mixing matrix in matter Ṽ evolves approaching a fixed 3 × 3 constant real matrix which is free of
CP violation and can be described using only one simple mixing angle θ̃ which is independent of ACC. As
for the neutrino oscillation behavior, νe decoupled in the matter-dominated case due to its intense charged-
current interaction with electrons while a two-flavor oscillation are still presented between νμ and ντ.
Numerical analysis are carried on to help understanding the salient features of neutrino oscillation in matter
as well as testing the validity of those concise approximate formulas we obtained. At the end of this paper,
we make a very bold comparison of the oscillation behaviors between neutrinos passing through the Earth
and passing through a typical white dwarf to give some embryonic thoughts on under what circumstances
these studies will be applied and put forward the interesting idea of possible “neutrino lensing” effect.

DOI: 10.1103/PhysRevD.101.033005

I. INTRODUCTION

When neutrinos pass through a medium, the interactions
with the particles in the background give rise to modifi-
cations of the properties of neutrinos as well as the
oscillation behaviors. This is well known as the matter
effect which have been playing important roles in under-
standing various neutrino oscillation data. In the standard
three neutrinos framework, the effective Hamiltonian H̃ in
the flavor basis responsible for the propagation of neutrinos
in matter, differs from the Hamiltonian in vacuum H,

H̃ ¼ HþH0 ¼ 1
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where H0 describes the forward coherent scattering of
neutrinos with the constituents of the medium (i.e., elec-
trons, protons and neutrons) via the weak charged-current
(CC) and neutral-current (NC) interactions [1–4]. Here
ACC ¼ 2EVCC, ANC ¼ 2EVNC (with VCC ¼ ffiffiffi

2
p

GFNe and

VNC ¼ −
ffiffi
2

p
2
GFNn being the effective matter potentials) are

parameters of the same unit as the mass-squared difference
Δm2

ji that measure the strength of the matter effect, and V is
just the 3 × 3 unitary Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) leptonic mixing matrix [5,6] which is conven-
tionally parametrized in terms of three mixing angles θ12,
θ13, θ23 and one Dirac CP-violating phase δ as [7]

V¼

0
B@

c12c13 s12c13 s13e−iδ

−s12c23−c12s23s13eiδ c12c23−s12s23s13eiδ s23c13
s12s23−c12c23s13eiδ −c12s23−s12c23s13eiδ c23c13

1
CA;

ð2Þ

where cij ≡ cos θij and sij ≡ sin θij (for ij ¼ 12; 13; 23)
have been introduced. Throughout this paper we do not
consider the possible Majorana phases, simply because
they are irrelevant to neutrino oscillations in both vacuum
and matter. For antineutrino oscillation in matter, one may
simply replace V by V� and ACC by −ACC in the effective
Hamiltonian (i.e., ACC is negative in the case of antineu-
trino oscillation).
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The intriguing matter effect is a result of the interplay
between the vacuum Hamiltonian H and the matter term
H0. Note that, the diagonal term 1

2E ðm2
1 þ ANCÞ · 1 in

Eq. (1) develops just a common phase for all three flavors,
and does not affect the neutrino oscillation behaviors.
Therefore it is the interplay among the two mass-squared
differences Δm2

21, Δm2
31, the mixing parameters in V

(which are all parameters in the vacuum Hamiltonian H
and have been well determined from varieties of neutrino
oscillation experiments [7,8]) and the matter term ACC
(which will vary with the matter density and the energy of
neutrino) that give rise to varied neutrino oscillation
behaviors.
According to the relative magnitude of Δm2

21, jΔm2
31j

and jACCj, the various possible values of ACC can be laid in
three main different regions: the vacuum-dominated region
(i.e., jACCj ≪ Δm2

21; jΔm2
31j), the resonance region (i.e.,

ACC ∼ Δm2
21;Δm2

31), and the matter-dominated region
(i.e., jACCj ≫ Δm2

21; jΔm2
31j). Among various studies of

the matter effect, neutrino oscillation behaviors in the
resonance region attracted the most attention (see, e.g.,
[9–14]). The oscillation probabilities may get dramatic
corrections owing to the resonances at around ACC ∼ Δm2

21

(solar resonance) or ACC ∼ Δm2
31 (atmospheric resonance)1

which are crucially important for the studies of atmospheric
neutrinos, accelerator neutrino beams passing through the
Earth or the spectrum of solar neutrinos. Also there have
been discussions concerning the vacuum-dominated case
[16–20], which could be helpful for various long- or
medium-baseline neutrino oscillation experiments with
neutrino beam energy E below the solar resonance. In this
region, the neutrino oscillation probabilities as well as the
leptonic CP violation receive predictable small corrections
from the matter effect.
Recently interests have been shown in exploring the less

discussed matter-dominated case [21–24], where the matter
term H0 dominates over the vacuum Hamiltonian H, or
more specifically, jACCj ≫ jΔm2

31j. Such studies are appli-
cable in the case of neutrinos having extremely high energy
or going through extremely dense object. Further to these
works, we explore in this paper the effective neutrino mass
and mixing parameters as well as the neutrino oscillation
probabilities in dense matter using the perturbation theory.
We find that as the matter parameter jACCj growing larger,
the effective mixing matrix in matter Ṽ evolves approach-
ing a fixed 3 × 3 constant real matrix which is free of CP
violation and can be described using simply one mixing
angle θ̃ which is independent of the matter parameter ACC.
As for the neutrino oscillation behavior, νe decoupled in the
matter-dominated case due to its intense charged-current

interaction with electrons in the medium while a two-flavor
oscillation can still present between νμ and ντ. As far as the
six neutrino oscillation parameters in vacuum are well
determined and the condition jACCj ≫ jΔm2

31j is satisfied,
the neutrino oscillation probabilities in dense matter can be
well predicted regardless if the matter density varies along
the path.
We plan to organize the remaining parts of this paper as

following. In Sec. II we aim to reveal the features of the
effective neutrino masses and mixing matrix in matter
under the condition jACC=Δm2

31j → ∞ with the help of the
perturbation theory. Based on the results of the series
expansions, a set of pretty concise approximate formulas of
neutrino oscillation probabilities in the matter-dominated
region are derived in Sec. III. Numerical analysis are
carried on in both sections to help understanding the salient
features of neutrino oscillation in matter as jACCj changes
from zero to infinity as well as testing the validity of those
concise formulas. Finally, in Sec. IV we make a very bold
comparison of the oscillation behaviors between neutrinos
passing through the Earth and passing through a typical
white dwarf so as to answer the question under what
circumstances these studies will be applied and put forward
the interesting idea of possible “neutrino lensing” effect.

II. FIXED POINTS OF THE EFFECTIVE
NEUTRINOMASS ANDMIXING PARAMETERS IN

THE MATTER-DOMINATED CASE

As already mentioned above, in the standard three
neutrinos framework, the effective Hamiltonian H̃ in the
flavor basis responsible for the propagation of neutrinos in
matter can be written as

H̃ ¼ 1

2E

2
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where the effective neutrino masses m̃i (for i ¼ 1; 2; 3) and
flavor mixing matrix Ṽ in matter have been defined. Given
a constant matter profile, the exact analytical relations
between fṼ; m̃ig and fV;mig have been established in
many works using different approaches [9,16,25–30]. And
the neutrino oscillation probabilities in matter can be
written in the same way as those in vacuum by simply
replacing Vαi and Δm2

ji with the corresponding effective

1The more accurate resonance conditions in the two-flavor or
three-flavor neutrino oscillation picture are discussed in e.g.,
Ref. [15].
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parameters Ṽαi and Δm̃2
ji. As for any realistic profile of the

matter density, it is also possible to numerically calculate
the neutrino oscillation probabilities by solving the evolu-
tion equations of neutrino flavor states.
However, in the matter-dominated region we are con-

cerning, some useful and more transparent analytical
approximations could be obtained by regarding both
Δm2

21=jACCj and jΔm2
31=ACCj as small parameters and

performing the diagonalization of H̃ using the perturbation
theory. In comparison with the method adopted in previous
works [21–24] that applying further simplification on the
exact formulas, the series expansion method can automati-
cally achieve approximate formulas with any required
accuracy. Moreover, the values those effective parameters
in matter would approach in the limit jACCj → ∞ are
straightforwardly given in the zeroth order expansion. Also
note that, different from previous works on series expan-
sions [10–15,20,31–33] which usually regard known con-
stant such as α≡ Δm2

21=Δm2
31 or sin θ13 as small expansion

parameters, the two expansion parameters Δm2
21=jACCj and

jΔm2
31=ACCj we employed in this paper vary with the

matter parameter ACC, i.e., vary with neutrino energy E as
well as the matter density ρ. As a result, this kind of series
expansion relates only to the matter-dominated case, and
the accuracies of those approximate formulas given in this
paper depend also on the magnitude of ACC. We will have a
detailed discussion on this problem later at the end of
Sec. III. The details of the diagonalization of the effective
Hamiltonian H̃ are given in the Appendix, where the
approximate expressions of three eigenvalues of H̃, the
effective mixing matrix and the neutrino oscillation prob-
abilities in matter up to the first order of both Δm2

21=jACCj
and jΔm2

31=ACCj are also presented.

