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We consider (0þ 1) and (1þ 1) dimensional Yukawa theory in various scalar field backgrounds, which
are solving classical equations of motion: ϕ̈cl ¼ 0 or□ϕcl ¼ 0, correspondingly. The (0þ 1)–dimensional
theory we solve exactly. In (1þ 1)–dimensions we consider background fields of the form ϕcl ¼ Et and
ϕcl ¼ Ex, which are inspired by the constant electric field. Here E is a constant. We study the backreaction
problem by various methods, including the dynamics of a coherent state. We also calculate loop corrections
to the correlation functions in the theory using the Schwinger–Keldysh diagrammatic technique.
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I. INTRODUCTION

The main goal of quantum field theory is to find the
response of the fields to external perturbations, i.e., to find
correlation functions or, more generically, correlations
between an external influence on the system and its
backreaction on it. In classical field theory correlation
functions are solutions of equations of motion. In quantum
field theory one also should take into account quantum
fluctuations, i.e., calculate loop corrections to the tree-level
correlation functions. Usually one treats quantum fluctua-
tions using the Feynman diagrammatic technique. It
implicitly assumes that external perturbations do not
change the initial state of the theory, i.e., the system
remains stationary.
However, strong background fields usually take the

state of the quantum field theory out of equilibrium; in this
situation standard (stationary or Feynman) technique
incorrectly describes the dynamics of the fields. For
instance, stationary approximation is violated in an
expanding space-time (see, e.g., [1–5]), in strong electric
fields [6,7], during the gravitational collapse [8], and in a
number of other nontrivial physical situations [9–12]. In
such situations loop corrections to the tree-level correla-
tion functions grow with time. This indicates the break-
down of the perturbation theory. Namely, every power of
the small coupling constant is accompanied by a large

(growing with evolution time) factor. This raises the
question of the loop resummation.
Such a resummation was performed only in a limited

number of cases [2–7]. Moreover, even in these cases one
can catch only the leading qualitative effects in the limit
of long evolution period and small coupling constant.
In this respect it would be nice to find a simple but
nontrivial example of a nonequilibrium field theory, in
which calculations and dynamics itself are more trans-
parent than in complex gravitational and electromagnetic
analogs.
As an example of such a nonequilibrium situation we

propose to consider the Yukawa theory of interacting
fermions and massless bosons in (Dþ 1)-dimensional
Minkowski spacetime:

S ¼
Z

dDþ1x

�
1

2
ð∂μϕÞ2 þ iψ̄=∂ψ − λϕψ̄ψ

�
: ð1:1Þ

We start with D ¼ 0; 1. Usually one quantizes this theory
on the trivial background ϕcl ¼ 0, ψ cl ¼ 0 and uses the
standard equilibrium approach to find scattering amplitudes
[13]. This approach is not applicable in the presence of a
strong background scalar field ϕcl, at least if there is a
pumping of energy into the system, which may generate an
increase of the higher level populations and anomalous
quantum averages. To study such an out of equilibrium
situation, we quantize the fields on a nonzero classical
background and then calculate correlation functions using
nonequilibrium Schwinger–Keldysh diagrammatic tech-
nique [14–20].
Namely, in this paper we rely on the following program.

First, we assume that there is a strong scalar field, i.e., a
classical solution ϕclðxÞ ≫ 1 for some values of (Dþ 1)-
dimensional x and ψ cl ¼ 0. For instance, we separately
study linearly growing in two dimensions background
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fields of the form ϕcl ¼ m
λ þ Et and ϕcl ¼ m

λ þ Ex inspired
by the strong background electric field in QED [6,7].
Whereas the separate paper [12] considers the case of the
strong scalar wave background of the form ϕcl ¼ 1

λΦðt−xffiffi
2

p Þ.
Second, we split each field into the sum of the “classical
background” and “quantum fluctuations”: ϕ ¼ ϕcl þ ϕq,
ψ ¼ ψq, quantize the “quantum” part and find tree-level
correlation functions. We use the exact fermion modes
instead of plane waves; thereby we explicitly find the
response of the fermion field (at least at the tree-level in
such backgrounds). Then we find at tree-level the response
of the scalar field itself on the background.
Finally, we calculate loop corrections to the correlation

functions using nonequilibrium Schwinger–Keldysh dia-
grammatic technique. In particular, we are interested in
the loop corrections to the Keldysh propagators for scalar
and fermion fields, because these propagators reflect the
change of the state of the theory. Namely, at the loop
level they show the time dependence of the correspond-
ing level populations and anomalous quantum averages.
The usual equilibrium technique is not applicable if these
quantities are non-zero. For instance, this is the case of
strong electric [6,7] and gravitational [2,8] fields, where
loop corrections to the Keldysh propagator grow with
time.
Feynman technique takes into account only contribu-

tions of the zero point fluctuations into correlation func-
tions. To take into account the change of the initial state of
the theory (change in the anomalous averages) and of the
excitation of higher than zero point levels (for the exact
modes in background fields) one has to apply the
Schwinger–Keldysh technique.
However, in this paper we show that strong scalar fields

under consideration do not share the properties of the
background electric and gravitational fields: even in the
limit of indefinitely long evolution period loop corrections
to the level population and anomalous quantum average
remain finite in the first loop level. Which means that while
in the strong electric and gravitational fields to understand
the dynamics one has to resum the leading contributions
from all loops (see, e.g., [2] for a review), in the back-
ground scalar fields under consideration one does not need
to do that.
Let us also emphasize the other two apparent impor-

tant differences between strong scalar field and strong
electric and gravitational fields. The equations of motion
for a pointlike relativistic particle in the ϕcl ¼ m

λ þ Et,
ϕcl ¼ m

λ þ Ex, or ϕcl ¼ 1
λΦðt−xffiffi

2
p Þ backgrounds does not have

Euclidean worldline instanton solutions and the effective
actions in the scalar background fields are real [12].
Therefore, there is no particle tunneling in the strong scalar
fields under consideration. This distinguishes strong scalar
field from the strong electric [21–23] or gravitational [24]
ones. However, the situation with the particle creation in the

scalar field background ϕcl ¼ 1
λΦðt−xffiffi

2
p Þ is not that trivial as is

shown in [12] on the tree-level. This can signal that in the
latter background field loop corrections also may grow with
time, but that is a subject for a separate paper and is not
considered here.
The paper is organized as follows. In Sec. II we discuss

the one-dimensional problem. This is the simplest case to
our knowledge, because in (0þ 1) dimensions the scalar
current λhψ̄ψi can be calculated exactly. Moreover, the
theory can be solved exactly. Using operator formalism we
show that first loop corrections to the scalar two-point
functions are fully determined by corrections to one-point
functions. Then we reproduce this result in Schwinger–
Keldysh diagrammatic technique and extend it to all orders
of perturbation theory.
In Secs. III and IV we consider the case of linearly

growing in time, ϕcl ¼ m
λ þ Et, or in space, ϕcl ¼ m

λ þ Ex,
scalar field in (1þ 1) dimension. We discuss the subtleties
of choosing the correct fermion modes and quantize the
fermion field. Using these modes we calculate the tree-level
scalar current and first loop corrections to the scalar and
fermion propagators. We find that in both cases these
corrections remain finite in the limit of infinitely long
evolution periods.
In Sec. V we consider another approach to the scalar

field background: we examine the time evolution of the
“coherent state” corresponding to the initial value of the
field ϕclðxÞ ¼ m

λ þ Ex:

hϕcljϕ̂ðt ¼ 0; xÞjϕcli ¼ ϕclðxÞ:

Such an approach corresponds to a different setup for the
background field, which at first sight seems to be the same.
On one side, if we consider the background field ϕcl ¼
m
λ þ Ex for all times and find the exact fermion modes in it,
this should correspond to the situation that the background
field is maintained somehow for all times in its fixed form
under consideration. Or this approach is applicable when
the backreaction on the background is very week. On the
other hand, if we consider a background field set up by the
initial coherent state jϕcli, which is then released to evolve
freely, such an approach can be used for the case when the
backreaction is strong.
To the best of our knowledge, the last approach has not

yet been considered for other nonequilibrium systems.
However, we find that the behavior of the scalar field in
different setups are qualitatively the same, which seems to
be a peculiarity of the scalar background fields under
consideration.
Finally, we discuss the results and conclude in Sec. VI. In

addition, we discuss the asymptotic expansion for the
parabolic cylinder functions in the Appendix A, review
textbook derivation of the Feynman effective action and
renormalizations for the scalar field in Appendix B, and
derive the coherent state in Appendix C.
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II. STRONG SCALAR FIELD IN
ONE DIMENSION

To start with we consider the most simple situation—the
(0þ 1)–dimensional quantum field theory of interacting
fermions and real scalar field. In considering this simplest
(0þ 1)–dimensional situation we will show many technical
details for pedagogical reasons to introduce the nonsta-
tionary technique and set up the notations.
There are two options to describe fermions in one

dimension. First one is determined by the following action:

S ¼
Z

dt

�
1

2
_ϕ2 þ iψ̄ _ψ −λϕψ̄ψ

�
; ð2:1Þ

where we denoted the conjugated fermion as ψ̄ ¼ ψ†. The
fermions become Grassmanian upon quantization. Another
option is the theory with two-component spinors:

S ¼
Z

dt

�
1

2
_ϕ2 þ iψ̄γ0 _ψ − λϕψ̄ψ

�
; ð2:2Þ

where γ0 ¼ ð1
0

0
−1Þ, ψ̄ ¼ ψ†γ0.

It can be shown that the situation in the latter theory is
just a bit more complicated than in the former one.
Essentially the dynamics is the same. The main compli-
cation of (2.2) in comparison with the theory (2.1) is that in
(2.2) upon quantization we have four fermion Fock space
states, j0; 0i, j0; 1i, j1; 0i, and j1; 1i, rather than two, j0i
and j1i as it is the case for (2.1). In what follows we
consider only the theory (2.1). We address the theory under
consideration as if it is the simplest one dimensional
quantum field theory. Namely instead of calculating quan-
tum mechanical transition amplitudes we calculate corre-
lation functions. Our main goal is to find the backreaction
on a strong scalar field, to be described below, in these very
simple settings.
The equations of motion for the action (2.1) are as

follows:

�
ϕ̈ ¼ −λψ̄ψ ;
i _ψ ¼ λϕψ :

ð2:3Þ

These equations have the following classical solution:

ϕclðtÞ ¼
m
λ
þ α

λ
t; ψ cl ¼ ψ̄ cl ¼ 0; ð2:4Þ

which we will consider as a background.
Then we consider mode decomposition for quantum

parts of these fields over the classical background (2.4):

ψ̂ðtÞ ¼ âpðtÞ; ˆ̄ψðtÞ ¼ â†p�ðtÞ;
ϕ̂ðtÞ ¼ α̂fðtÞ þ α̂†f�ðtÞ; ð2:5Þ

where operators â and α̂ obey the standard (anti)commu-
tation relations:

fâ; â†g ¼ 1; ½α̂; α̂†� ¼ 1: ð2:6Þ

The equations for the modes on this background are as
follows:

�
f̈ ¼ 0;

ði d
dt −m − αtÞp ¼ 0:

ð2:7Þ

Thus, we have the first order differential equation for the
fermion modes, hence, their form is

pðtÞ ¼ e−i
R

tðmþαt0Þdt0 : ð2:8Þ

As a result, the tree-level expectation value of the equal-
time product of two fermion operators does not depend on
time:

h0jψ̄ψ j0i ¼ 0 and h1jψ̄ψ j1i ¼ 1; ð2:9Þ

where âj0i ¼ â†j1i ¼ 0. To find hψ̄ψi exactly, note that
the full Hamiltonian of the theory is as follows:

Hfull ¼ λϕψ̄ψ þ π2

2
; ð2:10Þ

where π is the momentum conjugate to the scalar field,
½ϕ; π� ¼ i, fψ ; ψ̄g ¼ 1. Using such a Hamiltonian one can
find that:

½ψ̄ψ ; Hfull� ¼ 0; hence; h0jψ̄ψ j0iexactðtÞ ¼ 0

and h1jψ̄ψ j1iexactðtÞ ¼ 1: ð2:11Þ

Thus, we have two options for the backreaction problem:

̈hϕi≡ −λh0jψ̄ψ j0i ¼ 0; and

̈hϕi≡ −λh1jψ̄ψ j1i ¼ −λ; ð2:12Þ

i.e., either the background force is zero or nonzero, but
constant.
It should be stressed at this point that the result under

consideration does not depend whether we quantize in the
background scalar field (2.4) or we put the background
field to zero. However, to complete the solution of the
problem, we also have to calculate the scalar and fermion
two-point functions, when the points do not coincide.
To do that let us point out one important issue. Consider

one-dimensional scalar with a nonzero mass:
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S0 ¼
1

2

Z
dt½ _ϕ2 − ω2ϕ2�: ð2:13Þ

The standard mode in this case is fðtÞ ¼ 1ffiffiffiffi
2ω

p e−iωt.

Consider the two-point Wightman functions in this
theory in the limit ω → 0:

ϕðtÞ ¼ 1ffiffiffiffiffiffi
2ω

p ðαe−iωt þ α†eiωtÞ !ω→0 αþ α†ffiffiffiffiffiffi
2ω

p þ i

ffiffiffiffi
ω

2

r
ðα† − αÞt;

and hϕðtÞϕðt0Þi ¼ e−iωðt−t0Þ

2ω
!ω→0 1

2ω
−
i
2
ðt − t0Þ:

ð2:14Þ

Note that if we just omit the term 1
2ω in the propagator it can

be used as the tree-level Wightman scalar function in the
theory (2.1). In fact, the latter one does solve the appro-
priate differential equation:

�
d2

dt2
þ ω2

�
Gðt − t0Þ ¼ 0;

and can be used as a basis for the construction of other
propagators. Such as, e.g., Feynman, retarded and Keldysh
two-point functions.
On the other hand, consider the direct quantization of the

scalar part of the theory (2.1). Then the mode is fðtÞ ¼ 1−itffiffi
2

p
and the expansion of the field operator is

ϕðtÞ ¼ 1ffiffiffi
2

p ½ðαþ α†Þ þ iðα† − αÞt�: ð2:15Þ

It is easy to check that such ϕ satisfies the equation of
motion and ½ϕ; π� ¼ i.
Now we can calculate the tree-level boson Wightman

propagator:

hϕðtÞϕðt0Þi0 ¼
1

2
h0j½ðαþ α†Þ þ iðα† − αÞt�

× ½ðαþ α†Þ þ iðα† − αÞt0�j0i

¼ 1 − iðt − t0Þ þ tt0

2
: ð2:16Þ

This provides another option for the two-point function in
the theory. The two choices of theWightman propagators in
the theory correspond to two different choices of states.
While the second choice corresponds to a ground state in
the Fock space, the first one is a sort of a coherent state.
A somewhat similar situation appears for the massless
scalar field in two-dimensional flat space or in de Sitter
space [25].
Please also note that while the first choice of the

propagator respects the time translational invariance, but
does not respect so called positivity, hϕ2ðtÞi > 0 (in the

present case hϕ2ðtÞi is just vanishing, while in two-
dimensions similar Wightman function can become neg-
ative), the second choice does respect positivity, but
violates the time translational invariance.
What remains to be done now is to calculate the exact

two-point Wightman function for the scalars and fermions.
In the next two subsections we will do that in two different,
but related, ways. But before doing this let us explain the
resulting solution of the problem in simple terms. Consider
a solution of the second equation in (2.12):

̈hϕi ¼ −λ: ð2:17Þ

It is given by

hϕi ¼ −
λ

2
t2 þ c1tþ c2; ð2:18Þ

where c1;2 are integration constants. Hence, the field
operator ϕ̂ðtÞ can be written in the following form:

ϕ̂ðtÞ ¼ m
λ
þ α

λ
tþ 1ffiffiffi

2
p ½ðα̂þ α̂†Þ þ iðα̂† − α̂Þt�

−
λ

2
t2 þ c1tþ c2: ð2:19Þ

Then, the boson propagator has the following form:

Δhϕðt1Þϕðt2Þi ¼ hϕðt1Þihϕðt2Þi ¼
λ2

4
t21t

2
2

−
λ

2
c1ðt21t2 þ t22t1Þ −

λ

2
c2ðt21 þ t22Þ

þ c1c2ðt1 þ t2Þ þ c21t1t2 þ c22: ð2:20Þ

This expression coincides with the exact result shown, e.g.,
in Eq. (2.34) if we set

c1 ¼ λt0; ð2:21Þ

c2 ¼ −
λ

2
t20: ð2:22Þ

That is true because the exact expression follows from the
“tadpole” diagram, which corresponds to the solution of
the Eq. (2.17).

A. Two-point functions and perturbative corrections

Let us make the field ϕ dynamical and calculate
corrections to the tree-level propagators. The potential
operator in the interaction picture is as follows:

VðtÞ ¼ U†
0ðt; t0Þðλϕðt0Þψ̄ψÞU0ðt; t0Þ ¼ λϕðtÞψ̄ψ

¼ λðα̂fðtÞ þ α̂†f�ðtÞÞâ†â; ð2:23Þ
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where t0 is the time after which the self-interaction λϕψ̄ψ is adiabatically turned on. We recall that ψ̄ψ does not depend on
time and fðtÞ ¼ 1−itffiffi

2
p . Evolution operator in the interaction picture is as follows:

Uðtb; taÞ ¼ T exp

�
−i
Z

tb

ta

dηVðηÞ
�
¼ 1 − i

Z
tb

ta

dηVðηÞ þ ð−iÞ2
Z

tb

ta

dηVðηÞ
Z

η

ta

dξVðξÞ þ � � �

≡ 1þ U1ðtb; taÞ þ U2ðtb; taÞ þ � � � ð2:24Þ

One can explicitly calculate the first and second order corrections to the evolution operator:

U1ðtb; taÞ ¼ −
iλffiffiffi
2

p â†â

�
ðta − tbÞ

�
−1þ i

2
ðta þ tbÞ

�
α̂þ H:c:

�
;

U2ðtb; taÞ ¼ −
λ2

2
â†â

�
1

24
ðta − tbÞ2ð12þ 3t2a þ tbð3tb þ 4iÞ þ tað6tb − 4iÞÞα̂†α̂

−
1

8
ðta − tbÞ2ð2iþ ta þ tbÞ2α̂ α̂ þ H:c:

�
; ð2:25Þ

where we have used the identity â†ââ†â ¼ â†â. Now let us calculate the Wightman function of two boson fields in the
vacuum state of the scalar field, α̂j0i ¼ 0:

Dexactðt1; t2Þ ¼ hϕðt1Þϕðt2Þi ¼ hU†ðt1; t0Þϕðt1ÞUðt1; t2Þϕðt2ÞUðt2; t0Þi
¼ h½1þU1ðt0; t1Þ þ U2ðt0; t1Þ þ � � ��ϕ1½1þ U1ðt1; t2Þ þU2ðt1; t2Þ þ � � ��ϕ2

× ½1þU1ðt2; t0Þ þ U2ðt2; t0Þ þ � � ��i ¼ D0ðt1; t2Þ þ ΔDðt1; t2Þ þ � � � ; ð2:26Þ

where we denote ϕðtaÞ≡ ϕa for short.
Note that if we average over the vacuum for fermions,

aj0i ¼ 0, all contributions except the bare boson propa-
gator vanish because they always contain the combination
ψ j0i ¼ 0. So in this case the tree-level expression for the
boson propagator is exact:

Dexactðt1; t2Þ ¼ D0ðt1; t2Þ: ð2:27Þ

Now consider the averaging over the state â†j1i ¼ 0 for
fermions, which gives a less trivial result. Using the
decomposition of the evolution operator, one finds that
the correction to the tree-level propagator grows with time:

ΔDðt1; t2Þ

¼ λ2

8
ðt0 − t1Þðt0 − t2Þ

× fðt0 þ t1 − 2iÞðt0 þ t2 þ 2iÞfðt1Þf�ðt2Þ
þ ðt0 þ t1 − 2iÞðt0 þ t2 − 2iÞfðt1Þfðt2Þ þ H:cg

¼ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2: ð2:28Þ

To calculate hϕðt2Þϕðt1Þi we should simply change
t1 ↔ t2. For the future reference we show here expressions
for the Keldysh and retarded/advanced (R/A) propagators
[16–20]:

DKðt1; t2Þ ¼
1

2
hfϕðt1Þ;ϕðt2Þgi;

DR=Aðt1; t2Þ ¼ �θð�t1 ∓ t2Þh½ϕðt1Þ;ϕðt2Þ�i: ð2:29Þ

Note that

DAðt1; t2Þ ¼ DRðt2; t1Þ: ð2:30Þ

This means that advanced and retarded propagators behave
similarly and we need to calculate only the retarded one.
Thus, it follows that

DK
0 ¼ 1

2
½fðt1Þf�ðt2Þ þ f�ðt1Þfðt2Þ� ¼

1þ t1t2
2

;

ΔDK ¼ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2;

DR
0 ¼ θðt1 − t2Þ½fðt1Þf�ðt2Þ − f�ðt1Þfðt2Þ�
¼ iθðt1 − t2Þðt2 − t1Þ;

ΔDR ¼ 0: ð2:31Þ

Here subscript 0 denotes tree-level propagators, while
ΔD—perturbative corrections which we calculate here.
To understand the obtained result let us calculate the
expectation value of the single operator:

hϕ1i ¼ hU†ðt1; t0Þϕ1Uðt1; t0Þi: ð2:32Þ
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Up to the first order in λ the correction looks as follows:

Δhϕ1i ¼ −iλ
Z

t1

t0

dt2ðhϕ1ϕ2i − hϕ2ϕ1iÞ

¼ λ

Z
t1

t0

dt2ðt2 − t1Þ ¼ −
λ

2
ðt1 − t0Þ2: ð2:33Þ

Hence, we see that ΔD is completely determined by the
correction to the one-point correlation function:

ΔDðt1; t2Þ ¼ ΔDKðt1; t2Þ ¼ Δhϕ1iΔhϕ2i

¼ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2: ð2:34Þ

In the following subsection we will see that this contribu-
tion corresponds to the so-called “tadpole” diagrams. And,
thus, although we have obtained the result under consid-
eration only at the order λ2 in the expansion of (2.26) it is
actually the exact expression.

