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We study the feasibility of using neutrino-electron elastic scattering to measure the neutrino flux in the
DUNE neutrino oscillation experiment. The neutrino-electron scattering cross section is precisely known,
and the kinematics of the reaction allow the determination of the incoming neutrino energy by precise
measurement of the energy and angle of the recoiling electron. For several possible near detectors, we
perform an analysis of their ability to measure neutrino flux in the presence of backgrounds and
uncertainties. With realistic assumptions about detector masses, we find that a liquid argon detector, even
with limitations due to angular resolution, is able to perform better than less dense detectors with more
precise event-by-event neutrino energy measurements. We find that the absolute flux normalization
uncertainty can be reduced from ∼8% to ∼2%, and the uncertainty on the flux shape can be reduced
by ∼20%–30%.
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I. INTRODUCTION

The Deep Underground Neutrino Experiment (DUNE) is
designed to measure CP violation in neutrino oscillations
by making precise measurements of the neutrino flavor
oscillations νμ → νμ and νμ → νe, and their antineutrino
analogues, as a function of the neutrino energy, Eν [1,2].
DUNE uses a wideband neutrino beam peaked at 2.5 GeV,
and with 92% of the muon-neutrino flux in the energy
range 0.5–5 GeV [3]. The DUNE far detector (FD) will
measure neutrino-argon interactions, and infer the neutrino
energy from the observed final state particles [4]. In
addition to oscillation parameters, these measurements
are sensitive to several inputs, each of which has sig-
nificant, Oð10%Þ, uncertainties: the neutrino-argon inter-
action cross sections, the relationship between the true
and inferred Eν, and the neutrino flux. To achieve its
physics goals, in particular the measurement of CP
violation, the DUNE near detector (ND) must constrain
the uncertainties on the predicted event spectra to the level
of ∼2%–3% [1,2].
Neutrino cross-section uncertainties are energy depen-

dent, and affect both the rate of interactions and the
energy reconstruction. Near detector measurements of

neutrino-argon charged-current interactions are extremely
valuable, but typically constrain a product of flux and cross
sections. The near and far detectors see different neutrino
fluxes, primarily because of oscillations, which limits the
ability to extrapolate these ND constraints to the FD. The
flux as a function of Eν is a priori poorly predicted,
primarily because of hadron production uncertainties as
described in Sec. IV. This makes it difficult for the near
detector to simultaneously measure the flux of neutrinos
and to study the mechanisms by which neutrinos interact.
A helpful way to break this degeneracy is to separately

measure the flux of neutrinos as a function of energy at the
near detector. This can be done by selecting a sample of
events for which the cross section as a function of energy is
known. For example, at Eν ≫ 1 GeV, the neutrino inter-
action cross section for events with low-energy transfer, ν,
is roughly constant with neutrino energy. This way to
measure flux, referred to as the “low-ν” technique, has been
used to study total and deep-inelastic neutrino cross
sections as a function of neutrino energies [5–10].
However, the DUNE first and second oscillation maxima
occur at ∼2.5 and ∼0.8 GeV, respectively. At these
energies, it is difficult to select a sample with ν=Eν

sufficiently small, and the low-ν technique breaks down.
In this energy range, neutrino-electron elastic scattering is
the only process with a known cross section.
In this paper, we demonstrate the feasibility of measuring

the neutrino flux as a function of energy in the DUNE
near detector using neutrino-electron elastic scattering.
The Long Baseline Neutrino Facility (LBNF) beam line
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simulation is used to produce a flux of neutrinos at
the near detector location, including the effect of the beam
dispersion, as described in Sec. IV. We use Geant4
simulations to study the expected electron angular reso-
lution in the liquid argon time projection chamber (LAr
TPC) of the DUNE ND in Sec. V. Similar studies are
performed for a high-resolution gaseous detector, and a
plastic scintillator detector. A detector with perfect electron
reconstruction and background rejection is also considered
as a limiting case. Section VI describes the details of the
flux fits. We present the main results in Sec. VII and discuss
potential sources of bias and systematic uncertainty in
Sec. VIII. In Sec. IX, we discuss the potential for using
inverse muon decay to further constrain the high energy νμ
flux. Finally, in Sec. X, we present our conclusions.

II. NEUTRINO-ELECTRON SCATTERING

Neutrino-electron elastic scattering, νe− → νe−, is pre-
cisely predicted by the electroweak theory because it is a
2 → 2 process that involves only weak interactions of
fundamental leptons. In the limits that the neutrino energy
Eν is much greater than the electron massme and far below
the energies required for resonant W boson production,

Eν ≪
M2

W
2me

, the νe− → νe− cross section for neutrinos or
antineutrinos is given at tree level by [11]

dσðνe− → νe−Þ
dy

¼ G2
Fs
π

½C2
LL þ C2

LRð1 − yÞ2�: ð1Þ

Here, GF is the Fermi weak coupling constant, s is the
Mandelstam invariant representing the square of the total
energy in the center-of-mass frame, and y≡ Te=Eν where
Te is the electron kinetic energy. The couplings CLL and
CLR are different for neutrinos and antineutrinos and
depend on flavor. For νμ and ντ, CLL ¼ − 1

2
þ sin2 θW

and CLR ¼ sin2 θW , where θW is the Weinberg angle,
and in the corresponding antineutrino couplings, the values
for CLL and CLR are interchanged. For νe (ν̄e), the value of
one of the couplings, CLL (CLR) is

1
2
þ sin2 θW because of

interfering contributions from neutral-current interaction
that is present for all flavors and from a charged-current
interaction that is present only for electron neutrinos.
Electroweak radiative corrections to the process are
few-percent corrections and are discussed in detail in the
Appendix.
The theoretical uncertainty of the neutrino-electron

elastic scattering cross section from uncertainties in the
parameters and radiative corrections is small [12]. Recent
work [13] has shown that the limiting uncertainty comes
from hadronic loops in radiative corrections which results
in a few permille uncertainty. Therefore a measurement of
the reaction can be used to measure neutrino flux at this
precision. At the ∼Oð1Þ GeV neutrino energies of DUNE,
this cross section is approximately 10−4 of the total

charged-current νμ cross section; therefore the number of
events is small and backgrounds may be substantial.
However, for realistic near detector sizes, the event sample
is expected to be sufficiently large in the DUNE beam to
allow for statistical precision on a neutrino-electron elastic
scattering sample to be Oð1%Þ [14].
The angle of the final state electron with respect to the

neutrino, θe, is

1 − cos θe ¼
með1 − yÞ

Ee
; ð2Þ

where Ee is the energy of the final state electron. Therefore
at neutrino energies ∼1 GeV, such as for DUNE, where
me ≪ Eν, the final state electron is very forward. A
measurement of the angle and electron energy determines
y, and thus also the neutrino energy.
Another neutrino-electron scattering process with a

well-known cross section is inverse muon decay (IMD),
νμe− → νeμ

−. This process has a threshold energy of

Emin ¼ m2
μ−m2

e

2me
≈ 11 GeV, and a total cross section given

at tree level by [15]

σ ¼ ðs −m2
μÞ2G2

F

sπ
þO

�
m2

eGF

s

�
: ð3Þ

The spectrum of muons emitted for a fixed neutrino
energy in the lab frame, Eν, is approximately uniform with
limits between Emin and Eν, with small corrections to the
uniformity and the kinematic limits of orderme=Eν andme,
respectively. This cross section increases with energy as the
DUNE flux is falling, and the event rate is expected to peak
at ∼18 GeV. IMD could provide a constraint on the high
energy tail of the νμ flux; however, such a constraint would
have little impact on the DUNE neutrino oscillation
analyses. This process is discussed further in Sec. IX,
and in less detail than νe− → νe− in this manuscript.