As the increase of jACCj, terms proportional to 1=ACC are
all approaching zero, and as one can clearly seen from
Eqs. (A12) and (A13), three eigenvalues of H̃ are approach-
ing a set of fixed values

λ̃fixed1 ¼ 1

2E
ðm2

1þANCþACCþΩ11Þ;

λ̃fixed2 ¼ 1

2E
ðm2

1þANCþΩ22cos2θ̃þΩ33sin2θ̃− jΩ23jsin2θ̃Þ;

λ̃fixed3 ¼ 1

2E
ðm2

1þANCþΩ33cos2θ̃þΩ22sin2θ̃þjΩ23jsin2θ̃Þ;
ð4Þ

where the Hermitian matrix Ω is defined as

Ω≡ V

0
B@

0

Δm2
21

Δm2
31

1
CAV†; ð5Þ

and the complete expressions of its nine elements Ωij can
be found in Eq. (A8). Apparently, in this matter-dominated
case, λ̃fixed2 and λ̃fixed3 are nearly degenerate and both of them
have strong hierarchies with λ̃fixed1 . In the same time the
effective mixing matrix in matter Ṽ evolves toward a fixed
3 × 3 real matrix

Ṽfixed ¼

0
B@

1 0 0

0 cos θ̃ sin θ̃

0 − sin θ̃ cos θ̃

1
CA; ð6Þ

which has the two-flavor-mixing structure and can be
parametrized using just one mixing angle θ̃ defined by

tan 2θ̃ ¼ 2jΔm2
21Vμ2V�

τ2 þ Δm2
31Vμ3V�

τ3j
Δm2

21ðjVτ2j2 − jVμ2j2Þ þ Δm2
31ðjVτ3j2 − jVμ3j2Þ

¼ jΔm2
21ðsin 2θ23ðs212s213 − c212Þ − cos 2θ23 sin 2θ12s13 cos δþ i sin 2θ12s13 sin δÞ þ Δm2

31 sin 2θ23c
2
13j

Δm2
21ðcos 2θ23ðs212s213 − c212Þ þ sin 2θ23 sin 2θ12s13 cos δÞ þ Δm2

31 cos 2θ23c
2
13

: ð7Þ

Considering the strong hierarchy of Δm2
21 ≪ jΔm2

31j and
the smallness of s13, one can immediately obtain from
above equation that the mixing angle θ̃ ≈ θ23.

2 One may
also find that the mixing angle θ̃ defined in Eq. (6) is
actually an indicator of the μ − τ symmetry breaking in the

Dirac neutrino mass matrix.3 If the neutrino mass matrix
in vacuum M ≡ Vdiagfm2

1; m
2
2; m

2
3gV† possess the exact

μ − τ symmetry, we then have θ̃ ¼ π=4.
The fixed points in the limit jACCj → ∞ has been

noticed in Refs. [21,23,24,32], in which the evolution
behaviors of not only nine elements of the effective
mixing matrix jṼαij but also those mass and mixing
parameters are illustrated. It is worth it to go a step
further drawing a full picture of the evolution behaviors

2The approximate relation is confirmed by our numerical
analysis. In the normal mass ordering case we have θ̃ ¼ 49.83°
(tan θ̃ ¼ 1.196) while in the inverted mass ordering case we have
θ̃ ¼ 49.70° (tan θ̃ ¼ 1.179), both are very close to the input value
of θ23 ¼ 49.7° (tan θ23 ¼ 1.179) as one can see later in Figs. 3
and 4. 3For a recent review on the μ-τ symmetry, see, e.g., Ref. [34].
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of three effective neutrino masses and the effective
mixing matrix in the matter-dominated case. In the
limit jACC=Δm2

31j → ∞, one of the eigenstates of λ̃1
is decoupled due to the large potential of ACC and ANC
while the other two eigenvalues are nearly degenerate
(λ̃2 ≃ λ̃3) for they are both dominated by the large
neutral-current potential term ANC. Correspondingly,
the 3 × 3 effective mixing matrix Ṽ in matter presents
a nearly two-flavor-mixing structure. It means Ṽ asymp-
totically conserves intrinsic CP and can be well
described by just one mixing angles θ̃, which can be
approximately expressed as θ̃ ≈ θ23.
To see the features of fixed points as well as the

evolution of m̃i and Ṽ more transparently, we illustrate
in Figs. 1 and 2 the evolution of three squared effective

neutrino masses in matter m̃2
i ¼ 2Eλ̃i (for i ¼ 1; 2; 3),

in Figs. 3 and 4 the evolution of the modulus of
nine elements of the effective mixing matrix in matter
jṼαij (for α ¼ e; μ; τ and i ¼ 1; 2; 3) and in Fig. 5 the
effective Jarlskog J̃ ≡ ImðVαiVβjV�

αjV
�
βiÞ

P
γ;kϵαβγϵijk

(for α; β; γ ¼ e; μ; τ and i; j; k ¼ 1; 2; 3)4 [43,44] with
the increasing of the dimensionless ratio ACC=jΔm2

31j in
both the normal and the inverted mass ordering cases.
The best-fit values of the neutrino oscillation parame-
ters from Ref. [8] as summarized in Table I has been

FIG. 1. The evolution of three squared effective neutrino masses m̃2
i (for i ¼ 1, 2, 3) in matter with respect to the dimensionless ratio

ACC=jΔm2
31j in the normal mass ordering case for both neutrinos (with ACC > 0, red curves in the right half panel) and antineutrinos

(with ACC < 0, blue curves in the left half panel), where the best-fit values of the mass-squared differences and the mixing parameters in
Table I have been input. Note that, the common terms m2

1 þ ANC are omitted from all three m̃2
i for the sake of simplicity, while the

relationΔm̃2
ji ¼ m̃2

j − m̃2
i still holds. Both the input values of m̃

2
i in vacuum and the fixed points in the limit jACCj ≫ jΔm2

31j are given on
the plots.

4The effective Jarlskog J̃ stands for the CP violation in the
effective mixing matrix Ṽ, for more discussions on the properties
of the Jarlskog in matter, see, e.g., Refs. [19,35–42].
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adopted as the inputs in vacuum (ACC ¼ 0) in our
numerical calculations. One can clearly see that the
evolution behaviors of these effective parameters in
matter in the region jACC=Δm2

31j ≫ 1 are all in good
agreement with the predictions of Eqs. (4)–(7).
Note that, instead of ordering the eigenvalues accord-

ing to their magnitude, we choose the order of λ̃i in such
a way that in the limit jACCj → 0, the correct mass-
squared differences in vacuum are obtained and the ith
column of Ṽ are corresponding eigenvectors of λ̃i. It is
well known that in the standard three neutrinos frame-
work there are two possible resonance regions (i.e., the
solar resonance at around ACC ∼ Δm2

21 and the atmos-
pheric resonance at around ACC ∼ Δm2

31) when studying
the neutrino oscillation in matter. However, because the

sign of ACC are different for neutrino or antineutrino
oscillation and the sign of Δm2

31 are different in the
normal or inverted mass ordering case, above two
resonance conditions are not always satisfied even if
the magnitude of ACC could be carefully chosen. When
passing through the resonance region, the related two
eigenvalues (as well as the corresponding two eigenvec-
tors) “exchange” their evolution behaviors. That explains
the different patterns of the fixed points in different
scenarios. Such a difference originates mainly from the
fact that the resonances they experienced are different.
To be specific, we list in Table II the different reso-
nances neutrinos or antineutrinos with different mass
orderings may experience together with the resulting
pattern of the eigenvalues λ̃i and the corresponding