Apart from other things the observations that we
have made in this section indicate that the growth of the
two-point function with times t1;2 has no connection to the
change of the state in the theory unlike the case of
nonstationary situations in higher dimensional quantum
field theories. Namely, the time evolution in the theory does
not lead to a generation of the anomalous quantum averages
and level populations neither for fermions nor for the
boson. In other words, the initial state does not change
despite the nonstationarity of the theory.

B. Schwinger-Keldysh diagrammatic technique

In this subsection we recalculate the results of the
previous subsection with the use of the diagrammatic
technique. We use Schwinger-Keldysh diagrammatic
technique [14–20]. This technique uses the following
fermionic propagators:

iG−−ðx1; x2Þ≡ hTψðx1Þψ̄ðx2Þi ¼ θðt1 − t2ÞiGþ−ðx1; x2Þ þ θðt2 − t1ÞiG−þðx1; x2Þ;
iGþþðx1; x2Þ≡ hT̃ψðx1Þψ̄ðx2Þi ¼ θðt1 − t2ÞiG−þðx1; x2Þ þ θðt2 − t1ÞiGþ−ðx1; x2Þ;
iGþ−ðx1; x2Þ≡ hψðx1Þψ̄ðx2Þi;
iG−þðx1; x2Þ≡ −hψ̄ðx2Þψðx1Þi; ð2:35Þ

where h� � �i denotes averaging over an appropriate initial state, T stands for the time ordering and T̃—for the antitime
ordering. Corresponding bosonic correlation functions are as follows:

iD−−ðx1; x2Þ≡ hTϕðx1Þϕðx2Þi ¼ θðt1 − t2ÞiDþ−ðx1; x2Þ þ θðt2 − t1ÞiD−þðx1; x2Þ;
iDþþðx1; x2Þ≡ hT̃ϕðx1Þϕðx2Þi ¼ θðt1 − t2ÞiD−þðx1; x2Þ þ θðt2 − t1ÞiDþ−ðx1; x2Þ;
iDþ−ðx1; x2Þ≡ hϕðx1Þϕðx2Þi;
iD−þðx1; x2Þ≡ hϕðx2Þϕðx1Þi: ð2:36Þ

In what follows we will include the imaginary unit into the
definition of the correlation functions (2.35) and (2.36) for
short.
One can also define these correlation functions using

the Keldysh time contour, which starts at the moment t0,
goes to t → þ∞ and then returns back to the starting
point [15]. The contour appears due to the simultaneous
presence of time ordered U and antitime ordered U† in
(2.26). Ordering along this contour corresponds to
the time-ordering on the “forward” part and to the
antitime-ordering on the “backward” part. Hence, one
can assign “∓” signs to the fields sitting on the forward
and backward parts of the contour, correspondingly,
and define correlation functions G�� ≡ hψ�ψ̄�i,
D�� ≡ hϕ�ϕ�i. This definition is equivalent to the
definition (2.35) and (2.36). More details can be found
in [16–18].

Also note that functions G�� and D�� are not inde-
pendent due to the relations:

Gþþ þG−− ¼ Gþ− þ G−þ;

Dþþ þD−− ¼ Dþ− þD−þ: ð2:37Þ
It is convenient to do the Keldysh rotation from the forward
and backward (“�”) components of the fields to the so
called classical and quantum components1 [15–17]:�
ϕcl

ϕq

�
¼ R̂

�
ϕþ
ϕ−

�
;

�
ψ cl

ψq

�
¼ R̂

�
ψþ
ψ−

�
;

�
ψ̄ cl

ψ̄q

�
¼ R̂

�
ψ̄þ
ψ̄−

�
; R̂ ¼

� 1
2

1
2

−1 1

�
; ð2:38Þ

1In general, matrices which rotate fields ϕ, ψ , and ψ̄ are
independent, but here we choose them to be equal to each other.
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and introduce the Keldysh and retarded/andvanced propagators:

GK ≡ hψ clψ̄ cli ¼
1

2
ðGþþ þ G−−Þ; DK ≡ hϕclϕcli ¼

1

2
ðDþþ þD−−Þ;

GR ≡ hψ clψ̄qi ¼ G−− −G−þ; DR ≡ hϕclϕqi ¼ D−− −D−þ;

GA ≡ hψqψ̄ cli ¼ G−− −Gþ−; DA ≡ hϕqϕcli ¼ D−− −Dþ−: ð2:39Þ

This definition is equivalent to the one used in (2.29).
Note that in (0þ 1)–dimensions diagrammatic technique

works only for correlation functions averaged over the
vacuum or thermal (stationary) state, because diagram-
matics is based on Wick’s theorem [11,26], which is
applicable only in stationary situations in one dimension.
However, in our case this restriction does not bother us,
because the state of the fields does not change in time. In
higher dimensional quantum field theory this restriction
disappears because of the infinite space volume which kills
unsuitable operator averages [20,27].
Let us calculate the first loop correction to the boson

two-point correlation function using Schwinger-Keldysh
diagrammatic technique. First, we consider the averaging
over the state j0iψ j0iϕ. In this case tree-level propagators
have the following form [it is easy to restore the remaining
four correlators using definitions (2.35) and (2.36)]:

Gþ−
0 ðt1; t2Þ¼ exp

�
−i
Z

t1

t2

ðmþαt0Þdt0
�
;

G−þ
0 ðt1; t2Þ¼ 0;

Dþ−
0 ðt1; t2Þ¼ fðt1Þf�ðt2Þ¼

ð1− it1Þð1þ it2Þ
2

;

D−þ
0 ðt1; t2Þ¼ ðDþ−

0 ðt1; t2ÞÞ� ¼
ð1þ it1Þð1− it2Þ

2
: ð2:40Þ

The one-loop corrections to the scalar field propagators
(Fig. 1) is vanishing:

ΔDþ−ðt1; t2Þ ¼ −λ2
Z

dt3dt4
X

σ3;4¼fþ;−g
Dþσ3ðt1; t3Þ

×Gσ3σ4ðt3; t4ÞGσ4σ3ðt4; t3ÞDσ4−ðt4; t2Þ
× sgnðσ3σ4Þ ¼ 0; ð2:41Þ

becauseG−þ¼0 and θ34θ43¼0, where for short we denote
θ34≡θðt3− t4Þ. Thus, ΔDKðt1; t2Þ ¼ ΔDR=Aðt1; t2Þ ¼ 0.
Due to the same reason the so-called “bubble” diagram
(Fig. 2) is also equal to zero.2 Finally, the tadpole diagrams
(Fig. 3) are zero because they contain the free fermion
propagators in coincident points: h0jψψ̄ j0i ¼ 0. Thus, one-
loop corrections to the boson propagator is zero for the case
of averaging over the state j0iψ j0iϕ. This is exactly what we
have seen in the previous subsection [see Eq. (2.27)].
Now let us take the average over the state j1iψ j0iϕ. In

this case tree-level boson propagators do not change,
whereas tree-level fermion propagators acquire the follow-
ing form:

Gþ−
0 ðt1; t2Þ ¼ 0;

G−þ
0 ðt1; t2Þ ¼ − exp

�
−i
Z

t1

t2

ðmþ αt0Þdt0
�
: ð2:42Þ

The diagrams (Fig. 1) and (Fig. 2) in this case are zero
again for the same reasons. Hence, we recalculate only the
tadpole diagrams (Fig. 3):

Δhϕþ
1 i ¼ −iλ

Z
dt2

X
σ¼fþ;−g

Dþσðt1; t2ÞGσσ
aaðt2; t2Þsgnð−σÞ

¼ −iλ
Z þ∞

t0

dt2DRðt1; t2Þ ¼ λ

Z
t1

t0

dt2ðt2 − t1Þ ¼ −
λ

2
ðt1 − t0Þ2;

Δhϕ−
1 i ¼ −iλ

Z
dt2

X
σ¼fþ;−g

D−σðt1; t2ÞGσσ
aaðt2; t2Þsgnð−σÞ

¼ −iλ
Z þ∞

t0

dt2DRðt1; t2Þ ¼ λ

Z
t1

t0

dt2ðt2 − t1Þ ¼ −
λ

2
ðt1 − t0Þ2 ¼ Δhϕþ

1 i: ð2:43Þ

2In the Schwinger–Keldysh diagrammatic technique vacuum bubbles always cancel out.
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Hence, the correction to the boson correlation function
looks as follows:

ΔDþ−ðt1; t2Þ ¼ ΔDKðt1; t2Þ ¼ Δhϕþ
1 iΔhϕ−

2 i

¼ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2; ð2:44Þ

which coincides with the result (2.34) from the previous
subsection.
Note that if we choose the bare scalar Wightman

propagator as follows:

hϕ1ϕ2i0 ¼ −
i
2
ðt1 − t2Þ; ð2:45Þ

which, as we have discuss around Eq. (2.14), respects the
time translational invariance, we will get the same answer
for the tadpole diagram:

Δhϕ−
1 i ¼ Δhϕþ

1 i ¼ −iλ
Z þ∞

t0

dt2DRðt1; t2Þ

¼ λ

Z
t1

t0

dt2ðt2 − t1Þ ¼ −
λ

2
ðt1 − t0Þ2; ð2:46Þ

because retarded propagators do not depend on the state.
Thus, the diagrammatic technique gives the correct com-
binatoric factors and reproduces the result of the direct
calculation performed above in the subsection II A.

C. Exact boson propagators

As we have already pointed out in the subsection II A,
the tree-level expression for the boson propagator is exact
if we average over the fermion vacuum âj0iψ ¼ 0:
Dexactðt1; t2Þ ¼ D0ðt1; t2Þ. So in this subsection we con-
sider averaging over the state â†j1iψ ¼ 0. We will see that
in this case the situation is nearly the same.
Let us classify what sort of diagrams can provide

contributions to the exact boson propagator hϕ1ϕ2i.
First, note that corrections to fermion propagators vanish
due to the fact that they come from the interaction vertex V,
which contains fields in coincident points, and hψ̄ψiexact ¼
hψ̄ψi0, as we have already shown above.3 Many-loop
diagrams containing (Fig. 1) and (Fig. 2) and even such
diagrams with corrected vertexes, e.g., (Fig. 4) vanish for
the same reasons as have been discussed in the previous
subsection.
Consider loops connected with more than one boson

propagator, e.g., (Fig. 5). To prove that this diagram also
vanishes, we consider such diagrams as depicted on the
Figs. 6 and 7. These two diagrams are described by the
following expression:

ΔGσ1σ2σ3σ4ðt1; t2; t3; t4Þ ¼
λ4

2

Z
dt5dt6dt7dt8

X
σ5;6;7;8¼fþ;−g

Gσ1σ5ðt1; t5ÞGσ5σ6ðt5; t6ÞGσ6σ2ðt6; t2Þ

×Gσ4σ7ðt4; t7ÞGσ7σ8ðt7; t8ÞGσ8σ3ðt8; t3ÞDσ5σ7ðt5; t7ÞDσ6σ8ðt6; t8Þsgnðσ5σ6Þsgnðσ7σ8Þ: ð2:47Þ

Note that Gþ− ¼ 0, so only expressions of the following form:

FIG. 3. Tadpole diagram.

FIG. 4. Diagram with corrected vertex.

FIG. 1. One-loop correction.

FIG. 2. Bubble diagram.

3This observation means that we know the exact value of the fermionic two-point functions in the theory under consideration.
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Gσ1þðt1; t5ÞGþþðt5; t6ÞGþσ2ðt6; t2ÞGσ4þðt4; t7ÞGþþðt7; t8ÞGþσ3ðt8; t3ÞDþþðt5; t7ÞDþþðt6; t8Þ;
Gσ1þðt1; t5ÞGþþðt5; t6ÞGþσ2ðt6; t2ÞGσ4−ðt4; t7ÞG−−ðt7; t8ÞG−σ3ðt8; t3ÞDþ−ðt5; t7ÞDþ−ðt6; t8Þ;
Gσ1−ðt1; t5ÞG−−ðt5; t6ÞG−σ2ðt6; t2ÞGσ4þðt4; t7ÞGþþðt7; t8ÞGþσ3ðt8; t3ÞD−þðt5; t7ÞD−þðt6; t8Þ;
Gσ1−ðt1; t5ÞG−−ðt5; t6ÞG−σ2ðt6; t2ÞGσ4−ðt4; t7ÞG−−ðt7; t8ÞG−σ3ðt8; t3ÞD−−ðt5; t7ÞD−−ðt6; t8Þ ð2:48Þ

may give nonzero contributions. But due to the presence of theta-functions they are proportional to ðt1 − t2Þ2 and, as we
remember, such diagrams come from the interaction vertex V which contains fields in the coincident points, where ψ̄ðtÞψðtÞ
does not depend on time t due to the form of modes (2.8). Hence, for example, in the diagram of the Fig. 5 we have, as a
part, the four point correlation function Gσ1σ2σ3σ4ðt; t; t; tÞ, in which we can set all its arguments equal to t. Hence, that
enforces t1 ¼ t2 and contributions from the Fig. 6 and Fig. 7 vanish in the case under consideration. The contributions of
higher-loop diagrams are also zero for the same reason.
As a result, only the remaining tadpole diagrams (Fig. 3) can give the nonvanishing contribution. So the exact

propagators are as follows:

Dþ−
exactðt1; t2Þ ¼ Dþ−

0 ðt1; t2Þ þ Δhϕ1iΔhϕ2i ¼
ð1 − it1Þð1þ it2Þ

2
þ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2;

DK
exactðt1; t2Þ ¼ DK

0 ðt1; t2Þ þ Δhϕ1iΔhϕ2i ¼
1þ t1t2

2
þ λ2

4
ðt1 − t0Þ2ðt2 − t0Þ2;

DR=A
exactðt1; t2Þ ¼ DR=A

0 ðt1; t2Þ ¼ �iθð�t1 ∓ t2Þðt2 − t1Þ: ð2:49Þ

This generalizes the result of the subsection II A to the
arbitrary order in λ and, as we have explained above, comes
from the solution of the Eq. (2.17) with the tadpole
appearing due to nonzero right-hand side h1jψ̄ψ j1i.

III. LINEARLY GROWING IN TIME
BACKGROUND SCALAR FIELD IN

TWO DIMENSIONS

In this section we consider the Yukawa model of inter-
acting fermions and real scalar field in (1þ 1)-dimensional
Minkowski space-time with (þ;−) signature of the metric:

S ¼
Z

d2x

�
1

2
∂μϕ∂μϕþ iψ̄=∂ψ − λϕψ̄ψ

�
; ð3:1Þ

where we denote =∂ ≡ γμ∂μ, ψ̄ ¼ ψ†γ0 and assume that the
coupling parameter is λ > 0. In this section we use the
Dirac-Pauli representation for the Clifford algebra:

γ0 ≡
�
1 0

0 −1

�
; γ1 ≡

�
0 1

−1 0

�
: ð3:2Þ

The equations of motion for the action (3.1) are as follows:

� ∂2ϕþ λψ̄ψ ¼ 0;

ði=∂ − λϕÞψ ¼ 0:
ð3:3Þ

Their classical solutions can be taken as ψ cl ¼ 0;ϕcl ¼
F ðt − xÞ þ F̃ ðtþ xÞ, where F and F̃ are arbitrary smooth
functions. In what follows we consider such classical
solutions as external backgrounds and split the classical
and quantum parts of the fields: ϕ ¼ ϕcl þ ϕq, ψ ¼
ψ cl þ ψq. Our goal is to calculate correlation functions.
Concretely, in this section we consider the background

field which linearly grows with time: ϕcl ¼ Et, where E is

FIG. 5. Two loops connected with double boson propagator.

FIG. 6. Ladder parallel diagram.

FIG. 7. Ladder cross diagram.
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some real positive constant.4 Specifically, in the limit
E → 0 this background reproduces free massless fermion
field. When E ≠ 0 the Hamiltonian depends on time, i.e.,
the situation is not stationary. Hence, one may expect the
particle creation that is similar to the one in strong electric
[14,21–23] or gravitational fields [24].
However, let us emphasize the difference between, e.g.,

the pair creation in the electric field background (the well-
known Schwinger effect [14]) and processes in the scalar
field background. On the one hand, at tree-level the particle
creation in the electric field can be attributed to the quantum
tunneling through the classically forbidden region. The rate
of such a process is described by an imaginary part of the
effective action; moreover, the expression for the rate is not
an analytic function of the background field [23]. On the
other hand, as we will see below the imaginary part of the
Feynman effective action on the scalar field background is
zero (see Appendix B). Hence, nonzero quantum expect-
ation values indicate rather vacuum polarization than
particle creation. But, as is discussed in [12] the situation
with the particle creation in the background scalar fields is
not that trivial.
Furthermore, note that the background scalar field

ϕcl ¼ Et is rather unrealistic, since an indefinitely growing
field requires infinite amount of energy. However, it allows
one to grasp the main properties of the model. It would
be more appropriate to consider the pulse background
ϕcl ¼ ET tanh t

T, which becomes constant at the past
and future infinities and reproduces the linear growth for
jtj ≪ T. Such a configuration does not solve the equations
of motion without a source in (3.3). Another possibility
is to consider a strong wave, i.e., F ðt − xÞ which has
compact support. The latter classical background was
considered in [12].

A. Modes

To set up the notations let us start with the consideration
of the free massive fermion field without a background
scalar field. This field can be decomposed into the modes as
follows:

ψðt; xÞ ¼
Z

dp
2π

½apψ ðþÞ
p ðt; xÞ þ b†pψ

ð−Þ
p ðt; xÞ�: ð3:4Þ

The functions ψ ðþÞ
p ðt;xÞ≡upe−ipx and ψ ð−Þ

p ðt; xÞ≡ vpeipx,
which are positive and negative frequency modes, solve the
free equations of motion:

ði=∂ −mÞψ ¼ 0; ð3:5Þ

and creation and annihilation operators obey the standard
anticommutation relations:

fap; a†qg ¼ fbp; b†qg ¼ 2πδðp − qÞ: ð3:6Þ

This fixes the equal-time anticommutation relations for ψ
and ψ†:

fψaðt; xÞ;ψ†
bðt; yÞg ¼ δðx − yÞδab; ð3:7Þ

where we restored the spinor indices a; b ¼ 1; 2. The form
of up and vp spinors is as follows:

up ¼
�
up;1
up;2

�
¼ sgnðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωðω −mÞp �
p

ω −m

�
;

vp ¼
�
vp;1
vp;2

�
¼ sgnðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωðω −mÞp �
ω −m

p

�
; ð3:8Þ

where ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
and we have used the Dirac

representation for gamma-matrices (3.2). For further pur-
poses (see footnote 5) we introduced the phase factor
sgnðpÞ which does not affect the conditions (3.5) and (3.7).
In what follows we omit the index p of up, vp, and ψp

where it can be easily restored.
The fermion field in the time-dependent background can

be decomposed in the way similar to (3.4), except that
functions ψ ð�Þ solve the equations of motion (3.3) with
ϕ ¼ ϕcl instead of the free equations (3.5):

½iγμ∂μ −MðtÞ�ψ ¼ 0; ð3:9Þ

where we define for short:

MðtÞ ¼ αt; α ¼ λE: ð3:10Þ

Because of the spatial homogeneity it is convenient to
represent the modes in the following form:

ψðt; xÞ ¼ ψpðtÞeipx: ð3:11Þ

Substituting this factorized solution into (3.9), one obtains
the equation for the time dependent part of the modes:

½iγ0∂t − γ1p −MðtÞ�ψpðtÞ ¼ 0: ð3:12Þ

One can decouple this system applying the operator
½−iγ0∂t − γ1p −MðtÞ� to its left-hand side and keeping
in mind that the eigenvalues of γ0 are �1. Hence, the
equation reduces to:

4Of course, one can obtain classical solutions with other values
and signs of this constant via time shifts: t → tþ δt ⇒
ϕcl ¼ Eδtþ Et, or reversals: t → −t ⇒ ϕcl ¼ m

λ − Et. E.g.,
one can give a mass mψ to the fermion field by the time shift
δt ¼ mψ

λE . However, these transformations do not bring anything
substantially new into our discussion. So, we consider positive E
and zero mass without loss of generality.
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½∂2
t þ ðωð1;2Þ

p Þ2ðtÞ�ψ1;2ðtÞ ¼ 0; where

ðωð1;2Þ
p Þ2ðtÞ≡ p2 þ α2t2 � iα: ð3:13Þ

Note that this resembles the equation for the massive
charged scalar field on the constant electric field back-
ground [1,6,7]. Its exact solution is the sum of linearly
independent parabolic cylinder functions DνðzÞ:

ψ1½zðtÞ� ¼ A1Dν½zðtÞ� þ B1D−ν−1½izðtÞ�;
ψ2½zðtÞ� ¼ A2Dν−1½zðtÞ� þ B2D−ν½izðtÞ�; ð3:14Þ

where A1;2, B1;2 are complex constants which we fix below,
and we define for convenience:

z≡ 1þ iffiffiffi
α

p MðtÞ; ν≡ −
ip2

2α
: ð3:15Þ

It is not possible to define usual in- and out- modes as well
as positive and negative frequency solutions in our case due
to the fact that the external field is never switched off.
Indeed, parabolic cylinder function has the following
asymptotic behavior [28,29]:

DνðzÞ ¼ zνe−
z2
4

�XN
n¼0

ð− ν
2
Þnð12 − ν

2
Þn

n!ð− z2
2
Þn þOjz2j−N−1

�
;