III. MINERVA’S NEUTRINO-ELECTRON
SCATTERING FLUX MEASUREMENT

The MINERvA experiment is the only accelerator
experiment to date that has successfully used this technique
[16,17] to significantly reduce its uncertainty on a predicted
neutrino flux. MINERvA reconstructed these events in a
segmented scintillator detector with neutrinos at energies
similar to DUNE’s. The first analysis with the low-energy
NuMI beam [16] observed 127 total events including a
predicted background of 30� 4 events; a second, recent
analysis with the medium energy NuMI beam [17] found
1021 events with a predicted background of 212� 13.5
events. The background composition of the two analyses
was different because of the event selection and beam
energies. In the medium (low) energy analysis, the back-
ground was approximately 28% (55%) νe charged-current
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interactions, primarily quasielastic-like events νenbound →
e−p, 54% (30%) neutral-current interactions, primarily
with a π0 in the final state, and 18% (15%) νμ charged-
current events, also primarily with a π0 in the final state and
a very low-energy final state μ−. In both analyses, back-
grounds in the segmented scintillator were reduced by
requiring an electron energy of 800 MeVor greater, which
is not a desirable selection for a DUNE near detector
because of the physics interest in the low-energy neutrino
flux. Because of the angular resolution in the MINERvA
segmented scintillator, with a granularity of ∼2 cm,
MINERvA did not attempt to use angular information to
reconstruct the incoming neutrino energy. The systematic
uncertainty on the observed rate in the MINERvA medium
(low) energy measurement was 1.8% (5%), and was mostly
due to uncertainties in the background reactions. The
uncertainty on background reactions, particularly the low
Q2 behavior of the νe quasielastic-like background events,
is significantly lower in the medium energy analysis
than in the low-energy analysis, largely due to better
knowledge of the low Q2 behavior of neutrino reactions
due to MINERvA data itself [17,18]. In the medium energy
analysis, the electron reconstruction efficiency and electro-
magnetic energy scale of the detector were also noted
contributors of systematic uncertainty, but were not dom-
inant sources. Both analyses had a 1%–2% uncertainty in
the application of the event rate to the neutrino flux
prediction from the fiducial mass of the detector. As a
result of these analyses, the fractional uncertainty on
MINERvA’s low-energy flux between 2 and 10 GeV
was reduced from 8.7% to 6.0%, and the uncertainty at
the neutrino flux peak of the medium energy beam was
reduced from 7.5% to 3.9%.

IV. LBNF BEAM

DUNE will operate in the LBNF [3] beam line at
Fermilab. The LBNF beam will initially operate at an
initial beam power of 1.2 MW, with a design capacity of
2.4 MW, more than 3 times the maximum intensity of the
NuMI beam line (700 kW) [19]. At 1.2 MW intensity,
corresponding to 1.1 × 1021 protons on target per year, and
with a detector located 574 m from the neutrino source,
∼120ν–e− events are expected per year per ton of argon.
Hydrocarbon detectors have a higher ratio of electrons to
nucleons, and therefore have higher event rates per unit
mass. The expected rates per year per ton are ∼144 for CH
and ∼152 for CH2.
The LBNF neutrino beam is produced by first focusing

protons from the Fermilab Main Injector onto a fixed target
to produce pions and kaons, which are then focused by a
system of magnetic horns into a decay volume, where the
mesons decay primarily into muons and muon-flavor
neutrinos. The horns are designed to focus positive mesons
in forward horn current (FHC) mode, leading to a primarily

νμ beam, and negative pions in reverse horn current (RHC)
mode, leading to a primarily ν̄μ beam. The wrong-sign
contamination is higher in RHC because the proton-carbon
interactions produce more πþ than π−, but the contamina-
tion is mostly in the flux tail. Electron-flavor neutrinos
make up 1% of the total flux, and arise primarily from the
decay chain π → μ → e. At energies above 10 GeV,
neutrinos from kaon decays dominate, and the νe contami-
nation is larger from K� → π0e�νe and K0

L → π�e∓νe.
The neutrino flux is peaked at 2.5 GeV, the oscillation
maximum for a baseline of 1300 km.
The beam line is simulated with g4lbnf, a Geant4-based

model. Proton interactions in the target, as well as the
subsequent interactions of hadrons in the target and
focusing system, are simulated using the “QGSP_BERT”
physics list, which combines the quark-gluon string with
precompound (QGSP) model and a Bertini cascade at
higher energies [20]. This analysis is based on g4lbnf
version v3r5p4, which is based on a 120 GeV proton beam.
The energy spectra for all four neutrino species in both horn
polarities used in this analysis are shown in Fig. 1.
Neutrinos can have nonzero angles with respect to the

beam axis due to imperfect focusing, the finite width of the
decay pipe, and the finite size of the detector. The mean
neutrino angle at the LBNF near detector facility, 574 m
from the target along the beam axis, is approximately
1.5 mrad. The decay pipe geometry gives a maximum angle
of 5.6 mrad to the center of the near detector, corresponding
to a decay at the edge of the decay pipe and nearest to the
detector hall.
Larger angles are possible for neutrinos originating

from decays outside the decay pipe region (88% of neu-
trinos intersecting the near detector originate in the decay
pipe, and an additional 8% in the target hall). Muon
decays can produce neutrinos with much shorter baselines.
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FIG. 1. The DUNE flux prediction used in this analysis. The
solid lines are the fluxes for each of the four neutrino species in
FHC, while the dashed lines are the same for RHC.
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The area-normalized angular distribution for FHC is shown
in Fig. 2 for the four neutrino species. The antineutrino
distributions are more sharply peaked at zero angle because
of very forward pions passing down the center of the horns,
which are not defocused. These pions are generally higher
in energy and give very forward decays. The larger high-
angle tails for antineutrino and νe are due to muon decays.
The reconstruction of the neutrino angle is critical in an

analysis of νe− → νe−. The angle due to the finite detector
width can be corrected by taking the neutrino angle to be
the line connecting the mean decay position to the
reconstructed interaction vertex. In LBNF, the mean decay
position is approximately the center of the decay pipe due
to approximate cancellation of the exponentially decreasing
pion flux and quadratically increasing detector solid angle.
The angular distribution due to the decay pipe width cannot
be corrected, and effectively smears the distribution of θe,
the electron angle with respect to the neutrino.
The largest uncertainties on the flux prediction as a

function of neutrino energy are due to hadron production
on the target, and tolerances of the focusing system. The
method for evaluating these uncertainties is similar to that
of MINERvA [21]. There are strong positive correlations
between the flux predictions at the near and far detectors,
between forward and reversed horn current, and between
muon and electron (anti)neutrinos. Because of these corre-
lations, a near detector flux constraint also constrains the
far detector flux. In principle, an FHC (RHC) constraint
would also constraint the RHC (FHC) flux, although in this
analysis we investigate constraints in both modes.
Uncertainties on the distribution of the incoming neu-

trino angle could bias an extraction of the energy spectrum
from νe− → νe−. The effect of hadron production uncer-
tainties on the angle are found to be negligibly small.

Varying the horn focusing parameters gives subpercent
changes to the angular distribution. One exception is the
uncertainty on the width of the decay pipe, which deter-
mines the endpoint of the distribution in Fig. 2 by
specifying the maximum possible angle from the decay
pipe to the near detector. This uncertainty produces large
changes to the flux at very high angle, but affects less than
1% of the total flux.