FIG. 2. The evolution of three squared effective neutrino masses m̃2
i (for i ¼ 1, 2, 3) in matter with respect to the dimensionless ratio

ACC=jΔm2
31j in the inverted mass ordering case for both neutrinos (with ACC > 0, red curves in the right half panel) and antineutrinos

(with ACC < 0, blue curves in the left half panel), where the best-fit values of the mass-squared differences and the mixing parameters in
Table I have been input. Note that, the common terms m2

1 þ ANC are omitted from all three m̃2
i for the sake of simplicity, while the

relationΔm̃2
ji ¼ m̃2

j − m̃2
i still holds. Both the input values of m̃

2
i in vacuum and the fixed points in the limit jACCj ≫ jΔm2

31j are given on
the plots.
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effective mixing matrix Ṽ in the limit jACCj → ∞ in
different scenarios. Anyway, neither the ordering of the
eigenvalues nor the omitted common terms would
change the neutrino oscillation behaviors in matter which
we will discuss in the next section.
One may clearly find from Figs. 1–5 that the evolutions

of three effective neutrino masses m̃i, the absolute value of
nine elements of the effective mixing matrix jṼαij as well as
the effective Jarlskog parameter J̃ actually follow a quite
similar routine: in the vacuum-dominated region they
slightly deviate from their vacuum inputs as jACCj
increases; when it enters the resonance region, these
effective neutrino mass and mixing parameters receive
dramatic corrections; and after the resonance region, the
changes slowdown again and those effective parameters
vary monotonically toward their fixed points in the matter-
dominated region.

Although different eigenvalues λ̃i and different elements
of Ṽ begin to approach their fixed points at different values
of ACC, we got an overall estimation from the numerical
analysis that when jACC=Δm2

31j ≳ 10 is satisfied, nine
absolute differences jṼαi − Ṽfixed

αi j (for α ¼ e; μ; τ and
i ¼ 1; 2; 3) and three relative differences jλ̃i− λ̃fixedi j=λ̃fixedi
(for i ¼ 1; 2; 3) are all smaller than 0.01, and the
absolute value of the effective Jarlskog jJ̃ j≲ 10−5 in
all the four scenarios. We find that jACC=Δm2

31j≳ 10 could
be regard as a good criterion of the “matter-dominated
region.”

III. NEUTRINO OSCILLATION PROBABILITIES
IN THE MATTER-DOMINATED CASE

If the matter density can be treated as a constant along
the path neutrinos propagate, we can write down the

FIG. 3. The evolution of the absolute value of nine elements of the effective mixing matrix in matter jṼαij (for α ¼ e, μ, τ and i ¼ 1, 2,
3) with respect to the dimensionless ratio ACC=jΔm2

31j in the normal mass ordering case for both neutrinos (with ACC > 0, red curves in
each right half panel) and antineutrinos (with ACC < 0, blue curves in each left half panel), where the best-fit values of the mass-squared
differences and the mixing parameters in Table I have been input. Both the input values in vacuum and the fixed points in the limit
jACCj ≫ jΔm2

31j are given on the plots.
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FIG. 4. The evolution of the absolute value of nine elements of the effective mixing matrix in matter jṼαij (for α ¼ e, μ, τ and i ¼ 1, 2,
3) with respect to the dimensionless ratio ACC=jΔm2

31j in the inverted mass ordering case for both neutrinos (with ACC > 0, red curves in
each right half panel) and antineutrinos (with ACC < 0, blue curves in each left half panel), where the best-fit values of the mass-squared
differences and the mixing parameters in Table I have been input. Both the input values in vacuum and the fixed points in the limit
jACCj ≫ jΔm2

31j are given on the plots.

FIG. 5. The evolution of the effective Jarlskog invariant in matter J̃ with respect to the dimensionless ratio ACC=jΔm2
31j in the normal

and the inverted mass ordering cases for both neutrinos (withACC > 0, red curves in the right half panel) and antineutrinos (withACC < 0,
blue curves in the left half panel), where the best-fit values of the mass-squared differences and the mixing parameters in Table I have been
input. Both the input values of J in vacuum and the fixed points J̃ fixed in the limit jACCj ≫ jΔm2

31j are given on the plots.
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neutrino oscillation probabilities in matter simply by
replacing the neutrino mass-squared differences and the
mixing matrix in the neutrino oscillation probabilities in
vacuum with corresponding effective neutrino mass-
squared differences and the effective mixing matrix in
matter respectively.

P̃ð νð−Þα → ν
ð−Þ

βÞ ¼ δαβ − 4
X
j>i

Re½ṼαiṼβjṼ�
αjṼ

�
βi�sin2Δ̃ji

� 2
X
j>i

Im½ṼαiṼβjṼ�
αjṼ

�
βi� sin 2Δ̃ji; ð8Þ

where Δ̃ji ≡ Δm̃2
jiL=4E with Δm̃2

ji ≡ m̃2
j − m̃2

i ¼
2Eðλ̃j − λ̃iÞ being the effective neutrino mass-
squared difference in matter. Here the Greek letters α,
β are the flavor indices run over e, μ, τ, while the Latin
letters i, j are the indices of mass eigenstates run over
1, 2, 3. And E is the energy of the neutrino/antineu-
trino beam.
The neutrino oscillation probabilities to the second order

of both jΔm2
31=ACCj and Δm2

21=jACCj are derived in
Appendix. In the limit jACCj → ∞, all terms propor-
tional to 1=ACC become vanishing, then P̃ðνα → νβÞ

and P̃ðν̄α → ν̄βÞ approach to a same set of fixed values,5

and the neutrino/antineutrino oscillation probabilities in the
matter-dominated region can be concisely expressed as

P̃ðνe → νeÞ ≈ P̃ðν̄e → ν̄eÞ ≈ 1;

P̃ðνe → νμÞ ≈ P̃ðν̄e → ν̄μÞ ≈ 0;

P̃ðνe → ντÞ ≈ P̃ðν̄e → ν̄τÞ ≈ 0;

P̃ðνμ → νeÞ ≈ P̃ðν̄μ → ν̄eÞ ≈ 0;

P̃ðνμ → νμÞ ≈ P̃ðν̄μ → ν̄μÞ ≈ 1 − sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðνμ → ντÞ ≈ P̃ðν̄μ → ν̄τÞ ≈ sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðντ → νeÞ ≈ P̃ðν̄τ → ν̄eÞ ≈ 0;

P̃ðντ → νμÞ ≈ P̃ðν̄τ → ν̄μÞ ≈ sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðντ → ντÞ ≈ P̃ðν̄τ → ν̄τÞ ≈ 1 − sin22θ̃sin2
Δm̃2

32L
4E

; ð9Þ

where

TABLE I. The best-fit values of six neutrino oscillation parameters from a global fit of current experiment data [8].

θ12 θ13 θ23 δ Δm2
21½10−5 eV2� Δm2

31½10−3 eV2�
Normal mass ordering 33.82° 8.61° 49.7° 217° 7.39 2.451
Inverted mass ordering 33.82° 8.65° 49.7° 280° 7.39 −2.512

TABLE II. The resulting eigenvalues λ̃i ¼ m̃2
i =2E (for i ¼ 1, 2, 3) of the effective Hamiltonian H̃ and the

corresponding effective mixing matrix in matter Ṽ in the limit jACCj → ∞ for both neutrinos and antineutrinos with
different mass orderings. Where λ̃fixedi (for i ¼ 1, 2, 3) are defined in Eq. (4) and θ̃ can be calculated using Eq. (7). Note
that the three eigenvalues λ̃i are ordered in such a way that in all four scenarios the same correct order fλ̃1; λ̃2; λ̃3g ¼
fm2

1; m
2
2; m

2
3g=2E can be obtained in the limit ACC ¼ 0 through continuous evolution as jACCj decreasing as one can see in

Figs. 1 and 2.