ðγÞ0 ¼ 1; ðγÞn≠0 ¼ γðγ þ 1Þ � � � ðγ þ n − 1Þ; ð3:16Þ

for jzj ≫ jνj and jArgðzÞj < π
2
. In our case ArgðzÞ ¼ � π

4

and the condition jzj ≫ jνj is satisfied for sufficiently large

times jtj ≫ p2

α3=2
. So, in the leading order as t → þ∞ one

obtains:

ψ1;2ðzðtÞÞ ∼ A1;2ðpÞ exp
�
−
i
2
αt2 −

ip2

2α
log t

�

þ B1;2ðpÞ exp
�
i
2
αt2 þ ip2

2α
log t

�
; ð3:17Þ

where A1;2ðpÞ and B1;2ðpÞ are some constants that do not
depend on time (but depend on the momentum). Thus,
the modes ψ1;2ðt; xÞ cannot be reduced to the sum of
positive and negative frequency plane waves, and the
interpretation in terms of particles is meaningless. Please
keep in mind that in nonstationary situations it is more
appropriate to calculate correlation functions rather than
amplitudes, at least because there are no asymptotic particle
states [30–32].
However, let us check the other limit—the ultraviolet

region, where jpj ≫ ffiffiffi
α

p
for a fixed t. In such a limit we

expect that the modes in the strong scalar background and
in the free theory have similar behavior. In fact, in this case
the parabolic cylinder function has the following asymp-
totic expansion (see Appendix A for details):

Dν½zðtÞ� ≃
e
πp2

8αffiffiffi
2

p
�

Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p þ 1

�1
2

× e
ip2

4α−
ip2

4α logð
ffiffiffiffiffiffiffiffiffi
M2þp2

p
þMÞ2

2α −iM
ffiffiffiffiffiffiffiffiffi
M2þp2

p
2α

×

�
1þO

�
α

M2 þ p2

��
: ð3:18Þ

Hence, for times jtj ≪ jpj
α the exact modes behave as

follows:

ψ1;2ðt; xÞ ∼ A0
1;2ðpÞe−ijpjtþipx þ B0

1;2ðpÞeijpjtþipx; ð3:19Þ

which means that for fixed time and large momenta one
obtains the standard flat space plane waves. Now it is clear
that functions Dν½zðtÞ� and Dν−1½zðtÞ� correspond to “pos-
itive frequency” modes, i.e., the exact harmonics should be
as follows:

ψ ðþÞðtÞ≡
 
ψ ðþÞ
1 ðtÞ

ψ ðþÞ
2 ðtÞ

!
¼ AðþÞ

� Dν½zðtÞ�
ði∂t−MðtÞÞ

p Dν½zðtÞ�

�
;

ð3:20Þ

where we used the system (3.12) to relate the first and
second components of the spinor. One can simplify this
expression using the following relations for parabolic
cylinder functions [28,29]:

∂zDνðzÞ þ
1

2
zDνðzÞ − νDν−1ðzÞ ¼ 0;

∂zDνðzÞ −
1

2
zDνðzÞ þDνþ1ðzÞ ¼ 0; ð3:21Þ

and represent the “positive frequency” modes in the form:

ψ ðþÞ
p ðt; xÞ ¼ AðþÞ

� Dν½zðtÞ�
1þiffiffi
2

p pffiffiffiffi
2α

p Dν−1½zðtÞ�
�
eipx: ð3:22Þ

They behave as ψ ∼ e−ijpjtþipx for sufficiently large
momenta. We choose to consider such modes out of all
options present in Eq. (3.14) because they have proper UV
behavior, i.e., tend to the free fermion field modes in the
limit p → ∞. Propagators expanded in such modes possess
the proper Hadamard behavior. Which means that they lead
to the same UV renormalization as in the absence of the
background field. On general grounds we think that this is
the appropriate physical picture. We come back to the
discussion of other options below at the end of this
subsection.
In the same way one obtains the “negative frequency”

modes:
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ψ ð−Þ
p ðt; xÞ ¼ Að−Þ

� 1−iffiffi
2

p pffiffiffiffi
2α

p D�
ν−1½zðtÞ�

D�
ν½zðtÞ�

�
e−ipx; ð3:23Þ

which behave as ψ ∼ eijpjt−ipx for sufficiently large
momenta.
Let us fix the coefficients AðþÞ and Að−Þ using the equal-

time anticommutation relations (3.7):

fψaðt; xÞ;ψ†
bðt; yÞg

¼
ZZ

dp
2π

dq
2π

½fap; aþq gψ ðþÞ
a;p ðtÞψ ðþÞ

b;q ðtÞ�eiðpx−qyÞ

þ fbþp ; bqgψ ð−Þ
a;pðtÞψ ð−Þ

b;qðtÞ�e−iðpx−qyÞ�

¼
Z

dp
2π

½ψ ðþÞ
a;p ðtÞψ ðþÞ

b;p ðtÞ� þ ψ ð−Þ
a;−pðtÞψ ð−Þ

b;−pðtÞ��

× eipðx−yÞ ¼ δðx − yÞδab; ð3:24Þ

where we use the canonical anticommutation relations
(3.6). This condition is satisfied if

ψ ðþÞ
a;p ðtÞψ ðþÞ

b;p ðtÞ� þ ψ ð−Þ
a;−pðtÞψ ð−Þ

b;−pðtÞ� ¼ δab

⇔

8>>><
>>>:

jAðþÞj2jDνðzÞj2 þ jAð−Þj2 p2

2α jDν−1ðzÞj2 ¼ 1;

jAð−Þj2jDνðzÞj2 þ jAðþÞj2 p2

2α jDν−1ðzÞj2 ¼ 1;

ðjAðþÞj2 − jAð−Þj2Þ 1−iffiffi
2

p pffiffiffiffi
2α

p DνðzÞD�
ν−1ðzÞ ¼ 0;

ð3:25Þ

for arbitrary times zðtÞ. Note that this condition is time-
independent due to the equations of motion and the relation

ψ ð−Þ
a;−pðtÞ ¼ −γ1abðψ ðþÞ

b;p ðtÞÞ� which follows from the sym-
metry of the system (3.3):

∂tðψ ðþÞ
a;p ðtÞψ ðþÞ

b;p ðtÞ� þ ψ ð−Þ
a;−pðtÞψ ð−Þ

b;−pðtÞ�Þ ¼ 0: ð3:26Þ

First, (3.25) implies that jAðþÞj2 ¼ jAð−Þj2 ¼ jAj2. Second,
it allows one to find the constant jAj2 by setting the
argument of parabolic cylinder functions equal to any
convenient value, e.g., to zero:

jAj2
"

π

jΓð1
2
þ ip2

4αÞj
2
þ p2

4α

π

jΓð1þ ip2

4αÞj
2

#
¼ 1:

Using the properties of the Gamma function:

jΓðiyÞj2 ¼ π

y sinhðπyÞ ;
				Γ
�
1

2
þ iy

�				2 ¼ π

coshðπyÞ ;

we find that

jAj2 ¼ e−
πp2

4α : ð3:27Þ

Let us sum up the main results of this subsection, i.e., write
down the asymptotic expressions for the modes.
For t > 0, αjtj ≪ jpj, jpj ≫ ffiffiffi

α
p

one obtains up to a
OðM2

p2 Þ that the modes behave as:

ψ ðþÞðt; xÞ ≃ 1ffiffiffi
2

p
 

1þ jMj
2jpj

sgnðpÞ


1 − jMj

2jpj
�
!

× e−ijpjtþipxþip2

4α−
ip2

4α logp
2

2αþiφ̃; ð3:28Þ

where φ̃ is an arbitrary constant phase independent of
t and p. Up to an irrelevant phase this asymptotic behavior
coincides5 with the free modes (3.8).
At the same time, for t > 0, αjtj ≫ jpj, jtj ≫ 1ffiffi

α
p one

obtains up to a Oðp2

M2Þ that the modes behave as

ψ ðþÞðt; xÞ ≃
�

1
p

2jMj

�
ð2αt2Þip24α e−iαt2

2
þipxþip2

4α logp
2

2αþiφ̃: ð3:29Þ

The “negative frequency” modes are obtained from the
“positive frequency” ones by the charge conjugation
operation:

ψ ð−Þ
p ðt; xÞ ¼ γ5ψ ðþÞ�

p ðt; xÞ; ð3:30Þ

where γ5 ¼ γ0γ1. Also one can check that the modes obey
the following relation:

ψ ðþÞ
p ð−t; xÞ ¼ sgnpγ5ψ ðþÞ�

p ðt; xÞ: ð3:31Þ

Finally let us point out the following important issue. In this
subsection we have found a complete basis of modes
solving the classical equations of motion. But there is an
ambiguity in the choice of such a basis. Depending on this
choice, there are different “ground” Fock space states in the
theory. In fact, instead of (3.22) and (3.23) one could
consider canonically transformed basis of modes:

ψ̃ ðþÞ
p ðt; xÞ ¼

Z
dq
2π

½apqψ ðþÞ
q ðt; xÞ þ bpqψ

ð−Þ
q ðt; xÞ�;

ψ̃ ð−Þ
p ðt; xÞ ¼

Z
dq
2π

½cpqψ ðþÞ
q ðt; xÞ þ dpqψ

ð−Þ
q ðt; xÞ�: ð3:32Þ

To respect the canonical anticommutation relations for the
fermionic fields and for the corresponding creation and
annihilation operators the Bogoliubov coefficients, apq;
bpq; cpq, and dpq, should satisfy certain relations which are
listed in [12].

5For this reason we have introduced the phase factor sgnðpÞ in
Eq. (3.8).
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On physical grounds one also should demand that

apq ≈ dpq ≈ δðp − qÞ; bpq ≈ cpq ≈ 0; ð3:33Þ

as p is taken to infinity. That is necessary for the
propagators to have the proper Hadamard behavior.
Thus, there is no unique way to choose the basis of

modes and all possibilities in (3.32) are in principle allowed
and may lead to different physical situations. This fact is
apparent when there is no preferable basis of special
functions found in XIX century and listed in the standard
textbooks.
For a given choice of modes one can define a new Fock

space “ground” state:

ˆ̃apja; b; c; di ¼ ˆ̃bpja; b; c; di ¼ 0; ð3:34Þ

where ˆ̃ap and ˆ̃bp are canonically transformed annihilation
operators. For this new state certain physical quantities will
be different from those for the original state [12]. However,
we will argue, as it was also done in [12], that the scalar
current, hψ̄ψi, at leading approximation for large and
slowly changing background scalar field does not depend
on the choice of the initial state.

B. Tree-level scalar current

In the previous subsection we derived the exact modes
for the fermion field, which in a sense describes the fermion
response to the strong scalar field background. In this
subsection we find the response of the scalar field itself
due to the presence of the nontrivial fermion zero-point
fluctuations in the scalar field background under
consideration.
Quantizing the Hamiltonian of the theory (3.1):

Ĥ ¼
Z

dx

�
1

2
ð∂tϕ̂Þ2 þ ð∂xϕ̂Þ2 − i ˆ̄ψγ1∂xψ̂ þ λϕ̂ ˆ̄ψ ψ̂

�
;

ð3:35Þ

and using Hamilton’s equations:

_̂ϕðxÞ ¼ i½Ĥ; ϕ̂ðxÞ�; _̂ψðxÞ ¼ i½Ĥ; ψ̂ðxÞ�; ð3:36Þ

one obtains the following operator equation for the scalar
field:

∂2ϕ̂þ λ ˆ̄ψ ψ̂ ¼ 0; ð3:37Þ

which reproduces one of the classical equations of motion
(3.3). Hence, one needs to calculate the scalar current
jclðtÞ≡ h ˆ̄ψ ψ̂i to find the response of the classical field
ϕcl ¼ hϕ̂i. This current has the following form:

hψ̄ψiðtÞ ¼
ZZ

dp
2π

dq
2π

½hbpb†qiðψ ð−Þ
1;pðtÞψ ð−Þ

1;q ðtÞ�

− ψ ð−Þ
2;pðtÞψ ð−Þ

2;q ðtÞ�Þeiðp−qÞx�

¼
Z

dp
2π

ðjψ ð−Þ
1;pðtÞj2 − jψ ð−Þ

2;pðtÞj2Þ

¼
Z

dp
2π

ð1 − 2e−
πp2

4α jDν½zðtÞ�j2Þ; ð3:38Þ

where we have used the notations of Sec. III A for short,
and in the last line also we have used one of the relations
(3.25). Note that in principle the equation under consid-
eration provides an implicit expression for the current.
However, this form of the current is hard to interpret in
physical terms. To obtain physically tractable equations
we will consider only the leading contribution in the limit
t → ∞ for small α.
Before evaluating the integral (3.38), consider the case of

a free fermion field with a mass m. Using the free modes
(3.8) one obtains the following free current:

hψ̄ψifree ¼ −
Z

Λ

−Λ

dp
2π

mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p ≈
m
π
log

m
2Λ

; ð3:39Þ

where we have introduced the ultraviolet cutoff at the scale
Λ. Note that the constant classical background ϕcl ¼ m

λ ,
substituted into the system (3.3), reproduces this case.
The analog of the mass parameter m in the theory (3.1)
is MðtÞ ¼ λϕcl ¼ λEt. Thus one expects the following
behavior for the current (3.38):

hψ̄ψiðtÞ ≃ λϕcl

π
log

λϕcl

2Λ
: ð3:40Þ

Let us check this conjecture by calculating the integral
(3.38) in such an approximation when ϕcl is large and
slowly changing function. Note that MðtÞ ¼ αt grows
indefinitely with time, so it can overcome an arbitrarily
large fixed scale Λ. Due to this fact we consider cases
M < Λ and M > Λ separately. In both cases we assume
M2 ≫ α to single out the leading contributions. The case
M > Λ is rather unphysical as we have already mentioned.
However, we consider it for integrity.
In the case M ≪ Λ we divide the region of integration

into two segments: ½0;Λ� ¼ ½0; ffiffiffi
α

p � þ ½ ffiffiffiαp
;Λ�, and esti-

mate integrals over these segments using expansions (3.16)
and (3.18) correspondingly:

Z ffiffi
α

p

0

dpð1 − 2e−
πp2

4α jDν½zðtÞ�j2Þ

≃
Z ffiffi

α
p

0

dp

�
1 − 2þ p2

2M2
þO

�
α2

M4

��

≃ −
ffiffiffi
α

p �
1 −

1

6

α

M2
þO

�
α2

M4

��
; ð3:41Þ
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Z
Λffiffi
α

p dpð1 − 2e−
πp2

4α jDν½zðtÞ�j2Þ ≃
Z

Λffiffi
α

p dp

�
1 −

�
1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2
p ��

1þO

�
α

p2

���
≃M

�
log

M
2Λ

þO
�
M2

Λ2
;
ffiffiffi
α

p
M

��
: ð3:42Þ

Hence, in the limit t → ∞ we obtain that:

hψ̄ψiðtÞ ≃ αt
π
log

αt
2Λ

þ � � � ; ð3:43Þ

where we denoted the subleading contribution as “� � �”.
This expression coincides with (3.40) in the approximation
under consideration. It also reproduces the behavior of the
scalar current found in [12].
In the caseM ≫ Λ one can use the decomposition (3.16)

in the entire domain ½0;Λ�:

hψ̄ψiðtÞ ∼
Z

Λ

0

dp

�
−1þ p2

2M2
þO

�
α2

M4

��

≃ −Λþ 1

6

Λ3

M2
þ � � � ; ð3:44Þ

i.e., in the leading order the current does not depend on time
and linearly diverges as Λ → ∞. We think that this
behavior has no physical sense, e.g., it does not allow us
to treat UV divergences properly. This means that an
indefinitely growing scalar field is not self-consistent
because it is not realistic, as we have mentioned already.
However, this problem can be avoided if one considers a

pulse background ϕcl ¼ ET tanh t
T instead of the ϕcl ¼ Et

one. On the one hand, for times t ≪ T these backgrounds
coincide, hence, the result (3.43) is valid. On the other
hand, for times t ≫ T the pulse background reproduces the
free Dirac field with constant mass m ¼ �λET. Hence, if
one chooses the UV cutoff Λ ≫ MðTÞ, the condition
λϕcl ≪ Λ is always satisfied, and the equality (3.40) holds.
Thus, the effective equation of motion for the boson field

gets modified in the following way:

∂2hϕi þ λ2hϕi
π

log
λhϕi
Λ

≈ 0: ð3:45Þ

This identity is valid for the fields from the interval
ffiffiffiffiffiffi
λE

p
≪

λϕcl ≪ Λ and hϕi ¼ ϕcl þ � � �. Note that ϕcl ¼ Et does not
solve this equation, i.e., the classical field must restructure
itself to satisfy the corrected equation. We discuss the
origin of such a behavior in the concluding section and in
the Appendix B.
Also note that the true equation of motion cannot depend

on the artificial UV cutoff Λ. This problem can be solved
by renormalization of the bare mass of scalar field. It turns
out that quantum fluctuations break the symmetry of the
problem and bring to the scalar field constant nonzero value
ϕ ¼ hϕiGS (see Appendix B). First, this means that the UV
cutoff in the expression (3.45) is replaced by the vacuum
value λhϕiGS. Second, excitations of the scalar field near

the new vacuum have the mass μ ∼ λ. We review the
derivation of these statements in the Appendix B.

C. Loop corrections

The tree-level calculation of the subsection III B indi-
cates the decay of the strong scalar field ϕ ¼ Et. Usually
this means that loop corrections significantly perturb the
ground state of the system. Which means that the back-
ground field excites population of higher levels and
anomalous averages [1–3,6–8,16]. In this subsection we
calculate loop corrections to the correlation functions and
find that loop corrections actually do not grow with time,
unlike the case of strong electric and gravitational fields.
Due to the nonstationarity of the theory in question we

use the Schwinger-Keldysh diagrammatic technique dis-
cussed in Sec. II B. Note that the definition (2.35) should be
corrected to take into account spinor indices of the fermions
in two dimensions. For convenience we do the spatial
Fourier transformation:

G��
ab ðx1; x2Þ ¼

Z
dp
2π

G��
ab ðt1; t2;pÞeipðx1−x2Þ; ð3:46Þ

which gives the following expressions for the fermionic
propagators:

iGþ−
ab ðt1; t2;pÞ ¼ ψa

p1ψ
c�
p2ðγ0Þcb ¼

�ψ1
p1ψ

1�
p2 −ψ1

p1ψ
2�
p2

ψ2
p1ψ

1�
p2 −ψ2

p1ψ
2�
p2

�
;

iG−þ
ab ðt1; t2;pÞ ¼ −ψ̃a

p1ψ̃
c�
p2ðγ0Þcb ¼

�−ψ̃1
p1ψ̃

1�
p2 ψ̃1

p1ψ̃
2�
p2

−ψ̃2
p1ψ̃

1�
p2 ψ̃2

p1ψ̃
2�
p2

�

¼
�−ψ2�

p1ψ
2
p2 −ψ2�

p1ψ
1
p2

ψ1�
p1ψ

2
p2 ψ1�

p1ψ
1
p2

�
; ð3:47Þ

where a, b enumerate spinor indices and we denoted for

short ψ ðþÞ
p;a ðtαÞ ¼ ψa

pα, ψ
ð−Þ
−p;aðtαÞ ¼ ψ̃a

pα. Here we also used
the representation (3.2) for gamma-matrices, decomposi-

tion (3.4) and the relation ψ ð−Þ
−p ðtÞ ¼ −γ1ðψ ðþÞ

p ðtÞÞ�. Let us
emphasize that we use the exact modes (3.22) and (3.23)
rather than the plane waves (3.8).
Corresponding bosonic propagators are as follows:

iDþ−ðt1; t2;pÞ ¼ fpðt1Þf�pðt2Þ ¼
1

2jpj e
−ijpjðt1−t2Þ;

iD−þðt1; t2;pÞ ¼ f�pðt1Þfpðt2Þ ¼
1

2jpj e
ijpjðt1−t2Þ; ð3:48Þ

where functions fpðtÞ are nothing but the free modes of the
scalar field:
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ϕðt; xÞ ¼
Z

dp
2π

½αpfpðtÞeipx þ α†pfpðtÞ�e−ipx�: ð3:49Þ

Operators αp and α†p satisfy the standard commutation relations: ½αp; α†q� ¼ 2πδðp − qÞ.
Using mode decompositions for fermion and boson fields, one obtains that after the Keldysh rotation (2.38) the tree-level

propagators have the following form:

DKðt1; t2;pÞ ¼
1

2
½fpðt1Þf�pðt2Þ þ f�pðt1Þfpðt2Þ�;

DR=Aðt1; t2;pÞ ¼ �θð�t1 ∓ t2Þ½fpðt1Þf�pðt2Þ − f�pðt1Þfpðt2Þ�;

trGK
abðt1; t2;pÞ ¼

1

2
ðψ1

p1ψ
1�
p2 − ψ2

p1ψ
2�
p2 þ ψ1�

p1ψ
1
p2 − ψ2�

p1ψ
2
p2Þ;

trGR=A
ab ðt1; t2;pÞ ¼ �θð�t1 ∓ t2Þðψ1

p1ψ
1�
p2 − ψ2

p1ψ
2�
p2 − ψ1�

p1ψ
1
p2 þ ψ2�

p1ψ
2
p2Þ: ð3:50Þ

Apart from the other advantages (e.g., less bulky formulas), these notations allow one to study the behavior of each p-mode
separately. Namely, the retarded and advanced propagators carry information about the spectrum of quasiparticles, while the
Keldysh propagators allow to specify the state of the theory. In fact, if one does the quantum average over an arbitrary state
jχi which respects spatial translational invariance, the Keldysh propagators acquire the following form:

DKðt1; t2;pÞ ¼
�
np þ

1

2

�
fpðt1Þf�pðt2Þ þ κpfpðt1Þf−pðt2Þ þ H:c:;

trGK
abðt1; t2;pÞ ¼

�
1

2
− n0p

�
ðψ1

p1ψ
1�
p2 − ψ2

p1ψ
2�
p2Þ − κ0pðψ1

p1ψ
2
p2 þ ψ2

p1ψ
1
p2Þ þ ðc:c; p:c;H:c:Þ; ð3:51Þ

where H.c. denotes Hermitian conjugation, p:c: denotes
the change p → −p and c:c: denotes the change

ψ ðþÞ
p → ψ ð−Þ

p . Also we introduced the notations as follows.
First, the bosonic Keldysh propagator incorporates the
level population of bosons hχjα†pαp0 jχi≡ 2πnpδðp − p0Þ
and anomalous quantum average hχjαpα−p0 jχi≡
2πκpδðp − p0Þ and its complex conjugate. Second, the
trace of the fermionic Keldysh propagator contains the level
population of fermions hχja†pap0 jχi≡ 2πn0pδðp − p0Þ, anti-
fermions hχjb†−pb−p0 jχi≡ 2πñ0pδðp − p0Þ and anomalous
quantum average hχjapb−p0 jχi≡ 2πκ0pδðp − p0Þ and its
complex conjugate. Note that the tree-level retarded and
advanced propagators are proportional to the commutator
[ϕ;ϕ] or anticommutator fψ ;ψ†g, correspondingly, which
are c-numbers. I.e., the latter propagators do not depend on
the choice of the state jχi.

