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Novel wormholes are obtained in Einstein-scalar-Gauss-Bonnet theory for several coupling functions.
The wormholes may feature a single- or a double-throat geometry and do not demand any exotic matter.
The scalar field may asymptotically vanish or be finite, and it may possess radial excitations. The domain of
existence is fully mapped out for various forms of the coupling function.
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I. INTRODUCTION

In the quest for the fundamental theory of gravity,
Einstein-scalar-Gauss-Bonnet (EsGB) theories represent
interesting alternative theories of gravity (see, e.g., [1,2]).
They belong to the class of quadratic gravitational theories
that contain higher-curvature gravitational terms. These
terms are treated as small deformations that nevertheless
complete Einstein’s general relativity and may modify its
predictions at regimes of strong gravity. In the EsGB theory,
the Einstein-Hilbert action is supplemented by a scalar field,
nonminimally coupled to the quadratic Gauss-Bonnet (GB)
term. The resulting field equations are of second order,
avoiding Ostrogradski instability and ghosts [3–5]. In addi-
tion, this quadratic theory has so far survived the constraints
set by the detection of gravitational waves emitted during the
binary mergers, when the coupling function allows to set the
scalar field to zero in the cosmological context, and thus lead
to the same solutions as the standard cosmological ΛCDM
model [6]. The study of the types of solutions that this theory
admits is therefore of paramount importance.
Motivated by string theory with the dilaton as the scalar

field, the Einstein-dilaton-Gauss-Bonnet (EdGB) theory

features an exponential coupling between the scalar field
and the GB term [7–9]. Black-hole solutions arising in the
context of the EdGB theory differ from the Schwarzschild
or Kerr black holes since they possess a nontrivial dilaton
field and thus carry dilaton hair [10–21]. The extended
family of EsGB theories, where different coupling func-
tions of the scalar field to the GB term may be employed,
has attracted recently considerable attention [22–37]. In
these theories, new black holes arise through spontaneous
or induced scalarization depending on whether the scalar
field acquires a zero or nonzero, respectively, value at
infinity. The stability of scalarized black holes of EsGB
theories has been addressed in detail by analyzing their
radial perturbations and revealing a distinct dependence on
the coupling function [38].
A particularly interesting property emerging in the

EdGB solutions is the presence of regions with negative
effective energy density—this is due to the presence of the
higher-curvature GB term and is therefore of purely
gravitational nature [10,39]. Consequently, the EdGB
theory allows for Lorentzian, traversable wormhole solu-
tions without the need for exotic matter [39,40]. It is
tempting to conjecture that the more general EsGB theories
should also allow for traversable wormhole solutions.
Indeed, traversable wormholes require violation of the
energy conditions [41,42]. But whereas in general relativity
this violation is typically achieved by a phantom field
[43–48], in EdGB theories it is the effective stress-energy
tensor that allows for this violation [39,40].
Thus, in the context of this work, we consider a general

class of EsGB theories with an arbitrary coupling function
for the scalar field. We first readdress the case of the
exponential coupling function and show that the EdGB
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theory is even richer than previously thought, since it
features also wormhole solutions with a double throat and
an equator in between. Then, we consider alternative forms
of the scalar coupling function and demonstrate that the
EsGB theories always allow for traversable wormhole
solutions, featuring both single and double throats. The
scalar field may vanish or be finite at infinity, and it may
have nodes. We also map the domain of existence (DOE) of
these wormholes in various exemplifications, evaluate their
global charges and throat areas, and demonstrate that the
throat remains open without the need for any exotic matter.
In Sec. II, we briefly recall EsGB theory and discuss the

throat geometry for single- and double-throat configura-
tions. We here present the asymptotic expansions near the
throat/equator and in the two asymptotically flat regions,
and we also derive the formulae necessary to study the
violation of the energy conditions. We present our numeri-
cal solutions in Sec. III and discuss some of their properties,
their domains of existence, and the energy conditions. In
order to impose symmetry of the solutions under reflection
of the spatial radial coordinate, η → −η, we study in
Sec. IV the junction conditions at the throat/equator and
show that we can solve these by including a shell of
ordinary matter only. In Sec. V, we present embedding
diagrams of the wormhole solutions, and we conclude in
Sec. VI. For completeness, we show the lengthy set of field
equations in the Appendix.