Normal mass ordering (Δm2
31 > 0) Inverted mass ordering (Δm2

31 < 0)

Neutrinos Antineutrinos Neutrinos Antineutrinos

(ACC > 0) (ACC < 0) (ACC > 0) (ACC < 0)

Resonances induced Solar (ACC ∼ Δm2
21)

Atmospheric (ACC ∼ Δm2
31)

None Solar (ACC ∼ Δm2
21) Atmospheric

(ACC ∼ Δm2
31)

Eigenvalues of H̃
0
@ λ̃fixed2

λ̃fixed3

λ̃fixed1

1
A

0
@ λ̃fixed1

λ̃fixed2

λ̃fixed3

1
A

0
@ λ̃fixed2

λ̃fixed1

λ̃fixed3

1
A

0
@ λ̃fixed3

λ̃fixed2

λ̃fixed1

1
A

Ṽfixed
0
@ 0 0 1

cos θ̃ sin θ̃ 0

− sin θ̃ cos θ̃ 0

1
A

0
@ 1 0 0

0 cos θ̃ sin θ̃
0 − sin θ̃ cos θ̃

1
A

0
@ 0 1 0

cos θ̃ 0 sin θ̃
− sin θ̃ 0 cos θ̃

1
A

0
@ 0 0 1

sin θ̃ cos θ̃ 0

cos θ̃ − sin θ̃ 0

1
A

5This is in agreement with the vanishing of CP-violation in the
limit jACCj → ∞.
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Δm̃2
32 ≈ ½Δm2

21ðjVτ2j2 − jVμ2j2Þ þ Δm2
31ðjVτ3j2 − jVμ3j2Þ� cos 2θ̃ þ 2jΔm2

21Vμ2V�
τ2 þ Δm2

31Vμ3V�
τ3j sin 2θ̃

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔm2

31c
2
13 − Δm2

21ðc212 − s212s
2
13ÞÞ2 þ ðΔm2

21 sin 2θ12s13Þ2
q

: ð10Þ

Here Δm̃2
32 has the same sign as Δm2

31. Again, taking into
account the strong hierarchy ofΔm2

21≪jΔm2
31j and the small-

ness of s13, we can then obtain that the effectivemass-squared
difference Δm̃2

32 ≈ Δm2
32 (or Δm2

31)
6 together with θ̃ ≈ θ23.

These analytical approximations give us a clear picture
of neutrino oscillation in the matter-dominated region: νe
are decoupled (due to its intense charged-current interac-
tion with electrons in the medium), while oscillation can
still happen between νμ and ντ.

7 This two-flavor oscillation

FIG. 6. For three different values of L=E, the evolution of the oscillation probabilities in matter P̃αβ with respect to the dimensionless
ratio jACC=Δm2

31j in the normal mass ordering case for both neutrinos and antineutrinos are shown in this figure, where the best-fit
values of the mass-squared differences and the mixing parameters in Table I have been input. The fixed points of these probabilities in
the limit jACCj ≫ jΔm2

31j for different L=E are given on the plots.

6In our numerical analysis, we have Δm̃2
32 ¼ 2.349×10−3 eV2

together with Δm2
32 ¼ 2.3772 × 10−3 eV2 in the normal mass

ordering case, and Δm̃2
32 ¼ −2.501 × 10−3 eV2 together with

Δm2
32 ¼ −2.5859 × 10−3 eV2 in the inverted mass ordering case.

7This is in agreement with the near degeneracy of λ̃2 and λ̃3 in
the limit jACCj → ∞.
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can be described by one effective mixing angle θ̃ and the
effective mass-squared difference Δm̃2

32 whose expressions
are given in Eqs. (7) and (10) respectively. Note that, both
the oscillation parameters are independent of ACC and can
be easily calculated once the neutrino oscillation param-
eters in vacuum are well determined. It means as long as the
“matter-dominated” condition is satisfied, above simple
formulas are applicable no matter how the matter density
varies along the path, and the resulting conversion prob-
ability between νμ and ντ is just a simple function of L=E.
To help understand the general picture of neutrino/

antineutrino oscillation in matter, we choose three different
values of L=E¼ 10000;1000;100 ½km=GeV� and illustrate

in Figs. 6 and 7 the evolution of the neutrino/antineutrino
oscillation probabilities in matter P̃αβ with respect to the
dimensionless ratio ACC=jΔm2

31j in both the normal and the
inverted mass ordering cases.
Analogous to those effective neutrino mass and mixing

parameters we discussed in Sec. II, one can clearly
distinguish the “vacuum-dominated,” “resonance,” and
“matter-dominated” three different regions in Figs. 6 and 7.
In the vacuum-dominated region (jACCj ≪ Δm2

21) the
oscillation probabilities receive relatively mild corrections
with respect to their vacuum inputs. At around jACCj ∼
Δm2

21 (i.e., the solar resonance region) corrections to
the neutrino oscillation probabilities become significant,

FIG. 7. For three different values of L=E, the evolution of the oscillation probabilities in matter P̃αβ with respect to the dimensionless
ratio jACC=Δm2

31j in the inverted mass ordering case for both neutrinos and antineutrinos are shown in this figure, where the best-fit
values of the mass-squared differences and the mixing parameters in Table I have been input. The fixed points of these probabilities in
the limit jACCj ≫ jΔm2

31j for different L=E are given on the plots.
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while at around jACCj ∼ Δm2
31 (i.e., the atmospheric reso-

nance region) the neutrino oscillation probabilities in the
normal ordering case and the antineutrino oscillation
probabilities in the inverted mass ordering case receive
dramatic corrections. Then after the resonance region,
both the neutrino and the antineutrino oscillation proba-
bilities quickly evolve to the same set of fixed points
(P̃αβ ≃ P̃ᾱ β̄ ≃ P̃fixed

αβ ) in the matter-dominated region which
have been well predicted in Eq. (9), and the CP violation
tend to vanish in this region. Among the nine P̃fixed

αβ , we

have P̃fixed
ee ¼ 1 and P̃fixed

eμ ¼ P̃fixed
eτ ¼ P̃fixed

μe ¼ P̃fixed
τe ¼ 0,

which tells us that νe=ν̄e decouples from the other flavors in
the matter-dominated case. Although the oscillation prob-
abilities between νμ and ντ are approximately independent
of ACC in the matter-dominated region, P̃μμ and P̃ττ (P̃μτ

and P̃τμ) change periodically between 1 and 1 − sin 2θ̃ (0
and sin 2θ̃) as the variation of L=E. Note that, sin 2θ̃ is
actually close to 1, which means if L and E are properly
chosen, a simple but significant two-flavor oscillation

between νμ and ντ can be observed in the matter-dominated
case.
Before ending this section, we would like to test the

accuracy of the formulas given in Eq. (9) and discuss the
valid region of these formulas. Figures 8 and 9 show
the absolute errors jP̃αβ − P̃fixed

αβ j of neutrino/antineutrino
oscillation probabilities in both the normal and the inverted
mass ordering cases, where P̃fixed

αβ is calculated using Eq. (9)

and P̃αβ is numerically calculated without any approxima-
tion. In previous discussion, we have employed
jACC=Δm2

31j ≳ 10 as the criterion of the matter-dominated
condition, i.e., the matter term H0 is at least an order larger
than the vacuum Hamiltonian H. As we can see from
Figs. 8 and 9, under this criterion, the differences of P̃ee,
P̃eμ, P̃eτ, P̃μe and P̃τe with respect to their fixed points (1 or
0) are all smaller than 10−4. If a more strict criterion
jACC=Δm2

31j ≳ 100 is adopted, the absolute error of these
oscillation probabilities related to electron flavor would be
smaller than 10−7. And as one can infer from Eq. (A15), the

FIG. 8. These color images display the absolute errors jP̃αβ − P̃fixed
αβ j for neutrinos in each right half panel (with ACC > 0) and

jP̃ᾱ β̄ − P̃fixed
αβ j for antineutrinos in each left half panel (with ACC < 0) in the normal mass ordering case, where the best-fit values of the

mass-squared differences and the mixing parameters in Table I have been input. In these images, P̃αβ or P̃ᾱ β̄ are calculated by

numerically diagonalizing the effective Hamiltonian H̃ in matter.
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absolute errors would fall quadratically with the increase of
jACCj. We can then safely make the conclusion that both νe
and ν̄e are decoupled in the matter-dominated case. On the
other hand, in addition to the dependence on the matter
parameter ACC, the accuracy of the oscillation probabilities
P̃μμ, P̃ττ, P̃μτ and P̃τμ which describe the remaining
oscillation between νμ and ντ in dense matter depend also
crucially on the ratio L=E. If both the conditions
jACC=Δm2

31j ≳ 10 and L=E½km=GeV�≲ 10jACC=Δm2
31j

are satisfied, the absolute error of these four probabilities
are all smaller than 10−3. And if the more strict constraint
L=E½km=GeV�≲ jACC=Δm2

31j together with jACC=Δm2
31j ≳

10 are imposed on, the accuracy of the order 10−5 or better
can be obtained. The reason for this additional criterion is
that the first order correction to the effective mass-squared
differenceΔm̃2

32 is proportional to jΔm2
31=ACCj as on can see

in Eq. (A16). In the case L=E½km=GeV�≳10jACC=Δm2
31j

this correction to the oscillation frequency is significant

enough and should not be ignored. In this case one may
calculateΔm̃2

32 using Eq. (A16) instead of Eq. (10) to further
improve the accuracy of Eq. (9). Also note that, when a
realistic experiment is discussed especially for those with
large Δm̃2

32L=4E, the energy resolution must be taken into
consideration.