Before turning on the interaction term, i.e., in the
Gaussian theory, all these expectation values are exactly
zero for the initial state âj0i ¼ α̂j0i ¼ 0 that we consider.
However, they can grow in time in the interacting case due
to the nonstationarity of the background field. Namely, the
secular growth of the level populations np, n0p or ñ0p (if
present) indicates the amplification of the higher levels
(than zero point fluctuations of the exact modes), whereas
the growth of anomalous quantum averages (if present)
means that the state of the theory at the start of the evolution
is not the true vacuum state [2]. In the following sections we
estimate one-loop corrections to these averages (Fig. 8) and
check their behavior at future infinity.

1. One-loop corrections to the boson propagators

In this subsubsection we calculate one-loop corrections
to the boson two-point correlation functions (Fig. 8).

FIG. 8. One-loop corrections to the fermion (a) and boson (b) two-point functions. Solid lines correspond to the bare fermion
propagators, dashed lines correspond to the bare boson propagators.
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For convenience we denote T ¼ 1
2
ðt1 þ t2Þ, τ ¼ t1 − t2,

where t1 and t2 are the time arguments of the two-
point functions. To simplify the expressions below we
assume that the evolution of the system starts after the
moment t0 ¼ −T. Note that the full evolution time is
T − t0 ¼ 2T. Then we take the limit T → ∞, fix τ ≪ T
and single out the leading contributions in this limit.
Such contributions indicate the destiny of the state
of the theory under consideration, because they tell
about the time evolution of npðTÞ and κpðTÞ introduced

in the previous subsection. For short below we use the
notation

λEta ¼ αta ¼ MðtaÞ ¼ Ma:

First, one can show that loop corrections to the retarded
and advanced propagators never grow as T → ∞ and
τ ¼ const. In fact, due to the presence of the theta-function
in these propagators one obtains the following expression
for the first loop correction to the retarded propagator:

ΔDRðt1; t2;pÞ ¼ −λ2tr
Z

t1

t2

dt3

Z
t3

t2

dt4

Z
dq
2π

DRðt1; t3;pÞGR
ab

�
t3; t4;

pþ q
2

�
GK

ba

�
t4; t3;

p − q
2

�
DRðt4; t2;pÞ: ð3:52Þ

Due to the limits of integration over t3 and t4 such an expression can grow only if τ → ∞, but not when T → ∞ for fixed τ.
The higher-order expressions posses similar behavior, because loop corrections do not change the causal properties of the
retarded and advanced propagators [2,16–20].
Now let us calculate the first loop correction to the Keldysh propagator:

ΔDKðt1; t2;pÞ ¼
1

2
½ΔDþþðt1; t2;pÞ þ ΔD−−ðt1; t2;pÞ�

¼ −
λ2

2

Z
dt3dt4

Z
dq
2π

X
σ1;3;4¼fþ;−g

Dσ1σ3
13 ðpÞGσ3σ4

34

�
pþ q
2

�
Gσ4σ3

43

�
p − q
2

�
Dσ4σ1

42 ðpÞsgnðσ3σ4Þ; ð3:53Þ

where we denote for short G��
a1a2ðt1; t2;pÞ≡G��

12 ðpÞ, D��ðt1; t2;pÞ≡D��
12 ðpÞ and assume the summation over the

coincident spinor indices. Also we denote the one-loop corrections to the propagators Dþþ and D−− as ΔDþþ and ΔD−−.
Then we open the brackets in (3.53) and substitute the tree-level propagators (2.35), (2.36). As a result, we obtain an

expression of the form (3.51), in which leading contributions to the level population and anomalous quantum average have
the following form:

npðTÞ ≃ 2λ2Re
Z

T

−T
dt3

Z
t3

−T
dt4

Z
dq
2π

eipðt3−t4Þ

2p
F�ðt3ÞFðt4Þ

¼ λ2

p
Re
Z

T

0

dt3

Z
t3

0

dt4

Z
∞

0

dq
π
½eipðt3−t4ÞF�ðt3ÞFðt4Þ þ sgnðjpj − jqjÞe−ipðt3þt4ÞFðt3ÞFðt4Þ�; ð3:54Þ

and κpðTÞ ≃ −2λ2
Z

T

−T
dt3

Z
t3

−T
dt4

Z
dq
2π

eipðt3þt4Þ

2p
Fðt3ÞF�ðt4Þ

¼ −
2λ2

p

Z
T

0

dt3

Z
t3

0

dt4

Z
∞

0

dq
π
½Fðt3ÞF�ðt4Þ cos ðpðt3 þ t4ÞÞ þ sgnðjpj − jqjÞFðt3ÞFðt4Þ sin ðpðt3 − t4ÞÞ�:

ð3:55Þ

Here we neglect the subleading (in the limit T → ∞, τ ≪ T) contributions and introduce the function FðtÞ to simplify the
expressions:

tr

�
Gþ−

34

�
pþ q
2

�
G−þ

43

�
p − q
2

��
¼ Fðt3ÞF�ðt4Þ: ð3:56Þ

Using the expressions for the propagators (2.35) one obtains that:

FðtÞ≡ ψ ðþÞ
pþq
2
;1
ðtÞψ ðþÞ

p−q
2
;2ðtÞ þ ψ ðþÞ

pþq
2
;2
ðtÞψ ðþÞ

p−q
2
;1ðtÞ; ð3:57Þ
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In both identities (3.54) and (3.55) we have divided the area
of the integration over t3 and t4 in a specific way and then
used the property (3.31) of the modes. Also we assumed
that p > 0 and used the invariance of the function FðtÞ
under the change q → −q.
It is instructive first to calculate integrals (3.54) and

(3.55) in the theory without background field ϕcl, i.e., when
the fermion modes are just plane waves (3.8). Substituting
these modes into the integrals, one finds:

npðTÞ ≃ λ2
Z

T

t0

dt0
Z

∞

−∞
dτ0
Z

∞

−∞

dq
2π

N e
iðωpþq

2

þωp−q
2
þjpjÞτ0

¼ λ2
Z

T

t0

dt0
Z

∞

−∞

dq
2π

N δðωpþq
2
þ ωp−q

2
þ jpjÞ

∼Oðλ2T0Þ; ð3:58Þ

and κpðT ¼ þ∞Þ

≃ −2λ2
Z

∞

−∞
dt0
Z

∞

0

dτ0
Z

∞

−∞

dq
2π

N e
2ijpjt0−iðωpþq

2

þωp−q
2
Þτ0

¼ −2λ2
Z

∞

−∞

dq
2π

N δð2jpjÞ

×

�
πδðωpþq

2
þ ωp−q

2
Þ − P

i
ωpþq

2
þ ωp−q

2

�
∼Oðλ2T0Þ:

ð3:59Þ

where N denotes the following expression:

N ¼ 1

16

ðpþ qÞðωpþq
2
−mÞ þ ðp − qÞðωp−q

2
−mÞ

ωpþq
2
ωp−q

2
ðωpþq

2
−mÞðωp−q

2
−mÞ ; ð3:60Þ

which depends on p and q and does not depend on t0 ¼ t3þt4
2

and τ0 ¼ t3 − t4. In the second integral we used the
Sokhotski–Plemelj theorem and denoted the Cauchy prin-
cipal value as P. Note that in κp we put the argument
T ¼ þ∞ and, hence, extended the limits of integrations
over times to the infinity, because we would like to show
that it is not divergent as T → þ∞. Thus, one obtains either
finite expression6 as T → þ∞ or an integration over delta-
function whose argument is never zero. In other words, the
one-loop correction to the free boson propagator does not
grow with time T due to the energy conservation which is
ensured by the delta-functions. This agrees with the fact
that in stationary situations correlation functions depend
only on the time difference t1 − t2 and do not depend
on T ¼ ðt1 þ t2Þ=2.
Now let us consider the strong scalar field background,

where the modes have the form (3.22) and (3.23).
Unfortunately, in this case the integrals (3.54) and (3.55)
cannot be taken exactly. Hence, we will estimate them in

the limit T → ∞, τ ≪ T. Concretely, our goal here is to
find if there are contributions to n and κ which survive in
the limit T → ∞, λ → 0 and λ2gðTÞ ¼ const, where gðTÞ is
some growing function of T (e.g., gðTÞ ¼ Tn for n ≥ 1
or gðTÞ ¼ logT).
Using the expansions (3.28) and (3.29) one can estimate

the function FðtÞ:

FðtÞ ≃

8>>>>>>>><
>>>>>>>>:

ð1þsgnðp−qÞ
2

þ 1þsgnðq−pÞ
2

2pαt
jq2−p2j þ � � �Þe−ijpþqjþjp−qj

2
t;

if t < jp−qj
2α ;


1ffiffi
2

p þ � � �
�
e−

iαt2
2
−ijpþqjt; if jp−qj

2α < t < jpþqj
2α ;


jpþqj
2αt þ � � �

�
e−iαt

2þiðp2þq2Þ
2α log ð2αt2Þ; if t > jpþqj

2α :

ð3:61Þ

Before calculating integrals (3.54) and (3.55), let us guess
where the leading contribution may come from. First, we
expect that propagators with small external momenta,
p < αT, grow faster, because corresponding low laying
levels are easier to populate. Second, usually loop integrals
receive leading contributions due to large virtual momenta,
q > p—the main income into the lower p–levels comes
from the higher q–levels. Finally, the intuition gained
during the study of other background fields [2,3,6–11]
tells us that the main contribution should come from the
integrands of the form F�ðt3ÞFðt4Þeipðt3−t4Þ, because in this
case it is possible to single out the part of the integrand
which does not depend on t0 ¼ t3þt4

2
. (Then the integral over

dt0 may give the growing with T factor.) For all other
combinations of functions FðtÞ and eipt this behavior is
impossible,7 hence, their contributions are suppressed.
Based on this argumentation, consider the following
integral (p < αT):

I ¼
Z

∞

0

dq
Z

T

0

dt3

Z
t3

0

dt4F�ðt3ÞFðt4Þeipðt3−t4Þ≃ ð3:62Þ

≃
Z

p

0

dq

�Z pþq
2α

0

dt3

Z
t3

0

dt4e2ipðt3−t4Þ

þ
Z

T

pþq
2α

dt3

Z pþq
2α

0

dt4
p

2αt3
eiαt

2
3
−2ipt4

þ
Z

T

pþq
2α

dt3

Z
t3

pþq
2α

dt4
p2

4α2t3t4
eiαt

2
3
−iαt2

4

�
ð3:63Þ

6Note that the integral over dq in (3.59) converges.

7Except the combination Fðt3ÞF�ðt4Þeipðt3−t4Þ, which is not
presented in the integrals (3.54) and (3.55), and complex
conjugated combinations.
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þ
Z

2αT−p

p
dq

�Z q−p
2α

0

dt3

Z
t3

0

dt4
4p2α2t3t4

q4
eiqðt3−t4Þ þ

Z qþp
2α

q−p
2α

dt3

Z q−p
2α

0

dt4

ffiffiffi
2

p
pαt4
q2

eiqðt3−t4Þ

þ 1

2

Z qþp
2α

q−p
2α

dt3

Z
t3

q−p
2α

dt4eiqðt3−t4Þ þ
Z

T

qþp
2α

dt3

Z q−p
2α

0

dt4
q

2αt3
eiαt

2
3
−iqt4

þ
Z

T

qþp
2α

dt3

Z qþp
2α

q−p
2α

dt4
q

2
ffiffiffi
2

p
αt3

eiαt
2
3
−iqt4 þ

Z
T

qþp
2α

dt3

Z
t3

qþp
2α

dt4
q2

4α2t3t4
eiαt

2
3
−iαt2

4

�
ð3:64Þ

þ
Z

2αTþp

2αT−p
dq

�Z q−p
2α

0

dt3

Z
t3

0

dt4
4p2α2t3t4

q4
eiqðt3−t4Þ þ

Z
T

q−p
2α

dt3

Z q−p
2α

0

dt4
2pαt4
q2

eiqðt3−t4Þ

þ 1

2

Z
T

q−p
2α

dt3

Z
t3

q−p
2α

dt4eiqðt3−t4Þ
�

ð3:65Þ

þ
Z

∞

2αTþp
dq
Z

T

0

dt3

Z
t3

0

dt4
4p2α2t3t4

q4
eiqðt3−t4Þ: ð3:66Þ

In this expression we threw away the subleading terms, i.e., held only leading absolute values and phases of the integrands
in the limit in question. However, even this rough estimate shows that there are only two terms which can grow as T → ∞
(in the above formula these terms are enclosed in the boxes), whereas other contributions give constant or decaying with
T corrections:

I1 ≡ 1

2

Z
2αT−p

p
dq
Z qþp

2α

q−p
2α

dt3

Z
t3

q−p
2α

dt4eiqðt3−t4Þ ≃
ip
4α

log
αT
p

þO
�
p
α

�
; ð3:67Þ

I2 ≡
Z

2αT−p

p
dq
Z

T

qþp
2α

dt3

Z
t3

qþp
2α

dt4
q2

4α2t3t4
eiαt

2
3
−iαt2

4 ≃
i
3
αT þ ip

2
log

αT
p

þO
�
p
α

�
: ð3:68Þ

HereOðpαÞ denotes such a function gðTÞ that λgðTÞ ¼ const as λ → 0 and T → ∞. Now it is obvious that such contributions
cannot appear if the integrand contains Fðt3ÞFðt4Þ instead of F�ðt3ÞFðt4Þ, because in this case oscillating terms do not
cancel out:

I1 ∼
Z

2αT−p

p
dq
Z

dt3

Z
dt4eiqðt3þt4Þ ∼

Z
2αT−p

p

dq
q2

∼
1

p
; ð3:69Þ

I2 ∼
Z

2αT−p

p
dq
Z

T

qþp
2α

dt3

Z
t3

qþp
2α

dt4
q2

4α2t3t4
eiαt

2
3
þiαt2

4 ∼
Z

2αT−p

p
dq

�
q2eiαT

2

α4T4
−

q2e
iðqþpÞ2

4α

ðqþ pÞ4
�
∼
1

p
: ð3:70Þ

Also there is no any significant contribution if p > αT. In fact, in the latter case the line (3.64) is replaced by the line (3.65)
which gives leading behavior similar to (3.67). However, this time it is bounded from above:

I ≃
1

2

Z
2αTþp

p
dq
Z

T

q−p
2α

dt3

Z
t3

q−p
2α

dt4eiqðt3−t4Þ þ � � � ≃ 1

2

�
ip
2α

þ iT

�
log

�
1þ αT

p

�
− iT þ � � � ¼ O

�
p
α

�
: ð3:71Þ

Thus, despite the fact that this integral grows at some time intervals, it is suppressed by big external momenta and does not
diverge when T → ∞.
Now let us combine all the above observations to estimate the expressions (3.54) and (3.55). Keeping in mind the

integrals (3.67) and (3.68), we consider small external momenta: p < αT, neglect the integrands proportional to Fðt3ÞFðt4Þ
or F�ðt3ÞF�ðt4Þ, and focus on the interval p < q < 2αT − p, q−p

2α < t3 <
qþp
2α ,

q−p
2α < t4 < t3. However, this time we

calculate the integrals more accurately, i.e., we take into account the next-to-the-leading order terms in the phases of the
exponents:
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npðTÞ ≃
λ2

πp
Re
Z

2αT−p

p
dq
Z qþp

2α

q−p
2α

dt3

Z
t3

q−p
2α

dt4eiðqþpÞðt3−t4Þþipðt3−t4Þþ1
2
iαðt2

3
−t2

4
Þ

þ λ2

πp
Re
Z

2αT−p

p
dq
Z

T

qþp
2α

dt3

Z
t3

qþp
2α

dt4
q2

4α2t3t4
eiαt

2
3
−iαt2

4
þipðt3−t4Þ þ λ2

πp
O
�
p
α

�

≃
λ2

πp
Re

�
i
3
αT þ ip

2
log

αT
p

þ ip
α
log

αT
p

þO
�
p
α

��

∼ λ2O
�
p
α

�
→ 0; as λ → 0; T → ∞; ð3:72Þ

and κpðTÞ ≃ −
2λ2

πp

Z
2αT−p

p
dq
Z qþp

2α

q−p
2α

dt3

Z
t3

q−p
2α

dt4e−iðqþpÞðt3−t4Þþ1
2
iαðt2

3
−t2

4
Þ cos ðpðt3 þ t4ÞÞ

−
2λ2

πp

Z
2αT−p

p
dq
Z

T

qþp
2α

dt3

Z
t3

qþp
2α

dt4
q2

4α2t3t4
eiαt

2
3
−iαt2

4 cos ðpðt3 þ t4ÞÞ −
2λ2

πp
O
�
p
α

�

≃ −
2λ2

πp

Z
2αT−p

p
dq

�
2i sinðp2

α Þ
p

cosðpqα Þ
q

þ sinð2pTÞ
8p

q2

α3T3
−
sinðpqα Þ
pq

�
−
2λ2

πp
O
�
p
α

�

∼
λ2

p2
sin

�
p2

α

�
Ci

�
p2

α

�
þ λ2

p2
sinð2pTÞ þ λ2O

�
p
α

�
→ 0; as λ → 0; T → ∞; ð3:73Þ

where CiðxÞ is the cosine integral. In essence, integral
(3.72) does not grow with T because it is real and the
integral (3.73) does not grow due to the oscillating term
cos ðpðt3 þ t4ÞÞ. Thus, both level population and anoma-
lous quantum average do not grow in the limit T → ∞.
They are generated, because the situation is not stationary,
but are suppressed by the small λ2 factor, which is not
accompanied by a growing factor Tn, n ≥ 1. This situation
is very different from the case of strong electric and
gravitational fields [1–3,6–8].
The technical reason for the absence of the secular

growth in the background scalar field as opposed to its
presence, e.g., in constant electric field or de Sitter space
can be explained as follows. In the constant electric field
(de Sitter space) all the quantities depend on the invariant/
physical momenta p3 − eEt (jp⃗je−t=H). (Here p3 is the
component of the momentum along the external electric
field E and H is the Hubble constant in the case of the de
Sitter space.) As the result all physical quantities are
invariant under the simultaneous translations t → t − a
and p3 → p3 − eEa (jp⃗j → jp⃗je−a=H). Due to such sym-
metries the integrands of ðt3 þ t4Þ=2 combination do not
depend on it. This fact brings the growing factor of T1. At
the same time in the background scalar field under
consideration there is no such a symmetry.
Finally, note that Wightman functionsDþ− andD−þ also

do not receive growing corrections in the limit λ → 0,
T → ∞ for the same reasons. As we have shown above,
these correlation functions can receive growing corrections
only from the integrals of the form (3.67) and (3.68);

however, both Dþ− and D−þ contain only the real part of
these integrals. This is consistent with our observations
above, because imaginary part of such correlation functions
is proportional to the retarded propagator, which does not
grow in the limit in question.