V. NEAR DETECTOR TECHNOLOGIES STUDIED

For this study, we evaluate the expected performance of
the DUNE near detector for νe− → νe−. The primary
design considered is a LAr TPC, roughly based on the
ArgonCube concept [22]. We also consider a high-reso-
lution tracking detector (HRT), which has significantly
improved energy and angular resolution compared to the
LAr TPC, but a lower mass because it would require a
gaseous rather than liquid argon target. This is meant to
represent a generic tracking detector with a large number of
high-resolution spatial measurements per unit of dE=dx,
but the performance parameters are roughly what could be
achieved with a straw-tube tracker like the one described in
the reference design of the DUNE conceptual design report
[4], or with a gaseous argon TPC with good angular
resolution. The purpose of including it in the study is to
determine whether a lower mass detector with superior
energy and angular resolution can provide a stronger
constraint. In addition, we consider a solid plastic scintil-
lator (labelled “CH”) detector, which is essentially what
could be achieved by putting the MINERvA detector [23]
in the DUNE beam. In this analysis, we assume a 5 year
exposure on each detector, with each horn current (the
FHC and RHC analyses are performed separately). The
baseline DUNE ND design for the LAr component, is for a
7 × 3 × 5 m active volume, corresponding to a fiducial
mass of 60 tons, but where only 50% of the total exposure
is taken on axis. In our analysis, we simply use a fiducial
mass of 30 tons, representing the on-axis sample. The HRT
and plastic scintillating detector are assumed to have a 5 ton
fiducial mass. For comparison, the HRT and CH analyses
are also repeated with a 30 ton mass equal to the LAr.
There are three detector parameters that impact perfor-

mance in the ν–e− channel: the electromagnetic energy
resolution, the angular resolution for forward electrons,
and the threshold for rejecting events with other final-
state charged particles, such as low-energy protons.
Angular resolution is the most important metric for ν–e−

because the signal kinematic limit and the neutrino energy
reconstruction both depend on Eeθ

2
e. In this section, the

procedure used to determine the expected angular reso-
lution as a function of electron energy is described in detail
for the LAr ND concept. The procedure is qualitatively
similar for the HRT and CH detectors.
The LAr concept for the DUNE ND is based on

ArgonCube. The detector consists of an array of optically
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FIG. 2. The angle of the neutrino beam at the LBNF near
detector facility for each flavor in FHC. This accounts for the
finite decay pipe but neglects the finite detector size. The
respective curves are area normalized.
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segmented TPC modules in a common cryostat. The
module size has a cross section of 1 × 1 m2, with a central
cathode dividing the TPC into two drift regions with a
maximum drift distance of 50 cm. Charge is read out by an
array of pads, instead of the projective wires in the DUNE
far detector design. We consider a pad size of 3 × 3 mm,
similar to what was used in initial demonstrations of the
pad readout technology [22], for a total of ∼105 channels
per m2. With a maximum drift length of 50 cm, transverse
diffusion is estimated to be 0.8 mm, based on 13 cm2=s at
1 kV=cm [24–26].
The angular resolution is determined by the position

resolution of the detector, and by multiple scattering of
electrons in LAr. Forward-going electrons from ν–e−

elastic scattering are nearly parallel to the readout plane,
and will intersect individual rectangular pads at nearly
right angles. The 2D electron angle in the plane
perpendicular to the drift direction depends on the pad
coordinate; for 3 mm pitch the position resolution is
3 mm=

ffiffiffiffiffi
12

p ¼ 0.87 mm. A potential aliasing effect exists
for tracks nearly parallel to a row of pads, which can be
mitigated by staggering the pads in successive rows.
Improved position and thus angular resolution can be
achieved with a triangular pad design. Because diffusion
is small due to the short drift, collected charge for a
forward-going particle will be shared among two adjacent
triangles, and the relative charge collected on each
triangle is proportional to the position of the electron.
This feature is used by MINERvA to achieve 3 mm
position resolution with 1.7 cm scintillator strip pitch.
The 2D angle in the drift plane is determined by timing.
The neutrino interaction time is determined by the
detection of scintillation photons. The position resolution
in the timing direction is expected to be significantly
better than the pad size.

The radiation length, X0, in liquid argon is 14 cm. For a
3 mm pad pitch, this corresponds to N ¼ 47 position
measurements per radiation length. The resolution due to
measurement, σmeas, and multiple coulomb scattering, σMS,
can be calculated as

σmeas ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12N
ðN þ 1ÞðN þ 2Þ

s
σx
L
;

σMS ¼
0.015 GeV

p

ffiffiffiffiffiffi
L
X0

s
; ð4Þ

where L is the track length. The measurement resolution
decreases with track length, while the multiple scattering
term increases. The optimal track length to fit is approx-
imately one radiation length. Other hard scattering proc-
esses also contribute. To quantify this effect, electrons are
simulated in LAr with Geant4 10.2. The electron position is
determined at 3 mm intervals and smeared by a Gaussian
function with a sigma of 1 mm. An uncertainty is placed on
each position measurement based on the average multiple
scattering according to Eq. (4). The resulting points are fit
to a straight line. The reconstructed angle is then compared
to the true angle to determine the resolution.
This procedure is repeated for electrons of varying

momentum. Figure 3 shows the residual of the two-
dimensional angle, Δθe;x, for electrons at 1 and 5 GeV.
The energy dependence is parametrized as a function of
electron energy according to a double Gaussian. The widths
of each Gaussian, and the relative normalization, are
determined from fits to these distributions. The dependence
on electron energy is fit assuming constant and 1=Ee terms.
The central multiple scattering term plateaus at 4 mrad,
which is essentially the measurement limit. The depend-
ence on electron energy is shown in Fig. 4.
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FIG. 3. The difference between reconstructed and true two-dimensional angle θe;x, for electrons at (a) 1 and (b) 5 GeV in the LAr TPC
detector. The distributions are fit to a double Gaussian, where the inner (blue) fit accounts primarily for multiple coulomb scattering and
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The expected angular resolution functions for the HRT
and plastic scintillator detectors are determined similarly.
For the HRT, a position measurement is made in each two-
dimensional projection every 8 cm, with an assumed
transverse resolution of 200 μm. The angular resolution
function is determined by the same procedure as described
above, but in a volume with density 0.1 g=cm3, which is
approximately the average density for a straw-tube or high-
pressure gaseous detector. An electron density equivalent to
that of CH2 is assumed. The resulting angular resolution in
the HRT is significantly better than in LAr, reaching
∼1.5 mrad at high energy.
The scintillator detector is based on MINERvA [23].

MINERvA tracker planes are spaced by 2 cm, with at least
4 cm between two planes of the same two-dimensional
orientation. The assumed position resolution per plane is
3 mm. The angular resolution achieved with these assump-
tions is somewhat worse than in LAr, ∼8 mrad at high
energy, and consistent with the angular resolution of
MINERvA.
For all detector types considered above, the recon-

structed electron energy is treated in the same way.
It is parametrized by a Gaussian centered on the true
electron energy with a width of 5%, and a low-side tail,
which affects 10% of events and has a fairly arbitrary
PðEreco

e Þ ∝ 1 − ð4Ereco
e =Etrue

e − 3Þ6 form, which serves to
smear events in this tail between Etrue

e =2–Ereco
e without a

step function, and includes a generic misreconstruction
effect in the analysis. Figure 5 shows an illustrative
example, of the Ereco

e distribution for an electron with
Etrue
e ¼ 1 GeV. Systematic studies which vary the size of

the low-side tail, and shift the peak of the distribution
(to mimic an energy scale bias) are considered in
Sec. VIII B.

Finally, for the reference “perfect” detector, the electron
energy and angular reconstruction are assumed to be
perfect, and perfect background rejection is assumed.
The intention with the perfect detector is to show the
inherent limitations to the technique due to the relatively
low ν–e− event rate and the divergence of the neutrino
beam at the near detector location. For the perfect detector,
CH2 was used as the target as it has the highest electron
density.

VI. STUDY FRAMEWORK

The aim of this study is to test how well the flux
normalization and shape uncertainties can be constrained
from the reconstructed electron energy and angle with
respect to the nominal beam axis (Ee, θe) for different
potential DUNE near detector designs. We simulate ν–e−

scattering events with the GENIE event generator [27,28],
which uses the tree-level cross section given in Sec. II and
include radiative corrections to the cross section. The full
DUNE three-horn optimized flux is used, including the
beam divergence as described in Sec. IV. Detector reso-
lutions, as described in Sec. V, are used to smear the GENIE
prediction as a function of Ee, θe. Additionally, back-
grounds from νe−

40Ar interactions which produce electrons
or single photons from π0 decays are included in the study,
as described in Sec. VI A. The fitting framework is
described in Sec. VI B, the main results are shown in
Sec. VII, and bias tests to check the robustness of the result
to different input assumptions are described in Secs. VIII A
and VIII B.