II. THE EINSTEIN-SCALAR-GAUSS-BONNET
THEORY

We consider the following effective action describing a
quadratic scalar-tensor theory:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ FðϕÞR2

GB

�
: ð1Þ

The theory contains the Ricci scalar R, a scalar field ϕ, and
the quadratic gravitational Gauss-Bonnet term defined as

R2
GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2 ð2Þ

in terms of the Riemann tensor Rμνρσ, the Ricci tensor Rμν,
and the Ricci scalar R. The GB term, a topological invariant
in four dimensions, is coupled to the scalar field through a
coupling function FðϕÞ. The form of the latter will be left
arbitrary; therefore, our analysis will apply to a whole class
of Einstein-scalar-GB theories described by the action (1).
The Einstein and scalar-field equations are obtained by

variation of the action with respect to the metric, respec-
tively, the scalar field, and have the form

Gμν ¼ Tμν; ∇2ϕþ _FðϕÞR2
GB ¼ 0; ð3Þ

where the stress-energy tensor of the theory is given by the
following expression:

Tμν ¼ −
1

4
gμν∂ρϕ∂ρϕþ 1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλν þ gλμgρνÞηκλαβR̃ργ

αβ∇γ∂κFðϕÞ: ð4Þ

Note that Tμν receives contributions from the kinetic term
of the scalar field but also from the GB term, with the latter
being nontrivial for a nonconstant coupling function FðϕÞ
as expected. The dot above FðϕÞ in the scalar-field
equation denotes the derivative with respect to the scalar
field, and we have used the definitions R̃ργ

αβ ¼ ηργστRσταβ

and ηργστ ¼ ϵργστ=
ffiffiffiffiffiffi−gp

.
In this work, we consider only static, spherically

symmetric solutions of the field equations. To this end,
we employ the following line element:

ds2 ¼ −ef0ðηÞdt2

þ ef1ðηÞfdη2 þ ðη2 þ η20Þðdθ2 þ sin2 θdφ2Þg: ð5Þ

The substitution of the above metric in the Einstein and
scalar-field equations, given in Eq. (3), leads to three
second-order and one first-order ordinary differential equa-
tions (ODEs) that are displayed in the Appendix. Due to the
Bianchi identity, only three of these four equations are
independent. In our analysis, we choose to solve the three
second-order equations while the first-order one will serve
as a constraint on the unknown quantities f0, f1, and ϕ.

A. Single- and double-throat geometry

In our previous analyses [39,40], we determined tra-
versable wormhole solutions by employing the following
line element:

ds2 ¼ −ef0ðlÞdt2 þ pðlÞdl2 þ ðl2 þ r20Þðdθ2 þ sin2 θdφ2Þ:
ð6Þ

The wormhole geometry is characterized by the circum-
ferential radius Rc defined as

Rc ¼
1

2π

Z
2π

0

ffiffiffiffiffiffiffi
gφφ

p jθ¼π=2dφ: ð7Þ

A minimum of Rc corresponds to a wormhole throat,
whereas a local maximum corresponds to an equator.
For the line element (6), the circumferential radius is
RcðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ r20

p
. This expression clearly possesses a

minimum at l ¼ 0, corresponding to a throat of radius
r0, and it does not allow for a local maximum, i.e., an
equator. Consequently, wormholes with only a throat and
no equator were presented in [39,40].
For the set of coordinates defined in Eq. (5), the circum-

ferential radius is expressed as RcðηÞ ¼ ef1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20

p
. As

we will see, this expression allows for the existence of one
or two local minima (i.e., throats) and of a local maximum
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(i.e., equator). We introduce the distance variable in a
coordinate-independent way as

