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We propose a new diagnostic for quantum chaos. We show that the time evolution of complexity for a
particular type of target state can provide equivalent information about the classical Lyapunov exponent
and scrambling time as out-of-time-order correlators. Moreover, for systems that can be switched from a
regular to unstable (chaotic) regime by a tuning of the coupling constant of the interaction Hamiltonian, we
find that the complexity defines a new time scale. We interpret this time scale as recording when the system
makes the transition from regular to chaotic behavior.
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I. INTRODUCTION

Quantum chaos is intrinsically difficult to characterize.
Consequently, a precise definition of quantum chaos in
many-body systems remains elusive and our understanding
of the dynamics of quantum chaotic systems is still
inadequate. This lack of understanding is at the heart of
a number of open questions in theoretical physics such as
thermalization and transport in quantum many-body sys-
tems, and black hole information loss. It has also precipi-
tated the renewed interest in quantum chaos from various
branches of physics from condensed matter physics to
quantum gravity [1].
Chaotic classical systems on the other hand are charac-

terized by their sensitive dependence on initial conditions:
two copies of such a system, prepared in nearly identical
initial states (namely, two distinct points in phase space,
separated by a very small distance), will evolve over time
into widely separated configurations. More precisely, the
distance between the two points in phase space grows as

expðλLtÞ, where λL is the system’s largest Lyapunov
exponent [2]. This does not happen in quantum mechanics:
two nearly identical states, i.e., states with a large initial
overlap, remain nearly identical for all time (as their overlap
is constant under unitary evolution). It has been argued
[3,4] that a quantum analog of “sensitive dependence on
initial conditions” is to consider evolving identical states
with slightly different Hamiltonians, Ĥ and Ĥ þ δĤ. If Ĥ is
the quantization of a (classically) chaotic Hamiltonian, the
states will evolve into two different states whose inner
product decays exponentially in time.
Traditionally, chaos in quantum systems has been

identified by comparison with results from random matrix
theory (RMT) [5]. Recently however, other diagnostics
have been proposed to probe chaotic quantum systems
[6–8]. One such diagnostic is out-of-time-order correlators
(OTOCs) [9,10] from which both the (classical) Lyapunov
exponent as well as the scrambling time [11–13] may be
extracted. However, recent work in mass-deformed
Sachdev-Ye-Kitaev (SYK) models [14] have revealed some
tension between the OTOC and RMT diagnostics that arise,
in part, through the nature of the probes. The OTOC
captures early-time quantum mechanical features of the
system while RMT diagnostics typically capture late-time
statistical features. Evidently, a deeper understanding of
probes of quantum chaos is required. In this light, it is
interesting therefore to ask whether one can characterize
chaos in quantum systems using quantum-information-
theoretic measures.1 In this work, we propose a new
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diagnostic/probe of quantum chaos using the notion of
circuit complexity [22–34], adopting Nielsen’s geometric
approach [35–37]. More specifically, we study the
circuit complexity of a particular target state obtained from
a reference state by performing a forward evolution
followed by a backward evolution with slightly different
Hamiltonians. Then we demonstrate how this enables one
to probe/characterize chaotic quantum systems, giving
information beyond what is contained in the OTOC.
Note that instead of using the complexity for a target state
that is forward and then backward evolved from a reference
state as mentioned above, one can as well study the
complexity of a different circuit where both the target
and reference states are obtained from time evolution
(once) by applying slightly different Hamiltonians from
some common state. For circuit complexity from the
correlation matrix method that we will be using in this
paper, the authors of Ref. [29] concretely showed that the
time evolution of complexity in these two scenarios is
identical.
To establish out testing method, we consider a simple,

exactly solvable system—the inverted oscillator, described
by the Hamiltonian H ¼ p2=2 − ω2x2=2 [38]—which
captures the exponential sensitivity to initial conditions
exhibited by chaotic systems [39]. Classically, the inverted
oscillator has an unstable fixed point at ðx ¼ 0; p ¼ 0Þ; a
particle accelerates exponentially away from the fixed point
when perturbed. Though the phase-space volume of the
inverted oscillator is unbounded, our results are relevant to
systems with a bounded phase space in that such a system
would be described by an inverted oscillator up to a certain
time. The two systems produce the same results over the
time of interest (but would not be analytically solvable
beyond that time). In what follows, we include the analysis
for a regular oscillator as a reference for what arises in a
nonchaotic system and explore also a many-body system
(quantum field theory) where the inverted oscillator
appears. It is worth noting that the inverted quantum
oscillator is not just a toy model; it has been realized
experimentally [40] and has even played a role in math-
ematics, in attacking the Riemann hypothesis [41]. It also
provides important insights into the bound of the Lyapunov
exponents [42].
The rest of the paper is organized as follows. In Sec. II,

