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Compactification of M-string theory on manifolds with G2 structure yields a wide variety of 4D and 3D
physical theories. We analyze the local geometry of such compactifications as captured by a gauge theory
obtained from a three-manifold of ADE singularities. Generic gauge theory solutions include a nontrivial
gauge field flux as well as normal deformations to the three-manifold captured by noncommuting matrix
coordinates, a signal of T-brane phenomena. Solutions of the 3D gauge theory on a three-manifold are
given by a deformation of the Hitchin system on a marked Riemann surface which is fibered over an
interval. We present explicit examples of such backgrounds as well as the profile of the corresponding zero
modes for localized chiral matter. We also provide a purely algebraic prescription for characterizing
localized matter for such T-brane configurations. The geometric interpretation of this gauge theory
description provides a generalization of twisted connected sums with codimension seven singularities at
localized regions of the geometry. It also indicates that geometric codimension six singularities can
sometimes support 4D chiral matter due to physical structure “hidden” in T-branes.
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I. INTRODUCTION

Manifolds of special holonomy are of great importance
in connecting the higher-dimensional spacetime predicted
by string theory to lower-dimensional physical phenomena.
This is because such manifolds admit covariantly constant
spinors, thus allowing the macroscopic dimensions to
preserve some amount of supersymmetry.
Historically, the most widely studied class of examples

has centered on type II and heterotic strings compactified
on Calabi-Yau threefolds [1]. This leads to 4D vacua with
eight and four real supercharges, respectively. Such three-
folds also play a prominent role in the study of F-theory and
M-theory backgrounds, leading respectively to 6D and 5D
vacua with eight real supercharges. Compactifications on
Calabi-Yau spaces of other dimensions lead to a rich class
of geometries, and correspondingly many novel physical
systems in the macroscopic dimensions. In all these cases,

the holomorphic geometry of the Calabi-Yau allows tech-
niques from algebraic geometry to be used.
There are, however, other manifolds of special holon-

omy, most notably those withG2 and Spinð7Þ structure. For
example, compactification of M-theory on G2 and Spinð7Þ
spaces provides a method for generating a broad class of 4D
and 3D N ¼ 1 vacua, respectively.1

Despite these attractive features, it has also proven
notoriously difficult to generate singular compact geometries
of direct relevance for physics. In the case of M-theory on a
G2 background, realizing a non-Abelian ADE gauge group
requires a three-manifold of ADE singularities (i.e., codi-
mension four), and realizing 4D chiral matter requires
codimension seven singularities. While there are now some
techniques available to realize G2 backgrounds with codi-
mension four singularities, it is not entirely clear whether a
smooth compact G2 can be continuously deformed to such
singular geometries, as necessary for physics.2
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1In F-theory, there has recently been renewed interest in the use
of Spinð7Þ backgrounds as a way to generate novel models of
dark energy [2,3] (see also [4–7]). Though less studied, F-theory
on G2 backgrounds should also lead to novel 5D vacua [8].

2Recently, the local model version of this problem has been
solved [9,10]. The main result is the construction of a deformation
family of closed G2-structures starting from a given G2-structure
on the total space of a fibration of ADE singularities. In a nutshell,
the deformations are parametrized by certain spectral covers in a
local gauge theory (detailed later in this paper). This result is a G2

analog of the well-known correspondence between Calabi-Yau
threefolds ALE-fibered over a Riemann surface Σ and Hitchin
systems over Σ [11,12].

PHYSICAL REVIEW D 101, 026015 (2020)

2470-0010=2020=101(2)=026015(23) 026015-1 Published by the American Physical Society

https://orcid.org/0000-0002-9531-2618
https://orcid.org/0000-0002-4673-0098
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.026015&domain=pdf&date_stamp=2020-01-24
https://doi.org/10.1103/PhysRevD.101.026015
https://doi.org/10.1103/PhysRevD.101.026015
https://doi.org/10.1103/PhysRevD.101.026015
https://doi.org/10.1103/PhysRevD.101.026015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Once one is given a codimension four ADE singularity,
further degenerations at points of the three-manifold should
produce the codimension seven singularities3 required for
4D chiral matter.4 It is expected that some of the fibers in
the deformation family of [9] could acquire such pointlike
singularities, and we refer to that paper for a discussion on
how that could be achieved from a geometric perspective.
In this approach to singular G2 compactifications, rather

than building the global geometry directly, the crucial idea
is to use a dual gauge-theoretic description to characterize
the appearance of such codimension seven singularities.
In Ref. [23], the partial topological twist of a six-brane
wrapped on a three-manifold M embedded in a G2

manifold was studied in some detail, and we shall refer
to it as the “Pantev-Wijnholt” (PW) system. The choice of
4D vacuum is dictated in the six-brane gauge theory by an
adjoint-valued one-form and a vector bundle. The eigen-
values of this one-form parametrize normal deformations in
the local geometry T�M, and this leads to a natural spectral
cover description. Localized matter in this setup is obtained
by allowing the one-form to vanish at various locations.
In [23] this was used to analyze codimension seven
singularities, and in Ref. [24] this analysis was greatly
developed and also extended to the case of codimension
six singularities, i.e., nonchiral matter. As argued in [24] a
potentially appealing feature of these codimension six
singularities is that they provide a way to possibly connect
to one of the (few) methods available for building G2

manifolds via twisted connected sum (TCS), using Calabi-
Yau threefolds as building blocks [25–27]. The physics of
M-theory compactified on such compact TCS G2 mani-
folds has been studied in [24,28–37].
In the TCS construction of G2 backgrounds [25,27],

one first begins with a pair ðM1;M2Þ of G2 manifolds of
the form Mi ¼ Xi × S1i;ext, where S1i;ext is a circle we call
“external” and Xi is an asymptotically cylindrical Calabi-
Yau threefold. This means that outside of a compact region,
the Calabi-Yau metric looks like a K3 surface times a

cylinder: Xi ≅
asymp

K3i ×R × S1i;int. One then glues S11;ext and
S12;int using a hyperkähler rotation (and similarly for the
other two circles) and shows that the resulting compact
smooth manifold admits a full G2 metric. Although all
known examples result in smooth total spaces, it is

reasonable to expect that degenerations in the Calabi-
Yau building blocks will provide a way to generate the
long sought for codimension six and seven singularities in
compact models.
From this perspective, one might ask whether this is the

most general starting point one can entertain for realizing
localized matter in G2 compactifications. One important
clue comes from the structure of local G2 backgrounds in
the presence of nonzero fluxes. This leads to manifolds
with structure group G2, and these solutions can often be
interpreted in terms of a system of lower-dimensional
branes localized on subspaces inside the bulk geometry
[38–40]. It is thus natural to ask about fluxed solutions with
lower-dimensional defects.
In this paper we consider the case of non-Abelian fluxes

of a six-brane wrapped on a three-manifold. To accomplish
this, we return to the local gauge theory on a six-brane (see
also [24,41,42]). To date, most analyses of localized matter
have assumed that the adjoint valued one-form is diagonal,
and that there are no fluxes present in the three-manifold.
Here, we shall relax this assumption and attempt to study a
far broader class of situations. This necessarily means that
the components of this one-form will not commute. We
shall refer to this as a T-brane configuration (even though
the matrix components are not upper triangular) since it
naturally fits in the broader scheme of T-brane like phenom-
ena. For earlier work on T-branes, see Refs. [43–63].
Locally modeling the three-manifold as a Riemann

surface fibered over an interval, we show that for each
smooth fiber, the gauge theory on the Riemann surface is
described by a mild deformation of Hitchin’s system on a
complex curve (see Fig. 1). Since the local Hitchin system
directly describes a local Calabi-Yau geometry (see e.g.,
[11,12,48,55,64]), we obtain a local deformation of a
TCS-like construction which can be interpreted as building
up a local G2 background (see Fig. 2).
An important feature of these structures is the appear-

ance of holomorphic geometry as a guide in constructing
these local G2 backgrounds. This points the way to a
method for constructing G2 backgrounds using more
general holomorphic building blocks than those appearing
in the classical TCS construction.
Another feature we study in great detail is the resulting

localized matter obtained from such T-brane configura-
tions. We provide examples where we explicitly determine
the profile of localized matter fields in a given background.
This involves solving a second order differential equation.
We also develop algebraic methods for reading off the
appearance of localized zero modes by determining the
local ring structure of trapped matter. This is similar in
spirit to the analysis of localized zero modes in T-brane
configurations carried out in Refs. [45,46].
One of the outcomes of this analysis is that it also

provides evidence for the existence of localized matter field
configurations which would be “invisible” to the bulk G2

3There are quite a few known examples of local models of G2

spaces with conical singularities. A G2 metric on a seven-
dimensional cone is equivalent to a nearly Kähler metric on
the base of the cone, and these are known to exist on S6, CP3,
SUð3Þ=Uð1Þ2, and S3 × S3. It is known [13–16] that one-
parameter families of G2 metrics exist deforming the G2 structure
on the cone over S3 × S3. Analogous Spinð7Þ-metrics were
constructed in [17] (see also [18] and the review [19]).

44D N ¼ 1 globally consistent type IIA compactifications
with chiral matter [20,21] and their relation to M-theory on
compact G2 holonomy spaces were studied in Ref. [22].
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geometry since they originate from degenerate spectral
equations. Instead, they would be fully characterized by
allow limiting behavior in the four-form G-flux of the
M-theory background. We present explicit examples exhib-
iting this behavior. A canonical example is the “standard
embedding”; namely, we embed the spin connection in the
gauge bundle, taking our holomorphic vector bundle to be
the tangent bundle on T�M dimensionally reduced (after a
Fourier-Mukai transform/formally three T-dualities) to the
three-manifold. Related examples show up in a number of
other T-brane constructions (see e.g., [43,48]).
The rest of this paper is organized as follows. We begin

in Sec. II by discussing the PW system, and its relation to
geometric engineering. Next, in Sec. III we show how to
build examples of solutions to the PW system in cases
with nonzero gauge field flux. In Sec. IV we present some
general methods for analyzing zero modes in such back-
grounds, and then proceed to determine the localized matter
field wave functions by explicitly solving the correspond-
ing partial differential equations. Section V presents a
conjectural proposal for how to algebraically determine the
localized zero mode content in fluxed solutions. We present
our conclusions in Sec. VI.