ξ ¼
Z

η

0

ffiffiffiffiffiffi
gηη

p
dη̃ ¼

Z
η

0

ef1ðη̃Þ=2dη̃: ð8Þ

The conditions for a throat, respectively, equator, at η ¼ 0
then read

dRc

dξ

����
η¼0

¼ 0;
d2Rc

dξ2

����
η¼0

≷ 0; ð9Þ

where the greater sign (>) refers to a throat and the smaller
sign (<) to an equator. Using the metric (5), these
conditions yield

f01ð0Þ ¼ 0; η20f
00
1ð0Þ þ 2 ≷ 0; ð10Þ

where the prime denotes derivative with respect to η. In the
degenerate case, when the throat and equator coincide,
the inequalities in Eqs. (9) and (10) become equalities.
If a throat/equator is located at η ¼ 0, then its area is given
by At;e ¼ 4πR2

cð0Þ ¼ 4πη20e
f1ð0Þ, while for a double-throat

wormhole with the throat located at ηt, At ¼ 4πR2
cðηtÞ ¼

4πðη2t þ η20Þef1ðηtÞ.

B. Asymptotic expansions

1. Expansion near the throat/equator

A traversable wormhole solution is characterized by the
absence of horizons or singularities. In order to ensure that
this is the case for our solutions, we consider the following
regular expansions for the metric functions and scalar field,
near the throat/equator at η ¼ 0:

ef0 ¼ a0ð1þ a1ηþ a2η2 þ � � �Þ; ð11Þ

ef1 ¼ b0ð1þ b1ηþ b2η2 þ � � �Þ; ð12Þ
ϕ ¼ ϕ0 þ ϕ1ηþ ϕ2η

2 þ � � � : ð13Þ
The Lorentzian signature of spacetime demands that both
parameters a0 and b0 must be positive; in addition, they
should be finite and nonvanishing. As discussed in the
previous subsection, the emergence of an extremum in the
circumferential radius Rc dictates that f01ð0Þ ¼ 0; this leads
to the result b1 ¼ 0. The ðηηÞ component of the Einstein
equations, given in Eq. (A2), yields near the throat/equator
a constraint equation,

½ðη20ϕ02 þ 4Þef1 − 8f00ϕ
0 _F�η¼0 ¼ 0: ð14Þ

The remaining three equations may then be solved to
express the second-order coefficients ða2; b2;ϕ2Þ in terms
of the zero and first-order coefficients in the η expansions
(11)–(13). These are found to have the form

a2 ¼
b0½4b0 _F2

0ϕ
2
1ðη20ϕ2

1 þ 4Þ2 þ b30η
2
0ðη20ϕ2

1 þ 4Þ2 − 128 _F2
0η

2
0ϕ

6
1F̈0�

256 _F2
0ϕ

2
1ðb20η20 þ 4 _F2

0ϕ
2
1Þ

; ð15Þ

b2 ¼ −
2b0ϕ2

1F̈0

b20η
2
0 þ 4 _F2

0ϕ
2
1

; ð16Þ

ϕ2 ¼ −
4b0 _F

2
0ϕ

2
1ðη20ϕ2

1 þ 4Þ þ b30η
2
0ðη20ϕ2

1 þ 4Þ þ 64 _F2
0ϕ

4
1F̈0

32ðb20 _F0η
2
0 þ 4 _F3

0ϕ
2
1Þ

: ð17Þ

From the above expressions, it seems that there are six free
parameters in our theory: the coefficients ðη0;ϕ0;ϕ1;
a0; b0Þ and the coupling constant α which is defined
through the relation FðϕÞ ¼ αF̃ðϕÞ, where F̃ is a dimen-
sionless quantity. However, the actual number of free
parameters is much smaller. First of all, we notice that
the field equations (A1)–(A4) are invariant under the
simultaneous scaling of the coordinate η, the constant
η0, and the scalar-field coupling constant α,

η → λη; η0 → λη0; α → λ2α; ð18Þ

where λ is an arbitrary constant. Therefore, we may fix η0,
which determines the scale of the wormhole’s equator/
throat, to a specific value, or equivalently introduce a
dimensionless coupling parameter α=η20. We can also fix
three of the remaining four parameters by applying appro-
priate boundary conditions at infinity. Thus, by demanding
asymptotic flatness, expressed by the conditions

lim
η→∞

jgttj ¼ 1; lim
η→∞

gηη ¼ 1; ð19Þ

we may fix the a0 and b0 parameters, while the condition
limη→∞ ϕ ¼ ϕ∞ allows us to fix ϕ1. Concluding, the only
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free parameters in the near-equator/throat area are the
dimensionless coupling constant α=η20 and the value ϕ0