IV. OUTLOOK

As the ending section of this manuscript, it is interesting
to ask under what circumstances these studies of neutrino
oscillation in dense matter will be applied. Here we
bring our embryonic thoughts by making a very bold
comparison of the oscillation behaviors between neutrinos
passing through the Earth and passing through a typical
white dwarf.
Figures 10 and 11 show the variations of oscillation

probabilities as functions of neutrino/antineutrino energy E,
when the neutrino/antineutrino beam go through the Earth

FIG. 9. These color images display the absolute errors jP̃αβ − P̃fixed
αβ j for neutrinos in each right half panel (with ACC > 0) and

jP̃ᾱ β̄ − P̃fixed
αβ j for antineutrinos in each left half panel (with ACC < 0) in the inverted mass ordering case, where the best-fit values of the

mass-squared differences and the mixing parameters in Table I have been input. In these images, P̃αβ or P̃ᾱ β̄ are calculated by

numerically diagonalizing the effective Hamiltonian H̃ in matter.
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along the diameter. Note that, instead of the more accurate
PREM model of the Earth [45], we adopted here a
simpler two layer mantle-core model [46,47].8 The Earth
radius in this mantle-core model is R ¼ 6371 km, of which
the core has a radius of Rc ¼ 3458.7 km with the average
matter density ρ̄c ≃ 11.5 g=cm3 and the average electron
fraction Yc

e ≃ 0.467, while the Earth mantle has an approx-
imately depth of Rm ¼ 2885.3 km with the average matter

density ρ̄m ≃ 4.5 g=cm3 and the average electron frac-
tion Ym

e ≃ 0.49.
We can find from these figures, when E≳ 100 GeV, the

criterion of “matter-dominated” is satisfied and the prob-
abilities of neutrino oscillation and antineutrino oscillation
in this region are approximately equal and can be well
predicted by Eq. (9). However in the case of our Earth, L=E
is pretty small in the matter-dominated region, then all the
disappearance probabilities are approximately equal to 1
while all the appearance probabilities are approximately
equal to 0. The neutrinos/antineutrinos of all three flavors
are decoupled in this case. Also it is worth mentioning that,
since the neutrino-nucleon cross section of neutrinos

FIG. 10. The comparison of the neutrino (antineutrino) oscillation probabilities with or without the matter effect as a neutrino
(antineutrino) beam of energy E go through the Earth along the diameter, where the normal neutrino mass ordering is assumed and the
best-fit values of the mass-squared differences and the mixing parameters in Table I have been input. The fixed points of the probabilities
in the limit jACCj ≫ jΔm2

31j given by Eq. (9) (dashed lines) are also plotted in this figure for comparison. Note that all the probabilities
are averaged over a Gaussian energy resolution of 5%.

8Our numerical analysis show that there is no discernible
difference between results using these two different Earth
reference models in both the vacuum-dominated and the mat-
ter-dominated regions.

NEUTRINO OSCILLATION IN DENSE MATTER PHYS. REV. D 101, 033005 (2020)

033005-13



increase with increasing energy [48,49], at such high
energies the Earth becomes opaque to neutrinos and the
neutrino flux gets attenuated (for more details, see dis-
cussions in, e.g., [50–53]). In the case of neutral-current
interaction neutrinos are degraded in energy, and in the case
of charged-current interaction neutrinos are absorbed. The
attenuation becomes more important than the usual matter
effect in such high energy region and should not be ignored.
However, if we can do the same measurements on a

white dwarf whose volume is comparable to that of the
Earth but mass is comparable to that of the Sun, things
could have been very different. Figures 12 and 13 show the
variations of oscillation probabilities as functions of

neutrino/antineutrino energy E, when the neutrino/antineu-
trino beam passing through a typical white dwarf [54,55]
along its diameter. The corresponding oscillation proba-
bilities in vacuum are also presented in these plots using
dotted lines for comparison. Again, all the probabilities are
averaged over a Gaussian energy resolution of 5%. The
white dwarf is an excellent choice for this thought experi-
ment. On one hand a white dwarf is very dense can give rise
to significant matter effect, and on the other hand the
material in a white dwarf no longer undergoes fusion
reactions which means it does not radiate large amount of
neutrinos on its own. In our analysis, the mass M ∼ 0.7M⊙
(with M⊙ being the mass of the Sun), the radius

FIG. 11. The comparison of the neutrino (antineutrino) oscillation probabilities with or without the matter effect as a neutrino
(antineutrino) beam of energy E go through the Earth along the diameter, where the inverted neutrino mass ordering is assumed and the
best-fit values of the mass-squared differences and the mixing parameters in Table I have been input. The fixed points of the probabilities
in the limit jACCj ≫ jΔm2

31j given by Eq. (9) (dashed lines) are also plotted in this figure for comparison. Note that all the probabilities
are averaged over a Gaussian energy resolution of 5%.
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R ∼ 104 km, an uniform density ρ ∼ 2 × 106 g=cm3 or
equivalently an uniform electron number density ne ∼ 6 ×
1029 cm−3 ∼ 106NA cm−3 (with NA being the Avogadro’s
number) are assumed as the properties of this white dwarf.
Due to the extremely high density, neutrino oscillation

experiences the resonances and then enter the matter-
dominated region at very low energies (below MeV).
One may clearly see from Figs. 12 and 13 that at around
E ∼ 0.4 keV (the solar resonance where jACCj ≃ Δm2

21) the
oscillation probabilities start to markedly differ from the
vacuum oscillation probabilities and change toward their
fixed points. For neutrino oscillation in the normal mass

ordering case or antineutrino oscillation in the inverted
mass ordering case, there is a significant resonance hump at
around E ∼ 20 keV (the atmospheric resonance where
jACCj ≃ jΔm2

31j). After that, at around E ∼ 0.2 MeV (where
jACCj=jΔm2

31j ≃ 10), it enters the matter-dominated region.
In our analysis, the neutrino/antineutrino oscillation prob-
abilities in this region are all in perfect agreement with the
predictions of Eq. (9) if the same energy resolution is taken
into account. In the energy range shown in these two
figures, L=E is extremely large, the oscillatory frequencies
are all extremely high, therefore only the average oscil-
latory magnitude can be observed, which is a constant and

FIG. 12. The comparison of the neutrino (antineutrino) oscillation probabilities with or without the matter effect as a neutrino
(antineutrino) beam of energy E go through a typical white dwarf along its diameter, where the normal neutrino mass ordering is
assumed and the best-fit values of the mass-squared differences and the mixing parameters in Table I have been input. The white dwarf is
assumed to have an approximately constant density of ρ ≃ 2 × 106 g · cm−3 (or equivalently a electron number density of ne ≃
106NA cm−3 with NA being the Avogadro’s number) and a radius of R ≃ 104 km. The fixed points of the probabilities in the limit
jACCj ≫ jΔm2

31j given by Eq. (9) (dashed lines) are also plotted in this figure for comparison. Note that all the probabilities are averaged
over a Gaussian energy resolution of 5%.
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is markedly different from the vacuum probabilities in the
matter-dominated case.
It is worth mentioning that, in the low energy region, the

oscillatory frequency Δm̃2
jiL=4E could be high. In this case

neutrinos undergo very quick oscillations which cannot
actually be observed due to the finite energy resolution of
the detectors. In our numerical analysis presented in
Figs. 10–13, all the probabilities are averaged over a
Gaussian energy resolution of 5% (which can be achieved
by the upcoming neutrino experiments, such as JUNO [56],
at the MeV energy range) to mimic the working of the
detector on one hand and uncover features hidden in these

fast oscillations on the other. Our numerical analysis also
show that even if we choose a worse energy resolution of
15%, the intriguing features discussed above can still be
well recognized, since we are looking for the resonance
hump and the deviation of the average oscillatory magni-
tude after neutrinos passing through the white dwarf instead
of looking for the oscillation behavior itself. However if we
want to trace the remaining oscillation between νμ and ντ in
this dense matter at a much higher energy range, a good
energy resolution could be crucially important.
Note that all the interesting features of the probabilities

we discussed above will finally be embodied in the

FIG. 13. The comparison of the neutrino (antineutrino) oscillation probabilities with or without the matter effect as a neutrino
(antineutrino) beam of energy E go through a typical white dwarf along its diameter, where the inverted neutrino mass ordering is
assumed and the best-fit values of the mass-squared differences and the mixing parameters in Table I have been input. The white dwarf is
assumed to have an approximately constant density of ρ ≃ 2 × 106 g · cm−3 (or equivalently a electron number density of ne ≃
106NA cm−3 with NA being the Avogadro’s number) and a radius of R ≃ 104 km. The fixed points of the probabilities in the limit
jACCj ≫ jΔm2