II. SIX-BRANE GAUGE THEORY ON
A THREE-MANIFOLD

In this section we discuss the gauge theory of a six-brane
wrapped on a three-manifold, as obtained from M-theory
on aG2 background. Geometrically, we engineer this gauge
theory from a three-manifold of ADE singularities with
corresponding ADE gauge group—i.e., the local G2 is a
fibration of ADE singularities over a three-manifold. The
terminology follows from the fact that the “brane” in
question is actually a seven-dimensional supersymmetric
gauge theory wrapped on the three-manifold, namely a
six-brane. Supersymmetry is preserved since we assume
the three-manifold is an associative three-cycle of the local
G2 manifold.5 It is also in accord with the type IIA string
theory description of D6-branes wrapped on special
Lagrangian submanifolds of a Calabi-Yau threefold. For
a recent pedagogical discussion of geometric engineering,
and the relation between localized gauge theories and
singular geometry in the context of string compactification,
see the online lectures of Ref. [66].
In terms of the geometry of the local G2 background, we

note that we have an associative three-form ρ which pairs
with the three-form potential C of M-theory to form the
complex moduli Cþ iρ. Resolving the ADE fibers and
performing a corresponding reduction to the three-manifold,
we have a decomposition:

C ¼ Aα ∧ ωα; ρ ¼ ϕα ∧ ωα ð2:1Þ

where the ωα are harmonic representatives of (1, 1) forms
on the resolution of the local ADE singularity, and the Aα

and ϕα are one-forms on the three-manifold. Moreover
α ¼ 1;…; rwith r being the rank of the ADE gauge group.
One should think of this index as labeling the generators
of the Cartan subalgebra of the corresponding ADE gauge
group. The remaining generators are obtained from
M2-branes wrapped on collapsing two-cycles of the fiber.
As explained in Ref. [23] (see also [24,41,67,68]), the

partial twist of a six-brane with gauge group G on a three-
manifold M retains 4D N ¼ 1 supersymmetry in the
uncompactified directions. After the twist both the gauge
field A and ϕ become adjoint-valued one-forms on M.
They combine into a complexified connection which we
write as

A ¼ Aþ iϕ; ð2:2Þ

which should be thought of as the bosonic component of a
collection of 4D N ¼ 1 chiral superfields which transform
as a one-form on the three-manifold. In our conventions, we

FIG. 1. The local G2 background of a three-manifold of ADE
singularities is characterized by gauge theory on a three-manifold
with corresponding ADE gauge group. In a local patch, this can
be described by a Riemann surface Σ with marked points fibered
over an interval. In a suitable scaling limit of the metric, this can
be viewed as a deformation of the Hitchin system over Σ which
asymptotes to solutions to the Hitchin system. See Fig. 2 for a
depiction of the geometry associated with this local gauge theory.

FIG. 2. The local gauge theory analysis allows us to build up
local G2 backgrounds which asymptote to Calabi-Yau threefolds
at two boundaries. The local G2 background includes a three-
manifold which is itself a Riemann surface Σ fibered over an
interval. This Riemann surface embeds in the boundary Calabi-
Yau spaces. See Fig. 1 for a depiction of the asymptotic behavior
of the gauge theory on the three-manifold as a deformation of the
Hitchin system on Σ.

5Associative three-cycles are three manifolds on which the
associative three-form Φ of a G2 manifold restricts to the volume
form of the three-manifold. See for example [65] for more details
on associative three-cycles and their deformation theory.
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take anti-Hermitian generators for the Lie algebra so that
A† ¼ −A and ϕ† ¼ −ϕ. We shall also find it convenient to
absorb the factor of i to define a Hermitian Higgs field:

Φ≡ iϕ: ð2:3Þ

We construct various curvatures from the complexified
connection DA, its conjugate DĀ as obtained from Ā ¼
A − iϕ as well the purely real DA. In a unitary gauge,
we have A† ¼ −Ā. Locally these connections may be
written as

DA ¼ dþA; DĀ ¼ dþ Ā; DA ¼ dþ A:

ð2:4Þ

We introduce gauge field strengths:

F ¼ ½DA; DA�; D ¼ ½DA; DĀ�; F ¼ ½DA;DA�:
ð2:5Þ

Once written in components the various field strengths are

F ij ¼ ∂iAj − ∂jAi þ ½Ai;Aj�; ð2:6Þ

Dij ¼ ∂iĀj − ∂jAi þ ½Ai; Āj�; ð2:7Þ

Fij ¼ ∂iAj − ∂jAi þ ½Ai; Aj�: ð2:8Þ

In terms of the original fields A and ϕ, the complexified
field strengths decompose as

ImF ij ¼ Fij − ½ϕi;ϕj�; ð2:9Þ

ReF ij ¼ ð∂i þ AiÞ · ϕj − ð∂j þ AjÞ · ϕi; ð2:10Þ

ReDij ¼ −ð∂i þ AiÞ · ϕj − ð∂j þ AjÞ · ϕi; ð2:11Þ

ImDij ¼ Fij þ ½ϕi;ϕj�: ð2:12Þ

We are considering here the equations for the fields
supported on the three-manifold, and thus the indices i, j
run from 1 to 3. Variation of the 7D gaugino produces the
corresponding conditions to have a 4D N ¼ 1 supersym-
metric vacuum. These are conveniently packaged as F-terms
and D-terms, which are respectively metric independent
and dependent:

F ij ¼ 0 and gijDij ¼ 0; ð2:13Þ

in the obvious notation. The moduli space of vacua is then
given by two equivalent presentations:

fF ¼ 0g=Ggauge
C ; ð2:14Þ

fF ¼ 0; gijDij ¼ 0g=Ggauge
U ; ð2:15Þ

where here, Ggauge
C refers to complexified gauge transforma-

tions and Ggauge
U refers to unitary gauge transformations.

We refer to both presentations of the moduli space as the
defining equations of the Pantev-Wijnholt system.6

The F-term equations of motion are obtained from the
critical points of the Chern-Simons superpotential for the
complexified connection

W½A� ¼ s
4π

Z
M
TrgC

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
ð2:16Þ

for s a complex parameter. Four-dimensionalN ¼ 1 vacua
are labeled by critical points of W modulo Ggauge

C .
More precisely, in the description specified by F-terms

moduloGgauge
C gauge transformations, the appropriate notion

of “stability” is that we only look at connections with
semisimple monodromy.7 By the Donaldson-Corlette theo-
rem [70,71], these automatically solve the harmonic metric
equation, i.e., the D-term. An interesting feature is that for
any Hermitian generator of the algebra, the signature of
the real matrixDB

ij (withB an index in the adjoint) must have
at least one þ sign and one − sign each. This is simply to
satisfy the D-term constraint. We note that this is in accord
with the “Hessian condition” of Refs. [23,24] observed in the
special case where the adjoint-valued one-form is diagonal.
In this case, the eigenvalues must have, in some basis,
signature ðþ;þ;−Þ or ð−;−;þÞ. The vanishing locus of the
Higgs field then specifies a chiral or antichiral zero mode.
Another way to study this system is to first consider

stable holomorphic vector bundles on the local Calabi-Yau
T�M≡ X. These are described by Hermitian-Yang-Mills
(HYM) instantons [72,73]. Taking the linearization of the
HYM equations in a neighborhood of the zero section M

6These equations are in fact part of a one-parameter family of
equations that can obtained by dimensionally reducing three
directions of the six-dimensional Hermitian Yang-Mills equa-
tions. This is discussed, for example, in Appendix A of [69] to
which we refer the interested reader for further details. Denoting
the associated parameter by ζ ∈ R, then for ζ ≠ 0, the set of
equations are the PW F-term equations along with a modified
D-term which is of PW form for ζ ¼ �1. When ζ ¼ 0, these
equations are the so-called extended Bogomolny equations which
have an additional adjoint one-form compared to the normal
Bogomolny equations. In the presence of a 2D boundary, a Nahm
polelike boundary condition can be imposed for any ζ, which in
the PW case would indicate the presence of M5-branes embedded
in our gauge theory six-brane. Such configurations would
generically induce a coupling to a sector with a nontrivial IR
fixed point and for simplicity we leave their study for future work.

7A connection has semisimple monodromies if the map
A∶ π1ðMÞ → GC gives a semisimple representation of the funda-
mental group of M. This means it is not possible to conjugate the
monodromies of A to a block triangular form without being able
to bring them to a block diagonal form.
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then produces the same equations [23]. Briefly summariz-
ing this approach, we introduce a (0,1) connection:

∂̄A ¼ ∂̄ þA: ð2:17Þ

The conditions to have a stable holomorphic vector bundle
are a F-term and a D-term:

F ð0;2Þ ¼ 0 and J ∧ J ∧ F ð1;1Þ ¼ 0; ð2:18Þ

with J the Kähler form on X. To make contact with the PW
equations, we consider A as a complexified gauge field
which splits up as

A ¼ Aidxi þ ϕjdpj; ð2:19Þ

where x are local coordinates on M and p are local
coordinates in the cotangent direction. The topological
twist amounts to making a further identification dpi ¼
Jijdx

j which introduces an additional factor of
ffiffiffiffiffiffi
−1

p
thus

recovering (2.2). A helpful feature of this construction is
that it also describes the heterotic dual to this local model.
More precisely, it is the linearization obtained from a
(singular) T3 fibration over M.
This alternate presentation already points to an important

general point: A priori, there is no reason for the compo-
nents ϕj in Eq. (2.19) to be simultaneously diagonalizable.
Returning to the PW equations, this also means there is no
reason to exclude gauge fluxes through the three-manifold.
Let us also note that even if such fluxes are present, it does
not directly mean there will be a bulk four-form flux in the
G2 model. This is because these fluxes are inherently
localized on the three-manifold and are “hard to see” from
the bulk point of view. Indeed, the local geometry of the G2

background is primarily sensitive to just the eigenvalues of
ϕi and bulk G-fluxes, and not to any of these non-Abelian
local features.
A canonical example is the tangent bundle of T�M. It has

the important feature that the spectral cover description is
degenerate. On the three-manifold M we have a vector
bundle with SUð3Þ structure group and the ϕ’s certainly do
not commute. Let us note that in heterotic/F-theory duality,
the standard embedding also corresponds to a T-brane
configuration of an F-theory compactification [43,48].

III. FLUXED PW SOLUTIONS

In this section we consider fluxed solutions of the PW
system. Our strategy for obtaining such configurations will
be to consider a local description of the three-manifold as
a Riemann surface fibered over an interval, and we shall
often further specialize to the case of a Cartesian product
M ¼ Σ × I with Σ a Riemann surface and I an interval.
This description will only be valid locally, and so we can
either assume these solutions extend outside of the patch in

question, or alternatively, we can cut off the solution by
allowing singular field configurations at prescribed regions
of the three-manifold.
To aid in our study of fluxed PW solutions, we shall

often assume the metric on the three-manifold takes the
form

ds2M ¼ gttdt2 þ gabdxadxb; ð3:1Þ

where in the above, t denotes a local coordinate on I, and xa

for a ¼ 1, 2 denote coordinates on the Riemann surface,
and since we often focus on metric independent questions,
we shall also sometimes take the metric to be flat in some
local patch.
In terms of this presentation, the PW equations take the

form

Fab − ½ϕa;ϕb� ¼ 0; ð3:2Þ

Daϕb −Dbϕa ¼ 0; ð3:3Þ

gabDaϕb þ gttDtϕt ¼ 0; ð3:4Þ

Fta − ½ϕt;ϕa� ¼ 0; ð3:5Þ

Dtϕa −Daϕt ¼ 0; ð3:6Þ

modulo unitary gauge transformations. In the above, we
have written Di ¼ ∂i þ Ai for the covariant derivative. We
now observe that the first three equations describe a small
deformation of the standard Hitchin system of Ref. [74].
Indeed, introducing a covariant derivative DΣ ¼ dþ AΣ
and a one-form ϕΣ on each fiber,8 we have

FΣ − ½ϕΣ;ϕΣ� ¼ 0; ð3:7Þ

DΣϕΣ ¼ 0; ð3:8Þ

�ΣDΣ �ΣϕΣ ¼ −gttDtϕt; ð3:9Þ

which would have described the Hitchin system in the
special case where gttDtϕt ¼ 0.
We remark that these equations tell us that the induced