of the scalar field at η ¼ 0.
Let us also examine the components of the stress-energy-

momentum tensor near the throat/equator. We find

Tt
t ¼

1

b0η20
−

4ϕ2
1F̈0

b20η
2
0 þ 4 _F2

0ϕ
2
1

þOðηÞ; ð20Þ

Tη
η ¼ −

1

b0η20
þOðηÞ; ð21Þ

Tθ
θ ¼

−b0η20ϕ2
1F̈0ðη20ϕ2

1 þ 4Þ þ 2b20η
2
0 þ 8 _F2

0ϕ
2
1

8b0 _F
2
0η

2
0ϕ

2
1 þ 2b30η

4
0

þOðηÞ:

ð22Þ
We observe that, as desired, all components of the stress-
energy tensor are finite at η ¼ 0, i.e., at the location of the
throat or equator of the solution.

2. Expansion at large distances

At large values of the radial coordinate, the metric
functions and scalar field are expanded in a power series
form in 1=η,

ef0 ¼ 1þ
X∞
n¼1

pn

ηn
; ð23Þ

ef1 ¼ 1þ
X∞
n¼1

qn
ηn

; ð24Þ

ϕ ¼ ϕ∞ þ
X∞
n¼1

dn
ηn

: ð25Þ

In the above expressions, we have already imposed the
conditions for asymptotic flatness and constant value of the
scalar field. Substituting the above expansions into the field
equations (A1)–(A4), we may determine the unknown
coefficients ðpn; qn; dnÞ in terms of only two coefficients
that remain arbitrary: d1 ¼ −D, where D is the scalar
charge of the wormhole, and p1 ¼ −2M, where M is the
Arnowitt-Deser-Misner mass of the wormhole. Thus, the
number of free parameters at infinity is also two, similarly
to the near-throat/equator regime. We have calculated the
remaining coefficients up to order Oð1=r5Þ, and the
asymptotic solutions have the following form:

ef0 ¼ 1 −
2M
η

þ 2M2

η2
−
MðD2 þ 36M2 − 12η20Þ

24η3
þD2M2 þ 12ðM4 −M2η20 − 4DM _F∞Þ

12η4
þO

�
1

η5

�
; ð26Þ

ef1 ¼ 1þ 2M
η

þ 12M2 −D2 − 4η20
8η2

þM½12ðM2 − 3η20Þ − 5D2�
24η3

þ 3D4 þD2ð96η20 − 104M2Þ þ 48ðM4 − 24M2η20 þ 7η40Þ þ 1536DM _F∞

768η4
þO

�
1

η5

�
; ð27Þ

ϕ ¼ ϕ∞ −
D
η
−
D3 þ 4DðM2 − 3η20Þ

48η3
−
4M2 _F∞

η4
þO

�
1

η5

�
: ð28Þ

We observe that the above solutions have exactly the same
form as the corresponding solutions which describe asymp-
totically flat black holes [24]. Apparently, the emergence of
an asymptotically flat limit does not depend on the choice
of the boundary condition at the other asymptotic regime,
i.e., the horizon of a black hole or the throat/equator of a
wormhole. The main difference is that, in the case of black
holes, the mass M and the scalar charge D are related
parameters—which makes black holes a one-parameter
family of solutions—while, in the case of wormholes, these
two parameters are independent. Also, the aforementioned
asymptotic solutions at infinity are almost independent of
the functional form of the coupling function FðϕÞ, since the
latter does not enter in the expansions earlier than in the
fourth order.

Finally, if we make use of the expansions above, we may
calculate again the stress-energy tensor components at large
distances. These are found to be

Tt
t ¼−Tη

η ¼ Tθ
θ ¼ Tφ

φ≈−ϕ02=4≈−D2=4η4þOð1=η5Þ:
ð29Þ

As we expect, the above expressions have exactly the same
form as the corresponding ones for the asymptotically flat
black holes. We observe that, at large distances where the
curvature of spacetime is small, the stress-energy tensor is
dominated by the kinetic term of the scalar field which is
itself decaying fast.