A. Selection and backgrounds

The selection for this analysis is very simple. The signal
processes will produce a single very forward-going elec-
tron, and no other particles at the vertex. We consider two
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types of backgrounds: νe−40Ar interactions which produce a
forward-going electron; and events in which a single
photon from a neutrino-nucleus produced π0 is recon-
structed. These are referred to as the νe and γ backgrounds.
We apply a cut on the extra energy deposited at the vertex
of Eextra ≤ 20 MeV (≤30 MeV for the CH detector) for
νe−

40Ar interactions, and a cut of Eγ ≤ 50 MeV on the
second photon energy for the π0 production background.
Additionally, the π0 background is suppressed by a factor
of 0.1 to account for the γ=e� separation capabilities of the
detectors considered. The extra energy of 20 MeV corre-
sponds to a proton with a range of 5 mm in LAr, which will
deposit energy on more than one pad. Under these
assumptions, the νe backgrounds are always significantly
larger than the π0 backgrounds. As noted in Sec. V, for the
“perfect” detector options, perfect background rejection is
assumed.
Although it was shown in Ref. [16] that a cut on Eeθ

2
e

provides good separation between signal and background
events, we do not make such a cut in this analysis.
Instead, we only consider events with a reconstructed
electron angle θrecoe ≤ 60 mrad, and perform the fit in
Ereco
e –θrecoe space, in which signal and background are

reasonably well separated. Because of this separation, and
the fit method used (described below), an Eeθ

2
e cut is not

necessary.

B. Fitting framework

In this analysis, the simulated data, including back-
grounds and all resolution effects described in Sec. V, are
binned into Ereco

e –θrecoe bins, and scaled to the expected
event rate given the detector mass and exposure time
relevant for each ND options described in Sec. V. Bins
are 4 mrad wide in θe, with 15 bins in the range 0–60 mrad.
In Ee, there are 45 bins in the range 0–60 GeV, where the
bin edges are defined such that the central value �5% lies
inside the bin, with a minimum bin width of 0.2 GeV,
motivated by the expected Ee resolution of ∼5% in our
simple model. Although the binning is somewhat arbitrary,
changes to the binning (2x finer binning) had no significant
effect on the fits described below.
We use a simple template fitting approach, to fit the

simulated data with Monte Carlo (MC), as we would for
real data. Each template is binned in the same reconstructed
θe − Ee bins as the simulated data, and is integrated over a
true Eν range. By varying the normalizations of these
templates to the fit to the simulated data, a constraint on
true Eν can be extracted. The Eν binning is chosen by
merging DUNE flux bins such that each merged bin
contains a minimum of 500 events, to ensure that the
template normalization parameters can be approximated
with a Gaussian. The binning for each of the ND scenarios
for FHC and RHC is summarized in Table I. Note that each

TABLE I. Number of Eν templates, and template binning for all detectors and beam configurations considered. The binning was
decided by requiring ≥500 events/template in the GENIE prediction. The predicted event rates given are the total number of neutrino-
electron events in five years of running in the nominal 1.2 MW beam for each detector.

Beam Detector Rate N. bins Eν binning (GeV)

FHC 5 t CH 4479 6 0, 1.875, 2.5, 3.125, 3.875, 5.875, 100
5 t HRT/perfect 4753 7 0, 1.875, 2.375, 2.875, 3.5, 4.5, 8.5, 100

30 t LAr 22458 28 0.0, 1.25, 1.5, 1.75, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625, 2.75,
2.875, 3.0, 3.125, 3.25, 3.5, 3.75, 4.0, 4.25, 4.625, 5.125,

5.875, 6.875, 8.5, 10.0, 12.0, 14.5, 18.5, 100
30 t CH 26873 32 0, 1.125, 1.375, 1.625, 1.75, 1.875, 2.0, 2.125, 2.25, 2.375, 2.5,

2.625, 2.75, 2.875, 3.0, 3.125, 3.25, 3.375, 3.5, 3.75,
4.0, 4.25, 4.5, 4.875, 5.375, 6.125, 7.0, 8.5, 10.0,

11.5, 13.5, 16.0, 100
30 t HRT/perfect 28519 34 0, 1.125, 1.375, 1.625, 1.75, 1.875, 2.0, 2.125, 2.25, 2.375,

2.5, 2.625, 2.75, 2.875, 3.0, 3.125, 3.25, 3.375, 3.5, 3.625,
3.875, 4.125, 4.375, 4.75, 5.125, 5.625, 6.375, 7.25, 8.5,

10.0, 11.5, 13.0, 15.0, 18.5, 100

RHC 5 t CH 3168 4 0, 2.125, 2.875, 3.875, 100
5 t HRT/perfect 3362 4 0, 2.125, 2.875, 3.875, 100

30 t LAr 15885 18 0, 1.25, 1.625, 1.875, 2.125, 2.375, 2.625, 2.875, 3.125, 3.375,
3.625, 4.0, 4.375, 5.0, 6.0, 7.75, 10.5, 14.0, 100

30 t CH 19008 23 0, 1.25, 1.5, 1.75, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625,
2.75, 2.875, 3.125, 3.375, 3.625, 3.875, 4.25, 4.75, 5.5,

6.625, 8.5, 11.0, 14.0, 100
30 t HRT/perfect 20172 25 0, 1.25, 1.5, 1.75, 2.0, 2.125, 2.25, 2.375, 2.5, 2.625,

2.75, 2.875, 3.0, 3.25, 3.5, 3.75, 4.0, 4.375, 4.875, 5.625,
6.75, 8.5, 10.5, 13.0, 17.0, 100
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template gives a 2D reconstructed Ereco
e –θrecoe distribution,

which has been integrated over the nominal flux distribu-
tion between the Emin

ν and Emax
ν boundaries of the template,

and over all neutrino flavors (as the data cannot distinguish
them), again using the nominal relative fractions of each
flavor given by the nominal neutrino flux. These two
necessary assumptions are a potential source of bias in
the analysis, which will be discussed in detail later. By
using an adaptive binning based on the expected statistics,
we balance the impact of this bias with the statistical error.
Two additional templates are included for the νe and γ
backgrounds, the normalizations for which are also uncon-
strained parameters in the fit. Example templates are shown
in Fig. 6 for the 5 t CH detector in FHC.
In the fit, we use the “L-BFGS-B” algorithm [29], from

the SciPy optimize package [30] to minimize the Poisson
likelihood:

χ2 ¼ 2
XN
i¼1

�
μiðx⃗Þ − ni þ ni ln

ni
μiðx⃗Þ

�
; ð5Þ

where μiðx⃗Þ is the MC prediction, which is a function of the
template normalizations, x⃗, and ni is the number of data
events in the ith bin. We exclude bins with Ee < 0.5 GeV
from the fit to reduce the photon background (see Fig. 6),
which is detector independent, which also loosely accounts
for detector thresholds. Modifying the value chosen for the

detector threshold had a minimal effect on the fit because
there are relatively few events in the very forward, low Ee
region (which corresponds to very low Eν), and the lowest
Eν template extends well past the threshold in all cases.
An example fit, using the nominal LAr design, where a

“statistical throw” has been performed on the simulated
data, is shown in Fig. 7. In each bin, the number of events is
drawn randomly from a Poisson distribution; this acts as a
very basic sanity check for the fitter. The fitted Ereco

e –θrecoe
distribution approximates the simulated data well. In Fig. 8,
we show the output correlation matrix from this fit. The
“checkerboard” pattern is striking, neighboring bins are
strongly anticorrelated, which indicates that the neighbor-
ing templates have a very similar effect on the fitted
distribution. This is not a problem; indeed, using such fine
Eν binning maximizes the flux constraining power of the
fit, and minimizes the potential for bias. However, it does
mean that the postfit distributions of individual fits are
difficult to interpret by eye. Figure 8 also shows that the
correlations are small between the signal template param-
eters, Ei, and the two background templates, labeled γ and
νe. This indicates that the fit is able to distinguish signal and
background very well, which is unsurprising given the
different regions of Ereco

e –θrecoe space they occupy, as shown
in Fig. 6. The independence of the signal and background
templates will be checked more quantitatively with bias
studies in Secs. VIII A and VIII B.