we present the model and states considered in this work. In
Sec. III, we review the ideas behind circuit complexity, and
compute the circuit complexity for our system. Section IV
demonstrates how quantum chaos can be detected and
quantified using circuit complexity while Sec. V discusses
the OTOC and its relation to the results obtained from the
circuit complexity. In Sec. VI, we discuss a many-body
system (quantum field theory) where the inverted oscillator
arises. Finally, we summarize and present concluding
remarks in Sec. VII.

II. THE MODEL

We are interested in comparing the complexity of a
regular system with that of an unstable/chaotic system. To
that end, we consider the Hamiltonian

H ¼ 1

2
p2 þ Ω2

2
x2 where Ω2 ¼ m2 − λ: ð1Þ

For λ < m2, Eq. (1) describes a simple harmonic oscillator;
for λ > m2, we have an inverted oscillator. The λ ¼ m2

case, of course describes a free particle. Our inverted
oscillator model can be understood as a short-time approxi-
mation for unstable/chaotic systems. In particular, this
model captures the exponential sensitivity to initial con-
ditions exhibited by chaotic systems. Let us start with the
following state at t ¼ 0:

ψðx; t ¼ 0Þ ¼ N ðt ¼ 0Þ exp
�
−
ωrx2

2

�
; ð2Þ

where

ωr ¼ m: ð3Þ

Evolving this state in time by the Hamiltonian (1)
produces [43]

ψðx; tÞ ¼ N ðtÞ exp
�
−
ωðtÞx2

2

�
; ð4Þ

where N ðtÞ is the normalization factor and

ωðtÞ ¼ Ω
�
Ω − iωr cotðΩtÞ
ωr − iΩ cotðΩtÞ

�
: ð5Þ

We will be computing the complexity for this kind of time-
evolved state (4) with respect to Eq. (2) and

ωðt ¼ 0Þ ¼ ωr: ð6Þ

III. COMPLEXITY FROM THE
COVARIANCE MATRIX

We will start this section with a quick review of circuit
complexity and then conclude with a computation of the
circuit complexity for a single oscillator. For circuit
complexity we will use the covariance matrix method.
Note that a similar analysis can be done for circuit
complexity from the full wave function.

A. Review of circuit complexity

Here we will briefly sketch the outline of the compu-
tation of circuit complexity. Details of this can be found in
Refs. [22,24]. We will highlight only the key formulas and
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interested readers are referred to Refs. [22,24] and citations
thereof. The problem is simple enough to state: given a set
of elementary gates and a reference state, we want to build
the most efficient circuit that starts at the reference state and
terminates at a specified target state. Formally,

jψτ¼1i ¼ Ũðτ ¼ 1Þjψτ¼0i; ð7Þ

where

ŨðτÞ ¼ P⃖ exp

�
i
Z

τ

0

dτHðτÞ
�
; ð8Þ

is the unitary operator representing the quantum circuit,
which takes the reference state jψτ¼0i to the target state
jψτ¼1i. τ parametrizes a path in the space of the unitaries
and given a particular basis (elementary gates) MI,

HðτÞ ¼ YIðτÞMI:

In this context, the coefficients fYIðτÞg are referred to as
“control functions.” The path ordering in Eq. (8) is
necessary as all the MI’s do not necessarily commute with
each other.
Now, since the states under consideration (2) and (4) are

Gaussian, they can be equivalently described by a covari-
ance matrix as follows:

Gab ¼ hψðx; tÞjξaξb þ ξbξajψðx; tÞi; ð9Þ

where ξ ¼ fx; pg. This covariance matrix is typically a real
symmetric matrix with unit determinant. We will always
transform the reference covariance matrix such that [27,29]

G̃τ¼0 ¼ S · Gτ¼0 · ST ð10Þ

where G̃τ¼0 is an identity matrix and S is a real symmetric
matrix whose transpose is denoted by ST. Similarly, the
reference state will transform as