Hitchin system does not describe a Higgs bundle in the
mathematician’s sense [75]; indeed, the condition for har-
monicity of the bundle metric is [70,71] DΣ �Σ ϕΣ ¼ 0, and
Eq. (3.9) tells us that a PW solutions gives a deformation of
that condition along the t direction. We point out that the
dependence of Eq. (3.9) on the bundle metric is hidden in the
definition of the Hodge star �.
The remaining F-term relations F ta ¼ 0 can also be

interpreted as a flow equation:

8More precisely,DΣ and ϕΣ are the pullbacks ofD and ϕ to the
Riemann surface Σ that is fibered over the interval I.
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F ta ¼ ∂tAa − ∂aAt þ ½At;Aa� ¼ 0 ð3:10Þ
i.e.,

∂tAa þ ½At;Aa� ¼ ∂aAt: ð3:11Þ
Geometrically, we interpret the flow equations as a

gluing construction for local Calabi-Yau threefolds. To
see why, we first recall the correspondence between the
Hitchin system on a genus g curve Σ and the integrable
system associated with a family of noncompact Calabi-Yau
manifolds each containing Σ as a curve of ADE singular-
ities [11,12,55]. Let Y denote the Calabi-Yau threefold that
is the central fiber of the deformation family. Recall that the
isomorphism between the integrable systems implies in
particular that variations in the complex structure for Y are
described by (spectral curves of) Higgs fields φ, i.e.,
adjoint-valued (1, 0)-forms on the curve Σ. With notation
as in Eq. (2.1) for harmonic (1, 1)-forms on the ADE
singularity, the variations of the holomorphic three-form on
the local Calabi-Yau decompose as

δΩð2;1Þ ¼ φα ∧ ωα: ð3:12Þ
The Calabi-Yau condition enforces the condition
∂̄ðδΩð2;1ÞÞ ¼ 0, which translates to one of the Hitchin
equations:

∂̄Aφ ¼ 0: ð3:13Þ
The deformation of line (3.9) tells us that the right-hand
side is no longer zero. Translating back to the Calabi-Yau
integrable system, we see that we instead get a deformation
of a Calabi-Yau manifold that does not respect the Kähler
condition, resulting in a “symplectic Calabi-Yau” in the
sense of Smith, Thomas, and Yau [76] (for a recent
discussion see Ref. [77], and for a review see Ref. [78]
and additional references therein).
From the perspective of the local G2, we thus see that

asymptotically near the boundaries of the interval, we retain
an approximate Calabi-Yau geometry, but as we proceed to
the interior of the interval, each fiber will instead be
described by a symplectic Calabi-Yau manifold.
Let us illustrate the correspondence between the spectral

equation for the Higgs field and deformations of its dual
local Calabi-Yau in the case of G ¼ SUðNÞ. The spectral
equation in the fundamental representation is

detðuholIN − φholÞ ¼ 0; ð3:14Þ
with uhol a local coordinate in the cotangent direction of
T�Σ. Since we also have a Higgs field in the more general
case, it is natural to consider two related spectral equations,
as generated by the PW system. First, we have the one
closely linked to the asymptotic Hitchin system associated
with Φ ¼ iϕ:

detðuzIN −ΦzÞ ¼ 0: ð3:15Þ

This equation only makes sense asymptotically, since in the
bulk of the three-manifold, the Higgs field of the PW
system is not a holomorphic (or even meromorphic) section
of a bundle on the curve Σ. Indeed, more generally we
ought to speak of the spectral equations:

detðuiIN −ΦiÞ ¼ 0; ð3:16Þ

where here, ui for i ¼ 1, 2, 3 are coordinates in the
cotangent direction of T�M. This is a triplet of real
equations in T�M which cut out a three-manifold in this
ambient space. Geometrically, then, we can interpret the
spectral equation of line (3.16) as a special Lagrangian
manifold in T�M with boundaries specified by the hol-
omorphic curves dictated by Eq. (3.15). Indeed, the PW
equations ensure that supersymmetry has been preserved.
This also allows us to elaborate on the sense in which

having ½Φi;Φj� ≠ 0 is an example of T-brane phenomena.
Even though each Φ takes value in the unitary Lie algebra
g, it is also natural to consider linear combinations which
take value in the complexification gC. If the complexified
combination Φz ¼ Φ1 þ iΦ2 is a nilpotent element of gC,
then we observe that the holomorphic spectral equation of
line (3.15) is degenerate. Indeed, even though Φ1 and Φ2

are Hermitian (and thus never nilpotent), their complex
combination can of course be nilpotent. From the perspec-
tive of a global G2 background, this also suggests that such
phenomena may be invisible to the geometry, instead being
encoded in non-Abelian degrees of freedom localized along
lower-dimensional subspaces. A related comment is that
even though each component of the Higgs field Φ is
Hermitian, when these matrices do not commute, there is
no canonical way in which we can speak of the spectral
sheets intersecting along a locus of symmetry enhance-
ment. We return to these issues in Sec. V.
The plan in the remainder of this section is as follows.

First, we discuss some general aspects of background
solutions in a local patch. Starting from a solution along
a single fiber, we show that this solution extends to a local
neighborhood of the three-manifold. We then present
some explicit examples of backgrounds, including T-brane
configurations.

A. Background solutions in a local patch

We first locally characterize solutions of the system in a
patch with trivial topology. By abuse of notation, we
continue to write M for this local patch. The F-term
equations of motion tell us that we are dealing with a
complexified flat connection, so the most general solution
for the gauge connection is of the form

A ¼ g−1dg; ð3:17Þ

where g∶ M → GC takes values in the complexified gauge
group. One must remember that here, we are working with
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a complexified connection, so even though the gauge field
appears to be “pure gauge,” we must only permit gauge
transformations which do not alter the asymptotic behavior
of the gauge field. A related point is that to actually find
a solution in unitary gauge, we need to substitute our
expression for A ¼ g−1dg into the D-term constraint
gijDiϕj ¼ 0, resulting in a second order partial differential
equation for gðxÞ.
As an illustrative example, suppose that g is of the form

W · g ¼ 1þ hþ h2

2!
þ � � � ; ð3:18Þ

where W is a general element of GC, and we have
introduced an infinitesimal h∶ M → gC a Lie algebra
valued function on the patch. Then, the complexified
connection takes the form

A ¼ dhþ � � � : ð3:19Þ
Feeding this into the D-term constraint, we get, to leading
order in h,

gijDij ¼ gij∂i∂jðh − h†Þ ¼ 0: ð3:20Þ
So in other words, Imh is a Lie algebra valued harmonic
map.
There are, of course, more general choices for gðxÞ and

we will in fact find it necessary to consider a more general
choice of complexified connection to generate novel
examples of T-brane configurations with localized matter.

B. Power series solutions

We now turn to a more systematic method for building up
solutions of the PW equations in the presence of flux. The
basic idea is that we shall split up our three-manifold as a
local product Σ × I with Σ a Riemann surface (possibly with
punctures) and I an interval. We introduce a local coordinate
on I denoted by t so that t ¼ 0 is in the interior of the interval,
and coordinates xa for a ¼ 1, 2 for coordinates on the
Riemann surface. It will sometimes prove convenient to also
use coordinates z ¼ x1 þ ix2 ¼ xþ iy.
We show that if enough initial data is specified at t ¼ 0,

then we can start to extend this solution in a neighborhood,
building up a solution on the entire patch of the three-
manifold. The demonstration of this will be to develop a
power series expansion in the variable t for all fields of
the PW system, and solve the expanded equations order by
order in this parameter. We shall not concern ourselves
with whether the series converges, because we do actually
anticipate that there could be singular behavior for the
fields at locations on the three-manifold. This is additional
physical data, and must be allowed to make sense of the
most general configurations of relevance for physics. As a
final comment, while we cannot exclude the possibility of
solutions which do not admit a power series expansion in
some local neighborhood, we expect on physical grounds

that such solutions are likely pathological as they would
significantly be a breakdown of the G2 structure at more
than just a higher codimension subspace.
We consider a series expansion of the complexified

connection around t ¼ 0,

Aiðt; xaÞ ¼
X∞
j¼0

AðjÞ
i ðxaÞtj: ð3:21Þ

Furthermore, it is convenient to work in “temporal gauge”
with

AðjÞ
t ¼ 0: ð3:22Þ

In this gauge, and with the power series expansion (3.21),
the PW equations can be written as nontrivial differential
equations on the coefficients

X∞
j¼0

�
∂aA

ðjÞ
b − ∂bA

ðjÞ
a þ

Xj

m¼0

ð½Aðj−mÞ
a ; AðmÞ

b �

− ½ϕðj−mÞ
a ;ϕðmÞ

b �Þ
�
tj ¼ 0;

X∞
j¼0

�
∂aϕ

ðjÞ
b þ

Xj

m¼0

½Aðj−mÞ
a ;ϕðmÞ

b � − ∂bϕ
ðjÞ
a

−
Xj

m¼0

½Aðj−mÞ
b ;ϕðmÞ

a �
�
tj ¼ 0; ð3:23Þ

together with equations which fix the higher order coef-
ficients in terms of the preceding ones,

X∞
j¼0

�
gab

�
∂aϕ

ðjÞ
b þ

Xj

m¼0

½Aðj−mÞ
a ;ϕðmÞ

b �
�

þ ðjþ 1Þgttϕðjþ1Þ
t

�
tj ¼ 0;

X∞
j¼0

�
ðjþ 1ÞAðjþ1Þ

a −
Xj

m¼0

½ϕðj−mÞ
t ;ϕðmÞ

a �
�
tj ¼ 0;

X∞
j¼0

�
ðjþ 1Þϕðjþ1Þ

a − ∂aϕ
ðjÞ
t −

Xj

m¼0

½Aðj−mÞ
a ;ϕðmÞ

t �
�
tj ¼ 0:

ð3:24Þ
At t ¼ 0 these equations collapse to

Fð0Þ
ab − ½ϕð0Þ

a ;ϕð0Þ
b � ¼ 0;

Dð0Þ
a ϕð0Þ

b −Dð0Þ
b ϕð0Þ

a ¼ 0;

gabDð0Þ
a ϕð0Þ

b þ gttϕð1Þ
t ¼ 0;

Að1Þ
a − ½ϕð0Þ

t ;ϕð0Þ
a � ¼ 0;

ϕð1Þ
a −Dð0Þ

a ϕð0Þ
t ¼ 0: ð3:25Þ
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We will assume that Að0Þ
a and ϕð0Þ

a are such that the
nontrivial zeroth order differential equations are solved,
and the higher order coefficients are fixed by solving the

linear equations. The one remaining free parameter is ϕð0Þ
t ,

which sets the “trajectory” of the solution. Once we are
given this initial set of data, solving the zeroth order
equations, we can show that the PW equations are solved
to all orders in t.
To show that solving the zeroth order equations leads to a

solution at all orders in the power series expansion we will
first substitute (3.24) into (3.23). We begin by noticing that
the commutators that appear in the differential equa-
tions (3.23), for the (jþ 1)-term, can always be written as

Xjþ1

m¼0

½λðjþ1−mÞ
a ; χðmÞ

b �

¼ 1

jþ 1

Xj

m¼0

ððjþ 1 −mÞ½λðjþ1−mÞ
a ; χðmÞ

b �

þ ðmþ 1Þ½λðj−mÞ
a ; χðmþ1Þ

b �Þ; ð3:26Þ

where λ and χ represent either A or ϕ. We will then replace,

using (3.24), the terms λðjþ1−mÞ
a and χðmþ1Þ

b . Combining this
expansion with some double sum identities, together with
the Jacobi identity, one finds, after some algebra,