2. One-loop corrections to the fermion
Keldysh propagator

In this subsubsection we calculate one-loop corrections
to the fermion two-point functions (Fig. 8). We also work in
the same limit for times T and τ as in the previous
subsubsection and set t0 ¼ −T.
For convenience here we restore the mass of the boson

field:

S ¼
Z
d2x

�
1

2
∂μϕ∂μϕ −

1

2
μ2ϕ2 þ iψ̄=∂ψ − λϕψ̄ψ

�
: ð3:74Þ

On one hand, it allows us to avoid uncontrollable infrared
divergences in the loop integrals due to massless 2D scalar
field. On the other hand, it is a standard textbook exercise to
show that the scalar field spontaneously acquires a mass
μ ∼ λ (see Appendix B). We use this estimate to roughly
check the self-consistency of the expressions below.
Obviously, loop corrections to the fermion retarded and

advanced propagators do not grow with time. In fact, these
propagators have the same causal properties as boson
retarded and advanced propagators, and hence the reason-
ing of the previous subsubsection also works for them.
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First loop correction to the fermionic Keldysh propagator is given by the following expression:

ΔGK
abðt1; t2;pÞ ¼

1

2
½ΔGþþ

ab ðt1; t2;pÞ þ ΔG−−
ab ðt1; t2;pÞ�

¼ −
λ2

2

Z
dt3dt4

Z
dq
2π

X
σ1;2;3¼fþ;−g

Gσ1σ3
13 ðpÞGσ3σ4

34 ðqÞDσ3σ4
34 ðp − qÞGσ4σ1

42 ðpÞsgnðσ3σ4Þ: ð3:75Þ

Then we open the brackets, substitute the expressions (2.35) and (2.36), take the trace over the external spinor indices and
obtain the following leading contributions to the fermion level density and anomalous quantum average:

n0pðTÞ ≃ −2λ2Re
Z

T

−T
dt3

Z
t3

−T
dt4

Z
dq
2π

eijp−qjðt3−t4Þ

2jp − qj ðψ1�
p;3ψ

2�
q;3 þ ψ2�

p;3ψ
1�
q;3Þðψ1

q;4ψ
2
p;4 þ ψ2

q;4ψ
1
p;4Þ;

≃ −λ2Re
Z

T

0

dt3

Z
t3

0

dt4

Z
dq
2π

�
eijp−qjðt3−t4Þ

jp − qj H�ðt3ÞHðt4Þ þ sgnq
eijp−qjðt3þt4Þ

jp − qj H�ðt3ÞH�ðt4Þ
�
; ð3:76Þ

and κ0pðTÞ ≃ 2λ2
Z

T

−T
dt3

Z
t3

−T
dt4

Z
dq
2π

e−ijp−qjðt3−t4Þ

2jp − qj ðψ1�
p;3ψ

1
q;3 − ψ2�

p;3ψ
2
q;3Þðψ1�

q;4ψ
2�
p;4 þ ψ2�

q;4ψ
1�
p;4Þ

≃ λ2
Z

T

0

dt3

Z
t3

0

dt4

Z
dq
2π

�
eijp−qjðt3−t4Þ

jp − qj ðH̃ðt3ÞH�ðt4Þ −Hðt3ÞH̃�ðt4ÞÞ

þ sgnq
eijp−qjðt3þt4Þ

jp − qj ðH̃ðt3ÞHðt4Þ þHðt3ÞH̃ðt4ÞÞ
�
; ð3:77Þ

where we introduced functions HðtÞ and H̃ðtÞ, which are defined as:

HðtÞ≡ ψ ðþÞ
p;1 ðtÞψ ðþÞ

q;2 ðtÞ þ ψ ðþÞ
p;2 ðtÞψ ðþÞ

q;1 ðtÞ;
H̃ðtÞ≡ ψ ðþÞ�

p;1 ðtÞψ ðþÞ
q;1 ðtÞ − ψ ðþÞ�

p;2 ðtÞψ ðþÞ
q;2 ðtÞ: ð3:78Þ

As in the previous subsubsection, we have divided the area of the integration over t3 and t4 in a specific way and then used
the property (3.31) of the modes to obtain expressions (3.76) and (3.77). Also we assumed that p > 0.
For illustrative reasons let us again perform the calculation in the case when there is no any background field, ϕcl ¼ 0. As

in the boson loop calculation (Sec. III C 1), it is straightforward to show that one-loop corrections to the fermion quantum
expectation values do not grow with T:

n0pðTÞ ≃ λ2
Z

T

t0

dt0
Z

∞

−∞
dτ0
Z

dq
2π

Meiðωpþωqþjp−qjÞτ0

≃ λ2
Z

T

t0

dt0
Z

dqMδðωp þ ωq þ jp − qjÞ ∼OðT0Þ; ð3:79Þ

and κ0pðTÞ ≃ 2λ2
Z

T

t0

dt0
Z þ∞

0

dτ
Z

dq
2π

N e2iωpt0e−iðjp−qjþωqÞτ0

¼ 2λ2
Z

dqN δð2ωpÞ
�
πδðjp − qj þ ωqÞ − P

i
jp − qj þ ωq

�
∼OðT0Þ: ð3:80Þ

Here we have made the following substitutions: t0 ¼ t3þt4
2
, τ0 ¼ t3 − t4, and singled out the time-independent parts of the

integrands:
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1

jp − qj ðψ
1�
p;3ψ

2�
q;3 þ ψ2�

p;3ψ
1�
q;3Þðψ1

q;4ψ
2
p;4 þ ψ2

q;4ψ
1
p;4Þ ¼ MeiðωpþωqÞðt3−t4Þ; where

M≡ 1

jp − qj
ðpðωq −mÞ þ qðωp −mÞÞ2
4ωpωqðωp −mÞðωq −mÞ ;

1

jp − qj ðψ
1�
p;3ψ

1
q;3 − ψ2�

p;3ψ
2
q;3Þðψ1�

q;4ψ
2�
p;4 þ ψ2�

q;4ψ
1�
p;4Þ ¼ N e−iωqðt3−t4Þþiωpðt3þt4Þ; where

N ≡ 1

jp − qj
ðpq − ðωp −mÞðωq −mÞÞðpðωq −mÞ þ qðωp −mÞÞ

4ωpωqðωp −mÞðωq −mÞ :

ð3:81Þ

As in boson calculation (Sec. III C 1), integrals do not grow due to the delta-functions which ensure the energy conservation
law. As the result the two-point functions depend only on the time difference t1 − t2, as it should be in stationary situations.
However, in the strong scalar field background there is no energy conservation. At the same time the integrals (3.76) and

(3.77) again cannot be taken exactly. Hence, we estimate them in the limit T → ∞, τ ≪ T. Using expansion (3.28) and
(3.29) one can find the behavior of HðtÞ and H̃ðtÞ:

HðtÞ ≃

8>>>>>>>>><
>>>>>>>>>:



sgnqþ1

2
þ sgnq−1

2

αjtjðjqj−pÞ
2jqjp

�
e−iðpþjq−pjÞt; if t < minðp; jqjÞ;

sgnqffiffi
2

p ð2αt2Þip24α e−iαt2
2
−ijqjt; if p < jqj and p < αjtj < jqj;

1ffiffi
2

p ð2αt2Þiq
2

4α e−
iαt2
2
−ipt; if jqj < p and jqj < αjtj < p;

pþq
2αjtj ð2αt2Þ

iðp2þq2Þ
4α e−iαt

2

; if t > maxðp; jqjÞ;

ð3:82Þ

H̃ðtÞ ≃

8>>>>>>>>><
>>>>>>>>>:



1−sgnq

2
þ sgnqþ1

2

αjtjðjqjþpÞ
2jqjp

�
e−iðp−jq−pjÞt; if t < minðp; jqjÞ;

1ffiffi
2

p ð2αt2Þ−ip2

4α e
iαt2
2
−ijqjt; if p < jqj and p < αjtj < jqj;

1ffiffi
2

p ð2αt2Þiq24α e−iαt2
2
þipt; if jqj < p and jqj < αjtj < p;

ð2αt2Þiðq
2−p2Þ
4α ; if t > maxðp; jqjÞ:

ð3:83Þ

Here we showed only the leading terms in the exponents and their prefactors, as in the previous subsubsection.
Note that integrals of Hðt3ÞHðt4Þ and Hðt3ÞH̃ðt4Þ (and similar expressions) are suppressed in comparison with the

integral overH�ðt3ÞHðt4Þ, because the former always contain oscillating factors of both t3 − t4 and t3 þ t4 simultaneously.
Hence, due to the same argumentation as in the previous subsubsection, if we would like to single out a growing
contribution in the limit T → ∞, it is sufficient to consider the following integral (we assume p < αT):

I ¼
Z

∞

0

dq
Z

T

0

dt3

Z
t3

0

dt4

�
H�ðt3ÞHðt4Þ

eijq−pjðt3−t4Þ

jq − pj þ ðq → −qÞ
�

ð3:84Þ

¼
�Z

p−μ

0

dq

�Z q
α

0

dt3

Z
t3

0

dt4 þ
Z p

α

q
α

dt3

Z q
α

0

dt4 þ
Z p

α

q
α

dt3

Z
t3

q
α

dt4 ð3:85Þ

þ
Z

T

p
α

dt3

Z q
α

0

dt4 þ
Z

T

p
α

dt3

Z p
α

q
α

dt4 þ
Z

T

p
α

dt3

Z
t3

p
α

dt4

�

þ
Z

pþμ

p−μ
dq

�Z p
α

0

dt3

Z
t3

0

dt4 þ
Z

T

p
α

dt3

Z p
α

0

dt4 þ
Z

T

p
α

dt3

Z
t3

p
α

dt4

�
ð3:86Þ
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þ
Z

αT

pþμ
dq

�Z p
α

0

dt3

Z
t3

0

dt4 þ
Z q

α

p
α

dt3

Z p
α

0

dt4 þ
Z q

α

p
α

dt3

Z
t3

p
α

dt4 ð3:87Þ

þ
Z

T

q
α

dt3

Z p
α

0

dt4 þ
Z

T

q
α

dt3

Z q
α

p
α

dt4 þ
Z

T

q
α

dt3

Z
t3

q
α

dt4

�

þ
Z

∞

αT
dq
�Z p

α

0

dt3

Z
t3

0

dt4 þ
Z

T

p
α

dt3

Z p
α

0

dt4 þ
Z

T

p
α

dt3

Z
t3

p
α

dt4

��

×

�
H�ðt3ÞHðt4Þ

eijq−pjðt3−t4Þ

jq − pj þ ðq → −qÞ
�
: ð3:88Þ

Note that we have restored the mass μ ≠ 0, i.e., excluded
the integration interval q ∈ ½p − μ; pþ μ� to get rid of the
logarithmic infrared divergencies from the virtual boson.
Considering each term in the above sum and using
corresponding expansions from (3.82) one finds that the
only terms which potentially can grow with T come from
the integrals in boxes:

I ≃
i
2α

log
αT
p

þO
�
1

α

�
· log

p
μ
þO

�
1

α

�
: ð3:89Þ

HereOð1αÞ denotes such a function gðTÞ that λgðTÞ ¼ const
as λ → 0 and T → ∞. Note that such integrals do not grow
if p > αT (in this case they are bounded from above) or if
the integrand contains other combinations of HðtÞ, H�ðtÞ,
H̃ðtÞ and H̃�ðtÞ (in this case time-oscillating functions
reduce the growth rate at least by one power of T).
Therefore, we get only nongrowing with T contributions
both in level population and anomalous quantum averages
for fermions:

n0pðTÞ ∼ κ0pðTÞ ∼ λ2 · log
p
μ
·O
�
1

α

�
→ 0;

as λ → 0 and T → ∞: ð3:90Þ

This limit holds even if we substitute the mass μ ∼ λ
expected from the standard equilibrium analysis
(Appendix B). Thus, for the fermions the situation is
similar to the one for bosons.

3. One-loop corrections to vertexes

To make a thorough analysis in this subsubsection we
calculate one-loop correction to the three-point correlation
function G���

ab ðx1; x2; x3Þ, i.e., to the vertex (Fig. 9). Note
that in nonstationary situations in strong background fields
vertexes potentially can also show a secular growth [4].
To single out the growing contributions, if any, we

consider the limit jti − tjj ≪ T and 1
3
ðt1 þ t2 þ t3Þ ¼

T → ∞. For convenience we work before the Keldysh rota-
tion (2.35), (2.36) and do spatial Fourier transformation.

We set external momenta of the three-point correlation
function jpj; jqj → 0 and consider the virtual momentum in
the loop as follows jrj ≫ αT (see fig. 9). On general
physical grounds one can expect that the growing con-
tribution, if any, comes from this region of physical
parameters. A generic contribution in this limit has the
following form:

ΔG���∼
Z

T

t0

dt4dt5dt6

Z
jrj>M

dr
jrj

×e�ijrjðt4−t5Þ�ijr−p−qjðt5−t6Þ�ijr−pjðt6−t4Þ�ijqjt6�
iαt2

4
2α �

iαt2
5

2α

∼
Z

T

t0

dt4dt5dt6

Z
∞

M

dr
r

×e�ijrjðt4−t5Þ�ijrjðt5−t6Þ�ijrjðt6−t4Þ�ijqjt6�
iαt2

4
2
�iαt2

5
2

×cosð�jpþqjðt5− t6Þ�jpjðt6− t4ÞÞ; ð3:91Þ

FIG. 9. One-loop correction to the vertex.
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where we took into account different signs of the virtual
momentum r. Let us estimate the expression (3.91) for
different combinations of signs. For this purpose we need
the following integral which is saturated in the vicinity
of zero:

Z
t

0

e
ix2
2
þiρxdx ¼ 1þ i

2

ffiffiffi
π

p þO
�
1

t

�
þOðρÞ; if ρ ≪ 1

Z
t

0

e
ix2
2
þiρxdx ¼ i

ρ
þO

�
1

t

�
þO

�
1

ρ2

�
; if ρ ≫ 1:

ð3:92Þ

First, consider the situation when the exponent in the
second line of (3.91) vanishes, i.e., all terms which are
proportional to jrj cancel each other. In this case the integral
(3.91) reduces to the following expression:

ΔG��� ∼
Z

T

t0

dt6e�iðjpþqj−jpj�jqjÞt6
Z

Λ

M

dr
r

≲ ðT − t0Þ log
Λffiffiffi
α

p : ð3:93Þ

Naively one can think that such a term gives growing with
T contribution. However, such a term always appears with
the following products of theta-functions: θ45θ56θ64 or
θ46θ65θ54, which are identically zero. Hence, this growth
does not occur in the vertex.
Second, consider the case when the exponent (3.91) does

not contain the term ijrjt6, but contain terms �ijrjt4 and
�ijrjt5. Then:

ΔG��� ∼
Z

T

t0

dt6e�iðjpþqj−jpj�jqjÞt6
Z

Λ

M

dr
r3

≲ T − t0
M2

≲OðT0Þ: ð3:94Þ

Finally, consider a situation when the time t6 does not
cancel out in the exponent (3.91). Integrating out t4 and t5,
one obtains the following expression:

ΔG��� ≲
Z

T

t0

dt6

Z
Λ

M

dr
r
e�irt6 ∼

Z
T

t0

dt6
αTt6

≲OðT0Þ:

ð3:95Þ

Our arguments here are generic and, hence, are applicable
also to other vertex corrections and to other types of
vertexes. Thus, we can conclude that one-loop corrections
to the three-point correlation functions also do not grow in
the limit T → ∞.

IV. LINEARLY GROWING IN SPACE
BACKGROUND SCALAR FIELD IN

TWO DIMENSIONS

In this section we consider the same theory as above
(3.1), but in a different background field. We use the
following representation for the Clifford algebra:

γ0 ¼
�
0 1

1 0

�
; γ1 ¼

�−i 0

0 i

�
; ð4:1Þ

and consider the background field which linearly grows
with space coordinate:

ϕcl ¼
m
λ
þ Ex; ψ cl ¼ 0: ð4:2Þ

Without loss of generality, we restrict our attention to the
case E > 0, since the case E < 0 is achieved by reversal
x → −x. Specifically, in the limit E → 0 this background
reproduces free fermion field with the mass m. However,
note that in the background field this mass can be removed
by the translation x → x − m

λE. The situation is obviously the
same as in the time-dependent background above.

A. Modes

To set up the notations consider again the free massive
Dirac field. Unlike the case of the subsection III A, here we
have to use the following decomposition for the field:

ψðx; tÞ ¼
Z
jωj>m

dω
2π

½âωψðx;ωÞe−iωt þ b̂†ωψ̃ðx;ωÞeiωt�;

ð4:3Þ

because in the background that we consider in this section
there is time translational invariance rather than the
spatial one.
The functions ψðx;ωÞe−iωt and ψ̃ðx;ωÞeiωt solve the

free equations of motion (3.5) and creation and annihilation
operators âω and b̂ω obey the standard anticommutation
relations which are similar to (3.6). This fixes the equal-
time anticommutation relations (3.7). The frequency in this
expression runs in the interval ω ∈ ð−∞;−m� ∪ ½m;∞Þ.
The form of ψðx;ωÞ and ψ̃ðx;ωÞ spinors is as follows:

ψðx;ωÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ωp

p
�

ω

m − ip

�
eipx;

ψ̃ðx;ωÞ ¼ 1ffiffiffiffiffiffiffiffiffi
2ωp

p
�

ω

−m − ip

�
e−ipx; ð4:4Þ

where p2 ¼ ω2 −m2 and we have used the Dirac repre-
sentation for gamma-matrices (4.1).
Now, let us consider the Dirac field on the classical

background ϕcl ¼ m
λ þ Ex. In this case we have the analog
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of the decomposition (4.3), but with the modes that solve
the following equation:

ði=∂ −m − αxÞψωðx; tÞ ¼ 0; ð4:5Þ

where we have defined for short α ¼ λE.
Because of the time translational invariance of the

equations of motion one can do the time Fourier trans-
formation8 and obtain the equation for the spatial coor-
dinate dependent part of the modes:

½iγ0ð−iωÞ þ iγ1∂x −m − αx�ψðx;ωÞ ¼ 0: ð4:6Þ

As in the time-dependent field case (Sec. III A), one can
decouple this system applying the operator ½−γ0ω −
iγ1∂x −m − αx� to its left-hand side. Then the system
reduces to:� ½∂2

x − ðmþ αxÞ2 þ ω2 − α�ψ1ðx;ωÞ ¼ 0;

½∂2
x − ðmþ αxÞ2 þ ω2 þ α�ψ2ðx;ωÞ ¼ 0:

ð4:7Þ

The exact solution of this equation can be represented via a
sum of two linearly independent parabolic cylinder func-
tions DνðzÞ:

ψ1ðx;ωÞ ¼ C1ðωÞDν−1ðzÞ þ C2ðωÞD−νðizÞ;
ψ2ðx;ωÞ ¼ B1ðωÞDνðzÞ þ B2ðωÞD−ν−1ðizÞ; ð4:8Þ

where C1;2, B1;2 are complex constants which we will fix
below, and for convenience we define:

ν≡ ω2

2α
; zðxÞ≡

ffiffiffi
2

α

r
ðmþ αxÞ: ð4:9Þ

Note that these variables are real unlike the ϕcl ¼ Et
case (3.15).
In order to fix the integration constants C1;2, B1;2 one

should impose additional constraints on the modes (4.8). To
do this, consider the limit jωj ≫ ffiffiffi

α
p

and fix x. We expect
that the modes in the scalar background and in free theory
to have similar behavior in such a limit. In other words, the
modes (4.8) must behave as plane waves (i.e., as e−iωt�ijωjx)
for ω → ∞. We refer to functions with asymptotic behavior
∼e−iωtþijωjx as “positive frequency modes” and functions
∼eiωt−ijωjx as “negative frequency modes.” As above we
choose such modes to have the proper Hadamard behavior
of the propagators. More generic choice of the modes is
also possible, as we have discussed at the end of the
subsection III 1.
Note that one obtains the “negative frequency” modes

from the “positive frequency” ones by the following
operation:

ψ̃ðx;ωÞ ¼ iγ1ψ�ðx;ωÞ or ψ̃ðx;−ωÞ ¼ ψ�ðx;ωÞ:
ð4:10Þ

Consider the anticommutation relation (3.7):

fψaðt; xÞ;ψ†
bðt; yÞg ¼

Z
dω
2π

½ψaðx;ωÞψ†
bðy;ωÞ

þ ψ̃aðx;−ωÞψ̃†
bðy;−ωÞ�

¼ δðx − yÞδab; ð4:11Þ

where a, b ¼ 1, 2 enumerate spinor indices. Using asymp-
totic normalization method [33], the connection between
positive and negative frequency modes (4.10) and require-
ment ψðx;ωÞ ∼ eijωjx in the limit ω → ∞, we get the
following asymptotic behavior at high frequencies:

ψaðx;ωÞψ†
bðy;ωÞ ¼

1

2
eijωjðx−yÞδab: ð4:12Þ

Hence, the asymptotic behavior of ψ1ðx;ωÞ for ω → ∞ is
as follows:

ψ1ðx;ωÞ ¼
1ffiffiffi
2

p eijωjxþiφðωÞ; ð4:13Þ

where φðωÞ is some coordinate independent phase.
Now, using the asymptotics of parabolic cylinder

function for large values of the parameter [28,29,34], we
choose the coefficients C1;2ðωÞ in (4.8) in order to get the
exponent: ψ1ðx;ωÞ ¼ 1ffiffi

2
p eijωjx in the limit jωj ≫ ffiffiffi

α
p

, jmþ
αxj ≪ jωj due to (4.13). Thus, we obtain the first compo-
nent of the positive-frequency mode ψ1ðx;ωÞ:

ψ1ðx;ωÞ ¼
1

2
e
iπω2
4α −ijωjmα

�
e
iπω2
4α e−

ω2

4αþω2

4α log
ω2

2αD−νðizÞ

−
ijωjffiffiffiffiffiffi
2α

p e
ω2

4α−
ω2

4α log
ω2

2αDν−1ðzÞ
�
: ð4:14Þ

We can get rid of the phase factor due to its arbitrariness:

ψ1ðx;ωÞ ¼
1

2

�
e
iπω2
4α e−

ω2

4αþω2

4α log
ω2

2αD−νðizÞ

−
ijωjffiffiffiffiffiffi
2α

p e
ω2

4α−
ω2

4α log
ω2

2αDν−1ðzÞ
�
: ð4:15Þ

Then ψ2ðx;ωÞ can be found from the system (4.6) to be as
follows:

8Note that in the subsection III A we did the spatial Fourier
transformation.
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ψ2ðx;ωÞ ¼
1

ω
ðmþ αx − ∂xÞψ1ðx;ωÞ

¼ i
2

�
e
iπω2
4α e−

ω2

4αþω2

4α log
ω2

2α
jωjffiffiffiffiffiffi
2α

p D−ν−1ðizÞ

− e
ω2

4α−
ω2

4α log
ω2

2αDνðzÞ
�
sgnðωÞ: ð4:16Þ

Here we have used the relations (3.21). The expressions for
the negative frequency modes are obtained using the
relation (4.10).