G̃τ¼1 ¼ S · Gτ¼1 · ST: ð11Þ

The unitary ŨðτÞ acts on this transformed covariance
matrix as,

G̃τ¼1 ¼ ŨðτÞ · G̃τ¼0 · Ũ−1ðτÞ: ð12Þ

Next we define a suitable cost function F ðŨ; _̃UÞ and define
[22,35–37]

CðŨÞ ¼
Z

1

0

F ðŨ; _̃UÞdτ: ð13Þ

Minimizing this cost functional gives us the optimal set of
YIðτÞ, which in turn give us the most efficient circuit by

minimizing the circuit depth. There are various possible

choices for these functions F ðŨ; _̃UÞ. For further details,
we refer the reader to the extensive literature in
Refs. [22–24,35–37]. In this paper, we will choose

F 2ðU; YÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
I

ðYIÞ2
r

: ð14Þ

For this choice, one can easily see that, after minimization
the CðŨÞ defined in Eq. (13) corresponds to the geodesic
distance on the manifold of unitaries. Note also that we can
reproduce our analysis done in the following sections with
other choices of the cost functional. We will, however,
leave this for future work.

B. Circuit complexity for a single oscillator

For our case, the covariance matrix corresponding to the
target state (4) will take the form,

Gτ¼1 ¼

0
B@

1
ReðωðtÞÞ − ImðωðtÞÞ

ReðωðtÞÞ

− ImðωðtÞÞ
ReðωðtÞÞ

jωðtÞj2
ReðωðtÞÞ

1
CA; ð15Þ

where ωðtÞ is defined in Eq. (5). For the reference state (2)
it will take the following form:

Gτ¼0 ¼
� 1

ωr
0

0 ωr

�
: ð16Þ

Next we change the basis as follows:

G̃τ¼1 ¼ S ·Gτ¼1 · ST; G̃τ¼0 ¼ S · Gτ¼0 · ST; ð17Þ

with

S ¼
� ffiffiffiffiffi

ωr
p

0

0 1ffiffiffiffi
ωr

p

�
; ð18Þ

such that G̃τ¼0 ¼ I is an identity matrix. For the case under
study, the reference frequencyωr is real. Wewill choose the
following three generators:

M11 →
i
2
ðxpþ pxÞ; M22 →

i
2
x2; M33 →

i
2
p2:

ð19Þ

These will serve as our elementary gates and satisfy the
SLð2; RÞ algebra,

½M11;M22� ¼ 2M22; ½M11;M33� ¼ −2M33;

½M22;M33� ¼ M11: ð20Þ
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Next, if we parametrize the ŨðτÞ as,

ŨðτÞ ¼
�
cosðμðτÞÞ coshðρðτÞÞ − sinðθðτÞÞ sinhðρðτÞÞ − sinðμðτÞÞ coshðρðτÞÞ þ cosðθðτÞÞ sinhðρðτÞÞ
sinðμðτÞÞ coshðρðτÞÞ þ cosðθðτÞÞ sinhðρðτÞÞ cosðμðτÞÞ coshðρðτÞÞ þ sinðθðτÞÞ sinhðρðτÞÞ

�
ð21Þ

and set the boundary conditions as,

G̃τ¼1 ¼ Ũðτ ¼ 1Þ · G̃τ¼0 · Ũ−1ðτ ¼ 1Þ; G̃τ¼0 ¼ Ũðτ ¼ 0Þ · G̃τ¼0 · Ũ−1ðτ ¼ 0Þ; ð22Þ

we find that [29],

fcoshð2ρð1ÞÞ; tanðθð1Þ þ μð1ÞÞg ¼
�
ω2
r þ jωðtÞj2

2ωrReðωðtÞÞ
;
ω2
r − jωðtÞj2

2ωrImðωðtÞÞ
�
; fρð0Þ; θð0Þ þ μð0Þg ¼ f0; cg: ð23Þ

Here c is an arbitrary constant. For simplicity we choose

μðτ ¼ 1Þ ¼ μðτ ¼ 0Þ ¼ 0; θðτ ¼ 0Þ ¼ θðτ ¼ 1Þ ¼ c ¼ tan−1
�
ω2
r − jωðtÞj2

2ωrImðωðtÞÞ
�
: ð24Þ

From Eq. (8) we have,

YI ¼ Trð∂τŨðτÞ · ŨðτÞ−1 · ðMIÞTÞ; ð25Þ

where TrðMI:ðMJÞTÞ ¼ δIJ. Using this we can define the metric

ds2 ¼ GIJdYIdY�J; ð26Þ

where the GIJ ¼ 1
2
δIJ is known as a penalty factor. Given the form of UðsÞ in Eq. (21) we will have,

ds2 ¼ dρ2 þ coshð2ρÞcosh2ρdμ2 þ coshð2ρÞsinh2ρdθ2 − sinhð2ρÞ2dμdθ; ð27Þ

and the complexity functional defined in Eq. (13) will take
the form,

CðŨÞ ¼
Z

1

0

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
gij _xi _xj

q
: ð28Þ

The simplest solution for the geodesic is again a straight
line on this geometry [22,29].