∂aA
ðjþ1Þ
b − ∂bA

ðjþ1Þ
a þ

Xjþ1

m¼0

ð½Aðjþ1−mÞ
a ; AðmÞ

b �

− ½ϕðjþ1−mÞ
a ;ϕðmÞ

b �Þ

¼ 1

jþ 1

Xj

k¼0

�
ϕðkÞ
t ; ∂aϕ

ðj−kÞ
b − ∂bϕ

ðj−kÞ
a

þ
Xk
m¼0

ð½Aðj−k−mÞ
a ;ϕðmÞ

b � − ½Aðj−k−mÞ
b ;ϕðmÞ

a �Þ
�
; ð3:27Þ

and

∂aϕ
ðjþ1Þ
b þ

Xjþ1

m¼0

½Aðjþ1−mÞ
a ;ϕðmÞ

b � − ∂bϕ
ðjþ1Þ
a

−
Xj

m¼0

½Aðjþ1−mÞ
b ;ϕðmÞ

a �

¼ 1

jþ 1

Xj

k¼0

�
ϕðkÞ
t ; ∂aA

ðj−kÞ
b − ∂bA

ðj−kÞ
a

þ
Xj−k
m¼0

ð½Aðj−k−mÞ
a ; AðmÞ

b � − ½ϕðj−k−mÞ
a ;ϕðmÞ

b �Þ
�
: ð3:28Þ

If we define the shorthand notation where the power series
expansion in (3.23) look, respectively, like

X∞
j¼0

GðjÞ
ab t

ðjÞ;
X∞
j¼0

HðjÞ
ab t

j; ð3:29Þ

then we can immediately see, from (3.27) and (3.28), that,
after plugging in the solutions to the linear equations (3.24),

Gðjþ1Þ
ab ¼ 1

jþ 1

Xj

k¼0

½ϕðkÞ
t ; Hðj−kÞ

ab �;

Hðjþ1Þ
ab ¼ −

1

jþ 1

Xj

k¼0

½ϕðkÞ
t ; Gðj−kÞ

ab �: ð3:30Þ

These expressions make obvious the inductive proof that if

Gð0Þ
ab ¼ 0; Hð0Þ

ab ¼ 0; ð3:31Þ

which we assume, then it follows that

GðjÞ
ab ¼ 0; HðjÞ

ab ¼ 0: ð3:32Þ

Thus, if we have given Að0Þ
a and ϕð0Þ

a such that the zeroth
order equations in (3.23) are solved, then we can construct
a full solution of the PW equations by specifying all the

higher order coefficients as in (3.24). Note that ϕð0Þ
t is

unspecified, and we consider this parameter as determining
how the solution extends to a solution of the full system.
Further note that we did not require the first equation in
(3.24) to arrive at the conclusions (3.27) and (3.28).
Resumming this power series can be viewed as a

complexified gauge transformation. To see why, consider
a (partial) solution of the Hitchin system at t ¼ 0 and
generate a flow along the interval I to produce a nontrivial
dependence in the t direction. This has the advantage of
automatically solving the F-term equations of motion and
gives a method for iteratively solving the D-term equations
of motion. We start with a complexified connection
Að0Þðx1; x2Þ with legs only on Σ which gives a solution
to the F-term condition F 12 ¼ 0. Note that we do not
require it to be a full solution to the PW equations and in
particular we shall be interested in the case when
Að0Þðx1; x2Þ does not give vanishing D-terms. This issue
can be addressed by considering a complexified gauge
transformation by a gauge parameter exp χ of the form9

exp χ ¼ exp

�X
i

χiðx1; x2Þti
�
: ð3:33Þ

After performing this complexified gauge transformation
the background will still solve the F-term equations.

9To avoid changing the solution at t ¼ 0 we will take
χ0ðx1; x2Þ ¼ 0. Moreover we will assume that the Lie-algebra
valued functions χiðx1; x2Þ are suitably chosen to ensure that the
gauge choice At ¼ 0 is enforced.
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Moreover it also admits a power series expansion around
t ¼ 0, and borrowing from the results of Sec. III B, it is
possible to find a solution of the D-term equations by
suitably choosing the terms hiðx1; x2Þ in the complexified
gauge transformation.

C. Examples of backgrounds

In this section we present some examples of background
solutions. We first discuss some Abelian examples in which
no gauge field flux is switched on, and then present a novel
non-Abelian solution with flux.

1. First Abelian background

Our first example is a particular case of the solutions
already constructed in [23]. We take an SUð2Þ gauge theory
and write the complexified connection as

A ¼
�
α

−α

�
; ð3:34Þ

where

α ¼ zdz̄þ z̄dz − 4tdt ¼ 2xdxþ 2ydy − 4tdt; ð3:35Þ

with z ¼ xþ iy. This background solves the F-term equa-
tions by virtue of the fact that A ¼ g−1dg with

g ¼ exp

�
zz̄ − 2t2 0

0 2t2 − zz̄

�
:

The D-term equations are satisfied as well because the
function zz̄ − 2t2 is harmonic in C ×Rt with a flat metric.
In terms of the fieldsA andΦ ¼ iϕ, the gauge fieldA ¼ 0,

and the Higgs field is given by10

Φ ¼
�
df

−df

�
ð3:36Þ

with

f ¼ zz̄ − 2t2: ð3:37Þ

We note that the Hessian of f has signature ðþ;þ;−Þ in the
ðx; y; tÞ coordinate system, so it translates to a geometry
with a codimension seven singularity in the local G2

background.

2. Second Abelian background

As another example, we can also take the Abelian
background

A ¼
�
β

−β

�
; ð3:38Þ

with

β ¼ zdzþ z̄dz̄ ¼ 2xdx − 2ydy: ð3:39Þ
The corresponding Higgs field in this case is

Φ ¼
�
df

−df

�
ð3:40Þ

with

f ¼ 1

2
z2 þ 1

2
z̄2: ð3:41Þ

We note that the Hessian of f has signature ðþ;−; 0Þ in the
ðx; y; tÞ coordinate system, so it translates to a geometry
with a codimension six singularity in the local G2 back-
ground. Starting from this example, we obtain a codimen-
sion seven singularity by adding a perturbation fpert which
also has vanishing Hessian:

fnew ¼ f þ fpert: ð3:42Þ

We can again solve the F- and D-terms for this system, and
thus obtain a genuine background in this more general case
as well.

3. Fibering a hitchin system

Building on this previous example, we can also consider
more general backgrounds on Σ × I by first solving the
Hitchin system on a curve Σ, and then adding perturbations
so that it has a nontrivial profile on the interval. In practice,
we accomplish this by starting with a complexified con-
nection AH defined on Σ which solves the Hitchin
equations, and trivially extending this to Σ × I. This solves
our fluxed PW equations in the degenerate limit where
gtt → 0, corresponding to the physical limit where we take
the curve Σ much smaller than the interval. Adding a
perturbation Apert to the complexified connection:

Anew ¼ AH þApert; ð3:43Þ
we observe that the power series analysis of Sec. III B
ensures that we can consistently add in such perturbations
and produce a solution to the full PW system of equations.
Indeed, the main freedom we have in specifying this
contribution is the t dependence which is wholly absent
from AH.

4. Non-Abelian background

We can also consider the limit where the deformation
away from a Hitchin system is large. This will be our main
example of a T-brane configuration. In this solution we take

10To extract Φ and A from the complexified connection A in a
unitary gauge it suffices to take its Hermitian and anti-Hermitian
parts respectively.
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an SUð3Þ gauge theory though the technique employed
here can be easily generalized to other non-Abelian gauge
groups with rank greater than one. Our analysis follows a

similar treatment to that presented in Ref. [46]. When
written in the fundamental representation the background
fields are

ϕ ¼

2
664

i
3
dh −υz̄e−fðz;z̄Þdz̄þ εefðz;z̄Þdz 0

υze−fðz;z̄Þdz − εefðz;z̄Þdz̄ i
3
dh 0

0 0 − 2i
3
dh

3
775; ð3:44Þ

A ¼

2
64
a 0 0

0 −a 0

0 0 0

3
75;

where a ¼ i
2
ð∂ z̄fðz; z̄Þdz̄ − ∂zfðz; z̄ÞdzÞ: ð3:45Þ

We will shortly show that for suitable choices of the
functions hðz; z̄; tÞ and fðz; z̄; tÞ, this background indeed
solves the F- and D-term equations of the PW system. Our
main interest will be in picking background values so that
as much as possible can be “hidden” from the classical
geometry. In particular, if we take h to be a function with a
degenerate Hessian (one zero eigenvalue), a PW solution
with just this contribution would appear to support a
codimension six singularity along the locus dh ¼ 0.
Adding in additional off-diagonal components to the
Higgs field need not change this interpretation. For
example, if we consider the purely off-diagonal contri-
butions to the z component of the Higgs field, namely
Φoff-diag

z , we observe that when ε → 0, the limiting Hitchin
system has a degenerate spectral equation, i.e., there is not
even a codimension six contribution to matter localization
from these holomorphic off-diagonal contributions. Taken
together, this suggests that the proper geometric inter-
pretation will appear to contain at most a codimension six
singularity.
Let us now turn to an explicit example. The background

will satisfy the supersymmetry conditions provided that the
two functions hðz; z̄; tÞ and fðz; z̄Þ satisfy the differential
equations:

4∂z∂ z̄hþ ∂2
t h ¼ 0; ð3:46Þ

∂z∂ z̄f ¼ ε2e2f − υ2jzj2e−2f: ð3:47Þ

The first equation allows for several solutions, and in the
following we shall take

h ¼ κ

8
ðzþ z̄Þ2 − κ

2
t2: ð3:48Þ

The second equation can be related to a Painlevé III
transcendent via suitable change of variables provided that

ε ≠ 0. In this case, the solution has an asymptotic expan-
sion near z ¼ 0 of the form

fðrÞ ¼ log cþ 1

3
log υ −

2

3
log εþ c2r2 þOðr4Þ; ð3:49Þ

where r2 ¼ ε
2
3υ

2
3zz̄ and c is a real constant. In order to avoid

singularities at finite values of r one should fix

c ¼ 31=3
Γ½2

3
�

Γ½1
3
� ∼ 0.73: ð3:50Þ

In the following we shall be also interested in the case
where ε ¼ 0 because in this case some of the effect of the
Higgs field background would become nilpotent. When
this happens (3.47) becomes a modified Liouville equation
with solution

fðz; z̄Þ ¼ − log

�
2

1 − υ2jzj4
�
: ð3:51Þ

5. More general embeddings

As a final comment, we can also generalize the example
of Sec. III C 4 to other choices of gauge groups. Observe
that the Higgs field of the previous example takes values in
an suð2Þ × uð1Þ subalgebra of suð3Þ. More generally, we
can specify a homomorphism suð2Þ → g, and a commut-
ing uð1Þ subalgebra. Then, we clearly also generate a
broader class of examples of fluxed PW solutions.