31j given by Eq. (9) (dashed lines) are also plotted in this figure for comparison. Note that all the probabilities are averaged
over a Gaussian energy resolution of 5%.
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neutrino/antineutrino spectrumwe observed. The finding of
a change of the slope (around the solar resonance) and a
subsequent hump (around the atmospheric resonance)
could help to ping down the corresponding resonance
energy which can then be turned into the electron density
of the compact object. What is more, if both the neutrino
and antineutrino spectrum can be measured, the present or
the absent of the atmospheric resonance hump would be a
novel judgement of the neutrino mass ordering. If at a much
higher energy range in the matter-dominated region, the
oscillatory behavior between νμ and ντ can be observed, the
corresponding oscillation frequency, if well determined,
may also reveal some information relating to the size of this
compact object.
Since white dwarf is a high-density object, there is a

concern about the absorption of neutrinos/antineutrinos
inside thewhite dwarf.Wegive a quick estimate of neutrino’s
mean free path in a typical white dwarf here to preliminarily
discuss the significance of this effect for neutrinos with
different initial energies. The absorption of neutrinos inside
the white dwarf is dominated by the charged-current inter-
action between neutrinos and the nucleons in the medium.
Without loss of generality, we simply use the ν − n (or ν̄ − p)
cross section to evaluate this interaction ratewhich in the low
energy region can be approximately calculated by σνn;ν̄pCC ≃
9.3×10−44 ðE=MeVÞ−2cm2 (see, e.g., [57,58]). Then the
corresponding mean free path of neutrinos/antineutrinos can
bewritten asl ¼ ðσρ=mpÞ−1 ∼ 0.9 × 1013 ðE=MeVÞ−2 cm,
where the typical density of the white dwarf ρ ∼ 2 ×
106 g=cm3 have been taken into account. We can then infer
from this result, for neutrinos with energy E≲ 10 MeV, the
mean free path l≳ 9 × 105 km can be obtained, which is
much larger than the length 2R ∼ 2 × 104 km the neutrinos
transport in the white dwarf. Or in other words, for the
neutrino energy of interest to us (E≲ 10 MeV), the white
dwarf can be approximately regarded as transparent. Of
course if neutrinos with energy higher than 10 MeV are
considered, the attenuation of neutrinos/antineutrinos due to
both the absorption and scattering need to be carefully
studied.
Truly,we cannot actually conduct a long baseline neutrino

oscillation experiment on a white dwarf. However, we are
nowobserving neutrinoswith a broad range of energies from
distant objects using varieties of neutrino detectors, many of
which cover theMeV range. If there happen to be a compact
object sitting in between the source and the observer, this
compact object can not only bend the light and produce the
gravitational lensing effect, but also “lens” the neutrinos
from the source by distorting its spectrum.But different from
the gravitational lensing effect which is capable of uncov-
ering the mass distribution in our universe, this “neutrino
lensing” effect could be sensitive to the distribution of
electrons (or positrons) in the space.
Of course, the discussion so far is just an immature and

inaccurate thought. For illustrative purposes, the examples

we introduced in this manuscript are very simplified and
idealized. Lots of details such as the spectrum and the
flavor composition of the neutrino source, the properties of
the compact objects and their distribution in the space, the
capability of the detector have to be carefully studied before
we can finally draw the conclusion if this kind of “neutrino
lensing” effect can be actually observed. In our opinion, it
is worthwhile to concentrate more efforts on this topic, for
it may open a new window to the universe via the weak
interaction of neutrino with the compact objects. We
believe that with the improving of the detector capabilities
and the data analysis techniques, it is possible to site
experiments some day to located the hidden compact
objects in the space via this “neutrino lensing” effect.
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APPENDIX: DIAGONALIZATION OF THE
EFFECTIVE HAMILTONIAN USING THE

PERTURBATION THEORY AND THE FIXED
POINTS IN THE LIMIT jACCj → ∞

The effective Hamiltonian H̃ in the flavor basis respon-
sible for the propagation of neutrinos in matter can be
written as

H̃ ¼ 1

2E

2
64m2

1 · 1þ V

0
B@

0

Δm2
21

Δm2
31

1
CAV†

þ

0
B@

ACC

0

0

1
CAþ ANC · 1

3
75; ðA1Þ

where ACC ¼ 2EVCC, ANC ¼ 2EVNC with VCC ¼ffiffiffi
2

p
GFNe and VNC ¼ −

ffiffi
2

p
2
GFNn being the effective matter

potentials describing the charged- and neutral-current
interactions of neutrinos with the background e, p and n
in themedium.HereGF is the Fermi constant,Ne andNn are
the electron and neutron number densities of the medium
respectively, and 1 stands for the 3 × 3 unit matrix. Note that
the contribution of 1

2E ðm2
1 þ ANCÞ · 1 are identical for all

three flavors and therefore would not affect the neutrino
oscillation behaviors in matter. In this manuscript we
use letters with tilde marks ( ∼) to denote the effective
neutrino mass and mixing parameters in matter, and letters
without the ∼ stand for corresponding parameters in
vacuum. The effective Hamiltonian H̃ can be diagonalized
through a unitary transformation H̃¼Ṽ Λ̃Ṽ†, where
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Λ̃ ¼ diagfλ̃1; λ̃2; λ̃3g ¼ 1
2E diagfm̃2

1; m̃
2
2; m̃

2
3g is diagonal

with m̃iði ¼ 1; 2; 3Þ being the effective neutrino masses in
matter, and the unitary matrix Ṽ ¼ ðṽ1ṽ2ṽ3Þ is just the
effective mixing matrix in matter.
In the case of neutrinos having extremely high energy or

going through extremely dense object, we could have
jACCj ≫ jΔm2

31j which indicates that the matter potential
terms dominate over the vacuum terms. In this matter-
dominated region, we may regard both jΔm2

31=ACCj and
Δm2

21=jACCj as small parameters and perform the diago-
nalization of H̃ using the perturbation theory. We can then
write down the series expansion of the effective
Hamiltonian H̃ as

H̃ ¼ H̃ð0Þ þ H̃ð1Þ; ðA2Þ

with

H̃ð0Þ ¼ 1

2E

2
64ðm2

1 þ ANCÞ · 1þ

0
B@

ACC

0

0

1
CA
3
75; ðA3Þ

H̃ð1Þ ¼ 1

2E
V

0
B@

0

Δm2
21

Δm2
31

1
CAV†: ðA4Þ

The eigenvalues and eigenvectors can also be written

as λ̃i ¼ λ̃ð0Þi þ λ̃ð1Þi þ… and ṽi ¼ ṽð0Þi þ ṽð1Þi þ…. (for
i ¼ 1; 2; 3) correspondingly. One may immediately find
that the zeroth order Hamiltonian H̃ð0Þ is diagonal by itself
in the flavor basis, which means

λ̃ð0Þ1 ¼ 1

2E
ðm2

1 þ ANC þ ACCÞ;

λ̃ð0Þ2 ¼ 1

2E
ðm2

1 þ ANCÞ;

λ̃ð0Þ3 ¼ 1

2E
ðm2

1 þ ANCÞ: ðA5Þ

Note that two eigenvalues of H̃ð0Þ (λ̃ð0Þ2 and λ̃ð0Þ3 ) are
identical (degenerate). In this case the corresponding zeroth
order mixing matrix Ṽð0Þ should be written as