ρðτÞ ¼ ρð1Þτ: ð29Þ

Evaluating Eq. (28) we simply get

CðŨÞ ¼ ρð1Þ ¼ 1

2

�
cosh−1

�
ω2
r þ jωðtÞj2

2ωrReðωðtÞÞ
��

: ð30Þ

This is the geodesic distance in the space of SLð2; RÞ
unitaries with the end points anchored at the two points
determining the boundary conditions (23).

IV. QUANTIFYING CHAOS USING COMPLEXITY

The goal of this paper is to explore whether we can
implement the notion of quantum circuit complexity as a
diagnostic of a system’s chaotic behavior. Classically,
chaos is diagnosed by studying trajectories in the phase
space of some dynamical systems, a notion that is not well
defined in quantum systems, essentially because of the
uncertainty principle. It is important to keep in mind that
when we speak of geodesics in the context of circuit
complexity, we will mean trajectories defined on the space
of unitaries.
Now we propose a new diagnostic for chaotic behavior

based on circuit complexity. We consider a target state jψ2i
obtained by evolving a reference state jψ0i forward in time
with Ĥ and then backward in time with Ĥ þ δĤ,

jψ2i ¼ eiðĤþδĤÞte−iĤtjψ0i: ð31Þ

We would like to compute the complexity ĈðŨÞ of this
target state jψ2i with respect to the reference state jψ0i
[29]. For a chaotic quantum system, even if the two
Hamiltonians Ĥ and Ĥ þ δĤ are arbitrarily close, jψ2i
will be quite different from jψ0i,
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ĈðŨÞ ¼ 1

2

�
cosh−1

�
ω2
r þ jω̂ðtÞj2

2ωrReðω̂ðtÞÞ
��

; ð32Þ

where now

ψ2ðx; tÞ ¼ N̂ ðtÞ exp
�
−
1

2
ω̂ðtÞx2

�
; ð33Þ

and

ω̂ðtÞ¼ iΩ0cotðΩ0tÞþ Ω02

sin2ðΩ0tÞðωðtÞþiΩ0cotðΩ0tÞÞ: ð34Þ

In this last expression, Ω0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − λ0

p
is the frequency

associated with the Hamiltonian H0 ¼ 1
2
p2 þ Ω02

2
x2 and

λ0 ¼ λþ δλ with δλ being very small. The time dependence
of this complexity demonstrates that there is a clear
qualitative difference between a regular oscillator and an
inverted oscillator as evident from Figs. 1 and 2. For the
regular oscillator we get oscillatory behavior [29–31]; the

complexity grows linearly for a very short period and
reaches a saturation with some fluctuations. However, ĈðŨÞ
for the inverted oscillator tells a completely different story.
The overall behavior of ĈðŨÞ for the inverted oscillator

appears to be some complicated monotonically growing
function. However, a closer look at Fig. 2, reveals that it
takes a small amount of time for the complexity to pick up

FIG. 2. ĈðŨÞ vs time for inverted oscillator (m ¼ 1, λ ¼ 15,
δλ ¼ 0.01).

FIG. 1. ĈðŨÞ vs time for regular oscillator (m ¼ 1, λ ¼ 1.2,
δλ ¼ 0.01).

FIG. 3. ĈðŨÞ vs time for different values of λ (with δλ ¼ 0.01,
m ¼ 1).