IV. EXAMPLES OF LOCALIZED MATTER

In the previous section we discussed a general method
for generating consistent solutions to the PWequations, and
its connection to TCS-like constructions of G2 manifolds.
Assuming the existence of a consistent background, we
would now like to determine whether localized zero modes
are present.
To frame the discussion to follow, we assume that the

complexified connection takes values in some maximal
subalgebra h0C ⊂ gC so that the commutant subalgebra is
hC ⊂ gC. We specify a zero mode by considering fluctua-
tions around this background. The presence of N ¼ 1
chiral multiplets can be understood in terms of fluctuations
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of the complexified connection A. We therefore consider
the expansion

A ¼ Að0Þ þ ψ : ð4:1Þ

In what follows, we shall omit the superscript (0) to avoid
overloading the notation. Note that under an infinitesimal
gauge transformation, the zero mode solution will shift as

ψ → ψ þDA χ; ð4:2Þ

where χ is an adjoint valued zero-form in the Lie algebra.
We need to study the various representations appearing

in the unbroken gauge algebra. This is by now a standard
story which is largely borrowed from the case of compac-
tifications of the heterotic string as well as local F-theory
models so we shall be brief. Decomposing the adjoint
representation of gC into irreducible representations of
hC × h0C, we have

gC ⊃ hC × h0C ð4:3Þ

adðgCÞ ¼ ⨁
i
ðT i;RiÞ: ð4:4Þ

For a prescribed representation R of h0C, we therefore need
to consider the action of the complexified connection AR
on the zero mode.
There arevariousways to analyze the zeromode content of

this theory. Most directly, we can return to the PWequations,
and expanding around a given background we can seek out
zero modes modulo unitary gauge transformations. This
approach makes direct reference to the metric on the three-
manifold and is certainly necessary if we want the explicit
wave function profile for the zero modes. The relevant
linearization of the PW system of equations is

∂iψ j − ∂jψ i þ ½ψ i;Aj� þ ½Ai;ψ j� ¼ 0; ð4:5Þ

gijð∂iψ̄ j − ∂jψ i þ ½ψ i; Āj� þ ½Ai; ψ̄ j�Þ ¼ 0; ð4:6Þ

modulo unitary gauge transformations as in line (4.2). In
practice, we shall actually demand that our zero modes
satisfy a slightly stronger set of conditions:

∂iψ j − ∂jψ i þ ½ψ i;Aj� þ ½Ai;ψ j� ¼ 0; ð4:7Þ

gijð∂iψ j þ ½Āi;ψ j�Þ ¼ 0: ð4:8Þ

Any solution to this set of equations automatically produces a
solution to the linearized PW equations. It is convenient to
use these zeromode equations to track their falloff and thus to
ensure they are actually normalizable. This, for example, is
what allows us to determinewhether we have a normalizable
mode in a representation R or the complex conjugate
representation Rc.

Now, one unpleasant feature of this approach is that it often
requires dealing with coupled partial differential equations.
In the special case whereAR is diagonal, this is not much of
an issue, but in more general T-brane backgrounds this can
lead to significant technical complications.
At a qualitative level, however, it is straightforward to

see how to pick appropriate backgrounds which could
generate localized matter. First of all, we can attempt to find
a localized zero mode in the Hitchin system. In M-theory
language, this would produce a 5D hypermultiplet. These
multiplets can all be organized according to 4D N ¼ 2
hypermultiplets. In the presence of a nontrivial field profile
on the transverse direction to the 4D spacetime, this leads to
a localized chiral mode, producing a single 4D N ¼ 1
chiral multiplet. We see how this comes about in our zero
mode equations by taking gtt small relative to the other
factors of the metric on Σ × I. Indeed, in this case, the
leading order behavior is governed by a mild deformation
of the zero mode equations on the curve Σ, and then there is
a broadly localized mode in the remaining t-direction. That
being said, it is clear that there is some level of “back-
reaction” in the form of these zero mode solutions, so
obtaining explicit wave functions in this approach is more
challenging.
Our plan in the remainder of this section will be to discuss

some general features of zero mode solutions in T-brane
backgrounds, and to thendiscuss explicit examples. InSec.V
we give a conjectural algebraic method of analysis for
detecting the presence of localized zero modes.

A. Cohomological approach

One approach that may be employed in the search for a
solution of the wave function equations involves relying on
the cohomology11 of the operator DA. Let E denote a
complex vector bundle with connection A, and ER the
bundle associated with a representation R of the gauge
group GC. By virtue of the vanishing of the F-term
conditions the operator DA∶ Ω•ðM;ERÞ → Ω•þ1ðM;ERÞ
squares to zero implying that we can consider its cohomol-
ogy complex, much as in Ref. [24].
The linearized F-terms modulo complex gauge trans-

formations are solved by a cohomology class c ∈ H1
DA

ðMÞ,
and the linearized D-term constraint requires us to find a
representative for c that is annihilated by the dual operator
D†

A ≡ �DĀ � ∶Ω•ðM;ERÞ → Ω•−1ðM;ERÞ. For a closed
three-manifold, a standard integration by parts argument
says that the solution is given by the harmonic represen-
tative for c [we remind the reader that given any elliptic
complex E• with metric over a compact manifold, there is a
Hodge isomorphism HkðE•Þ ≅ HkðE•Þ].

11Here and in what follows, we will always consider
L2-cohomology.
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The situation is trickier when M is allowed to be non-
compact: not only does one have to choose appropriate decay
conditions on the fields in order for the boundary term to
vanish, but also one must work with metrics such that the
relevant cohomology classes admit harmonic representative
(s). In fact, even when one considers the simplest elliptic
operator—the Hodge LaplacianΔ ¼ dd� þ d�d—on a non-
compact Riemannian manifold—the space of L2-harmonic
formsHk

ΔðMÞ depends strongly on the metric. For example,
H0

ΔðMÞ is eitherR orf0gdependingonwhether volðMÞ<∞
or volðMÞ ¼ ∞. However, one can give a cohomological
interpretation for Hk

ΔðMÞ for special metrics; in particular,
Atiyah, Patodi, and Singer [79] proved that for manifolds
with cylindrical ends,12 Hk

ΔðMÞ ≅ ImðHk
cðMÞ → HkðMÞÞ,

i.e., the image of compactly supported cohomology in
absolute cohomology.
In our present situation withM ¼ Σ × I, we have, under

mild assumptions, an example of a cylindrical manifold.
Assuming our solution ψ to the linearized F-terms vanishes
at infinity M∞ ⊂ M̄, we can package our solution as a
relative cohomology class c ∈ H1

DA
ðM;M∞Þ. Suppose that

the order of vanishing and the metric are chosen compat-
ibly so as to cancel the boundary term, and moreover that
the result of Atiyah, Patodi, and Singer generalizes to
DA-harmonic one-forms. Then, a solution to the PW equa-
tions on M is given by a DA-harmonic representative for c.
This suggests a practical way to try and find a solution of

the wave function equations of motion: starting with any
solution ψ0 to the F-term wave function equations we
handily build other solutions ψ χ as the gauge transformed
ψ0 via an element χ ∈ Ω0ðM;ERÞ, that is ψ χ ¼
ψ0 −DA χ. Thus, even if ψ0 fails to solve the linearized
D-term equation it is possible to find a suitable gauge
transformed ψ χ that is a solution of the full system, which
allows us to recast the D-term condition as an equation on χ

D†
Aψ χ ¼ 0 ⇒ ΔA χ ¼ D†

Aψ0; ð4:9Þ

where we defined the Laplacian ΔA ≡D†
ADA þDAD

†
A.

While we are not in general able to show that a suitable χ
solving (4.9) exists we can push this analysis further and
argue that when a solution to (4.9) exists, then it is
sufficient to check that the mode ψ0 is normalizable to
establish existence of a zero mode. This is due to the fact
that the harmonic representative in any cohomology class
will minimize the norm. Indeed, calling ψhrm the harmonic
representative we find that the norm of any other element in
the cohomology class ψ ¼ ψhrm þDA χ is

Z
M
kψk2 ¼

Z
M
kψhrm þDA χk2 ¼

Z
M
kψhrmk2

þ kDA χk2 >
Z
M
kψhrmk2; ð4:10Þ

so in other words, the (already normalizable) trial wave
function has bigger norm than the harmonic representative.

B. First Abelian example

We first take a look at the zero modes in the background
introduced in Sec. III C 1. In this example we took the
gauge group to be SUð2Þ and its adjoint representation
decomposes as

suð2Þ ⊃ uð1Þ; ð4:11Þ

adðsuð2ÞÞ → 10 þ 12 þ 1−2: ð4:12Þ

Recall that in this Abelian example, the gauge field A ¼ 0,
and the Higgs field Φ ¼ iϕ is given by

Φ ¼
�
df

−df

�
ð4:13Þ

with

f ¼ zz̄ − 2t2: ð4:14Þ

Consider a candidate zero mode ψ with charge q ¼ �2
under the uð1Þ. The analysis of zero modes for this case has
already been studied in Refs. [23,24,41,42]. Writing out the
zero mode as a one-form on the three-manifold:

ψ ¼ ψ zdzþ ψ z̄dz̄þ ψ tdt; ð4:15Þ

the zero mode equations are

0 ¼ ∂zψ z̄ − ∂ z̄ψ z − qzψ z þ qψ z̄; ð4:16Þ

0 ¼ ∂zψ t − ∂tψ z þ qzψ t − 4qtψ z; ð4:17Þ

0 ¼ ∂ z̄ψ t − ∂tψ z̄ þ qz̄ψ t − 4qtψ z̄; ð4:18Þ

0 ¼ gzz̄ð∂zψ z̄ − qz̄ψ z̄Þ þ gz̄zð∂ z̄ψ z − qzψ zÞ
þ gttð∂tψ t þ 4qtψ tÞ: ð4:19Þ

We note that in the neighborhood where t ¼ 0, we must
keep ψ t nonzero. To see why, observe that if it were zero,
then there is a coupled differential equation for ψ z and ψ z̄
which does not produce a normalizable solution. Since
perturbations involving ψ t do not really alter this con-
clusion, we see that a more sensible starting point is to take
ψ t nonzero and ψ z ¼ ψ z̄ ¼ 0. In this case, the zero mode
equations collapse to

12A n-dimensional Riemannian manifold M has cylindrical
ends if there is a n-dimensional compact submanifold K ⊂ M
with smooth nonempty boundary ∂K, such thatMnK is isometric
to ∂K × ð0;∞Þ.
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∂zψ t þ qzψ t ¼ 0; ð4:20Þ

∂ z̄ψ t þ qz̄ψ t ¼ 0; ð4:21Þ

∂tψ t þ 4qtψ t ¼ 0; ð4:22Þ

which is solved by

ψ t ∼ expð−qðzz̄þ t2ÞÞ; ð4:23Þ

so we get a normalizable zero mode for q ¼ þ2 but not
for q ¼ −2.