Ṽð0Þ ¼

0
B@

1 0 0

0 cos θ̃ sin θ̃eiϕ̃

0 − sin θ̃e−iϕ̃ cos θ̃

1
CA: ðA6Þ

By carefully repeating the derivation, we find that, in the
case of H̃ð0Þ possessing two degenerate eigenvalues (e.g.,

λ̃ð0Þ2 ¼ λ̃ð0Þ3 ), if hH̃iðnÞ23 ¼ hH̃iðnÞ32 ¼ 0 are satisfied for any
integer n ≥ 1, one could still solving three eigenvalues λ̃i
and the unitarity transformational matrix Ṽ using the

perturbation theory, where hH̃iðnÞij ≡ ṽð0Þ†i H̃ðnÞṽð0Þj (i.e.,

hH̃iðnÞ ≡ Ṽð0Þ†H̃ðnÞṼð0Þ). Above conditions are obviously
satisfied for any n ≥ 2, since we have H̃ðnÞ ¼ 0 (for n ≥ 2)
as one can find from Eq. (A2). And furthermore, from

hH̃ið1Þ23 ¼ hH̃ið1Þ32 ¼ 0, it is quite straightforward to have θ̃
and ϕ̃ solved as

tan 2θ̃ ¼ 2jΩ23j
Ω33 −Ω22

¼ 2jΔm2
21Vμ2V�

τ2 þ Δm2
31Vμ3V�

τ3j
Δm2

21ðjVτ2j2 − jVμ2j2Þ þ Δm2
31ðjVτ3j2 − jVμ3j2Þ

;

ϕ̃ ¼ argðΩ23Þ ¼ arg ðΔm2
21Vμ2V�

τ2 þ Δm2
31Vμ3V�

τ3Þ:
ðA7Þ

Here the Hermitian matrix Ω is defined as

Ω≡ V

0
B@

0

Δm2
21

Δm2
31

1
CAV†

¼

0
B@

Δm2
21jVe2j2 þ Δm2

31jVe3j2 Δm2
21Ve2V�

μ2 þ Δm2
31Ve3V�

μ3 Δm2
21Ve2V�

τ2 þ Δm2
31Ve3V�

τ3

Δm2
21Vμ2V�

e2 þ Δm2
31Vμ3V�

e3 Δm2
21jVμ2j2 þ Δm2

31jVμ3j2 Δm2
21Vμ2V�

τ2 þ Δm2
31Vμ3V�

τ3

Δm2
21Vτ2V�

e2 þ Δm2
31Vτ3V�

e3 Δm2
21Vτ2V�

μ2 þ Δm2
31Vτ3V�

μ3 Δm2
21jVτ2j2 þ Δm2

31jVτ3j2

1
CA: ðA8Þ

Given that the zeroth order solutions are well determined, the first order corrections to the eigenvalues and eigenvectors
can be expressed as
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λ̃ð1Þ1 ¼ hH̃ið1Þ11 ¼ Ω11

2E
;

λ̃ð1Þ2 ¼ hH̃ið1Þ22 ¼ 1

2E
ðΩ22cos2θ̃ þ Ω33sin2θ̃ − jΩ23j sin 2θ̃Þ;

λ̃ð1Þ3 ¼ hH̃ið1Þ33 ¼ 1

2E
ðΩ33cos2θ̃ þ Ω22sin2θ̃ þ jΩ23j sin 2θ̃Þ;

ðA9Þ

and

ṽð1Þ1 ¼ hH̃ið1Þ21

λ̃ð0Þ1 − λ̃ð0Þ2

· ṽð0Þ2 þ hH̃ið1Þ31

λ̃ð0Þ1 − λ̃ð0Þ3

· ṽð0Þ3 ¼ 1

ACC

0
B@

0

Ω21

Ω31

1
CA;

ṽð1Þ2 ¼ hH̃ið1Þ12

λ̃ð0Þ2 − λ̃ð0Þ1

· ṽð0Þ1 ¼ 1

ACC

0
B@
Ω12 cos θ̃þΩ13 sin θ̃e−iϕ̃

0

0

1
CA;

ṽð1Þ3 ¼ hH̃ið1Þ13

λ̃ð0Þ3 − λ̃ð0Þ1

· ṽð0Þ1 ¼ 1

ACC

0
B@
−Ω13 cos θ̃−Ω12 sin θ̃eiϕ̃

0

0

1
CA:

ðA10Þ

One can clearly see that the lowest order corrections to Ṽð0Þ
e1 ,

Ṽð0Þ
μ2 , Ṽ

ð0Þ
μ3 , Ṽ

ð0Þ
τ2 and Ṽð0Þ

τ3 come only in the second order

corrections which are highly suppressed if ACC dominates.
And the second order corrections to the eigenvalues are
given by

λ̃ð2Þ1 ¼ jhH̃ið1Þ21 j2
λ̃ð0Þ1 − λ̃ð0Þ2

þ jhH̃ið1Þ31 j2
λ̃ð0Þ1 − λ̃ð0Þ3

¼ 1

2EACC
ðjΩ12j2þjΩ13j2Þ;

λ̃ð2Þ2 ¼ jhH̃ið1Þ12 j2
λ̃ð0Þ2 − λ̃ð0Þ1

¼−
1

2EACC
jΩ12 cos θ̃−Ω13 sin θ̃e−iϕ̃j2;

λ̃ð2Þ3 ¼ jhH̃ið1Þ13 j2
λ̃ð0Þ3 − λ̃ð0Þ1

¼−
1

2EACC
jΩ13 cos θ̃þΩ12 sin θ̃eiϕ̃j2:

ðA11Þ
Note that, the effective Hamiltonian H̃ itself contains terms

proportional to ACC thus the two differences λ̃ð0Þ1 − λ̃ð0Þ2 ,

λ̃ð0Þ1 − λ̃ð0Þ3 are also proportional to ACC. As a result, the

expansions of the eigenvalues λ̃ðnÞi (for i ¼ 1; 2; 3) are
actually of the order OðΔm2

ji=ACCÞn−1 (for ji ¼ 31 or

21), while the expansions of the eigenvectors ṽðnÞi (for
i ¼ 1; 2; 3) are still of the order OðΔm2

ji=ACCÞn (for ji ¼
31 or 21).
To sum up, up to the first order of both jΔm2

31=ACCj and
Δm2

21=jACCj, three eigenvalues of H̃ and the effective
mixing matrix in matter can be approximately expressed as

Λ̃ ≈
1

2E
ðm2

1 þ ANCÞ · 1þ 1

2E

0
B@

ACC þΩ11

Ω22cos2θ̃ þΩ33sin2θ̃ − jΩ23j sin 2θ̃
Ω33cos2θ̃ þΩ22sin2θ̃ þ jΩ23j sin 2θ̃

1
CA

þ 1

2EACC

0
BB@

jΩ12j2 þ jΩ13j2
−jΩ12 cos θ̃ −Ω13 sin θ̃e−iϕ̃j2

−jΩ13 cos θ̃ þ Ω12 sin θ̃eiϕ̃j2

1
CCA; ðA12Þ

and

Ṽ ≈

0
BBBB@

1 −Ω12 cos θ̃þΩ13 sin θ̃e−iϕ̃

ACC

−Ω13 cos θ̃−Ω12 sin θ̃eiϕ̃

ACC

Ω21

ACC
cos θ̃ sin θ̃eiϕ̃

Ω31

ACC
− sin θ̃e−iϕ̃ cos θ̃

1
CCCCA:

ðA13Þ
If the matter density can be regarded as a constant along

the path neutrinos propagate, we can then write down the
neutrino oscillation probabilities in matter simply by
replacing the neutrino mass-squared differences and the
mixing matrix in neutrino oscillation probabilities in
vacuum with the corresponding effective neutrino mass
and mixing parameters in matter.