FIG. 4. Complexity vs λ for different times. (a) For all t, ĈðŨÞ
starts to increase before the critical of λ namely λ ¼ m2. (b) We
can observe that near t ¼ 40 there is a sharp increase in ĈðŨÞ at
the critical value of λ (λ ¼ 1, for the choice of the parameter). We
have set δλ ¼ 0.01 and m ¼ 1 in both panels.
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after which it displays a linear ramp with time. For a
different choice of coupling (λ > λc) we get similar
behavior with different pick-up time and slope (ϕ) for
the linear ramp. These features are displayed for different
values of the coupling in Fig. 3.
As we increase λ (beyond the critical value), we are in

effect making the model more unstable and consequently
from our very specific circuit model we expect a larger
complexity and a smaller pick-up time. Therefore, the slope
and pick-up time scale are natural candidates for measuring
the unstable nature of the inverted oscillator. When we
explore the slope ϕ of the linear region (as in Fig. 3) for
different values of coupling λ we find the behavior shown
in Fig. 5. In the following section, we will argue that this
slope is similar to the Lyapunov exponent.
Note that the linear growth kicks in near a certain time

t ¼ ts (as in the Fig. 2) which depends on the choice of the
parameters, fm; λg. We plot this pick-up time as function of
λ in Fig. 5(b). We believe that this time scale is equivalent to
the scrambling time which frequently appears in the chaos
literature. One way to confirm this is to compute the out-
of-time-order four-point correlator. The time when the
OTOC ∼ eΛðt−t�Þ becomes Oð1Þ, is called the scrambling

time. For this oscillator model (1), we can show it
analytically following Ref. [44]. It is shown in the next
section.
Now wewill study how this complexity changes with the

coupling λ for a fixed time. Figure 4 shows how the
complexity changes with the coupling λ for various times.
We denote λc ¼ m2 as the critical value of λ, after which the
system becomes an inverted oscillator. We find that for
smaller values of t the complexity start to increase for
λ < λc. Around t ¼ 40 the complexity sharply increases at
λ ¼ λc. We call this time the critical time tc. Figure 4 shows
that, it takes a certain amount of time for the system to
“know” that it has become chaotic; tc marks when this
occurs.
We further check the sensitivity of our results to the

magnitude of δλ. We plot ĈðŨÞ for the inverted oscillator
for a fixed value of λ but for different δλ. We find that while
the slope of the linear region remains the same, the pick-up
time is sensitive to δλ as exhibited in Fig. 6.
We will conclude this section by highlighting the fact

that we get the same result regarding diagnosing chaos
when we explore the circuit complexity (using the corre-
lation matrix method), where both the target and reference
states are evolved by slightly different Hamiltonians from
some other state. The equality between these two complex-
ities was concretely shown in Ref. [29].

V. OTOC, LYAPUNOV EXPONENT
AND SCRAMBLING TIME

The exponential behavior of the four-point OTOC has
recently emerged as a popular early-time diagnostic for
quantum chaos.2 In Ref. [44] the authors explicitly calcu-
lated the OTOCs for a harmonic oscillator. For our model,
the OTOC for the x and p operators (after reinstating the
factor of ℏ) gives [44]

FIG. 5. (a) Slope ϕ vs λ (δ ¼ 0.01, m ¼ 1). (b) ts vs λ
(δ ¼ 0.01, m ¼ 1).

FIG. 6. Dependence of ĈðŨÞ on δλ (m ¼ 1, λ ¼ 10).

2An alternative to the OTOC, FðtÞ ¼ hA†ðtÞB†ð0ÞAðtÞBð0Þi,
is the thermally averaged commutator squared CðtÞ ¼
h½AðtÞ; Bð0Þ�2i with the two being related through
CðtÞ ¼ 2 − 2ReðFðtÞÞ. Unless there is an explicit ambiguity,
we will refer to them both as the OTOC.
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h½xðtÞ; p�2i ¼ ℏ2cos2Ωt; ð35Þ

whereΩ is defined in Eq. (1). WhenΩ is imaginary, we can
write the above expression as an exponential function

h½xðtÞ; p�2i ≈ ℏ2e2jΩjt þ � � � : ð36Þ

Rewriting the above expression as e2λLðt−t�Þ, with the
Lyapunov exponent λL allows us to immediately read off
that for our system, λL ¼ jΩj while the scrambling (or
Ehrenfest) time is given by

t� ¼
1

λL
log

1

ℏ
: ð37Þ

The λ dependence of this time scale (in units of log 1
ℏ) is

shown in Fig. 7(b). The nature of the graph is in agreement
with Fig. 5(b). In fact from Fig. 7(b) after doing a data
fitting we get for the pick-up time,

ts ¼
4 logð2Þ
jΩj : ð38Þ

In the scale of log 1
ℏ this is related to the scrambling

time t� as,

ts ¼ 4 logð2Þt�: ð39Þ

Also, the λ dependence of the Lyapunov exponent is shown
in Fig. 7(a). Again the nature of the graph is in agreement
with Fig. 5(a). After fitting the data we get for the slope ϕ of
the linear region of the graph in Fig. 5(a),