C. Second Abelian example

As another example using a similar breaking pattern, we
next consider the zero modes in the background introduced
in Sec. III C 2. In this example we took the gauge group to
be SUð2Þ and its adjoint representation decomposes as

suð2Þ ⊃ uð1Þ; ð4:24Þ

adðsuð2ÞÞ → 10 þ 12 þ 1−2; ð4:25Þ

A ¼
�
β

−β

�
; ð4:26Þ

with

β ¼ zdzþ z̄dz̄ ¼ 2xdx − 2ydy: ð4:27Þ

The corresponding Higgs field in this case is

Φ ¼
�
df

−df

�
ð4:28Þ

with

f ¼ 1

2
z2 þ 1

2
z̄2: ð4:29Þ

By inspection, there is no t dependence in the background
fields, so we can at best expect a localized mode in
codimension six in the local G2 background.
Consider a candidate zero mode ψ with charge q ¼ �2

under the uð1Þ. The analysis of zero modes for this case is
basically that already studied in much of the F-theory
literature for 6D theories, so we can borrow much of the
analysis from this work. Writing out the zero mode as a
one-form on the three-manifold:

ψ ¼ ψ zdzþ ψ z̄dz̄þ ψ tdt; ð4:30Þ

the zero mode equations are

0 ¼ ∂zψ z̄ − ∂ z̄ψ z − qz̄ψ z þ qzψ z̄; ð4:31Þ

0 ¼ ∂zψ t − ∂tψ z þ qzψ t; ð4:32Þ

0 ¼ ∂ z̄ψ t − ∂tψ z̄ þ qzψ t; ð4:33Þ

0 ¼ gzz̄ð∂zψ z̄ − qzψ z̄Þ þ gz̄zð∂ z̄ψ z − qz̄ψ zÞ þ gttð∂tψ tÞ:
ð4:34Þ

In this case, we do not expect any t dependence, so we can
set ψ t ¼ 0 as well. The system of equations now becomes

∂zψ z̄ þ qzψ z̄ ¼ ∂ z̄ψ z þ qz̄ψ z; ð4:35Þ

∂zψ z̄ − qzψ z̄ ¼ −∂ z̄ψ z þ qz̄ψ z; ð4:36Þ

or equivalently

∂zψ z̄ − qz̄ψ z ¼ 0; ð4:37Þ

∂ z̄ψ z − qzψ z̄ ¼ 0; ð4:38Þ

which has a normalizable solution which depends on the
sign of q:

q > 0∶ ψ z ¼ −ψ z̄ ∼ expð−qzz̄Þ; ð4:39Þ

q < 0∶ ψ z ¼ þψ z̄ ∼ expðþqzz̄Þ: ð4:40Þ

The presence of two solutions is of course consistent with
the fact that in this background, we have actually produced
a 5D hypermultiplet.
Consider next the effect of perturbing our background

via

fnew ¼ f þ fpert: ð4:41Þ

The main point is that if fpert has nontrivial t dependence,
and is sufficiently small, then it cannot change the sign of
the Hessian in the original ðx; yÞ directions. Instead, the
overall sign of ∂2fpert=∂t2 will determine which of the two
components in lines (4.39) and (4.40) will actually survive
as a normalizable mode. That we can retain at most one
normalizable mode follows from the fact that we have a
first order differential equation in the t variable.

D. Fibering a Hitchin solution

The above example illustrates a far more general point
which we can use to generate a broad class of localized zero
modes, even in the presence of fluxes. Returning to our
discussion in Sec. III C 3, we start with a three-manifold
M ¼ Σ × I, and a solution to the Hitchin system on Σ given
by AH and then perturb it to a new solution:

Anew ¼ AH þApert: ð4:42Þ
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If we just confine our attention to zero modes on the curve,
we observe that we get a 5D hypermultiplet. In particular,
we can take a T-brane background on Σ of the sort already
considered in Refs. [48,55]. Perturbing this background
further to have nontrivial t dependence, the discussion of
Sec. IV C generalizes, and we obtain a 4D chiral multiplet.
Observe that because we are treating Apert as a small
perturbation, it does not affect (to leading order) the
localization on the curve Σ. Additionally, the zero mode
will have a very broad profile (though still normalizable) on
the interval I.

E. T-brane example

We now turn to the background solution of Sec. III C 4
and analyze its zero mode content. As we already remarked
there, an interesting feature of this background is that the
presentation of the spectral equation, at least in holomor-
phic coordinates, appears to “hide” the appearance of the
singularity enhancement. This means in particular that even
though the geometry may appear to host a codimension six
singularity, a localized chiral mode may still be present.
We start by looking at the explicit form of the wave

functions. To simplify the analysis we temporarily set
fðz; z̄Þ ¼ 0. Looking at the decomposition suð3Þ →
suð2Þ × uð1Þ and taking the modes ψ in the 21 represen-
tation, we choose an ansatz of the form

ψ ¼ e−
κ
2
t2
��

τ1ðz; z̄Þ
iαβðz; z̄Þ

�
dzþ

�
αβðz; z̄Þ
τ2ðz; z̄Þ

�
dz̄

�
: ð4:43Þ

Here, α is a constant parameter which determines the norm
of the wave function. We have three nontrivial functions τ1,
τ2, β which we must determine. These functions satisfy the
differential equations:

α

4
κðz̄þ zÞβðz; z̄Þ þ ∂ z̄τ1ðz; z̄Þ − iετ2ðz; z̄Þ ¼ 0; ð4:44Þ

−
iα
4
κðz̄þ zÞβðz; z̄Þ þ ∂zτ2ðz; z̄Þ þ iετ1ðz; z̄Þ ¼ 0; ð4:45Þ

α∂ z̄βðz; z̄Þ þ αυzβðz; z̄Þ þ iκ
4
ðz̄þ zÞτ2ðz; z̄Þ ¼ 0; ð4:46Þ

α∂zβðz; z̄Þ þ αυz̄βðz; z̄Þ þ κ

4
ðz̄þ zÞτ1ðz; z̄Þ ¼ 0: ð4:47Þ

While we are not able to find a solution to the full system
we can take κ ≪ 1. The zeroth order in κ equations imply
that τ1 ¼ τ2 ¼ 0 and β ¼ e−υzz̄. At first order in κ the
equations become

α

4
κðz̄þ zÞe−υzz̄ þ ∂ z̄τ1ðz; z̄Þ − iετ2ðz; z̄Þ ¼ 0; ð4:48Þ

−
iα
4
κðz̄þ zÞe−υzz̄ þ ∂zτ2ðz; z̄Þ þ iετ1ðz; z̄Þ ¼ 0: ð4:49Þ

For ε ¼ 0 it is possible to solve these equations and we get

βðz; z̄Þ ¼ e−zz̄ þOðκ2Þ; ð4:50Þ

τ1ðz; z̄Þ ¼ iακ

�
e−zz̄

1þ z2 þ zz̄
4z2

−
1

4z2

�
þOðκ2Þ; ð4:51Þ

τ2ðz; z̄Þ ¼ ακ

�
e−zz̄

1þ z̄2 þ zz̄
4z̄2

−
1

4z̄2

�
þOðκ2Þ: ð4:52Þ

We see that the wave functions are fully localized. The
function h was not capable of producing a chiral mode
since it has a zero eigenvalue in its Hessian. Instead, this
contribution would only lead to a codimension six singu-
larity in the local geometry. The addition of the Hitchin
system gives a mode that is localized at a point. One
interesting feature of this background is that the Hitchin
system provides a deformation that is invisible in the
geometry due to the fact that it is nilpotent when ε ¼ 0.
This implies that, whereas the geometry might seem to host
a codimension six singularity and therefore nonchiral
matter, the presence of a T-brane in the system can allow
the system to still support a localized chiral mode.
To further confirm the existence of a zero mode we

follow the strategy outlined in Sec. IVA. The mode ψ0 that
provides a solution to the F-term equations is in this case

ψ0 ¼ e
1
2
fðz;z̄Þe−κt2

2
þκ

8
ðzþz̄Þ2ηðz; z̄Þ

��
0

−iα

�
dzþ

�
α

0

�
dz̄

�
;

ð4:53Þ

where ηðz; z̄Þ depends only on the combination r2 ≡ zz̄ and
satisfies the differential equation

η0ðrÞ ¼ −2vrηðrÞe−fðrÞ: ð4:54Þ

For example by taking only the zeroth order in the
expansion of fðrÞ near r ¼ 0 we find that

ηðrÞ ¼ e−υr
2e−fð0Þ ; ð4:55Þ

which shows that ψ0 is indeed normalizable provided that υ
is sufficiently large compared to κ.
Summarizing, we see that although the T-brane back-

ground with ε ¼ 0 has a degenerate spectral equation in
the holomorphic geometry (as per our discussion in
Sec. III C 4), we also see that there is a localized chiral
zero mode. Although we have only given an approximate
characterization of the exact form of this wave function, we
have demonstrated existence by showing that there are
nearby “trial wave functions” which provide good approx-
imations. Finally, it is straightforward to generalize this
class of examples to cover an analysis of zero modes for
more general T-brane backgrounds of the sort discussed in
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Sec. III C 5. All that is really required is a suitable
embedding suð2Þ × uð1Þ → gC.

V. ALGEBRAIC APPROACH

As explained in previous sections, the procedure for
determining the appearance of localized chiral matter splits
into two steps. First of all, we must ensure that we can
produce an actual background which solves the PW equa-
tions, a system of second order partial differential equations.
Secondly, the fluctuations around a given background are
also governed by second order partial differential equation.
Our aim in this section will be to assume the existence of

a consistent background and then develop some algebraic
methods to analyze the local behavior of zero modes.
Locally, at least, solutions to the F-term equations motion
can always be written as

A ¼ g−1dg ð5:1Þ
for suitable gðxÞ a GC valued function. We can then either
attempt to solve the D-term constraints (in unitary gauge),
or equivalently, determine constraints on gðxÞ such that we
have a stable background solution (in complexified gauge).
Our task will be to determine the zero mode spectrum for a
given choice of gðxÞ.
We present our prescription for extracting the zero mode

spectrum from a given background as a conjectural proposal
motivated by physical considerations, that is, we shall not
give a complete derivation of this prescription. Instead, we
shall present a sketch of how to derive these results and show
that it correctly computes the localized zero mode spectrum
in all the examples encountered previously.
We first study the spectral equations for theHiggs field and

show that compared with the case of intersecting seven-
branes in F-theory (as studied for example in [80–83]), the
real structure of the Higgs field complicates the use of such
methods. There is, however, a remnant of holomorphic
structure which can be fruitfully used to extract the relevant
structure of localized zero modes, and this leads us to our
general prescription for extracting 4D chiral matter. First, we
take a local solution to the background equations of motion
and show that the destabilizing wall in the moduli space is
captured by a localHitchin systemona 2Dsubspace. There is
a natural holomorphic structure for our Higgs field here as
well as a corresponding 5D hypermultiplet. Perturbations
away from this solution produce localized 4D chiral matter.
With this machinery in place, we then revisit the examples
previously discussed, showing that we indeed correctly
capture the local profile of zero modes in such backgrounds.

A. Spectral methods and their limitations

In this section we discuss some limitations of the spectral
equation(s) of the Higgs field as a tool in understanding the
structure of localized zero modes. The PW system tells us
about intersecting six-branes in the local geometry T�M.