B. Tree-level scalar current

According to the operator equations of motion (3.37),
one needs to calculate the classical current jclðxÞ≡ h ˆ̄ψ ψ̂i
to find the response of the classical field ϕcl ¼ hϕ̂i. We use
the expansion of the fermion field over the modes (4.3) in
order to find the expression for this current:

h0jψ̄ψ j0i ¼
Z

dω
2π

ðψ̃1ψ̃
�
2 þ ψ̃�

1ψ̃2Þ: ð4:17Þ

For the same reason as in the subsection III B we expect the
following dependence for the current (3.40) on the ϕcl ¼
m
λ þ Ex background:

hψ̄ψi ≃ λϕcl

π
log

λϕcl

2Λ
: ð4:18Þ

Note that in this case the analog of the mass parameter is

MðxÞ ¼ λϕcl ¼ mþ λEx: ð4:19Þ

Let us check this conjecture and calculate the integral
(4.17). Note again that MðxÞ ¼ mþ αx indefinitely grows
with x-coordinate, so it can overcome an arbitrarily large
fixed scale Λ. Due to this fact we separately consider cases
M < Λ and M > Λ. However, the last case is not realistic,
because the infinitely growing field ϕcl is not a physically
meaningful situation, as we have already mentioned several
times. In both cases we assume that M2ðxÞ ≫ α to single
out the leading contributions.
In the case M > Λ we use the asymptotics (3.16) for the

parabolic cylinder functions over the entire integration
interval, and get that the current is zero:

hψ̄ψi ≃ 0; ð4:20Þ

as the integrand is an ω-odd function.
In the case M < Λ we divide the region of integration

into two segments: ½m;Λ� ¼ ½m;M� þ ½M;Λ�. In the inter-
val [m;M] the asymptotic (3.16) is valid, so this interval
does not give any contribution for the same reason as in the
case when M > Λ. In the interval [M;Λ] we use the
following asymptotic form of the function

UðA; zÞ≡D−A−1
2
ðzÞ;

which works for A → −∞, −2
ffiffiffiffiffiffiffi
−A

p
< jzj < 2

ffiffiffiffiffiffiffi
−A

p
,

− π
2
< arg z < π

2
, [28,29,34]:

U

�
−
1

2
μ2; μτ

ffiffiffi
2

p �
≃

2gðμÞ
ð1 − τ2Þ1=4

�
cos κ

X∞
s¼0

ð−1Þs Ã2sðτÞ
μ4s

− sin κ
X∞
s¼0

ð−1Þs Ã2sþ1ðτÞ
μ4sþ2

�
; ð4:21Þ

where

gðμÞ ≃ hðμÞ
�
1þ 1

2

X∞
s¼1

γs
ð1
2
μ2Þs

�
; hðμÞ ¼ 2−

1
4
μ2−1

4e−
1
4
μ2μ

1
2
μ2−1

2;

κ ¼ μ2η −
π

4
; η ¼ 1

2
arccos τ −

1

2
τ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ2

p
; ÃsðτÞ ¼

usðτÞ
ð1 − τ2Þ3s2 ;

usðτÞ are polynomials of τ, γs are numbers depending on s; all that matters is that u0ðτÞ ¼ 1. In our case

μ2 ¼ ω2

α
− 1; μτ ¼ mþ αxffiffiffi

α
p : ð4:22Þ

Taking limits μ2 → þ∞, τ → 0, we leave the first term from the asymptotic expansion (4.21):

U

�
−
1

2
μ2; μτ

ffiffiffi
2

p �
≃

2hðμÞ
ð1 − τ2Þ1=4 cos

�
μ2τ −

πμ2

4
þ π

4

�
ð4:23Þ

where we used that gðμÞ ≃ hðμÞ, κ ≃ π
4
ðμ2 − 1Þ − μ2τ, η ≃ π

4
− τ. Then we rotate the variable μ → iμ and obtain:
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U

�
1

2
μ2; iμτ

ffiffiffi
2

p �
≃ 2

e−
iπ
4
μ2−iπ

4ffiffiffi
2

p
μhðμÞð1 − τ2Þ1=4 cos

�
μ2τ −

πμ2

4
−
π

4

�
: ð4:24Þ

Using these formulas and multiplying by an x-independent phase, we find the asymptotic behavior of the components of the
Dirac field:

ψ1ðx;ωÞ ≃
ffiffiffiffi
ω

2

r
eijωjx

ðω2 −M2ðxÞÞ1=4 ; ψ̃1ðx;ωÞ ≃
ffiffiffiffi
ω

2

r
e−ijωjx

ðω2 −M2ðxÞÞ1=4 ;

ψ2ðx;ωÞ ≃
MðxÞ − ijωjffiffiffiffiffiffi

2ω
p eijωjx

ðω2 −M2ðxÞÞ1=4 ; ψ̃2ðx;ωÞ ≃ −
MðxÞ þ ijωjffiffiffiffiffiffi

2ω
p e−ijωjx

ðω2 −M2ðxÞÞ1=4 : ð4:25Þ

Then the integrand for the scalar current acquires the
following form:

ψ̃1ψ̃
�
2 þ ψ̃�

1ψ̃2 ¼ −
MðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2 −M2ðxÞ
p þ � � � ; ð4:26Þ

where we denoted the subleading (in the limit in question)
contribution by ellipsis.
Finally, we obtain the following expression for the scalar

current:

hψ̄ψi ≃ −2
Z

Λ

M

dω
2π

MðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 −M2ðxÞ

p
¼ −

1

π
M log

Λþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 −M2

p

M
≃
MðxÞ
π

log
MðxÞ
2Λ

;

ð4:27Þ

where we neglected the subleading contributions in the
limit

ffiffiffiffiffiffi
λE

p
≪ λϕclðxÞ ≪ Λ. This current coincides with the

proposal (4.18).
Thus, again we obtain a peculiar behavior of the scalar

current for the large and slowly changing background field,
which agrees with the result of [12] and of the previous
section. We explain such a dependence of the scalar current
on the background field in the Appendix B and in the
Concluding section.

C. Loop corrections

We make the Fourier transformation in time of the two
dimensional analog of (2.35):

G��
ab ðx1; x2Þ ¼

Z
dω
2π

G��
ab ðx1; x2;ωÞe−iωðt1−t2Þ; ð4:28Þ

where we denoted x ¼ ðt; xÞ. Then:

Gþ−
ab ðx1; x2;ωÞ ¼ ψa

ω1ψ
c
ω2ðγ0Þcb ¼

�
ψ1
ω1ψ

2�
ω2 ψ1

ω1ψ
1�
ω2

ψ2
ω1ψ

2�
ω2 ψ2

ω1ψ
1�
ω2

�
;

G−þ
ab ðx1; x2;ωÞ ¼ −ψ̃a

ω1ψ̃
c�
ω2ðγ0Þcb ¼ −ðGþ−

ab ðx1; x2;ωÞÞ�

¼ −
�
ψ1�
ω1ψ

2
ω2 ψ1�

ω1ψ
1
ω2

ψ2�
ω1ψ

2
ω2 ψ2�

ω1ψ
1
ω2

�
; ð4:29Þ

where we use the notations ψaðω;xαÞ¼ψa
ωα, ψ̃að−ω; xαÞ ¼

ψ̃a
ωα. We also use the representation for gamma matrices

(4.1), decomposition (4.3), and relation (4.10). Note that
the anticommutation relation (4.11) translates into:

Z
dω
2π

½ψ1
ωðxÞψ2�

ω ðyÞ þ ψ1�
ω ðxÞψ2

ωðyÞ� ¼ 0; ð4:30Þ

and implies that the trace of the correlation functions at
coincident points exactly equals zero:

trGþ−ðx; xÞ ¼ trG−þðx; xÞ ¼ trG−−ðx; xÞ
¼ trGþþðx; xÞ ¼ 0: ð4:31Þ

We will use this fact below. At the same time, using the
expansion for the boson field:

ϕðt; xÞ ¼
Z

dω
2π

½αωfωðxÞe−iωt þ α†ωf�ωðxÞeiωt�; ð4:32Þ

where fωðxÞ ¼ 1ffiffiffiffiffiffi
2jωj

p eijωjx, we obtain:

Dþ−ðx1; x2;ωÞ ¼ fωðx1Þf�ωðx2Þ ¼
eijωjðx1−x2Þ

2jωj ;

D−þðx1; x2;ωÞ ¼ ðDþ−ðx1; x2;ωÞÞ� ¼ f�ωðx1Þfωðx2Þ

¼ e−ijωjðx1−x2Þ

2jωj : ð4:33Þ

It is convenient to do the Keldysh rotation (2.38) and keep
in mind that if one does the quantum average over an
arbitrary state jχi, the Keldysh propagators acquire the
following form:
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DKðx1; x2Þ ¼
Z

dω
2π

Z
dω0

2π

��
nωω0 þ 1

2
2πδðω − ω0Þ

�
fωðx1Þf�ω0 ðx2Þ þ κωω0fωðx1Þfω0 ðx2Þ þ H:c:

�
e−iωt1þiω0t2 ;

trGK
abðx1; x2Þ ¼

Z
dω
2π

Z
dω0

2π

��
1

2
2πδðω − ω0Þ − n0ωω0

�
ðψ1

ω1ψ
2�
ω02 þ ψ2

ω1ψ
1�
ω02Þ

þ κ0ωω0 ðψ1
ω1ψ

2
ω02 þ ψ2

ω1ψ
1
ω02Þ þ ðc:c; p:c;H:c:Þ

�
e−iωt1þiω0t2 : ð4:34Þ

Here we have introduced the following notations for the quantum averages. First, the bosonic Keldysh propagator contains
hχjα†ωαω0 jχi≡ nωω0 , anomalous quantum average hχjαωα−ω0 jχi≡ κωω0 and its complex conjugate. Second, the trace
of the fermionic Keldysh propagator contains hχjb†ωbω0 jχi≡ n0ωω0 , hχjc†−ωc−ω0 jχi≡ ñ0ωω0 , anomalous quantum average
hχjbωc−ω0 jχi≡ κ0ωω0 and its complex conjugate.

1. One-loop corrections to the boson propagators

Similarly to the time-dependent background field, one can show that loop corrections to the retarded and advanced
propagators do not grow, when jt1 − t2j ≪ t1þt2

2
¼ T → ∞. Let us calculate the one-loop correction to the Keldysh

propagator:

ΔDKðx1; x2Þ ¼
1

2
½ΔDþþðx1; x2Þ þ ΔD−−ðx1; x2Þ�

¼ −
λ2

2

Z
d2x3d2x4

X
σ1;3;4¼fþ;−g

Dσ1σ3ðx1; x3ÞGσ3σ4
ab ðx3; x4ÞGσ4σ3

ba ðx4; x3ÞDσ4σ1ðx4; x2Þsgnðσ3σ4Þ: ð4:35Þ

We will denote:

Jðω1;ω2Þ≡ ½ψ1�
ω2
ðx3Þψ2�

ω1
ðx3Þ þ ψ2�

ω2
ðx3Þψ1�

ω1
ðx3Þ�½ψ1

ω2
ðx4Þψ2

ω1
ðx4Þ þ ψ1

ω1
ðx4Þψ2

ω2
ðx4Þ�: ð4:36Þ

It is straightforward to show that the loop correction (4.35) can be represented in the form of (4.34) where to calculate nωω0 ,
one should look for the terms in (4.35) which contain fωðx1Þf�ω0 ðx2Þ. Let us prove that in the present case
nωω0 ¼ 2πδðω − ω0Þnω. Keeping in mind that Dþþ and D−− are the linear combinations of Dþ− and D−þ [see (2.36)]
we conclude that such terms can come only from Dþ−ðx1; x3ÞDþ−ðx4; x2Þ. Hence,Z

dω
2π

Z
dω0

2π
nωω0fωðx1Þf�ω0 ðx2Þe−iωt1þiω0t2

¼ λ2
Z

T

t0

dt3

Z
T

t0

dt4

Z
dx3dx4Dþ−ðx1; x3ÞG−þ

ab ðx3; x4ÞGþ−
ba ðx4; x3ÞDþ−ðx4; x2Þ

≃ −λ2
Z

dx3dx4

Z
dω
2π

dω0

2π

eijωjðx1−x2Þe−ijωjðx3−x4Þ

4ω2
Jðω0;ω0 − ωÞe−iωðt1−t2Þ: ð4:37Þ

Here we have kept the leading terms in the limit T ≫ jt1 − t2j. In particular, we have neglected the difference between t1, t2
and t1þt2

2
¼ T. So we see that due to the energy conservation (Fig. 10) the incoming and outgoing ω3 and ω4 are equal to

each other. Thus, the term under consideration does indeed have the form
R

dω
2π nωfωðx1Þf�ωðx2Þe−iωðt1−t2Þ, where the

expression for nω is given below in this subsubsection and follows from Eq. (4.37).
Then, let us prove that κωω0 ¼ 2πδðω − ω0Þκω. Again from (4.34) and (4.35) to calculate κωω0 , we should look for the

terms in (4.35) which contain fωðx1Þfω0 ðx2Þ. Such terms can come only from Dþ−ðx1; x3ÞD−þðx4; x2Þ, hence,Z
dω
2π

Z
dω0

2π
κωω0fωðx1Þfω0 ðx2Þe−iωt1þiω0t2

¼ −λ2
Z

T

t0

dt3

Z
t3

t0

dt4

Z
dx3dx4G

þ−
ab ðx3; x4ÞG−þ

ba ðx4; x3Þ½Dþ−ðx1; x3ÞD−þðx4; x2Þ þ ðx3 ↔ x4Þ�

≃ λ2
Z þ∞

0

dτ0
Z

dx3dx4

Z
dω1

2π

dω2

2π

dω
2π

eijωjðx1−x3Þ

2jωj
e−ijωjðx4−x2Þ

2jωj e−iωðt1−t2Þðe−iτ0ðω1−ω2−ωÞ þ e−iτ
0ðω1−ω2þωÞÞJ�12; ð4:38Þ
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where we took T − t0 to infinity. Thus, we see that this term
indeed contains integration over single ω and fωðx1Þ×
fωðx2Þ, rather than fωðx1Þfω0 ðx2Þ, and due to the energy
conservation equals to

R
dω
2π κωfωðx1Þfωðx2Þe−iωðt1−t2Þ.

In all we get that

nω ¼ −λ2
Z þ∞

−∞
dx3dx4

Z
dω0

2π

e−ijωjðx3−x4Þ

2jωj Jðω0;ω0 − ωÞ;

κω ¼ λ2
Z þ∞

−∞
dx3dx4

Z
dω0

2π

�
e−ijωjðx3þx4Þ

2jωj J�ðω0;ω0 − ωÞ

þ 2

Z
dω2

2π

e−ijωjðx3þx4Þ

2jωj P
i

ω0 − ω2 − ω
J�ðω0;ω2Þ

�
:

ð4:39Þ

And the loop corrections are finite in the limit
ðT − t0Þ → ∞.

2. One-loop corrections to the fermion propagators

Again it can be similarly shown that the loop corrections
to the retarded and advanced propagators do not grow with
time. Let us then calculate the first loop correction to the
Keldysh propagator:

ΔGK
abðx1; x2Þ ¼

1

2
ðΔGþþ

ab ðx1; x2Þ þ ΔG−−
ab ðx1; x2ÞÞ

¼ −
λ2

2

Z
d2x3d2x4

1

2

X
σ1;3;4¼fþ;−g

Gσ1σ3
ac ðx1; x3Þ

×Gσ3σ4
cd ðx3; x4ÞDσ3σ4ðx3; x4Þ

×Gσ4σ1
db ðx4; x2Þsgnðσ3σ4Þ: ð4:40Þ

We denote:

Iðω;ω0Þ≡ ðψ1
ω1ψ

2�
ω2 þ ψ2

ω1ψ
1�
ω2Þðψ1�

ω3ψ
2�
ω03 þ ψ2�

ω3ψ
1�
ω03Þ

× ðψ1
ω04ψ

2
ω4 þ ψ2

ω04ψ
1
ω4Þ;

Lðω;ω0Þ≡ ðψ1
ω1ψ

2
ω2 þ ψ2

ω1ψ
1
ω2Þðψ1�

ω3ψ
2
ω03 þ ψ2�

ω3ψ
1
ω03Þ

× ðψ1�
ω04ψ

2�
ω4 þ ψ2�

ω04ψ
1�
ω4Þ: ð4:41Þ

Again the loop correction (4.40) can be represented in
the form of (4.34), where in order to calculate n0ωω0 ,
we should look for terms in (4.40) which contain
ðψ1

ω1ψ
2�
ω02 þ ψ2

ω1ψ
1�
ω02Þ. Such terms can come only from

Gþ−
ab ðx1; x3ÞG−þ

bc ðx3; x4ÞGþ−
cd ðx4; x2Þ. Hence,Z

dω
2π

Z
dω0

2π
n0ωω0 ðψ1

ω1ψ
2�
ω02 þ ψ2

ω1ψ
1�
ω02Þe−iωt1þiω0t2

¼ λ2

2
tr
Z

T

t0

dt3

Z
T

t0

dt4

Z
dx3dx4G

þ−
ab ðx1; x3ÞG−þ

bc ðx3; x4Þ

×D−þðx3; x4ÞGþ−
cd ðx4; x2Þ

≃ −
λ2

2

Z
dx3dx4

Z
dω
2π

dω0

2π
e−iωðt1−t2Þ

e−ijω−ω0jðx3−x4Þ

jω − ω0j
× Iðω;ω0Þ: ð4:42Þ

Again here we have kept the leading term in the limit
T ≡ t1þt2

2
≫ jt1 − t2j. From the obtained expression we see

that n0ωω0 ¼ nωδðω − ω0Þ, where the expression for nω is
given below in this subsubsection and follows from (4.42).
In order to calculate κ0ωω0 , we should look for terms in

(4.40) which contain ðψ1
ω1ψ

2
ω02 þ ψ2

ω1ψ
1
ω02Þ. Such terms can

come only from Gþ−
ab ðx1; x3ÞGþ−

bc ðx3; x4ÞG−þ
cd ðx4; x2Þ.

Thus,

Z
dω
2π

Z
dω0

2π
κ0ωω0 ðψ1

ω1ψ
2
ω02 þ ψ2

ω1ψ
1
ω02Þe−iωt1þiω0t2

¼ −
λ2

2
tr
Z

T

t0

dt3

Z
t3

t0

dt4

Z
dx3dx4G

þ−
bc ðx3; x4Þ

×Dþ−ðx3; x4Þ½Gþ−
ab ðx1; x3ÞG−þ

cd ðx4; x2Þ þ ðx3 ↔ x4Þ�

≃ −
λ2

2

Z þ∞

0

dτ0
Z

dx3dx4

Z
dω
2π

dω0

2π

dω2

2π

× e−iωðt1−t2Þðe−iτ0ðω0þω2þωÞ − e−iτ
0ðω0þω2−ωÞÞ

×
eijω2jðx3−x4Þ

jω2j
Lðω;ω0Þ: ð4:43Þ

In all, we get that

n0ω ¼ λ2

2

Z
dx3dx4

Z
dω0

2π

e−ijω−ω0jðx3−x4Þ

jω−ω0j Iðω;ω0Þ;

κ0ω ¼ −
λ2

4

Z
dx3dx4

Z
dω0

2π

�
eijωþω0jðx3−x4Þ

jωþω0j −
eijω−ω0jðx3−x4Þ

jω−ω0j
�

×Lðω;ω0Þ

þ λ2

2

Z
dx3dx4

Z
dω0

2π

dω2

2π

eijω2jðx3−x4Þ

jω2j

×

�
P

i
ω0 þω2 þω

−P
i

ω0 þω2 −ω

�
Lðω;ω0Þ;

ð4:44Þ

FIG. 10. One-loop correction to the boson two-point function
with energy conservation laws.
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where κ0ωω0 ¼ κ0ωδðω − ω0Þ. And in the limit ðT − t0Þ → ∞
the contributions to n0ω and κ0ω are finite.

3. Other diagrams

In addition to one-loop diagrams, tadpole diagrams
(Fig. 3) can also contribute to the two-point correlation
function. However, they contain traces of fermion propa-
gators at coincident points that are equal to zero due
to (4.31).
There are also bubble diagrams (Fig. 2). However, in the

Schwinger–Keldysh diagrammatic technique vacuum bub-
bles always cancel each other.

V. COHERENT STATE

In the previous section we have considered ϕclðxÞ ¼
Exþ m

λ and found the exact modes ψðt; xÞ in such a
background. Such an approach means that the background
field ϕclðxÞ is set by a brutal external force to be the same
for all times. Such an approach can work only when the
backreaction on the background is weak.
The situation, which we consider in this section, corre-

sponds to a different set up. Namely, at some point in time
there was formed a state jϕcli which corresponds to the
presence of the external field ϕclðxÞ in the sense that we will
see in a moment. And then this state is released to evolve
freely. Our goal is to find out how it will be changing in time.
To start with, we define the coherent state jϕcli as

follows:

hϕcljϕ̂ðyÞjϕcli ¼ ϕclðyÞ: ð5:1Þ

In Appendix C it is shown that one can represent the state as
follows:

jϕcli ¼ e−i
R

ϕclπ̂ϕdxj0i; where apj0i ¼ 0: ð5:2Þ

In what follows we want to calculate the following expect-
ation value:

hϕiðt; xÞ ¼ hϕcljÛ†ðt; t0Þϕ̂Iðt; xÞÛðt; t0Þjϕcli; ð5:3Þ

where Ûðt; t0Þ is the evolution operator and we use the
interaction picture and the modes are ordinary plane waves:

ϕIðt; xÞ ¼
Z

dp
2π

1ffiffiffiffiffiffiffiffiffi
2jpjp ðαpeipx−ijpjt þ α†pe−ipxþijpjtÞ;

ψ Iðt; xÞ ¼
Z

dp
2π

1ffiffiffiffiffiffiffiffi
2Ep

p ðapupeipx−iEpt þ b†pvpe−ipxþiEptÞ;

ð5:4Þ
unlike the case of the previous section. Here up and vp
are modes of the two-dimensional free massive Dirac
field (3.8).