GEORGIOS ANTONIOU et al. PHYS. REV. D 101, 024033 (2020)

024033-4



C. Violation of energy conditions

In our previous works [39,40], we have shown that for
any single-throat wormhole the null energy condition is
violated at least in some region near the throat. Here, we
review that analysis and show that the violation of the null
energy condition also holds for double-throat wormholes.
The null energy condition (NEC) is expressed as

Tμνnμnν ≥ 0, where nμ is any null vector satisfying the
condition nμnμ ¼ 0. We may define the null vector as nμ ¼
ð1; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt=gηη
p

; 0; 0Þ with its contravariant form being
nμ ¼ ðgtt; ffiffiffiffiffiffiffiffiffiffiffiffiffiffi−gttgηη

p ; 0; 0Þ. For a spherically symmetric
spacetime, the NEC takes the form

Tμνnμnν ¼ Tt
tntnt þ Tη

ηnηnη ¼ −gttð−Tt
t þ Tη

ηÞ: ð30Þ

Then, the NEC holds if −Tt
t þ Tη

η ≥ 0. Alternatively, we
may choose nμ ¼ ð1; 0; ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gtt=gθθ
p

; 0Þ, and a similar analy-
sis leads to the condition −Tt

t þ Tθ
θ ≥ 0.

For a wormhole solution to emerge, it is essential that
these two conditions are violated [41]. Indeed, using the
expansion of the wormhole solution at the throat/equator,
we find

½−Tt
t þ Tη

η�ηt;e ¼ −2½e−f1R00
c=Rc�ηt;e : ð31Þ

Consequently, the NEC is always violated at the throat(s),
since Rc possesses a minimum there, implying R00

cðηtÞ > 0,
while no violation occurs at the equator, where R00

cðηeÞ < 0.
For example, for a single-throat solution with the throat at
η ¼ 0, we obtain the explicit expressions

½−Tt
t þ Tη

η�η¼0 ¼
�
−
2e−f1

η20
þ 4F̈ϕ02

e2f1η20 þ 4 _F2ϕ02

�
η¼0

¼ −
2

b0η20
þ 4ϕ2

1F̈0

b20η
2
0 þ 4 _F2

0ϕ
2
1

; ð32Þ

½−Tt
t þ Tθ

θ�η¼0 ¼
�

F̈ϕ02ð4 − η20ϕ
02Þ

2ðe2f1η20 þ 4 _F2ϕ02Þ

�
η¼0

¼ ϕ2
1F̈0ð4 − η20ϕ

2
1Þ

2b20η
2
0 þ 8 _F2

0ϕ
2
1

; ð33Þ

where we have used the approximate expressions
Eqs. (20)–(22) near the wormhole throat. We note that
the desired violation of the NEC follows not from the
presence of an exotic form of matter but from the synergy
between the scalar field and the quadratic GB term.
In the far-asymptotic regime, we may use the expansions

at infinity Eqs. (26)–(28) to find that the two null energy
conditions take the form

−Tt
t þ Tη

η ¼
D2

2η4
þO

�
1

η5

�
; ð34Þ

−Tt
t þ Tθ

θ ¼ −
40DM _F∞

η6
þO

�
1

η7

�
: ð35Þ

We observe that if D _F∞ > 0, the second null energy
condition is also violated at spatial infinity.
Let us also examine the weak energy condition (WEC),

which suggests that the energy density measured by any
observer has to be greater than or equal to zero. This is
expressed through the inequality TμνVμVν ≥ 0, where Vμ is
any timelike vector. If we choose Vμ ¼ ð1= ffiffiffiffiffiffiffiffi−gtt

p
; 0; 0; 0Þ,

and impose the condition VμVμ ¼ −1, then Vμ ¼
ð− ffiffiffiffiffiffiffiffi−gtt

p
; 0; 0; 0Þ, and the WEC is simply Tt

t ≤ 0. Near
the throat/equator, we found that Tt

t is given by Eq. (20);
this expression is not sign definite; therefore, the WEC may
also be violated in the small η regime. On the other hand, at
asymptotic infinity, where Tμν is dominated by the kinetic
term of the scalar field, the Tt

t component is given by
Eq. (29) and clearly obeys the WEC.