For ease of exposition, we shall often specialize to the case
where the only nonzero values of the Higgs field are in an
suðNÞ subalgebra, and present the spectral equation in the
fundamental representation:

det ðuiIN −ΦiÞ ¼ 0; ð5:2Þ
where the ui denote directions in the cotangent bundle T�M
with zero section fui ¼ 0g given by M. This specifies the
constraint equations in T�M, and thus yields a three-
dimensional spectral manifold in the ambient geometry.
We are interested in situations in which a nontrivial flux

may be present, so the components of the Higgs field will
not commute, i.e., ½Φi;Φj� ≠ 0. Even though we cannot
simultaneously diagonalize the components of the Higgs
field, observe that since the spectral equations are gauge
invariant, we are still free to write

detðujIN −ΦjÞ ¼
YN
Ij¼1

ðuj − λ
Ij
j Þ ¼ 0; ð5:3Þ

for j ¼ 1, 2, 3 the three components of the one-form. Here,
we also introduced an index Ij ¼ 1;…; N which runs over
the eigenvalues of each component of the Higgs field. Since
we do not want to assume the components of the Higgs
fields simultaneously commute, we must separately index
the eigenvalues for each value of j. In other words, there is
no well-defined spectral line bundle when the components
of the Higgs field do not commute.
The complications arise when we attempt to extract the

zero mode content from such a background. Mimicking
what happens in the Abelian case, we first write down the
intersections of different sheets in the spectral equations:

u1 − λI11 ¼ u1 − λJ11 ; ð5:4Þ
u2 − λI22 ¼ u2 − λJ22 ; ð5:5Þ
u3 − λI33 ¼ u3 − λJ33 : ð5:6Þ

Here then, is the issue: since we cannot simultaneously
diagonalize the three components of the Higgs field, we have
no way of extracting the locus where a broken symmetry is
restored at points of the three-manifold. Said differently, in
the case of a T-brane configuration there is no canonical way
to order the Ij and Jj for different values of j.
To address this shortcoming we will need to introduce

additional structure into the local system. We will shortly
see that there is a well-motivated prescription which allows
us to build a (nearly) holomorphic Higgs field, and thus
apply spectral equation methods.

B. Local matter ring

We now turn to an algebraic characterization of zero
modes in a local patch. We shall emphasize the existence of
these zero modes rather than the explicit profile of the wave
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function, as the latter requires solving an explicit second
order partial differential equation. This means that we
primarily emphasize purely holomorphic F-term data and
suitable stability conditions.
Our analysis is similar in spirit to that carried out in

Ref. [46] (see also [44,45]) though there are some
differences. There, the essential picture involved determin-
ing the spectrum of B-branes in a local Calabi-Yau. Here,
we are studying a related question but for A-branes in the
local Calabi-Yau T�M.
Zero modes are captured by linearized perturbations in

the F-term equations of motion modulo complexified gauge
transformations:

DAψ ¼ 0 modulo ψ ≃ ψ þDA χ; ð5:7Þ
with χ an adjoint valued zero-form.
Now, since we are working in a local patch, all of the

possible backgrounds are determined by a choice of GC
valued function gðxÞ via

A ¼ g−1dg: ð5:8Þ

In this local patch, gauge transformations can be viewed as
rightmultiplicationbyGC valued functionsαðxÞ. To seewhy,
observe that under right multiplication with gnew ¼ gα, we
have

Anew ¼ g−1newdgnew ¼ ðgαÞ−1dðgαÞ ¼ α−1Aαþ α−1dα;

ð5:9Þ
namely a complexified gauge transformation. An important
subtlety with this procedure is we must suitably limit the
space of functions α to be only those which respect to a
suitable notion of stability, which necessarily excludes some
candidate gauge transformations. For example, consider the
Morse function f ¼ x2 þ y2 − 2t2 and use a formal gauge
transformation to flip the signature of the Hessian. Clearly,
such gauge transformations must be excluded.
Let us next turn to candidate zero modes. These are

captured by small perturbations to a given background
determined by a choice of gðxÞ. In other words, perturba-
tions are specified by functions taking values in the Lie
algebra, i.e.,

candidate zero modes : O ⊗ gC; ð5:10Þ
where O is the local ring of complex functions. This
amounts to the special case:

gnew ¼ gð1þ hþ � � �Þ; ð5:11Þ

where h is an infinitesimal Lie algebra valued function
h ∈ O ⊗ gC. The perturbed connection is of the form

Anew ¼ AþDAh; ð5:12Þ

and a zero mode is given by the formal expression:

ψ ¼ DAh: ð5:13Þ

As we remarked previously, even though this may appear
to be a “pure gauge” configuration, a suitable notion of
stability will enforce the condition that such solutions
cannot be gauged away.
Indeed, even though we can formally consider general

complexified gauge transformations, these transformations
can impact the asymptotic profile of the fields at the
boundary of a patch. Since this data on the patch must
be held fixed, this necessarily excludes some complexified
gauge transformations. In practical terms, we see the effects
of passing from a stable solution to an unstable one
precisely through a possible jump in the chirality of the
spectrum in a given patch.
How then, shall we proceed in extracting the zero mode

spectrum from a candidate background? We expect that
zero modes are captured by an annihilator condition
involving the Higgs field Φ ¼ iϕ. Our proposal is to focus
on taking complexified gauge transformations to be “as
close to unstable” as possible. By this we mean that if we
make the gauge transformation any larger, we would flip
the chirality of the candidate localized zero mode, which
would clearly violate any reasonable notion of stability in
a local patch. This also means that there is a special class of
singular complexified gauge transformations which will
produce a nonchiral spectrum, i.e., a chiral and antichiral
pair of zero modes. It is this special case on which we
choose to focus.
We start with one of these nonchiral solutions, and then

perturb it back to a chiral solution:

A ¼ Anonchiral þApert: ð5:14Þ

As explained near Eq. (5.9), all local complexified gauge
transformations can be viewed as right multiplication by a
GC-valued gauge parameter. Consequently, we can start
with the case of Anonchiral ¼ g−1nonchiralgnonchiral and multiply
to gnonchiral → gnonchiralα. The transformed value of the
gauge parameter will in general alter the profile of the
fields at the boundary of the patch. Changing such
asymptotic profiles means in turn that we have jumped
from one stable solution to another. As we have remarked
previously, such a jump generically also leads to a change
in the chirality of the spectrum, a feature we will explicitly
verify in examples.
Now, by definition, Anonchiral only has nontrivial support

on two out of the three directions of the local coordinates,
which we refer to as z and z̄. We refer to the third direction
as t. We interpret z and z̄ as coordinates for a local patch of
a Riemann surface Σ, and Anonchiral as a complexified flat
connection (which will shortly be perturbed). This means
that we can split up our analysis of localization into a

RODRIGO BARBOSA et al. PHYS. REV. D 101, 026015 (2020)

026015-16



contribution on Σ and then a perturbation normal to Σ
inside of M. We note that in unitary gauge, the analogous
statement is that we are free to take the gtt → 0 limit in the
D-term constraint, and then perturb away from the singu-
lar limit.
Now, on Σ, the background Anonchiral determines a

solution to the Hitchin system (it is a complexified flat
connection), and we can first ask whether we can find a
localized zero mode here. In fact, this is precisely what was
already worked out in Ref. [46] in the related case of
intersecting seven-branes wrapped on Kähler surfaces. The
present case is a mild adaptation of that, so we just
summarize the main idea. First, we introduce an adjoint-
valued (1, 0) form Higgs fieldΦz. Then, localized matter on
the Hitchin curve is obtained from the quotient:

5D Zero Mode on Σ ≃
Ohol

Σ ⊗ gC
hker adΦz

i ; ð5:15Þ

where here,Ohol
Σ ≃ C½½z�� is a formal power series in the local

holomorphic coordinate. In the full system on a three-
manfold, we will need to work in terms of the power series
C½½z; z̄�� ≃ C½½x; y�� sinceΦzwill typically not depend on just
z ¼ xþ iy. When we do this, we are taking an annihilator
condition such as

hþ zχ ¼ 0; ð5:16Þ

for h our zero mode and χ our gauge redundancy parameter.
In some non-Abelian configurations, it is convenient to
instead work with real coordinates x and y. Owing to the
holomorphic structure of our system, we can equivalently
treat such conditions as split up into two separate conditions
since we can always restrict h to be real, and separately
impose an annihilator constraint from x and y.
Perturbing this 5D zero mode, we then reach a 4D chiral

mode. From the argument just presented, we can take a
family of embeddings of our Riemann surface in the t
direction, and by a choice of unitary gauge transformation,
we can, without loss of generality, set At ¼ 0 so that the
complexified connection in this direction is just the Higgs
field component Φt. This also means that the study of
localized zero modes reduces to determining the adjoint
action by just Φt. Since the ring of perturbations is now in
O ⊗ gC ≃ C½½x; y; t�� ⊗ gC ≃ C½½z; z̄; t�� ⊗ gC, we reach
our proposal for 4D localized zero modes:

4D local zero modes ≃
O ⊗ gC

hker adΦz
; ker adΦt

i ; ð5:17Þ

that is, we quotient by the adjoint action of both Φt andΦz.
Observe, however, that we are not quotienting by Φz̄.
Indeed, this is not what we do to extract the 5D zero modes
anyway.

Our proposal can now be summarized as follows. We
observe that solutions to the Hitchin system on a local 2D
subspace serve as walls of stability, and perturbations away
from these solutions produce the generic structure of
solutions to our backgrounds. Indeed, we have presented
a general argument that if we attempt to perform a formal
gauge transformation which moves through such a wall,
the spectrum of chiral zero modes will reverse signs. This
can happen in a local patch, but clearly delineates the
“boundary behavior” in the moduli space of the PW system
(see Fig. 3).
In practice, this also means wewill need to find a suitable

coordinate system such that a Hitchin system can be
defined on the subspace in the first place. We expect that
this is generically possible because we can also view this
procedure of taking complexified gauge transformations as
alternatively varying the background metric on the three-
manifold until we produce a (singular) limit where the
metric collapses to that on a patch of a Riemann surface. In
what follows we shall operate under the assumption that all
walls of stability in the PW system are captured by a
Hitchin system and then extract the localized zero mode
spectrum by perturbing away from these walls.
Now, a pleasant feature of the Hitchin system is that there

is a spectral equation in terms of a holomorphic section of
a bundle φhol. For example, in the case G ¼ SUðNÞ, the
spectral equation in the fundamental representation has the
form

FIG. 3. Depiction of the moduli space of solutions to the PW
system in a local patch. Each solution is captured by a GC valued
function gPWðxÞ, which determines a complexified flat connec-
tion APW ¼ g−1PWdgPW. Complexified gauge transformations cor-
respond to right multiplication by GC valued functions αðxÞ
subject to suitable stability conditions. The walls of stability are
captured by a local Hitchin system defined on a 2D subspace
inside the three-manifold. Perturbations away from this solution
define the gauge equivalence classes of solutions in the PW
system.
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detðuzIN − φholÞ ¼ 0 ð5:18Þ

which is a hypersurface in T�Σ with Σ our “local Hitchin
system curve.” Since this is a single holomorphic equation,
we can use spectral equation methods to often extract the
zero mode content in such cases. Of course, it is also well
known that this method can also fail in some T-brane
configurations when φhol is nilpotent [46].
Our plan in the remainder of this section will be to revisit

the examples of zero modes treated in Sec. IV. It will
hopefully become apparent that the algebraic approach
presented here provides a computationally powerful way to
characterize zero mode localization in general fluxed
backgrounds.

C. Examples revisited

In Sec. IV we showed how to read off the explicit wave
function profile for zero mode solutions in a given back-
ground. In this section we use algebraic methods to at least
argue for the existence and location of zero modes. We
proceed by considering each of the previously studied
examples. For ease of exposition, we shall also often set
unimportant factors to unity.