One can find the equation for hϕiðt; xÞ:

□hϕiðt; xÞ ¼ −λhϕcljÛ†ðt; t0Þ ˆ̄ψ Iðt; xÞψ̂ Iðt; xÞÛðt; t0Þjϕcli:
ð5:5Þ

Now let us transform the right-hand side of this equation.
We commute Û with the exponent in the definition of the
coherent state (5.2). Let us denote:

X̂ ¼ −i
Z

d2xλϕ̂I ˆ̄ψ Iψ̂ I; and Ŷ ¼ −i
Z

dyϕclπ̂ϕ;

ð5:6Þ

and use that

ϕIðx; tÞ ¼ eiH0tϕIðxÞe−iH0t: ð5:7Þ

Then

½X; Y� ¼ −
Z

d2xdyλϕclðyÞψ̄ Iðx; tÞψ Iðx; tÞ½ϕIðx; tÞ; πϕðyÞ�

¼ −
Z

d2xdyλϕclðyÞψ̄ Iðx; tÞψ Iðx; tÞ

× ðeiH0tϕIðxÞ½e−iH0t; πϕðyÞ� þ iδðx − yÞ
þ ½eiH0t; πϕðyÞ�ϕIðxÞe−iH0tÞ: ð5:8Þ

To simplify the last expression we denote

A ¼ −iH0t ¼ −it
Z

dx

�
1

2
π2ϕ þ

1

2
ϕ02
I

�
;

and B ¼ −i
Z

ϕclπϕdx; ð5:9Þ

and check that the commutator of A and B is vanishing in
our case:

½A;B� ¼ −
t
2

Z
dx
Z

dy½ϕ02
I ðyÞ; πϕðxÞ�ϕclðxÞ

¼ −t
Z

dx
Z

dyϕ0
IðyÞϕclðxÞ∂y½ϕIðyÞ; πϕðxÞ�

¼ it
Z

dxϕ00
I ðxÞϕclðxÞ ¼ 0; ð5:10Þ

because the background field that we consider here is the
linear function of x: ϕcl ¼ m

λ þ Ex and ϕIðyÞ does vanish at
infinity.
Hence, due to (5.10) the first and the third terms in (5.8)

are vanishing. Therefore

½X; Y� ¼ −i
Z

d2xλϕclψ̄ Iψ I; ð5:11Þ
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and then

Ûe−i
R

ϕclπ̂ϕdx ¼ e−i
R

d2xλϕclψ̄ Iψ I e−i
R

ϕclπ̂ϕdxÛ: ð5:12Þ

Thus, we obtain that:

hϕcljÛ†ðt; t0Þ ˆ̄ψ Iðt; xÞψ̂ Iðt; xÞÛðt; t0Þjϕcli
¼ h0jÛ†ðt; t0Þei

R
d2xλϕclψ̄ Iψ I ˆ̄ψ Iðt; xÞψ̂ Iðt; xÞ

× e−i
R

d2xλϕclψ̄ Iψ I Ûðt; t0Þj0i: ð5:13Þ

We will use these relations below.
Meanwhile to find the relation between the problem of

the previous section to the one here, note that:

ei
R

ϕclπ̂ϕdxOðϕ̂Þe−i
R

ϕclπ̂ϕdx ¼ Oðϕcl þ ϕ̂Þ;

for any operator Oðϕ̂Þ in the theory. Using this relation on
the right-hand side of the Eq. (5.5) one can assume that we
obtain here the same scalar current as in the previous
section. However, note that in the previous section the
average in the correlation function was done with respect to
the ground Fock space state corresponding to the exact
fermionic modes in the ϕclðxÞ background, while in (5.5)
the expectation value is taken with respect to the ordinary
Poincare invariant state for fermions.

A. Loop corrections (coherent state)

In this subsection we calculate the right-hand side of the
Eq. (5.5). The tree-level result for the scalar current in the
present case is obviously trivial (the same as in empty
space). To restore the tree-level result of the previous

section within the present settings one has to sum up
infinite number of terms, as is explained in the footnote in
Appendix B.
In what follows we consider the corrections of the order

λ2 to the propagators (Fig. 8) in the limit

τ ¼ t1 − t2 ¼ const; T ¼ 1

2
ðt1 þ t2Þ → þ∞;

t0 → −∞; ð5:14Þ

where t1 and t2 are arguments of the two-point functions,
or, more specifically:

jTj; jt0j ≫
1ffiffiffi
α

p ; jTj ≫ jτj: ð5:15Þ

Note that the variant with the averaging over the coherent
state allows one not to specify the form of ϕcl, therefore it
allows to get more general result. It is also interesting to
compare the answers in these two problems (Secs. IV C and
VA) and to find out if the expressions for the first loop
corrections show a different behavior.
To do the calculation in question, we need to find

ϕðx; tÞjϕcli ¼ eiH0tϕðxÞe−iH0te−i
R

ϕclπ̂ϕdxj0i; ð5:16Þ

where

H0 ¼
Z

dx

�
1

2
π2ϕ þ

1

2
ϕ02
�
: ð5:17Þ

Taking into account the Becker-Hausdorff formula and the
result of (5.10), we obtain that:

ϕðx; tÞjϕcli ¼ eiH0tϕðxÞe−i
R

ϕclπ̂ϕdxe−iH0tj0i ¼ e−iE0teiH0tϕðxÞjϕcli
¼ e−iE0tϕclðxÞeiH0te−i

R
ϕclπ̂ϕdxj0i þ e−iE0teiH0te−i

R
ϕclπ̂ϕdxϕðxÞj0i

¼ ϕclðxÞjϕcli þ e−iE0te−i
R

ϕclπ̂ϕdxeiH0tϕðxÞj0i ¼ ϕclðxÞjϕcli þ e−i
R

ϕclπ̂ϕdxϕðx; tÞj0i: ð5:18Þ
Thus, if we consider quantum averages over the state jϕcli, then according to (5.18) instead of (3.48) we have that:

Dþ−ðx1; x2Þ ¼ ϕclðx1Þϕclðx2Þ þ h0jϕðx1Þϕðx2Þj0i ¼ ϕclðx1Þϕclðx2Þ þDðx1 − x2Þ;
D−þðx1; x2Þ ¼ ϕclðx1Þϕclðx2Þ þDðx2 − x1Þ;
D−−ðx1; x2Þ ¼ ϕclðx1Þϕclðx2Þ þ θðt1 − t2ÞDðx1 − x2Þ þ θðt2 − t1ÞDðx2 − x1Þ;
Dþþðx1; x2Þ ¼ ϕclðx1Þϕclðx2Þ þ θðt1 − t2ÞDðx2 − x1Þ þ θðt2 − t1ÞDðx1 − x2Þ; ð5:19Þ

where we denoted x ¼ ðt; xÞ and

Dðx1 − x2Þ ¼
Z

dp
2π

1

2jpj e
−ijpjðt1−t2Þþipðx1−x2Þ ð5:20Þ

is just the empty space scalar propagator. The fermion propagators in the situation under consideration are the same as in the
theory without background field.
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B. One-loop corrections to the fermion propagators

We continue with the loop corrections to the boson and
fermion correlation functions. For the retarded and
advanced propagators we have the usual story as was
described in the previous sections. Hence, below we
concentrate on the calculations of the loop corrections to
the Keldysh propagators.

We start with the calculation of the first loop correction
to the fermion Keldysh propagator (4.40). Due to the fact
that in the one-loop correction to the fermion propagator we
have only one tree-level bosonic Green function and in the
free case fermion Green functions does not receive growing
with time corrections (see subsubsection III C 2), we can
use the tree-level bosonic propagator in the following form:

Dþ−ðx1; x2Þ ¼ D−þðx1; x2Þ ¼ Dþþðx1; x2Þ ¼ D−−ðx1; x2Þ ¼ ϕclðx1Þϕclðx2Þ≡Dðx1; x2Þ; ð5:21Þ

instead of (5.19), and define the following expressions:

Hðp; q; p0Þ≡ ðψ1�
p;3ψ

2�
q;3 þ ψ2�

p;3ψ
1�
q;3Þðψ1

q;4ψ
2
p0;4 þ ψ2

q;4ψ
1
p0;4Þðψ1

p;1ψ
1�
p0;2 − ψ2

p;1ψ
2�
p0;2Þ;

Kðp; q; p0Þ≡ ðψ1
p;1ψ

2
p0;2 þ ψ2

p;1ψ
1
p0;2Þðψ1�

p0;3ψ
1
q;3 − ψ2�

p0;3ψ
2
q;3Þðψ1�

q;4ψ
2�
p;4 þ ψ2�

q;4ψ
1�
p;4Þ: ð5:22Þ

Then, taking into account the Fourier representation of ϕclðxÞ:

ϕ̃clðpÞ ¼
Z

dxϕclðxÞe−ipx ¼ 2πðαδðpÞ þ iβδ0ðpÞÞ; ð5:23Þ

we obtain that the one loop correction to the fermion Keldysh propagator is as follows:

ΔGK
abðx1; x2Þ ¼ −

λ2

4

Z
d2x3d2x4Dðx3; x4Þ

X
σ1;3;4¼fþ;−g

Gσ1σ3
ac ðx1; x3ÞGσ3σ4

cd ðx3; x4ÞGσ4σ1
db ðx4; x2Þsgnðσ3σ4Þ

≃ −
λ2

2

Z
T

t0

dt3

Z
T

t0

dt4

Z
dp
2π

dq
2π

dp0

2π
ϕ̃clðp − qÞϕ̃clðq − p0Þeipx1−ip0x2 ½Hðp; q; p0Þ þ H:c:�

þ λ2

2

Z
T

t0

dt3

Z
t3

t0

dt4

Z
dp
2π

dq
2π

dp0

2π
ϕ̃clðp − qÞϕ̃clðq − p0Þeipx1−ip0x2 ½Kðp; q; p0Þ þ Kðp0; q; pÞ þ H:c:�

¼ −
λ2

2

Z
dp
2π

eipðx1−x2Þ
Z

T

t0

dt3

Z
T

t0

dt4

�
Hðp; p; pÞ

�
α2 þ αβðx1 þ x2Þ − αβ

p
ωp

ðt1 þ t2 − t3 − t4Þ

þ β2
�
i
p
ωp

ðt2 − t4Þ − ix2 þ
2m2 − p2

4ω2
pp

��
i
p
ωp

ðt3 − t1Þ þ ix1 þ
2m2 − p2

4ω2
pp

��
þ H:c:

�

þ λ2
Z

dp
2π

eipðx1−x2Þ
Z

T

t0

dt3

Z
t3

t0

dt4

�
Kðp; p; pÞfα2 þ αβðx1 þ x2Þ − αβ

p
ωp

ðt1 − t2Þ

þ β2
�
i
p
ωp

t3 þ t4 − 2t2
2

− ix2 þ
3m2 − p2

4ω2
pp

��
i
p
ωp

t3 þ t4 − 2t1
2

þ ix1 þ
3m2 − p2

4ω2
pp

��
þ H:c:

�

¼ OðT0Þ; ð5:24Þ
where we have used that

ðψ1�
p;3ψ

2�
p;3 þ ψ2�

p;3ψ
1�
p;3Þðψ1

p;4ψ
2
p;4 þ ψ2

p;4ψ
1
p;4Þ ¼

p2

ω2
p
e2iωpðt3−t4Þ;

ðψ1�
p;3ψ

1
p;3 − ψ2�

p;3ψ
2
p;3Þðψ1�

p;4ψ
2�
p;4 þ ψ2�

p;4ψ
1�
p;4Þ ¼

pm
ω2
p
e−iωpðt3−t4Þeiωpðt3þt4Þ; ð5:25Þ

and the following expressions for the derivatives of the fermion field components:

∂pψ
1
p;α ¼ −

mðωp −mÞ
2ω2

pp
ψ1
p;α − itα

p
ωp

ψ1
p;α; ∂pψ

2
p;α ¼

mp
2ω2

pðωp −mÞψ
2
p;α − itα

p
ωp

ψ2
p;α: ð5:26Þ
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Thus, as follows from (5.24) one-loop correction to the fermion propagator does not grow as T → ∞.

C. One-loop corrections to the boson propagators

The one-loop correction to the free bosonic Keldysh propagator does not grow with time (see subsubsection III C 1). To
show that in the present case let us denote:

Fðp; qÞ≡ ðψ1�
q;3ψ

2�
p;3 þ ψ1�

p;3ψ
2�
q;3Þðψ1

q;4ψ
2
p;4 þ ψ1

p;4ψ
2
q;4Þ ¼

p2

ω2
p
e2iωpðt3−t4Þ: ð5:27Þ

Therefore, keeping in mind Eq. (5.23), we obtain:

ΔDKðx1; x2Þ ≃ −λ2
Z

T

t0

dt3

Z
T

t0

dt4

Z
dp
2π

dq
2π

��
ϕclðx1Þϕ̃clðq − pÞϕclðx2Þϕ̃clðp − qÞ þ ϕclðx1Þϕ̃clðq − pÞ

×
e−ijp−qjðt4−t2Þ

2jp − qj e−iðp−qÞx2 þ ϕclðx2Þϕ̃clðp − qÞ e
−ijp−qjðt1−t3Þ

2jp − qj eiðp−qÞx1
�
Fðp; qÞ þ H:c:

�

þ λ2
Z

T

t0

dt3

Z
t3

t0

dt4

Z
dp
2π

dq
2π

��
2ϕclðx1Þϕ̃clðq − pÞϕclðx2Þϕ̃clðp − qÞ þ ϕclðx1Þϕ̃clðq − pÞ

×
e−ijp−qjðt2−t4Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp − qj2 þ μ2

p e−iðp−qÞx2 þ ϕclðx2Þϕ̃clðp − qÞ e−ijp−qjðt1−t3Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp − qj2 þ μ2

p eiðp−qÞx1 þ ϕclðx2Þϕ̃clðq − pÞ

×
e−ijp−qjðt1−t4Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp − qj2 þ μ2

p e−iðp−qÞx1 þ ϕclðx1Þϕ̃clðp − qÞ e−ijp−qjðt2−t3Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp − qj2 þ μ2

p eiðp−qÞx2
�
F�ðp; qÞ þ H:c:

�

≃ −
λ2

μ
ðT − t0Þ

Z þ∞

−∞
dτ0
Z

dp
2π

½αðϕclðx1Þ þ ϕclðx2ÞÞ þ 2βðϕclðx1Þx2 − ϕclðx2Þx1Þ�
p2

ω2
p
e−2iωpτ

0

¼ OðT0Þ; ð5:28Þ

where we have restored the spontaneously acquired mass of
the boson field μ ∼ λ (see Appendix B) to eliminate the
singularity 1

jp−qj in the denominator. Note that the growing
factor ðT − t0Þ is multiplied by δðωpÞ which is never zero.
This situation is similar to the free cases from subsec-
tions III C 1 and III C 2.

VI. CONCLUSIONS

We consider one of the simplest examples of nontrivial
quantum field theory out of equilibrium—the Yukawa
model in strong scalar field backgrounds in (0þ 1) and
(1þ 1) dimensions. Our main interest is in the response of
the dynamical scalar and fermion fields to such a back-
ground. To find this response, we calculate the tree-level
scalar current hψ̄ψi (i.e., the fermion propagator at coinci-
dent points) and loop corrections to both fermion and boson
correlation functions. To take into account possible non-
equilibrium effects we use Schwniger–Keldysh diagram-
matic technique instead of the Feynman one. In this section
we summarize our results and explain their physical
meaning.
(1) In (0þ 1) dimensions the dynamics of fermion and

scalar fields is nearly trivial. First of all, due to the

properties of one-dimensional fermions the scalar
current can be exactly calculated from the very
beginning. Then the corrections to the two-point
correlation functions of the scalar field basically
reduce to the disconnected corrections to the one-
point functions—so-called “tadpoles.”We show this
fact both in operator formalism and diagrammatic
approach. Moreover, it is not difficult to generalize
this result to arbitrary orders of the perturbation
theory and arbitrary n-point functions, because
“tadpoles” do not receive any loop corrections in
one dimension. This result means that no external
scalar perturbation can change the initial state of the
theory.

(2) he dynamics in (1þ 1) dimensions is more interest-
ing. First, in the case of indefinitely growing scalar
field, in particular, ϕcl ¼ m

λ þ Et and ϕcl ¼ m
λ þ Ex,

one should accurately choose the exact modes.
Namely, one should demand a correct UV behavior
of the modes, because at the space-time infinities they
do not tend to the plane waves. Such a correct UV
behavior is necessary to have the same UV renorm-
alization in the background field as is in its absence,
which is meaningful on general physical grounds.
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Second, in the leading order (when ϕ0
cl is small,

while ϕcl itself is large) the scalar current on the
backgrounds ϕcl ¼ m

λ þ Et and ϕcl ¼ m
λ þ Ex coin-

cides with the current in the theory of free fermions
with the time-dependent mass mðtÞ ¼ λϕclðtÞ:

hψ̄ψi ≃ λϕcl

π
log

λϕcl

Λ
; ð6:1Þ

where Λ is the UV cut-off.
The last equation is an analog of the causal

equations that have been derived in, e.g., [35] for
the scalar and electromagnetic fields. In the expres-
sion under consideration we have explicitly calculated
the right-hand side (the scalar current) for the given
background fields in the tree-level approximation and
for large and slowly changing backgrounds. This
result indicates that the leading expressions in the
strong scalar fields are insensitive to the choice of
the initial state. Note that subleading corrections to
the scalar current do depend on the choice of the
initial state [12].
Third, neither level population nor anomalous

quantum average of the scalar and fermion fields
do grow with time. Hence, in the limit of small
coupling constant time-dependent corrections to the
tree-level correlation functions (including scalar cur-
rent) are negligible despite the strength of the back-
ground. This type of behavior does not resemble the
one in strong electric [6,7] or gravitational [2,8] fields,
in which loop corrections to these quantities do grow
with time.9

This is a very strange phenomenon for the case of
time dependent scalar background. In fact, it seems
that the secular growth under discussion is forbidden
due to a specific behavior of the exact modes in the
background. In particular, it means that even if one
starts with any nonstationary state (e.g., non-Planck-
ian initial distribution) there will not be any sub-
stantial change of the level population and of the
anomalous averages, if the mass of a particle changes
in time, MðtÞ ¼ λϕðtÞ. This we find as quite a
nontrivial observation, which should be compared
to the time-dependent gauge and gravitational back-
grounds.
The technical reason why there is no secular

growth in the background scalar field as opposed
to its presence, e.g., in constant electric field or de
Sitter space can be explained as follows. In the

constant electric field (de Sitter space) all the quan-
tities depend on the invariant/physical momenta p3 −
eEt (jp⃗je−t=H). (Here p3 is the component of the
momentum along the external electric field E and H
is the Hubble constant in the case of the de Sitter
space.) As the result all physical quantities are
invariant under the simultaneous translations t → t −
a and p3→p3−eEa (jp⃗j → jp⃗je−a=H). Furthermore,
in the field theory without background field, but with
an initial nonstationary (non-Planckian) distribution
there is the time translational invariance at the tree-
level. That is the reason why there is secular growth in
the loops in all the listed in this paragraph situations.
Meanwhile in the background fields ϕcl ¼ Et there is
no time translational invariance.
At the same time in the background ϕcl ¼ m

λ þ Ex
the simple explanation for the absence of the secular
growth is not yet clear to us. What remains to be
checked now if there is a secular growth for any other
states of the type (3.34) for the spatial coordinate
dependent background.
We should probably stress here that for finite

coupling constants the corrections to the quantum
averages, haþai and haai, are nonzero, i.e., the
theory (3.1) is indeed nonstationary. Also let us
emphasize that the scalar currents calculated in differ-
ent ground states [e.g., currents (3.43) and (4.27)]
coincide only in the leading order, whereas sublead-
ing corrections to these quantities depend on the state.
One can find more examples in [12].
Finally, usually one studies the behavior of the

fields on fixed backgrounds, e.g., fixed electric field
or gravitational field of collapsing matter. In most of
our article we also follow this approach. However, in
addition to such a standard setup in the last section we
consider dynamics of the “coherent state”:

hϕcljϕ̂ðt ¼ 0; xÞjϕcli ¼ ϕclðxÞ;

i.e., a self-guided dynamics of a freely evolving in
time initially set up “coherent state.”Namely, wewere
attempting to calculate hϕcljϕ̂ðt; xÞjϕcli for arbitrary t
in the full theory. We have found that the behavior of
the correlation functions in this case is qualitatively
the same as the one previously found for the strong
fixed scalar backgrounds.

(3) As soon as the dynamics in the strong scalar field
(when ϕ0

cl is small, while ϕcl itself is large) is weakly
sensitive to the choice of the ground state, we can
estimate its effective action in the equilibrium
approach. It is a standard textbook exercise to show
that in this approach the effective action for the
scalar field (the action one obtains after the integra-
tion over the fermion degrees of freedom) in the
leading order looks as follows:

9Note that by calculating corrections to the Keldysh propagator
(to the level population and anomalous quantum averages) we
examine if there are contributions to the scalar current which
grow with time, but do not check if there are corrections which
are large, when ϕcl is large, but does not change the state of the
system.
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Seff ¼
Z

d2x

�
1

2
ð∂μϕÞ2 − Veff ½ϕ�

�
; where

Veff ½ϕ� ≃
ðλϕÞ2
2π

log
ϕ

hϕiGS
−
ðλϕÞ2
4π

ð6:2Þ

and hϕiGS is the minimum of the renormalized
effective potential Veff ½ϕ�. Note that scalar field
acquires nonzero mass μ ¼ λffiffi

π
p at the bottom of

the potential due to the quantum fluctuations. Also
we remind that the derivation of (6.2) assumes that
the scalar field is nondynamical, large and slowly
changing, j=∂ϕj ≪ λϕ2. We review the derivation of
this expression in Appendix B.
The equation of motion that follows from the

action (6.2):

∂2ϕcl þ
λ2ϕcl

π
log

ϕcl

hϕiGS
¼ 0; ð6:3Þ

obviously reproduces the results of sections III B
and IV B with classical backgrounds ϕcl ¼ Et and
ϕcl ¼ m

λ þ Ex. In fact, it generalizes these results to
arbitrary large, but slowly changing scalar field
backgrounds. So it is not surprising that the calcu-
lations in the strong scalar wave background [12]
result in the same answer for the scalar current.
However, we emphasize again that this result is
correct only in the leading order, whereas the
subleading corrections can be different for different
choices of initial states.