III. NUMERICAL SOLUTIONS

We now turn to the derivation of the wormhole solutions
by numerically integrating the three second-order, ordinary
differential equations (A1), (A3), and (A4). In order to find
asymptotically flat, regular wormhole solutions, we have to
impose appropriate boundary conditions at asymptotic
infinity and at the throat/equator, as discussed in the
previous section. For completeness, we list here the full
set of these boundary conditions,

f0ð∞Þ ¼ f1ð∞Þ ¼ 0; ϕð∞Þ ¼ ϕ∞; ð36Þ

f01ð0Þ ¼ 0; ½ðη20ϕ02 þ 4Þef1 − 8f00ϕ
0 _F�η¼0 ¼ 0: ð37Þ

For the numerical integration, we use the compactified
coordinate x ¼ η=ðηþ η0Þ to cover the range 0 ≤ η < ∞.
We choose η0 ¼ 1 for all our numerical solutions. The
software package COLSYS is then used to solve the three,
second-order ODEs with the aforementioned boundary
conditions.
In our analysis, we have found wormhole solutions with

either vanishing or nonvanishing asymptotic values of the
scalar field, namely for ϕ∞ ¼ 0 and ϕ∞ ¼ 1. We have also
considered several forms of FðϕÞ, including exponential
F ¼ αe−γϕ, F ¼ αe−γϕ

2

, power-law F ¼ αϕn with n ≠ 0,
inverse power-law F ¼ αϕ−n, and logarithmic F ¼ α lnðϕÞ
functions. We have found wormhole solutions in every
single case studied. Due to the qualitative similarity of the
obtained behavior for the metric functions and scalar field,
in this work we will mainly focus on the presentation of
results for the cases with coupling functions F ¼ αe−ϕ and
F ¼ αϕ2 and present combined graphs for different forms
of FðϕÞ whenever possible. During our quest for regular,
physically acceptable wormhole solutions, spontaneously

NOVEL EINSTEIN–SCALAR-GAUSS-BONNET WORMHOLES … PHYS. REV. D 101, 024033 (2020)

024033-5



scalarized black holes also emerged in multitude, thus
confirming the results of [24].
In Fig. 1(a), we depict the metric component −gtt ¼ ef0 ,

the scalar field ϕ, and the scaled circumferential radius
Rc=Rt for several coupling functions FðϕÞ. All solutions
are characterized by the same boundary values f0ð0Þ ¼ −5
and ϕð0Þ ¼ 0.5, but we have allowed for two different
asymptotic values for ϕ, namely ϕ∞ ¼ 0 and ϕ∞ ¼ 1. We
observe that the behavior of the metric component −gtt and
the circumferential radius Rc=Rt depends rather mildly on
the form of the coupling function or the asymptotic value
ϕ∞. On the other hand, both of these factors considerably
affect the profile of the scalar field as may be clearly seen
from the plot.
We have found both single- and double-throat wormhole

solutions for every form of the coupling function FðϕÞ. In
Fig. 1(b), we compare single- and double-throat wormholes
for the same values of the scaled scalar charge D=M and
scaled throat area At=16πM2. Once again, it is the scalar
field that is mostly affected by the different geometry near
the throat or equator. We note for future reference that the
derivatives of the −gtt and ϕ do not vanish at η ¼ 0, i.e., at
the throat, for single-throat wormholes, or at the equator,
for double-throat ones. This feature will lead to the
introduction of a distribution of matter, albeit a physically
acceptable one, at η ¼ 0 when we attempt to symmetrically
continue our wormhole solutions to the negative regime of
the η coordinate. This process and the implications of the
associated junction conditions will be studied in Sec. IV.
The spacetime around our wormhole solutions is finite

for all values of the radial coordinate η ∈ ½0;∞Þ. All
curvature invariant quantities remain everywhere finite,
as expected. In Fig. 2(a), we depict the profile of the

quantity FðϕÞR2
GB, for a variety of forms of the coupling

function FðϕÞ and for the same set of values of the free
parameters for easy comparison. We observe that the
combination FðϕÞR2