1. Abelian example

We now analyze the zero mode content of the back-
ground obtained in Sec. III C 1 with Higgs field:

Φz ∼
�
z̄

−z̄

�
; Φt ∼

�−4t
4t

�
: ð5:19Þ

To analyze the zero mode content, we first take a
complexified gauge transformation to make the back-
ground “as close as possible” to that of a Hitchin system
on a (noncompact) curve. The first subtlety we face is that
the Hessian for f ¼ zz̄ − 2t2 ¼ x2 þ y2 − 2t2 has signature
ðþ;þ;−Þ in the ðx; y; tÞ coordinates.
Since we are interested in a stable solution to the Hitchin

system equations, we need to pick local coordinates which
retain a singleþ and a single− in theHessian. Consequently,
the coordinates for the local Hitchin systemmust involve the
t coordinate (since this is the only − eigenvalue in the
Hessian), so we introduce shifted variables: z0 ¼ xþ it,
z̄0 ¼ x − it, t0 ¼ y, with the 2D subspace for our Hitchin
system on z0 and z̄0. Observe, however, that since we are
discussing an Abelian example, these distinctions do not
really matter and we can just analyze the annihilator con-
ditions for Φx, Φy, and Φt. We caution that this step is in
general not valid and only holds for Abelian examples with
no flux.
We next determine the structure of the local ring of zero

modes in this case. Without loss of generality, we take a
zero mode h of charge q ¼ 2. Along the z0 direction, the
gauge condition is

hþ qð1 − 4Þz0 χ ¼ 0; ð5:20Þ

so we can gauge away any nontrivial z0 dependence. This
means our 5D zero mode is localized alongC½½z0��=hz0i ≃ C.
Next, we turn to the t0 annihilator condition:

hþ qt0η ¼ 0; ð5:21Þ

for η a gauge parameter.13 So, we conclude that the zero
modes are captured by the ring:

4D local zero mode space :
C½½z0; z̄0; t0��
hz0; z̄0; t0i ≃ C; ð5:22Þ

i.e., a single 4D chiral multiplet localized at the origin
x ¼ y ¼ t ¼ 0. Note that we can also use our perspective on
Hitchin systems as destabilizing walls to tell us whether we
produced a chiral or antichiral zero mode, i.e., based on the
sign of a perturbation away from the local system captured by
the coordinates ðz0; z̄0Þ.

2. Second Abelian example

As another example using a similar breaking pattern, we
next consider the zero modes in the background introduced
in Sec. III C 2. In this example we took

Φz ∼
�
z

−z

�
; Φt ∼

�
0

0

�
: ð5:23Þ

Since there is no t dependence in the background fields, we
can at best expect a localized mode in codimension six in
the local G2 background.
The spectral equation for Φz in the fundamental repre-

sentation is

u2z − z2 ¼ 0: ð5:24Þ

Based on the form of this equation, we expect there to be a
localized 5D hypermultiplet at the common zero for the
eigenvalues: z ¼ 0.
We next determine the structure of the local ring of zero

modes in this case. Without loss of generality, we take
q ¼ �2 for our zero mode obtained from adjoint breaking.
A priori, the three components of the one-form are each
elements in the power series C½½x; y; t�� where we also
use z ¼ xþ iy. Given h a charge q zero-form in O≃
C½½x; y; t��, and χ a gauge parameter, the algebraic anni-
hilator condition is

hþ qzχ ¼ 0; ð5:25Þ

13One might ask why we are introducing η another gauge
parameter. The point is that we have a separate adjoint action
coming from Φt to consider.
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so we conclude that the zero modes are captured by the
ring:

5D local zero mode space :
C½z�
hzi ≃ C; ð5:26Þ

i.e., a single 5D hypermultiplet localized at the ori-
gin x ¼ y ¼ 0.
Next consider perturbations to our backgroundΦ in the t

direction:

Φnew ¼ ΦþΦpert: ð5:27Þ

We assume that Φpert takes values in the same Cartan
subalgebra as Φ. It is immediate that if the perturbations in
the z direction are sufficiently small, the only change is
in the t dependence of a candidate zero mode profile.
This in turn means that for the most generic case where
Φpert contains a term proportional to tdt, that the 4D local
zero mode space is

4D local zero mode space :
C½½x; y; t��
hx; y; ti ≃ C; ð5:28Þ

as expected.

3. Fibering a Hitchin solution

We now generalize the considerations of the above
example to consider 5D hypermultiplets which are local-
ized on the Σ factor ofM ¼ Σ × I. We start with a solution
to the Hitchin system on Σ given by ΦH and perturb it to
generate a solution to the fluxed PW equations:

Φnew ¼ ΦH þΦpert: ð5:29Þ

Provided Φpert is small, we can first analyze the zero mode
content on Σ, and then extend it to M. The annihilator
conditions on Σ are basically the same as those used in
Ref. [46], so we conclude that the algebraic analysis also
correctly captures the zero mode content in this more
general situation (almost by design).

4. T-brane example

As our final example, we turn to the fully non-Abelian
configuration of Sec. III C 4 and use our algebraic methods
to analyze the zero mode content in this case as well. We
first need to introduce a convenient splitting of the PW
Higgs field into one associated with a Hitchin system, and
then a perturbation away from this choice:

ΦPW ¼ ΦH þΦpert; ð5:30Þ

where

ΦH; ∼

2
64

εdz

zdz

0

3
75;

Φpert ∼

2
664
xdxþ tdt

xdxþ tdt

−2ðxdxþ tdtÞ

3
775:

ð5:31Þ

As a one-form, the perturbation points in the dðxþ tÞ
direction.
We focus our attention on zero modes in the doublet

representation under the breaking pattern suð3Þ ⊃ suð2Þ×
uð1Þ, captured by the entries:

ψ ¼

2
64
� � ψþ

� � ψ−

� � �

3
75: ð5:32Þ

Denoting by h the corresponding doublet of localized
fluctuations and χ the doublet of gauge parameters entering
the annihilator equations, the zero modes fill out entries in
O ⊗ C2. In what follows, we treat separately the cases ε ≠ 0
and ε ¼ 0.
Assuming ε ≠ 0, the annihilator conditions coming from

ΦH are

ΦH∶
�
hþ þ εχ−

h− þ zχþ

�
¼ 0: ð5:33Þ

We are then free to use our gauge parameter χ− to eliminate
hþ. The second equation tells us that

h− þ zχþ ¼ 0; ð5:34Þ

so we get only a single zero mode trapped at the origin:

5D local zero mode space :
C½½z��
hzi ≃ C: ð5:35Þ

Consider next the annihilator conditions coming from
Φpert. As a one-form, this points in the dðxþ tÞ direction,
but since we have already set fluctuations in the x ¼ 0
direction to zero, it is enough to analyze the annihilator
condition in just the dt direction. Additionally, since we
have already gauge away hþ, we are left to analyze just h−.
We have

Φpert∶ h− þ tη− ¼ 0; ð5:36Þ

from which it follows that we have a single localized zero
mode at the origin:
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4D local zero mode space ðε ≠ 0Þ: C½½x; y; t��
hx; y; ti ≃ C:

ð5:37Þ

We now turn to the case of ε ¼ 0. The analysis of the h−

zero mode is basically the same as the case with ε ≠ 0, so
we have at least a 4D local zero mode at x ¼ y ¼ t ¼ 0.
Note, however, that now we cannot gauge away hþ since
our gauge parameter χ− no longer appears in Eq. (5.33).
So in this case, the algebraic approach can at best point
towards partial localization of a zero mode. The full
analysis of the system given earlier in Sec. IV reveals that
there is still just a single 4D chiral multiplet localized at the
origin, regardless of whether ε is zero or nonzero.

VI. CONCLUSIONS

Compactifications of string/M-F-theory on manifolds of
special holonomy produce a wide variety of novel physical
systems. In this paper we have used methods from three-
and two-dimensional gauge theory to study a broad class of
examples in which some important features of the back-
ground are captured by non-Abelian data, namely T-brane
configurations. We have shown that T-brane configurations
in G2 backgrounds are rather ubiquitous. Additionally, we
have seen that the local gauge theory description of G2

backgrounds can be understood as a deformation of Calabi-
Yau threefolds fibered over an interval. In gauge theory
terms this is captured by a gradient flow equation in a
deformation of a Hitchin-like system on a Riemann surface.
We have also shown how to algebraically extract the zero
mode content from these solutions. In the remainder of this
section we discuss some avenues of further investigation.
We have presented some evidence that the localized zero

mode content can be obtained from local algebraic con-
ditions. It would of course be desirable to have a more
systematic derivation of this claim. A related comment is
that our analysis provides a potential way to characterize
the spectrum of bound states of A-branes in a local Calabi-
Yau threefold. It would be very interesting to develop this
treatment further.
The general structure of fluxed non-Abelian solutions

involves fibering a 2D gauge theory over an interval to
produce a 3D gauge theory with moduli space matching
onto that of a G2 background. It is quite natural to extend
this procedure to consider 3D PW gauge theories fibered
over an interval, thereby producing solutions to 4D gauge
theories, which likely build up local Spinð7Þ backgrounds
given by a four-manifold of ADE singularities. In fact, the
relevant partially twisted gauge theories have recently been
studied in Ref. [2] (see also [84]).
Along these lines, there are a number of potential

physical applications of the results obtained so far. For
one, we note that G2 backgrounds lead to 4DN ¼ 1 vacua
of M-theory and 3D N ¼ 2 vacua of type II strings.

The physical interpretation of the 2D fibration structure
also lends itself to a description in terms of interpolating
domain wall solutions in one higher dimension. It would be
very interesting to further study the properties of these
domain walls.
One of the main results of this work is that it is possible to

generate localized matter using T-brane configurations of the
fluxed PW system. This in turn suggests a new method for
building global M-theory backgrounds with localized matter
in which some of the well-known issues with constructing
codimension seven singularities are simply bypassed. That
being said, there do appear to be deformations which could
convert a geometric codimension six singularity back into
a codimension seven singularity. We refer to [9] for a
discussion on how such a solution could be engineered
from appropriate paths in the moduli space of the local gauge
theory.
In this work we have given an algebraic characterization

of zero modes in local G2 backgrounds. That being said,
there are a few outstanding items which would clearly be
interesting to develop further. One concerns the full matter
spectrum, even in the case of a compact three-manifold of
ADE singularities in a local G2 background. In physical
terms, the matter spectrum is constrained by anomaly
cancellation considerations, but at the moment we have
treated each background as a freely adjustable feature of
our models. Presumably this is encoded in the geometry of
the spectral equations for the Higgs field, but it would be
interesting to explicitly verify that this is the case.
Indeed, in the context of intersecting seven-branes in

F-theory, spectral cover methods have been fruitfully
applied in developing a streamlined analysis of many
features of localized matter. Since M-theory on a G2 back-
ground and F-theory on an elliptically fibered Calabi-Yau
fourfold both give rise to 4D N ¼ 1 vacua, it is natural to
expect an explicit map which converts the local geometric
methods of one description into the other. The common link
in this thread is the appearance of a corresponding “local”
heterotic dual. Developing the precise form of this match
would likely shed light on local methods in M-theory,
F-theory, and heterotic vacua.
It is natural to expect the considerations here to match on

to some macroscopic features as captured by supergravity
solutions. Indeed, there is a class of supergravity solutions
known as “M3-branes” with a real codimension four
singularity [38,39]. It would be very interesting to study
how these explicit supergravity solutions match on to
features appearing in the PW system.
Finally, we have exclusively focused on the local

geometry of G2 backgrounds. We have also seen that at
least from the perspective of the gauge theory, there is no
reason to restrict attention toM a rational homology sphere.
This suggests a possible generalization of the TCS con-
struction, as motivated by physical considerations. It is
tempting to ask whether a set of consistency relations can
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be stated which would allow one to piece together these
local geometries to form a more global characterization of
G2 backgrounds with chiral matter.
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