P̃ð νð−Þα→ ν
ð−Þ

βÞ¼ δαβ−4
X
j>i

Re½ṼαiṼβjṼ�
αjṼ

�
βi�sin2Δ̃ji

�2
X
j>i

Im½ṼαiṼβjṼ�
αjṼ

�
βi�sin2Δ̃ji; ðA14Þ

where Δ̃ji ≡ Δm̃2
jiL=4E with Δm̃2

ji≡m̃2
j−m̃2

i ¼2Eðλ̃j− λ̃iÞ
being the effective neutrino mass-squared difference in
matter. Here the Greek letters α, β are flavor indices run
over e, μ, τ, while the Latin letters i, j are indices of the
mass eigenstates run over 1, 2, 3. Using the results
summarized in Eqs. (A12) and (A13), the neutrino oscil-
lation probabilities in matter to the second order of both
jΔm2

31=ACCj and Δm2
21=jACCj can be expressed as
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P̃ðνe → νeÞ ≈ 1 −
4

A2
CC

jΩ12 cos θ̃ −Ω13 sin θ̃e−iϕ̃j2sin2
Δm̃2

21L
4E

−
4

A2
CC

jΩ13 cos θ̃ þ Ω12 sin θ̃eiϕ̃j2sin2
Δm̃2

31L
4E

;

P̃ðνμ → νμÞ ≈ 1 − sin22θ̃sin2
Δm̃2

32L
4E

−
4

A2
CC

jΩ12j2
�
cos2θ̃sin2

Δm̃2
21L

4E
þ sin2θ̃sin2

Δm̃2
31L

4E

�
;

P̃ðντ → ντÞ ≈ 1 − sin22θ̃sin2
Δm̃2

32L
4E

−
4

A2
CC

jΩ13j2
�
cos2θ̃sin2

Δm̃2
21L

4E
þ sin2θ̃sin2

Δm̃2
31L

4E

�
;

P̃ðνe → νμÞ ≈
1

A2
CC

�
ð4jΩ12j2cos2θ̃ − 2Re½Ω�

13Ω12eiϕ̃� sin 2θ̃Þsin2
Δm̃2

21L
4E

þ ð4jΩ12j2sin2θ̃ þ 2Re½Ω�
13Ω12eiϕ̃� sin 2θ̃Þsin2

Δm̃2
31L

4E

þ ððjΩ13j2 − jΩ12j2Þsin22θ̃ − Re½Ω�
13Ω12eiϕ̃� sin 4θ̃Þsin2

Δm̃2
32L

4E

þ Im½Ω�
13Ω12eiϕ̃� sin 2θ̃

�
sin

Δm̃2
21L

2E
− sin

Δm̃2
31L

2E
þ sin

Δm̃2
32L

2E

��
;

P̃ðνe → ντÞ ≈
1

A2
CC

�
ð4jΩ13j2sin2θ̃ − 2Re½Ω�

13Ω12eiϕ̃� sin 2θ̃Þsin2
Δm̃2

21L
4E

þ ð4jΩ13j2cos2θ̃ þ 2Re½Ω�
13Ω12eiϕ̃� sin 2θ̃Þsin2

Δm̃2
31L

4E

− ððjΩ13j2 − jΩ12j2Þsin22θ̃ − Re½Ω�
13Ω12eiϕ̃� sin 4θ̃Þsin2

Δm̃2
32L

4E

− Im½Ω�
13Ω12eiϕ̃� sin 2θ̃

�
sin

Δm̃2
21L

2E
− sin

Δm̃2
31L

2E
þ sin

Δm̃2
32L

2E

��
;

P̃ðνμ → ντÞ ≈ sin22θ̃sin2
Δm̃2

32L
4E

þ 1

A2
CC

�
2Re½Ω�

13Ω12eiϕ̃� sin 2θ̃
�
sin2

Δm̃2
21L

4E
− sin2

Δm̃2
31L

4E

�

þ Im½Ω�
13Ω12eiϕ̃� sin 2θ̃

�
sin

Δm̃2
21L

2E
− sin

Δm̃2
31L

2E
þ sin

Δm̃2
32L

2E

��
; ðA15Þ

with

Δm̃2
21 ≈ −ACC −Ω11 þ Ω22cos2θ̃ þΩ33sin2θ̃ − jΩ23j sin 2θ̃ −

1

ACC
ðjΩ12j2 þ jΩ13j2 þ jΩ12 cos θ̃ −Ω13 sin θ̃e−iϕ̃j2Þ;

Δm̃2
31 ≈ −ACC −Ω11 þ Ω33cos2θ̃ þΩ22sin2θ̃ þ jΩ23j sin 2θ̃ −

1

ACC
ðjΩ12j2 þ jΩ13j2 þ jΩ13 cos θ̃ þ Ω12 sin θ̃eiϕ̃j2Þ;

Δm̃2
32 ≈ ðΩ33 −Ω22Þ cos 2θ̃ þ 2jΩ23j sin 2θ̃ þ

1

ACC
ðjΩ13j2 − jΩ12j2Þ cos 2θ̃ þ 2Re½Ω�

13Ω12eiϕ̃� sin 2θ̃Þ: ðA16Þ

Another three neutrino oscillation probabilities P̃ðνμ → νeÞ,
P̃ðντ → νeÞ and P̃ðντ → νμÞ can be obtained by changing

the signs of all the Im½Ω�
13Ω12eiϕ̃� terms in P̃ðνe → νμÞ,

P̃ðνe → ντÞ and P̃ðνμ → ντÞ correspondingly. In addition,
one can calculate the antineutrino oscillation probabil-
ities in matter P̃ðν̄α → ν̄βÞ using the following relation

P̃ðν̄α → ν̄βÞðV; ACCÞ ¼ P̃ðνα → νβÞðV�;−ACCÞ: ðA17Þ

It is worth mentioning again that above formulas are
series expansions in both jΔm2

31=ACCj and Δm2
21=jACCj,

which means they are good approximations only in
the region jACCj > jΔm2

31j, i.e., in the case of neutrinos
having extremely high energy or going through extremely
dense objects.
In the matter-dominated region, as the increase of jACCj,

terms proportional to 1=ACC are all approaching zero fast,
and therefore as one can clearly seen from Eqs. (A12) and

SHU LUO PHYS. REV. D 101, 033005 (2020)

033005-20



(A13) that three eigenvalues of H̃ are approaching a set of
fixed values

λ̃fixed1 ≈
1

2E
ðm2

1þANCþACCþΩ11Þ;

λ̃fixed2 ≈
1

2E
ðm2

1þANCþΩ22cos2θ̃þΩ33sin2θ̃− jΩ23jsin2θ̃Þ;

λ̃fixed3 ≈
1

2E
ðm2

1þANCþΩ33cos2θ̃þΩ22sin2θ̃þjΩ23jsin2θ̃Þ:
ðA18Þ

Apparently, in this matter-dominated case, λ̃fixed2 and λ̃fixed3

are nearly degenerate and both of them have strong
hierarchies with λ̃fixed1 . In the same time the effective
mixing matrix in matter Ṽ evolves toward a fixed 3 × 3
real matrix

Ṽfixed ≈

0
B@

1 0 0

0 cos θ̃ sin θ̃

0 − sin θ̃ cos θ̃

1
CA; ðA19Þ

which has the two-flavor-mixing structure and can be
expressed using just one mixing angle θ̃ as defined
in Eq. (A7).
In the limit 1=ACC → 0, those neutrino oscillation

probabilities can be concisely expressed as

P̃ðνe→νeÞ≈P̃ðν̄e→ ν̄eÞ≈1; P̃ðνe→νμÞ≈P̃ðν̄e→ ν̄μÞ≈0;

P̃ðνe→ντÞ≈P̃ðν̄e→ ν̄τÞ≈0; P̃ðνμ→νeÞ≈P̃ðν̄μ→ ν̄eÞ≈0;

P̃ðνμ→νμÞ≈P̃ðν̄μ→ ν̄μÞ≈1−sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðνμ→ντÞ≈P̃ðν̄μ→ ν̄τÞ≈sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðντ→νeÞ≈P̃ðν̄τ→ ν̄eÞ≈0;

P̃ðντ→νμÞ≈P̃ðν̄τ→ ν̄μÞ≈sin22θ̃sin2
Δm̃2

32L
4E

;

P̃ðντ→ντÞ≈P̃ðν̄τ→ ν̄τÞ≈1−sin22θ̃sin2
Δm̃2

32L
4E

: ðA20Þ

In this matter-dominated condition, νe are decoupled, while
oscillations can still happened between νμ and ντ. This two-
flavor oscillation can be described simply by one effective
mixing angle θ̃ and one effective mass-squared difference
Δm̃2

32 whose expressions are given in Eqs. (A7) and (A16)
respectively. One may immediately find that both the param-
eters are independent ofACC and can be easily calculated once
the oscillation parameters in vacuum are well determined.
What is more, in the limit 1=ACC→0 we arrive at P̃ðν̄α →
ν̄βÞ ≈ P̃ðνα → νβÞ, for α; β ¼ e; μ; τ. The intrinsic CP vio-
lation asymptotically vanishes in the matter-dominated case.
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