ϕ ¼ 2jΩj ¼ 2λL: ð40Þ

We have also checked the m dependence of the slope ϕ
and the pick-up time ts and they are in agreement with the
m dependence of λL and t� respectively.
Before we end this section we would like to highlight the

following interesting point. Mathematically, it is evident
from Eqs. (35) and (36) that the exponential decay of the
OTOC is a consequence of a simple analytic continuation.
This is due to the change of cosΩt to coshΩt, when Ω
becomes imaginary. This implies that a simple analytic
continuation is essentially capturing the scrambling and
chaotic behavior in this quantum system.

VI. TOWARDS A FIELD THEORY ANALYSIS

By using the single oscillator model we have illustrated
how complexity can capture chaotic behavior. In this
section we will explore a possible field theory model in
which the inverted oscillator appears naturally. Consider
two free scalar field theories [(1þ 1)-dimensional c ¼ 1
conformal field theories] deformed by a marginal coupling.
The Hamiltonian is given by

H¼H0þHI

¼ 1

2

Z
dx½Π2

1þð∂xϕ1Þ2þΠ2
2þð∂xϕ2Þ2þm2ðϕ2

1þϕ2
2Þ�

þ λ

Z
dxð∂xϕ1Þð∂xϕ2Þ: ð41Þ

We can discretize this theory by putting it on a lattice. Then
by using the definitions

xðn⃗Þ ¼ δϕðn⃗Þ; pðn⃗Þ ¼ Πðn⃗Þ=δ; ω ¼ m;

Ω ¼ 1

δ2
; λ̂ ¼ λδ−4; m̂ ¼ m

δ
; ð42Þ

we get

H ¼ δ

2

X
n

½p2
1;n þ p2

2;n þ ðΩ2ðx1;nþ1 − x1;nÞ2

þ Ω2ðx2;nþ1 − x2;nÞ2 þ ðm̂2ðx21;n þ x22;nÞ
þ λ̂ðx1;nþ1 − x1;nÞðx2;nþ1 − x2;nÞÞ�: ð43Þ

Next we perform a series of transformations,FIG. 7. (a) λL vs λ (m ¼ 1). (b) t� vs λ (m ¼ 1).
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x1;a ¼
1ffiffiffiffi
N

p
XN−1

k¼0

exp

�
2πik
N

a

�
x̃1;k;

p1;a ¼
1ffiffiffiffi
N

p
XN−1

k¼0

exp

�
−
2πik
N

a

�
p̃1;k;

x2;a ¼
1ffiffiffiffi
N

p
XN−1

k¼0

exp

�
2πik
N

a

�
x̃2;k;

p2;a ¼
1ffiffiffiffi
N

p
XN−1

k¼0

exp

�
−
2πik
N

a

�
p̃2;k;

p̃1;k ¼
ps;k þ pa;kffiffiffi

2
p ; p̃2;k ¼

ps;k − pa;kffiffiffi
2

p ;

x̃1;k ¼
xs;k þ xa;kffiffiffi

2
p ; x̃2;k ¼

xs;k − pa;kffiffiffi
2

p ; ð44Þ

that lead to the Hamiltonian

H ¼ δ

2

XN−1

k¼0

½p2
s;k þ Ω̄2

kx
2
s;k þ p2

a;k þΩ2
kx

2
a;k�; ð45Þ

where

Ω̄2
k ¼

�
m̂2 þ 4ðΩ2 þ λ̂Þsin2

�
πk
N

��
;

Ω2
k ¼

�
m̂2 þ 4ðΩ2 − λ̂Þsin2

�
πk
N

��
: ð46Þ

It is immediately clear that by tuning the value of λ̂, the
frequenciesΩk can be made arbitrarily negative resulting in
coupled inverted oscillators. Note that Ω̄k will always be
positive. Therefore, one can view Eq. (45) as a sum of
regular and inverted oscillators for each value of k. With
regards to studying the unstable behavior, the regular
oscillator part is not very interesting. Hence, we will simply
investigate the inverted oscillator part with the Hamiltonian