GB is indeed finite, vanishes at asymp-
totic infinity as anticipated while its profile in the small η
regime depends on the form of FðϕÞ. We also note that the
double-throat solution presents a different profile from the
single-throat ones; this is due to the fact that the value of
the scalar field at the equator is different from its value at
the throat.
Next, we discuss the domain of existence (DOE) of the

wormhole solutions, in terms of the scaled scalar charge
and the scaled throat area, and restrict our discussion to the
indicative cases of the exponential and quadratic coupling
functions. In Fig. 2(b), we show the DOE for the expo-
nential case, F ¼ αe−ϕ. The different curves correspond to
families of wormholes for a fixed value of α with single
throat (dashed) and double throat (solid). Solutions
emerge for arbitrarily small values of α up to some maximal
value—here, we depict a variety of solutions arising up to
the value α=η20 ¼ 0.361. The boundary of the DOE is
formed by the black hole solution with scalar hair (solid
black), the wormhole solutions with a degenerate throat
(dotted black), configurations with cusp singularities out-
side the throat (dashed black), and configurations with
singularities at the equator (dashed-dotted black). We note
that the part of the DOE above the dashed-dotted curve
comprises both single- and double-throat wormholes. The
single-throat wormholes of this area can in fact be obtained
from the double-throat ones—we will return to this point in
Sec. IV. The region of the domain of existence below the
dashed-dotted curve contains only single-throat wormholes
which are not related to double-throat solutions.
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FIG. 1. Solutions: (a) the metric component −gtt, the scalar field ϕ, and the scaled circumferential radius Rc=Rt are shown as functions
of the compactified coordinate η=ð1þ ηÞ for different coupling functions. All solutions are characterized by the same values of f0ð0Þ
and ϕð0Þ. (b) The metric component −gtt, the scalar field ϕ, and the scaled circumferential radius Rc=Rt are shown as function of the
compactified coordinate η=ð1þ ηÞ for a single-throat wormhole (blue) and a double-throat wormhole (red) for the same values of the
scaled scalar charge and the scaled throat area.
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We now turn to the case of the quadratic coupling
function, F ¼ αϕ2. Contrary to what happens in the case
of the exponential coupling function, in this case, the
DOE depends on the asymptotic value of the scalar field.
For ϕð∞Þ ¼ 1, the quantity _FðϕÞ assumes a nonzero
asymptotic value, as in the exponential case; therefore
the DOE, depicted in Fig. 3(a), is similar to the one
displayed in Fig. 2(b). In contrast, if ϕð∞Þ ¼ 0, then _F
vanishes asymptotically and the range of α, for which
wormholes arise, is also limited from below. The DOE in
this case is shown in Fig. 3(b)—now, wormholes emerge
only if 0.205 < α=η20 < 0.480. The Schwarzschild black
holes are now part of the boundary of the DOE, as indicated
by the dot in Fig. 3(b), since the constant configuration
ϕ≡ ϕ∞ ¼ 0 solves the scalar field equation trivially.

Moreover, wormhole solutions exist for which the scalar
field may possess N nodes. The boundary of the DOE for
N ¼ 1 is shown in the inlet in Fig. 3(b). Note that the range
of α in this case is approximately 1.85 ≤ α=η20 ≤ 2.75, i.e.,
considerably larger than for N ¼ 0.
Let us finally address the issue of the violation of the null

and weak energy conditions. In Fig. 4(a), we display the
quantity −Tt

t þ Tη
η for a number of wormhole solutions

arising for different forms of the coupling function FðϕÞ. It
is evident that the NEC is always violated near the throat of
each solution by an amount which depends on the form of
the coupling function FðϕÞ since the latter determines the
weight of the GB term in the theory. On the other hand, the
NEC is obeyed at asymptotic infinity. We note that, in
the case of the double-throat solution, the NEC is violated
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FIG. 3. Domain of existence for the coupling function F ¼ αϕ2 for several values of α=η20: the scaled throat area of single- and double-
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at the throat while it is obeyed at the equator, according to
the analysis of the previous section. A similar behavior is
exhibited by the Tt

t component depicted in Fig. 4(b): the
WEC is again violated at the small η regime, by an amount
determined by FðϕÞ, while it is obeyed at asymptotic
infinity where the GB term becomes negligible. The
double-throat solution again respects the WEC at the
equator while it violates it near the throat.