(4) The “universality” of the leading order approximation
to the effective action can be interpreted as follows.
First, note that fermion modes with high enough
momenta behave as plane waves. The critical scale is
roughly p ∼ λϕ. Such a behavior is necessary for the
proper treatment of UV divergences, as we have
already mentioned above in this section.
Second, the main contribution to the scalar current

and effective potential comes from exactly such high-
momenta modes [e.g., see Eqs. (3.41) and (3.42)].
This is due to the spatiotemporal oscillations of nearly
zero momenta modes, which are significantly faster
than oscillations of higher-momenta modes. In fact,
compare asymptotic behaviors (3.29), ψðtÞ ∼ eiαt

2

,
and (3.28), ψðtÞ ∼ eijpjt.
Third, when calculating the contribution from such

modes, the variations of the background scalar field
can be neglected. Roughly speaking, plane waves
with large momenta (p≳ λϕ) dominate in regions
with small spatial and temporal size. Hence, at each
moment the background plays the role of a fixed mass
of the fermion field. Therefore, one can just substitute
m → λϕclðt; xÞ ≃ const in the expressions for the free
case (3.40).

In summary, one expects that the effective action
coincides for arbitrary strong scalar fields because
such fields are not sensitive, at the leading order, to
the properties of the low lying initial state. In the next
orders this sensitivity does manifest itself [12].

(5) Thus, the calculation with the use of the Feynman
approach shows that zero point fluctuations of the
fermion field polarize the vacuum and deform the
classical scalar field background.10 However, we
remind that this calculation is valid only if j=∂ϕj ≪
λϕ2 and λ → 0 (in the opposite case loop corrections
to the level density and anomalous quantum average
are nonzero). Both of these conditions hold in the
limit λ → 0, t → ∞ for ϕcl ¼ Et or λ → 0, x → ∞
for ϕcl ¼ m

λ þ Ex. Obviously, they also hold near the
minimum of the effective potential. Therefore, in
this limit the scalar field just classically rolls down to
the minimum of such a potential.

It would be interesting to calculate loop corrections to
the quantum averages on top of such a rolling classical
solution. In principle such corrections can change the
situation under consideration [1–3,6–11]. If one considers
a coherent state decay, most likely this would not happen:
of course, strong initial perturbation can induce complex
dynamics for a while, but one expects that eventually the
field falls on the classical trajectory described by the
Eq. (6.3) for large and slowly changing values of ϕcl.
However, if one pumps energy into the system, i.e.,
maintains a strong field with substantial derivatives, loop
corrections potentially can grow. In this case the choice of
the initial state is important, the leading approximation
(6.2) is not valid anymore, and the dynamics of the field is
less predictable. This case will be studied elsewhere.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF
PARABOLIC CYLINDER FUNCTION FOR

LARGE ORDER

The asymptotic behavior of the parabolic cylinder
functions has been widely studied in the literature (e.g.,
see [28,29,34,36]). But the only asymptotic expansion for
an arbitrary complex jνj ≫ 1we have found in the literature
is as follows [28]:

DνðzÞ ¼
1ffiffiffi
2

p exp

�
1

2
ν logð−νÞ − 1

2
ν −

ffiffiffiffiffiffi
−ν

p
z

�

×

�
1þO

�
1ffiffiffiffiffijνjp ��

; ðA1Þ

where jargð−νÞj ≤ π
2
and jzj is bounded. The error of this

expansion is too large for our purposes: e.g., when one
integrates D

−ip2

2α

ðzÞ over dp, due to terms of the order

Oð 1ffiffiffiffi
jνj

p Þ ∼Oð1pÞ the integral can diverge. Thus, we have to

obtain a more accurate asymptotic expansion.
Following [36], we start with the integral representation

of the parabolic cylinder function:

DνðzÞ ¼
Γð1þ νÞ

2πi
e−

1
4
z2z

×
Z
C
exp

�
z2
�
v −

1

2
v2
�
− ð1þ νÞ logðzvÞ

�
dv;

ðA2Þ

where the integration contour C is depicted on the Fig. 11.
One can check that this expression indeed solves the
differential equation for parabolic cylinder function. For
the case ϕcl ¼ Et we have

ν ¼ −
ip2

2α
; z ¼ eiπ=4

ffiffiffi
2

α

r
MðtÞ; MðtÞ ¼ αt; α ¼ λE:

ðA3Þ

Using the saddle-point approximation in (A2), one obtains
its decomposition as follows:

DνðzÞ ≃
Γð1þ νÞ
i
ffiffiffiffiffiffi
2π

p ze−
1
4
z2
X
j¼0;1

expðiαj þ fðvjÞÞ
jf00ðvjÞj12

×

�
1þ

X∞
l¼2

ð2l − 1Þ!! expð2ilαjÞ
v2lj jf00ðvjÞjl

×
X
λn

Y2l
n¼3

½ð1þ νÞ=n�λn
λn!

�
; ðA4Þ

where

fðvÞ ¼ z2
�
v −

1

2
v2
�
− ð1þ νÞ logðzvÞ;

αj ¼
1

2
π −

1

2
argðf00ðvjÞÞ;

and we denoted the critical points of the function fðvÞ as
v0;1 ¼ − 1

2
� 1

2
ð1 − 4ð1þνÞ

z2 Þ12. The innermost sum in Eq. (A4)
is taken over all distinct partitions of 2l given by non-
negative integer solutions λn such that

P
2l
n¼3 nλn ¼ 2l. Let

us estimate this sum. The lth term in it contains the lth
power of the following expression:

1

v20;1f
00ðv0;1Þ

¼ 1

2ð1þ νÞ
�
1 ∓

�
1 −

4ð1þ νÞ
z2

�
−1
2

�
;

and not greater than the b2l
3
c-th power of ½ð1þ νÞ=n�. In the

case jνj ≫ 1 the square root in the brackets is small, and
1

v2
0;1f

00ðv0;1Þ ∼
1

2ð1þνÞ ¼ Oð1νÞ for both signs “∓”. This means

that the innermost sum is Oð 1þν
½v2

0;1f
00ðv0;1Þ�2Þ ¼ Oð1νÞ, so we

neglect it in the integrals over dp. Substituting the values of
the saddle points into the decomposition (A4) we obtain:FIG. 11. The integration contour.
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DνðzÞ ¼
1ffiffiffi
2

p exp

�
1 − ν

2
þ
�
νþ 1

2

�
log ν −

�
ν

2
þ 1

2

�
log

z2

4
−
1

4
log

�
1 −

4ð1þ νÞ
z2

��

×
X
�

exp

��
−
1

2
− ν

�
log

�
1�

�
1 −

4ð1þ νÞ
z2

�1
2

�
� z2

4

�
1 −

4ð1þ νÞ
z2

�1
2

��
1þO

�
1

ν

��
: ðA5Þ

Then we note that in the notations of (A3) and limit jνj ≫ 1 (i.e., p2 ≫ α) or jzj ≫ 1 (i.e., M2 ≫ α), we have that

�
1 −

4ð1þ νÞ
z2

�1
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
M

�
1þ iα

M2 þ p2
þO

�
α

M2 þ p2

�
2
�
:

Hence, denoting V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
for short, we obtain:

D
−ip2

2α

�
1þ iffiffiffi

α
p M

�
≃
e
πp2

8αffiffiffi
2

p
�
M
V

þ 1

�1
2

e
ip2

4α−
ip2

4α logðVþMÞ2
2α −iMV

2α

�
1þO

�
α

V2

��
: ðA6Þ

Then for the squared module of the parabolic cylinder function we get:				D−ip2

2α

�
1þ iffiffiffi

α
p M

�				2 ≃ 1

2
e
πp2

4α

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ p2
p þ 1

��
1þO

�
α

M2 þ p2

��
: ðA7Þ

Here we neglected the second term in the sum because it contains the factor of e−
πp2

2α . Note that we have chosen the sheet on
the complex plane in which −1 ¼ e−iπ . One can check that (A6) coincides with (A1) up toOð1pÞ. But the new equation also
contains the next term of the asymptotic expansion.
We emphasize that Eqs. (A6) and (A7) work for arbitrary valuesM2 ≫ α. However, they simplify in extremal cases. For

instance,

D
−ip2

2α

�
1þ iffiffiffi

α
p M

�
≃

1ffiffiffi
2

p e
πp2

8α þip2

4α−
ip2

4α logp
2

2αe
−ijpjM

α − iM3

6jpjαþ M
2jpj

�
1þO

�
M2 þ α

p2

��
; ðA8Þ

if M2 ≪ p2, and

D
−ip2

2α

�
1þ iffiffiffi

α
p M

�
≃

8>><
>>:


1 − p2

8M2

�
e
πp2

8α −
iM2

2α −
ip2

4α log2M
2

α

h
1þO



p2þα
M2

�i
; M > 0;

p
2jMj e

πp2

8α þiM2

2α þip2

4α log2M
2

α −ip2

2α logp
2

2α

h
1þO



p2þα
M2

�i
; M < 0

ðA9Þ

if M2 ≫ p2.
In the opposite case jνj ≪ 1 one should exactly calculate

the innermost sum in (A4), because 1
1þν ∼ 1 (at least for the

“þ” sign). Furthermore, in the case jνj ≪ 1 ≪ jzj (i.e.,
p2 ≪ α ≪ M2) we can use the following decomposition,
which can be obtained from another integral representation
for parabolic cylinder function [28]:

DνðzÞ ¼ zνe−
z2
4

�XN
n¼0

ð− ν
2
Þnð12 − ν

2
Þn

n!ð− z2
2
Þn þOðjz2j−N−1Þ

�
;

ðγÞ0 ¼ 1; ðγÞn≠0 ¼ γðγ þ 1Þ � � � ðγ þ n − 1Þ: ðA10Þ

Hence, we find that:

D
−ip2

2α

�
1þ iffiffiffi

α
p M

�
≃ e

πp2

8α −
iM2

2α −
ip2

4α log2M
2

α

�
1 −

p2

8M2

�

×

�
1þO

�
α2

M4

��
; ðA11Þ

and for the squared module:

				D−ip2

2α

�
1þ iffiffiffi

α
p M

�				2 ≃ e
πp2

4α

�
1 −

p2

4M2
þO

�
α2

M4

��
: ðA12Þ

Note that expressions (A6) and (A11) approximately
coincide if jνj ≪ jzj, jνj ≫ 1, as it should be.
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APPENDIX B: EFFECTIVE ACTION

1. Path integral calculation

In Secs. III and IV we have shown that the leading
behavior of the fermion current does not depend on the
ground state of the theory (see also [12]). Moreover, in
the limit of small coupling constants loop corrections to the
scalar and fermion propagators do not grow. Therefore, if ϕ
is large and slowly changing function we can estimate the
effective action using standard equilibrium technique,
assuming that the field ϕ is not dynamical. In this
Appendix we review the textbook calculation of the
Feynman effective action [37–40] for the theory (3.1).
To find the effective action for scalars, we integrate out

the fermionic degrees of freedom in the functional integral:

eiSeff ½ϕ� ¼
R
Dψ̄Dψei

R
d2xð1

2
ð∂μϕÞ2þψ̄ði=∂−λϕÞψÞR

Dψ̄Dψei
R

d2xψ̄i=∂ψ

¼ exp

�
i
Z

d2x
1

2
ð∂μϕÞ2 þ tr log

i=∂ − λϕ

i=∂
�
; ðB1Þ

which we normalize to the partition function of a free
massless fermion for the correct definition of the operator
determinant.
As we have just mentioned, in this section we consider

the situation, when the scalar field is nonynamical. At the
same time in (B1) we calculate the time-ordered Feynman
effective action rather than Schwinger–Keldysh one. Note
that this approximation in general is not valid if one takes
into account the quantum fluctuations of the scalar field. In
this calculation it is implicitly assumed that the state of the
theory does not change in time. However, we have seen in
the Secs. III C and IV C that both of these approximations
are good enough if we work in the limit of large and slowly
changing background scalar field.
Let us evaluate the determinant in (B1). For simplicity

we consider scalar fields smaller than the UV cut-off:
λϕ ≪ Λ (these fields still can be strong: ϕ ≫ 1). This
relation allows us to expand the logarithm and separate the
operators which are local in x and p [40]. Using the
reflection symmetry, i.e., multiplying the expression by
1 ¼ ðγ5Þ2, and anticommuting γ5 and γμ, one obtains:

tr log
i=∂ − λϕ

i=∂ ¼ 1

2
tr log

ði=∂ − λϕÞð−i=∂ − λϕÞ
ði=∂Þð−i=∂Þ

¼ 1

2
tr log

∂2 þ ðλϕÞ2 − iλ=∂ϕ
∂2

≃ tr log

�
1þ ðλϕÞ2

∂2

�
; ðB2Þ

where we took the trace over the spinor indices and
neglected the derivatives ∂tϕ ≪ λϕ2 and ∂xϕ ≪ λϕ2.

E.g., for ϕcl ¼ Et we have exactly such situation when t ≫
1ffiffiffiffi
λE

p and for ϕcl ¼ m
λ þ Ex when x ≫ j ffiffiffiffiλEp

−mj
λE .

To evaluate the tr log we do Wick rotation into the
Euclidean space [13]. One can actually do such a trans-
formation, which is not valid in nonstationary situation, in
the approximation that we are adopting here. Then we
expand the logarithm:

tr log

�
1þ ðλϕÞ2

∂2

�
¼
Z

d2x
Z

id2p
ð2πÞ2 log

�
1þ ðλϕÞ2

p2

�

≃ i
Z

d2x
4π

�
ðλϕÞ2 log Λ2

ðλϕÞ2 þ ðλϕÞ2
�
:

ðB3Þ

For the last equality we neglected the terms of the order ðλϕÞ
4

Λ2

and smaller. Thus, in the leading order for large ϕ and small
derivatives of ϕ the effective action has the following
form11:

Seff ≃
Z

d2x

�
1

2
∂μϕ∂μϕ − Veff ½ϕ�

�
; where

Veff ½ϕ� ≃
ðλϕÞ2
2π

log
λϕ

Λ
−
ðλϕÞ2
4π

: ðB4Þ

The partition function Z ¼ R DϕeiSeff ½ϕ� is predominantly
gained on the functions which solve the classical equation
of motion. Hence:

∂2hϕi þ λhψ̄ψi ≈ ∂2hϕi þ λ2hϕi
π

log
λhϕi
Λ

¼ 0: ðB5Þ

11Let us recall that the calculation of the effective action
corresponds to the summation of the Feynman diagrams (e.g., see
[13,37]). Indeed, consider the soft bosonic corrections to the free
fermion propagator:

GðpÞ ¼ i
=pþ iϵ

þ ð−iλϕÞ
�

i
=pþ iϵ

�
2

þ 2!

2!
ð−iλϕÞ2

�
i

=pþ iϵ

�
3

þ � � �

¼ i
=pþ iϵ

1

1 − λϕ

=pþiϵ

¼ i
=p − λϕþ iϵ

:

Such corrections take into account the interaction between the
fermion field and fixed scalar field background, so it is not
surprising that we have obtained the inverse operator of the
second equation in the system (3.3) in almost constant ϕcl
background. The fermion current corresponds to the exact
propagator with the coincident initial and endpoints, i.e., to
the sum of the closed fermionic loops with an even number of
external legs (diagrams with an odd number of legs are zero due
to Furry’s theorem [13]). Hence, the summation of such diagrams
should reproduce the result (B3) in the limit that we consider in
this section.
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This expression is consistent with the values of the scalar
currents (3.43) and (4.27) for ϕcl ¼ Et and ϕcl ¼ m

λ þ Ex,
respectively, which were obtained in the main body of the
text. However, (B5) works for strong, but slowly changing
classical backgrounds (see also [12]). Note that subleading
corrections to the scalar current (and, hence, to the effective
action) do depend on the state with respect to which
the averaging is done in the correlation functions [12].
The corrections should be calculated with the use of the
Schwinger–Keldysh technique.
Now the classical fields ϕcl ¼ Et and ϕcl ¼ m

λ þ Ex do
not solve the corrected equation of motion (B5), although
they do solve the free equation (3.3). This basically means
that such classical fields have to decay due to quantum
fluctuations of the fermions. This resembles the decay of
strong constant electric field [6,7]. However, in contrast to
the strong electric field in this case loop corrections to
boson and fermion level populations do not grow, as we
have shown in the main body of the text.

2. Renormalization

One can see that expressions (B4) and (B5) explicitly
depend on the UV cutoff, i.e., they are seemingly not
invariant with respect to renormalization group. Of course,
this dependence has no physical sense, because observables
must be renormalization group invariant. To resolve the
issue we restore the mass of the scalar field and take into
account UV counterterms (we recall that Yukawa theory in
two dimensions is renormalizable, since coupling constant
λ has positive mass dimension):

Seff ¼
Z

d2x

�
1

2
ð∂μϕÞ2 −

1

2
μ20ϕ

2 − Veff ½ϕ�

þ 1

2
Að∂μϕÞ2 −

1

2
Bϕ2

�
: ðB6Þ

Usually, one defines the renormalized mass as the value of
the inverse propagator at zero momentum:

μ2 ¼ ∂2V
∂ϕ2

				
0

; ðB7Þ

where V includes both the effective potential, mass term
and counterterms. However, in the present case this
definition is meaningless: the second derivative of V at
the origin does not exist due to the logarithmic singularity.
Due to this reason we define the mass at an arbitrary but
nonzero value MR:

μ2 ¼ ∂2V
∂ϕ2

				
MR

: ðB8Þ

This implies the following expression for the counterterm B:

B ¼ −
λ2

π
log

λMR

Λ
−
λ2

π
: ðB9Þ

and for the renormalized potential:

V ¼ 1

2
μ20ϕ

2 þ ðλϕÞ2
2π

log
λϕ

MR
−
3ðλϕÞ2
4π

: ðB10Þ

It is easy to check that this expression is invariant under the
change of renormalization scale. Also one can note that the
effective potential has the minimum, which is not ϕ ¼ 0.
This situation is obviously similar to the well-known
Coleman–Weinberg potential [13,37].
Finally, we set μ0 ¼ 0, replace an arbitrary parameterMR

by the ground state expectation value of the scalar field
which minimizes the renormalized potential (we emphasize
that this value differs from the average over the original
state):

MR ¼ 1

e
λhϕiGS; ðB11Þ

where e is the Euler’s constant, and obtain the following
renormalization group invariant expression for the effective
potential:

Veff ¼
ðλϕÞ2
2π

log
ϕ

hϕiGS
−
ðλϕÞ2
4π

: ðB12Þ

The expansion of this potential near the minimum ϕ ¼
hϕiGS þ ϕ̃ has the following form:

Veff ≃ −
λ2hϕi2GS

4π
þ λ2

2π
ϕ̃2 þ � � � ; ðB13Þ

i.e., the field spontaneously acquires the mass μ2 ¼ λ2

π .
Note that Eqs. (B5) and (B12) were obtained in the

approximation λϕ ≪ Λ which is obviously not satisfied
near the minimum of the potential. However, higher loops
corrections do not change the form of the potential near
ϕ ¼ 0. Therefore, loop corrections cannot shift the mini-
mum of the effective potential to zero, although they can
affect its absolute value [37]. I.e., the expression (B12)
provides a good qualitative description of the situation.

APPENDIX C: DERIVATION OF THE
COHERENT STATE

In this Appendix we show that the coherent state that we
use in the main body of the text has the following form:

jϕcli ¼ e−i
R

ϕclπ̂ϕdxj0i; where apj0i ¼ 0: ðC1Þ

Let us apply the operator ϕ̂ðyÞ to the state jϕcli:
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ϕ̂ðyÞjϕcli ¼ ϕ̂ðyÞe−i
R

ϕclπ̂ϕdxj0i

¼
X∞
n¼0

ð−iÞn
n!

Z
dx1…dxnϕclðx1Þ…ϕclðxnÞ

× ϕ̂ðyÞπ̂ϕðx1Þ…π̂ϕðxnÞj0i: ðC2Þ

Commuting ϕ̂ðyÞ with π̂ϕðxiÞ:

½ϕ̂ðyÞ; π̂ϕðxiÞ� ¼ iδðxi − yÞ; ðC3Þ

we get that:

ϕ̂ðyÞjϕcli ¼
�X∞

n¼0

ð−iÞn
n!

iϕclðyÞn
�Z

ϕclðxÞπ̂ϕðxÞdx
�

n−1
þ e−i

R
ϕclπ̂ϕdxϕ̂ðyÞ

�
j0i

¼
�
ϕclðyÞ

X∞
n¼1

ð−iÞn−1
ðn − 1Þ!

�Z
ϕclðxÞπ̂ϕðxÞdx

�
n−1

þ e−i
R

ϕclπ̂ϕdxϕ̂ðyÞ
�
j0i

¼ ϕcljϕcli þ e−i
R

ϕclπ̂ϕdxϕ̂ðyÞj0i: ðC4Þ

From the last expression it is straightforward to show that
Eq. (5.1) is true.
Now let us find the normalization factor. Define

jϕcli ¼ CðϕclÞe−i
R

ϕclπ̂ϕdxj0i: ðC5Þ

Then

hϕcljϕcli ¼ jCðϕclÞj2h0jei
R

ϕclπ̂ϕdxe−i
R

ϕclπ̂ϕdxj0i
¼ jCðϕclÞj2 ¼ 1: ðC6Þ

Hence, CðϕclÞ ¼ 1, because h0j0i ¼ 1. Thus, we confirm
the expression (5.2) for the coherent state.
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