FIG. 6. Example fit templates for neutrino-electron elastic scattering in six bins of true neutrino energy, and for two background
categories, for the 5 t CH detector in FHC mode. Each template shows the expected event spectrum as a function of electron energy and
angle, for neutrinos in a given energy range. Note that bins with Ee reco. ≤ 500 MeV excluded from the χ2 test statistic in Eq. (5).
(a) E1 (0–1.875 GeV), (b) E2 (1.875–2.5 GeV), (c) E3 (2.5–3.125 GeV), (d) E4 (3.125–3.875 GeV), (e) E5 (3.875–5.875 GeV),
(f) E6 (5.875–100 GeV), (g) νe, (h) γ.
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Although the postfit distribution is difficult to interpret
by eye, it can be used to constrain the flux by assigning
weights to possible fluxes. The probability of a possible
flux being consistent with the measured ν–e− data can be
calculated using [16]

PðN⃗jM⃗Þ ¼ 1

ð2πÞκ2
1

jΣNj12
exp

�
1

2
ðN⃗ − M⃗ÞTΣ−1

N ðN⃗ − M⃗Þ
�
;

ð6Þ
where ΣN is the data covariance (see the correlation matrix
in Fig. 8), jΣNj is its determinant, N⃗ is the postfit Eν

template normalizations, M⃗ is the model rebinned to match
the template binning, and κ is the number of Eν templates.
The probability calculated in Eq. (6) can be used to

constrain the flux covariance matrix based on the uncer-
tainties described in Sec. IV [31], ξij, to show the impact of
the ν–e− constraint. The postfit covariance matrix Ξij can
be calculated

Ξij ¼
1

Nk
Σk½PðN⃗jM⃗ÞkðMik − M̄iÞðMjk − M̄jÞ�; ð7Þ

using k throws of the original matrix, where the weighted
average in the ith bin is M̄i ¼ 1=Nk½ΣkPðN⃗jM⃗ÞkMik�. A
comparison of the pre- and postfit covariance matrices can
be used to investigate how well the ν–e− sample can
constrain the flux. The vector M̄i gives the central values of
the postfit, and deviations of these from the true value are a
useful measure of bias in this procedure. Note that because
the LBNF beam is a mix of different flavors (see Fig. 1), all
with different ν–e− cross sections, it is not possible to
constrain the flux completely independently of an input
flux model, as some assumptions have to be made about the
relative contributions from each flavor, if not their spectra.
The technique described in this work could be used to
constrain any flux model, but we choose to show the
additional constraint which can be applied to the Geant4-
based DUNE flux simulation, as it is the most sophisticated

FIG. 7. Example fit to simulated nominal FHC data in the LAr TPC detector with a single “statistical throw,” as it is described in the
text, showing the prefit, postfit, and residual event rates. Note that bins with Ee reco. ≤ 500 MeV excluded from the χ2 test statistic in
Eq. (5). (a) Thrown simulated data, (b) best fit, (c) thrown fit.

FIG. 8. Postfit correlation matrices between fit parameters shown for simulated LAr TPC fits with statistical variations about the
nominal model in both (a) FHC and (b) RHC.
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set of assumptions about the relative contributions from
each flavor that we have available.

VII. RESULTS

Using the output data covariance from each fit (see the
LAr example correlation matrices in Fig. 8), and Eqs. (6)
and (7), the constraint on the DUNE flux prediction for
each beam and detector configuration can be calculated. In
each case, we constrain the full flux covariance, as shown
for the nominal LAr configuration for both FHC and
RHC in Fig. 9, along with the prefit covariance matrices
based on the uncertainties described in Sec. IV [31] for
comparison. It is clear that the uncertainties are much
smaller for the νμ and νe (ν̄μ and ν̄e) in FHC (RHC) after the
fit. The correlations between flavors have also been
decreased significantly, although anticorrelations are intro-
duced because the ν–e− sample cannot distinguish flavors,
so decreasing the contribution from one flavor can be
increased by increasing the contribution from another. Note

that the relationship between flavors is already limited by
the input beam covariance matrix. The relationship between
flavors is more complicated for the RHC case, with
stronger correlations obvious in the postfit covariance
shown in Fig. 9. Although this is expected by the larger
wrong-sign contamination in RHC relative to FHC, the
fitting technique described here seems to work for both.
Although interesting, the covariance matrices shown in

Fig. 9 are difficult to interpret by eye, so for the remainder
of this work, only the diagonal elements of the covariance
will be considered, although we note that the full covari-
ance is calculated each time when producing these plots.
The diagonal elements of the covariance matrices are
shown for all detector configurations, for both FHC and
RHC in Fig. 10, with the diagonal elements of the prefit
flux covariances for comparison. It can be seen that for both
FHC and RHC modes, the uncertainty on the dominant
flavor (νμ and ν̄μ respectively) in the flux peak (∼2.5 GeV)
is reduced from ∼8% to ∼1%–3%, depending on the
detector configuration used.

FIG. 9. Pre- and postfit FHC and RHC flux covariance matrices for the nominal LAr detector configuration. (a) FHC prefit, (b) FHC
postfit, (c) RHC prefit, (d) RHC postfit.
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In order to make it easier to compare the different
detectors considered, a ratio is taken with respect to the
diagonals of the nominal beam covariance matrix, in
Fig. 11, and only the dominant νμ (ν̄μ) flavor contributions
are shown for FHC (RHC) as they are most interesting. It is
clear from Fig. 11 that the flux constraining power of the 5 t
detectors is significantly weaker than for the 30 t LAr
detector, indicating that the improved reconstruction per-
formance of the CH or HRT does not add significant
strength to the flux constraining power of the analysis,
except perhaps in the lowest energy bins well below the
flux peak (∼2.5 GeV). This is also true for the perfect 5 t
detector, so is not simply a consequence of our assumptions
about the HRT/CH performance, it seems that statistics are
paramount for this analysis. As expected, the HRT does
better than the CH detector, although this may be partially
due to the higher electron density in CH2 than CH.

Figure 12 is the same as Fig. 11, but with 30 t versions of
all detector technologies. As expected, with equal masses,
the LAr detector performs the least well, which is due to the
lower electron density, and worse resolution than the other
detector options, but the improvements to the flux con-
straint seen for the other detector options are fairly small
compared with LAr, which supports the conclusion that the
most important factor is the statistics gained with larger
masses. That said, at a certain point higher statistics would
not help, as the intrinsic divergence of the beam would
become the limiting factor for the analysis. We have not
determined at which LAr or perfect detector mass the limit
of statistical improvement occurs in the present study.
By making a shape-only version of the pre- and postfit

flux covariance matrices, by normalizing each flux throw
such that the integral is the same, and forming the postfit
flux covariance with Eq. (7), and then taking a ratio as in

FIG. 10. Bin-by-bin flux uncertainties as a function of neutrino energy and flavor in both (a) FHC and (b) RHC, shown for the prefit
and postfit for all detector configurations considered in this work. These correspond to the square root of the diagonal elements of the
flux covariance matrices, examples of which are shown in Fig. 9.
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Fig. 11, the ability for the ν–e− sample to improve the flux
shape can be investigated. Such a plot is shown in Fig. 13,
from which it is clear that there is only a marginal
improvement in the understanding of the flux shape relative
to the input beam covariance matrix. The shape-only
uncertainties are still ∼70% (∼80%) of the nominal shape
uncertainties for FHC (RHC). It seems that the power to
constrain the flux normalization is largely responsible for
the improvements seen in Figs. 10 and 11.
Improved detector resolutions would be expected to have

a larger impact on the shape constraint than on the total flux
normalization, and indeed, we can see from Fig. 13 that the
5 t perfect detector is nearly comparable to the performance

of the 30 t LAr detector. In the equal mass case, shown in
Fig. 14, we see that the 30 t better resolution detectors do
substantially better than the LAr, but that even for these
large detectors, the shape uncertainties are still 50% of their
nominal.
In addition to the postfit covariance, another interesting

quantity is the weighted average flux values, M̄i, obtained
when calculating the covariance matrix in Eq. (7). These
are shown for all detector configurations considered in both
FHC and RHC modes in Fig. 15. Large deviations from the
prefit flux would indicated a bias in some Eν region; no
such deviations are observed. More sophisticated studies of
possible bias in the procedure are performed in Sec. VIII A.