H̃ðm;Ω; λ̂Þ¼ δ

2

XN−1

k¼0

�
p2
kþ

�
m̂2þ4ðΩ2− λ̂Þsin2

�
πk
N

��
x2k

�
:

ð47Þ

Note that by tuning λ̂ for this Hamiltonian one can get both
regular and inverted oscillators. At t ¼ 0 we start with the
ground state of H̃ðm;Ω; λ̂ ¼ 0Þ. Then we compute ĈðŨÞ as
before by considering two Hamiltonians H̃ and H̃0 with two
slightly different couplings, λ̂ and λ̂0 ¼ λ̂þ δλ̂, where δλ̂ is
small. We get

ĈðŨÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN−1

k¼0

�
cosh−1

�
ω2
r;k þ jω̂kðtÞj2

2ωr;kReðω̂kðtÞÞ
��2

vuut ; ð48Þ

where

ω̂kðtÞ ¼ iΩ0
k cotðΩ0

ktÞ þ
Ω0

k
2

sin2ðΩ0
ktÞðωkðtÞ þ iΩ0

k cotðΩ0
ktÞÞ

;

Ω0
k
2 ¼ m̂2 þ 4ðΩ2 − λ̂ − δλ̂Þsin2

�
πk
N

�
ð49Þ

and ωkðtÞ, ω2
r;k are defined as,

ωkðtÞ ¼ Ωk

�
Ωk − iωr;k cotðΩktÞ
ωr;k − iΩk cotðΩktÞ

�
; ð50Þ

and

ω2
r;k ¼ m̂2 þ 4Ω2sin2

�
πk
N

�
: ð51Þ

Using our testing method (outlined in Sec. IV), once
again for the inverted oscillator we can immediately read
off the scrambling time and Lyapunov exponent from the
time evolution of ĈðŨÞ as shown in Fig. 8.

VII. DISCUSSION

In this paper we used a harmonic oscillator model that
converts to an inverted oscillator for large coupling of the
interaction Hamiltonian. The coupling behaves as a regu-
lator and by tuning it we can switch between regular and
inverted regimes. Our motivation was to use this inverted
oscillator as a toy model to study quantum chaos. In this
context, the regular oscillator serves as a reference system.
We developed a new diagnostic for quantum chaos by
constructing a particular quantum circuit and computing
the corresponding complexity. Our diagnostic can extract
equivalent information as the out-of-time-order correlator
with the additional feature that complexity can detect when
the system switches from the regular to the chaotic regime.

FIG. 8. ĈðŨÞ vs time for the inverted oscillator (δ ¼ 0.1,
m ¼ 1, N ¼ 1000, λ ¼ 10, δλ ¼ 0.01).
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We considered a target state which is first forward
evolved and then backward evolved with slightly different
Hamiltonians and found that the behaviors for the regular
and inverted oscillators are completely different in this
case. For the regular oscillator we got some oscillatory
behavior as in Refs. [28,29,31]. However, for the inverted
oscillator we got an exponential-type function with two
distinct features: for an initial period the complexity is
nearly zero, after which it exhibits a steep linear growth. By
comparing with the operator product expansion, we dis-
covered the small time scale and slope of the linear portion
to be equivalent to the scrambling time and the Lyapunov
exponent respectively. To elaborate further, we note that the
only difference between the scrambling time [as in
Eq. (37)] and pick-up time [as in Eq. (38)] is just Oð1Þ
[as evident from Eq. (39)] (constant in natural units).
Hence, these definitions capture the same scrambling
physics.
To give a proof-of-principle argument for complexity

as a chaos diagnostic, we have used the inverted oscillator
as a toy model. This is, however, a rather special example
and, by no means, a realistic chaotic system. To put
complexity on the same footing as, say the OTOC as a
probe of quantum chaos will take much more work, with
more “realistic” systems like the maximally chaotic SYK
model3 and its many variants (see, for example, Refs. [46–
48] and references therein) in the (0þ 1)-dimensional
quantum mechanical context, or the Murugan-Stanford-
Witten class of (1þ 1)-dimensional (nonmaximally) cha-
otic conformal field theories [49].

As a final point of motivation, we note that by virtue of
the recent “complexity = action” [50] and “complexity =
volume” [51] conjectures, the computational complexity of
a holographic quantum system has a well-defined (if not
entirely unambiguous) dual. This opens up tantalizing new
possibilities in the study of quantum chaos in strongly
coupled quantum systems. We leave these issues for
future work.
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