FIG. 11. Bin-by-bin flux uncertainties as a function of neutrino energy for (a) νμ (FHC) and (b) ν̄μ (RHC), shown as a ratio with the
prefit flux uncertainty for all detector configurations considered in this work.

FIG. 12. Bin-by-bin flux uncertainties as a function of neutrino energy for (a) νμ (FHC) and (b) ν̄μ (RHC), shown as a ratio with the
prefit flux uncertainty for all equal mass (30 t) detector configurations considered in this work.

MARSHALL, MCFARLAND, and WILKINSON PHYS. REV. D 101, 032002 (2020)

032002-12



VIII. BIAS TESTS AND SYSTEMATIC
UNCERTAINTIES

A. Bias tests

Some bias in the fit results is expected for two reasons.
Firstly, the Eν binning used in the fit is coarser than the
binning of the flux covariance matrix, at least for some
regions of Eν, so variations within those bins cannot be
correctly handled by the fit and will introduce small biases.
However, the Eν binning is limited by the statistics of the
ν–e− scattering sample, so biases due to the coarse binning
should be small relative to the statistical uncertainty in the
fit. Secondly, the fit cannot distinguish between flavors, and
all flavors contribute to the ν–e− sample, but with different
cross sections (see Sec. II). The fit therefore implicitly
relies on the expected relationship between flavors, and

throws of the flux covariance matrix which change this
relationship cannot be dealt with perfectly by the fit.
Indeed, one of the weaknesses inherit in using a ν–e−

sample as a flux constraint for an accelerator neutrino beam
line is that assumptions have to be made about the relative
contribution of each flavor.
Although the weighted average flux values obtained

when calculating the covariance matrix in Eq. (7), and
shown for the nominal detector configurations in Fig. 15
should give an indication of any bias, and the results
suggest that any bias is relatively small, the size of the
bias can be calculated more quantitatively by modifying
the “data” in the fits, and fitting with the nominal
Monte Carlo simulation. If there is an implicit bias towards
the input MC, then the fit will not reproduce these modi-
fied data distributions. The level of agreement, including

FIG. 13. Bin-by-bin shape-only flux uncertainties as a function of neutrino energy for (a) νμ (FHC) and (b) ν̄μ (RHC), shown as a ratio
with the prefit flux uncertainty for all detector configurations considered in this work.

FIG. 14. Bin-by-bin shape-only flux uncertainties as a function of neutrino energy for (a) νμ (FHC) and (b) ν̄μ (RHC), shown as a ratio
with the prefit flux uncertainty for all equal mass (30 t) detector configurations considered in this work.
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uncertainties, between the best fit flux distribution and the
input “true” distribution can be assessed with the test
statistic

χ2 ¼
XN
i¼0

XN
j¼0

ðνTRUEi − νFITi ÞM−1
ij ðνTRUEj − νFITj Þ ð8Þ

where, the indices i and j are over the true Eν bins used in
the fit, and the matrix Mij is the postfit covariance matrix
between fit parameters (as in Fig. 8), with the background
parameters removed.
To provide a meaningful point of reference, the bias in

the fitting technique described in this work was assessed
using throws of the input flux covariance matrix. Throws of
that matrix, produced through Cholesky decomposition
[32], describe the expected variation in the neutrino flux
given all prior known information about the beam.
Figure 16 shows the distribution of χ2 values, calculated

with Eq. (8), obtained for 10 000 independent throws of
the input covariance matrix. It is clear from Fig. 16 that
the biases seen for both FHC and RHC are indeed small
for all detector configurations tested. Biases are larger
in RHC than FHC, which is probably due the relative
beam purities. The biases are larger (most noticeable in
RHC) for the 5 t detectors than the 30 t LAr detector
because of the small number of templates used in the
fits (see Table I), which was confirmed by checking that
the bias disappears for the 30 t versions of those
detectors. Improvements might be seen by modifying
the fit to not expect that fit parameters should be
Gaussian, which would relax the 500 expected events
per bin requirement which set the template binning.
However, reducing the required number of events per
bin to 300 did not significantly change the result, so any
improvement to alleviate that small bias is outside the
scope of this work. This bias can be understood as being
due to the width of the templates, and the inability of

FIG. 15. Weighted average flux values as a function of neutrino energy and flavor in both (a) FHC and (b) RHC, shown as a ratio with
the prefit flux for all detector configurations considered in this work.
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FIG. 16. χ2=NDOF for the true and postfit values and postfit uncertainties for 10 000 independent throws of the input flux covariance
matrix, shown for all detector configurations considered, in both (a) FHC and (b) RHC.

FIG. 17. Pre- and postfit FHC and RHC flux covariance matrices for the nominal LAr detector configuration with correlations between
flavors removed. (a) FHC prefit, (b) FHC postfit, (c) RHC prefit, (d) RHC postfit.
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the fit to deal with changes to the assumed flux
distribution within each template.
In order to test how sensitive the fit is to changes in

relative contribution from each flavor, the postfit covari-
ance matrix and bias tests were reproduced using a
modified version of the input beam covariance matrix,
where the covariances between flavors was removed. The
pre- and postfit covariance matrices are shown in Fig. 17,
which can be compared with Fig. 9, which included the
flavor correlations. The distributions of χ2 values for each
detector type, calculated with Eq. (8), obtained for 10 000
independent throws of the modified covariance matrices
from Fig. 9 are shown in Fig. 18. The biases have uniformly
increased slightly with respect to those shown in Fig. 16,
indicating that the fit relies on the expected flavor compo-
sition of the beam as expected, although the bias in the
fitted distributions is not significant if those assumptions no

longer hold true. Although this test shows a small bias,
there is still an implicit reliance on the shape of each flavor
contribution to the flux. It should be noted that if the
correlation between flavors and the bin-to-bin correlation
between each flavor were removed, the fit would not
perform well at all because it would have no way to break
the ambiguity between the different flavor contributions to
the rate.
The bias studies shown in Fig. 16 show that the fit

converges on the true input flux in an unbiased way for the
variations expected given our prior understanding of the
beam. However, as well as reducing the flux uncertainty,
we would hope that the ν–e− sample could provide an
independent check that the flux is correctly modeled, and
correctly fit, and identify distortions to the flux distribution
in data which are not covered by the uncertainties in the
input flux covariance matrix. To that end, a “crazy” flux

FIG. 18. χ2=NDOF for the true and postfit values and postfit uncertainties for 10 000 independent throws of the input flux covariance
matrix without correlations between flavors, shown for all detector configurations considered, in both (a) FHC and (b) RHC.

FIG. 19. Weighted average flux values as a function of neutrino energy for the νμ (ν̄μ) component of the (a) FHC (b) (RHC) flux,
shown as a ratio with the prefit fluxes where the “data” has been modified by the reweighting functions shown as the black lines.
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distribution was produced independently for each mode by
increasing the target density by 30%, well outside its
tolerance. Figure 19 shows how well the fit performs when
trying to reproduce the “crazy” fake data sets in both FHC
and RHC modes. The weighted average flux values
obtained by all of the detector configurations tested roughly
reproduces the crazy flux reweighting as a function of Eν

(indicated by the black line in Fig. 19). Although the
agreement is not perfect, the postfit distributions follow
the distorted flux well for all detector options in both FHC
and RHC mode, indicating that ν–e− samples would be
able to diagnose a large flux bias in both modes, which is
reassuring. The ability to fit out the flux distortion worsens
at high energies, which is likely to be due to the sparse Eν

templates used in the fit (see Table I), but is good across the
bulk of the DUNE flux distribution. This constitutes
another important result and highlights the necessity of
making ν–e− scattering measurements at DUNE. Even
though the shape of the flux uncertainty cannot be
significantly reduced from the uncertainty obtained from
the beam simulation, it can diagnose unmodeled issues with
flux prediction in situ.

B. Systematic uncertainties

In the eventual application of this analysis to DUNE,
various systematic uncertainties will need to be included or
marginalized over in the fit. These will include detector
uncertainties, signal and background cross section uncer-
tainties. In order to quantify the effect that such uncertain-
ties have on the analysis, and the size of the uncertainties on
the postfit flux distribution, a series of fake data studies
have been performed. In these studies, the Monte Carlo
remains unchanged as described above, but instead of using
the same Monte Carlo simulation as the “fake data” in the
fit, the Monte Carlo is modified to form an alternative fake
data set, and the fit is repeated to quantify the effect that this
unknown effect has on the output. We investigate a number
of systematic sources, described in this section, using the
nominal LAr detector configuration.
Here we investigate two sources of systematic error in

the energy reconstruction. Firstly, we investigate whether
mismodeling the fraction of the reconstructed electron
energy in the low-energy tail significantly biases the
results. In this analysis, the nominal fraction of events in
the low-energy tail is 10%, and we have assigned a very
conservative �5% systematic uncertainty. In Fig. 20, the
error band due to that systematic uncertainty is shown on
the weighted average flux values [the values of M̄i
produced by Eq. (7)], relative to the nominal case (a line
at y ¼ 1), for the nominal LAr detector in both FHC and
RHC. The second energy reconstruction systematic is a 2%
uncertainty in the reconstructed electron energy. Again, in
Fig. 21, the error band due to that systematic uncertainty is
shown on the weighted average flux values, for the nominal
LAr detector in both FHC and RHC.

Both, conservative, energy reconstruction uncertainties
considered introduce percent-level changes in the average
flux value across most of the energy range, and subpercent-
level changes around the flux peak (∼2.5 GeV), which are
small relative to the size of the postfit flux uncertainty (see
Fig. 10 for comparison) in both FHC and RHC modes. We
note also that the variations shown here did not signifi-
cantly change the average χ2 value obtained in the 10 000
flux throws relative to the nominal case shown in Fig. 16,
indicating that although there are shape variations to the
weighed average flux distribution in Figs. 21 and 20, these
are within the expected postfit shape uncertainty in the flux.

FIG. 20. Weighted average flux values as a function of neutrino
energy for the νμ (ν̄μ) component of the FHC (RHC) flux, shown
as a ratio with the prefit flux for fake data studies corresponding
to a�5% shift in the fraction of the reconstructed electron energy
in the low-energy tail.

FIG. 21. Weighted average flux values as a function of neutrino
energy for the νμ (ν̄μ) component of the FHC (RHC) flux, shown
as a ratio with the prefit flux for fake data studies with a 2%
uncertainty in the electron energy scale.
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For larger shifts to the energy reconstruction systematics,
larger biases are seen, as would be expected.
Although the beam pointing uncertainty is included in

the input flux covariance matrix, it is interesting to ask what
the effect on the analysis would be if the beam direction
were mismodeled by some constant amount. Fake data
studies were performed where a bias of 2 mrad was
introduced in the x axis of the beam direction, by shifting
the reconstructed electron angle with respect to the nominal
beam direction in the MC used in the fit. Figure 22 shows
the weighted average flux values for the nominal LAr
detector in both FHC and RHC modes. Here, no error band
is produced as a bias of �2 mrad in any direction would

have the same effect as the response is symmetric around
the beam axis (at least for the rather simple detector
reconstruction considered here). The effect from the beam
pointing bias is small for both beam modes. As for the
energy reconstruction systematics considered, the beam
pointing uncertainty did not increase the average χ2 for the
10 000 flux throws considered, relative to the nominal case
shown in Fig. 16, as is expected given that the prefit flux
uncertainty includes beam pointing uncertainties, and this
analysis is not expected to be able to strongly constrain
them. Larger deviations of 5 mrad were also tested,
although are not shown, for which a strong bias is seen
in the best fit χ2 distribution.
Changes to the background predictions could also affect

the result, although correlations between background and
signal templates in the postfit covariances were weak (see
the example in Fig. 8), it may be expected that such changes
will not have a large effect on the result. MINERvA has
observed a deviation between Monte Carlo expectation and
data as a function of reconstructed Q2 (see Ref. [18] for a
definition) for νμ − CH and ν̄μ − CH charged-current
quasielastic-like events. In particular, there is a strong
suppression at low Q2 values, which might correspond
to the region of overlap between the signal and background
templates. MINERvA has concluded, however, that the
majority of this disagreement is due not to truly quasielastic
events which would create background to a neutrino-
electron scattering analysis, but rather to higher recoil
processes such as pion production where the pion is
observed in nuclear final state interactions [17,18]. In order
to investigate this effect on the analysis, the input νe−40Ar
and νe−

40Ar background events are modified from the
nominal GENIE prediction by reweighting according to
the observed MINERvA ratio, as a function of true Q2.

FIG. 22. Weighted average flux values as a function of neutrino
energy for the νμ (ν̄μ) component of the FHC (RHC) flux, shown
as a ratio with the prefit flux for fake data studies with a 2 mrad
shift to the beam pointing along the x axis.

FIG. 23. The effect of the observed MINERvA data–MC Q2 distortion for charged-current quasielastic-like events shown for
the νe (ν̄e) template in (a) FHC (b) (RHC), shown as a ratio to the nominal template.
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The effect that the Q2 modification has on the νe back-
ground template is shown, as a ratio with the nominal
template, in Fig. 23, for both FHC and RHC modes.
Figure 24 shows the effect on the weighted average flux
values, with the MINERvA Q2 distortion applied, for the
nominal LAr detector in both FHC and RHC modes. In
both cases, the bias on the weighted average flux distri-
bution is very small except at high energies or in very low
statistics bins.

C. Impact of radiative corrections

Although the signal ν–e− scattering process is well
understood in principle, the radiative corrections applied

in this analysis (described in the Appendix) are not
included in GENIE, and may be refined by a more careful
calculation later. To quantify the importance of the radiative
corrections in the analysis, the study was repeated without
radiative corrections applied, in the same manner as the
previous studies into the effect of systematic uncertainties,
although it is explicitly not a systematic uncertainty.
Figure 25 shows the weighted average flux values produced
with 10 000 throws of the input flux covariance, without
radiative corrections applied (the default GENIE predic-
tion), for the nominal LAr detector in FHC and RHC
modes. The effect of removing the radiative corrections is
to increase (decrease) the weighted average flux value in
FHC (RHC) by 1%–2%. Interestingly, the average χ2 value
from the 10 000 flux throws considered is slightly increased
relative to the nominal case shown in Fig. 16, the increase is
larger than the systematic uncertainties considered in
Sec. VIII B, although not significantly. This can be under-
stood because the absolute rate is well constrained by the
analysis presented here, so a normalization-only change in

FIG. 24. Weighted average flux values as a function of neutrino
energy for the νμ (ν̄μ) component of the FHC (RHC) flux, shown
as a ratio with the prefit flux for fake data studies with and
without the MINERvA Q2 distortion applied to the νe (ν̄e)
template.

FIG. 25. Weighted average flux values as a function of neutrino
energy for the νμ (ν̄μ) component of the FHC (RHC) flux, shown
as a ratio with the prefit flux for the fake data studies with and
without radiative corrections applied.

(a) Rate by neutrino energy

(b) Rate by muon energy

FIG. 26. The rate of inverse muon decay events shown as a
function of (a) neutrino energy and produced (b) muon energy in
a five year exposure of the neutrino beam for a 30 ton reference
detector.
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the flux (e.g., a fully correlated shift between all energy
bins) is more strongly constrained than some variations in
the flux shape.

IX. INVERSE MUON DECAY

As previously noted in Sec. II, IMD, νμe− → νeμ
− has

potential to constrain the high energy DUNE νμ flux. The
rate of such events in a 30 ton reference detector with a five
year exposure is shown in Fig. 26 as a function of both
laboratory neutrino and muon energy. There are of order
6 × 103 events in such a sample produced with the neutrino
mode beam, which would constrain the total rate of such
high energy νμ. The statistical sensitivity of such a sample
to variations in this high energy νμ spectrum is illustrated in
Fig. 27. The statistical uncertainty in such a sample would
clearly allow either of two simulated neutrino spectral
distortions, one of which increases the number of neutrinos
above 15 GeV by 10%, and one of which increases the
number of neutrinos above 24 GeV by 20%. However,
distinguishing between the two scenarios would be more
difficult.
In addition to the limited use of such a probe of the high

energy νμ flux for DUNE’s primarily neutrino oscillation
mission, the design of the near detectors will likely not be
optimized to measure these spectra. Such high energy
muons will not be contained in DUNE’s near detectors, and
measurement of the momentum by curvature in a magnetic
field at such high muon energies will be difficult in a
detector optimized for such measurements at significantly
lower muon energies.

X. CONCLUSIONS

Because the neutrino-electron elastic scattering cross
section is known, the flux can be extracted from the
observed event rate. For realistic DUNE near detectors

in the LBNF beam, it is possible to select a sample of many
thousands of νe− → νe− events. In this work, we have
investigated how well different potential DUNE near
detector designs will be able to constrain the LBNF flux.
We found that given realistic mass constraints, a 30 t

liquid argon detector is able to perform better than 5 t low
density trackers, even ones with significantly better
tracking resolution. This is due to its higher statistics,
and despite the superior angular resolution of lower
density detectors. This was also found to be the case even
for a 5 t detector with perfect electron energy and angular
reconstruction and background rejection.
With realistic systematic uncertainties, the uncertainty on

the absolute neutrino flux in the 30 t LAr detector is
reduced from ∼8% to ∼2%. The uncertainty on the shape
as a function of neutrino energy is also reduced by
∼20%–30%. This is partially due to the fact that the
flux shape is better known a priori than the absolute
normalization. The improved reconstruction performance
of high-resolution detectors has a stronger impact on the
flux shape constraint, as expected, but for realistic detector
sizes, a large liquid argon detector still outperforms a
smaller detector with better resolution. It seems that
detector mass is the most important factor for making a
ν–e− flux constraint, even for a 30 t detector in the very
intense LBNF beam. The intrinsic divergence of the beam
is an important consideration which has the potential to
limit the utility of a ν–e− flux constraint, and as such was
included in this study.
As well as being able to reduce the neutrino flux

uncertainties, we demonstrated that a ν–e− sample with
a large liquid argon detector is capable of identifying a large
variation in the neutrino spectrum outside of predicted
uncertainties, and is not biased to the input assumptions
about the flux, despite the inability to directly distinguish
neutrino flavor with a ν–e− sample.

ACKNOWLEDGMENTS

C.M.M. and K. S. M. were supported by the Office of
Science, Office of High Energy Physics, of the U.S.
Department of Energy under Contract No. DOE OHEP
DE-AC02-05CH11231, and Award No. DE-SC0008475,
respectively. C.W. was supported by the Swiss National
Science Foundation (SNSF) and Secretariat for Education,
Research and Innovation (SERI). We are grateful to Steve
Dennis who participated in early steps of the analysis that
evolved into this work. The VietNus 2017 workshop at the
International Center for Interdisciplinary Science and
Education (ICISE), Qui Nhon, Vietnam, hosted our col-
laboration during these early steps. We also thank the staff
of the G-Life Coffee Shop, Qui Nhon, Vietnam, for their
gracious hospitality. We also acknowledge the valuable
feedback from many members of the DUNE Collaboration
as this work was presented in the context of the near
detector design studies.

FIG. 27. The statistical uncertainty of a binned inverse muon
decay sample shown against two possible spectral distortions,
one of which increases the number of neutrinos above 15 GeV by
10%, and one of which increases the number of neutrinos above
24 GeV by 20%.
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APPENDIX ELECTROWEAK RADIATIVE
CORRECTIONS TO NEUTRINO-ELECTRON

SCATTERING

The cross section for tree-level neutrino-electron scattering
is given in Eq. (1), and this is the cross-section implemented
in theGENIE2.8 event generator [27,28]which is used as the
reference model in this study. It is necessary to correct this
model to use modern values of the electroweak couplings.
This is done by changing the chiral couplings, CLL and CLR,
to one-loop values predicted using global fits to electroweak
data [12]. Table II compares the values for these couplings
GENIE to the values used in this analysis.
We consider two possibilities for the one-loop

electromagnetic radiative corrections, including the pos-
sibility of real photon emission. Either the experiment
truly measures the kinetic energy of the final state electron
exclusive of any radiated photons and measures y ¼ Te=Eν,

or the experiment measures the energy of radiated photons
clustered together with emitted electrons and measures
y ¼ ðTe þ EγÞ=Eν. The first case would be relevant for
low density trackers that measure the electron energy by
curvature, and the second case would be relevant for
calorimetric measurements of electron energy.
In the first case, with the measurement of only the

electron energy, the corrections [33,34] modify the expres-
sions for the νμe, ν̄μe, νee and ν̄ee elastic scattering cross
sections in Eq. (1) as follows:
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dy
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π

�
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where Eν is the neutrino energy, s is the Mandelstam invariant representing the square of the total energy in the center-of-
mass frame, m is the electron mass and y ¼ Te=Eν. The Xi correction terms are
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where Li2ðzÞ is Spence’s function,
R
z
0
− logð1−uÞ

u du.

In the second case, where y≡ ðTe þ EγÞ=Eν, the modifications to the cross section are more straightforward:
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TABLE II. Electroweak couplings in GENIE and in our one-
loop calculation of νe− elastic scattering.

Cνee
LL C

νμe
LL

Cνe
LR

GENIE 2.8 0.7277 −0.2723 0.2277
One loop 0.7276 −0.2730 0.2334
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X3 is not available in the calculation of Ref. [35],
although it has been recently calculated by the authors
of Ref. [13]. However, since X3 enters into Eqs. (A1) and
(A2) only in terms multiplied by me=Eν, it can be safely
neglected.

The direction of the electron, however, in any detector
under consideration is most likely to be measured as the
electron’s direction. All of these calculations are done
assuming collinear emission of photons along the lepton
angle. Within that approximation,

Eν ¼
2mð1 − yÞ

θ2e
×

�
1 −

ð8 − 4y − y2Þ
12yð1 − yÞ2 θ2e−

ϵ

4yð1 − yÞð1 − ϵÞ θ
2
e þOðθ4eÞ

�
ðA8Þ

where ϵ≡ Eγ=ðTe þ EγÞ. Note that corrections from photon emission occur only multiplied by the small θ2e and is thus
negligible. This implies that there is no significant effect due to real photon radiation on the reconstructed neutrino energy
inferred from the electron angle and clustered electron plus photon energy, such as in a LAr TPC or other calorimetric
detector.
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