IV. JUNCTION CONDITIONS

Wormhole solutions may be either symmetric or asym-
metric under the change η → −η. In the context of the
EsGB theory with an exponential coupling function
[39,40], asymmetric wormholes were found but they were
plagued by curvature singularities lurking behind the
throat. A regular wormhole solution may then be con-
structed by imposing a symmetry under the change
η → −η. The obtained solution then consists of two parts:
the first coincides with the part of the asymmetric solution

which extends from the asymptotic region at infinity to the
location of the throat; the second part of the wormhole
solution is obtained by the symmetric continuation of the
first part in the negative η regime.
A similar construction was performed in the context of

the present analysis, in the case of solutions with a single
throat—these solutions are the ones depicted in Figs. 2(b),
3(a), and 3(b) under the dashed-dotted curves. In the case of
singular wormhole solutions with a throat and an equator, a
similar process may give rise to double-throat wormholes
and to single-throat wormholes since now there are two
options, as Fig. 5 depicts. The first option is to construct a
regular wormhole by cutting at the throat and symmetri-
cally continuing to the left, as described above; in that case,
the equator is removed from the spacetime geometry and a
single-throat wormhole is constructed. The second option is
to cut the singular solution at the equator, keep the regular
part from the asymptotic infinity to the equator and
continue symmetrically to the left; in this way, a double-
throat wormhole solution, with an equator located exactly
between the throats, is constructed. Both wormholes
possess the same mass and scalar charge, since these
quantities are extracted from the asymptotic region that
is common in both solutions. Hence, for any double-throat
wormhole, there exists a single-throat wormhole with the
same mass and scalar charge—these are the solutions
depicted in Figs. 2(b), 3(a), and 3(b) above the dashed-
dotted curves.
Let us now discuss in more detail the construction of

symmetric, regular, and thus traversable wormholes [49].
From Fig. 1, we observe that the derivatives of the −gtt and
ϕ do not vanish in general at η ¼ 0. Therefore, imposing a
symmetry under η → −η creates a “cusp” in the profile of
the aforementioned quantities. This feature may be attrib-
uted to the presence of a distribution of matter at η ¼ 0, i.e.,
around the throat or the equator, for single- or double-throat
solutions, respectively. The embedding of this thin-shell
matter distribution in the context of the complete solution is
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FIG. 5. Schematic picture for the construction of double- and
single-throat wormhole solutions.

(a)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.001  0.01  0.1  1  10  100

dotted: α/η0
2=0.18

dashed: α/η0
2=0.10

solid: α/η0
2=0.05

dash-dotted: α/η0
2=0.05

double throat

× 10
-T

t t+
T

η η

η/η0

αe-φ

αφ
αφ2

αφ3

αφ-1

αφ-2

(b)

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.001  0.01  0.1  1  10  100

dotted: α/η0
2=0.18

dashed: α/η0
2=0.10

solid: α/η0
2=0.05

dash-dotted: α/η0
2=0.05

double throat× 10

T
t t

η/η0

αe-φ

αφ
αφ2

αφ3

αφ-1

αφ-2

FIG. 4. (a) The null energy condition and (b) the weak energy condition for a variety of forms of the coupling function FðϕÞ.

GEORGIOS ANTONIOU et al. PHYS. REV. D 101, 024033 (2020)

024033-8



determined through the junction conditions [51,52], that
follow by considering the jumps in the Einstein and scalar-
field equations (3) as η → −η. These are found to have the
form

hGμ
ν − Tμ

νi ¼ sμν; h∇2ϕþ _FR2
GBi ¼ sscal; ð38Þ

where sμν denotes the stress-energy tensor of the matter at
the throat, respectively, equator, and sscal a source term for
the scalar field. For a physically acceptable solution, this
matter distribution should not be exotic. We thus assume a
perfect fluid with pressure p and energy density ρ, and a
scalar charge ρscal at the throat, respectively, equator,
together with the gravitational source [39,40]

SΣ ¼
Z

½λ1 þ 2λ0FðϕÞR̄�
ffiffiffiffiffiffi
−h̄

p
d3x; ð39Þ

where λ1, λ0 are constants, h̄ab is the three-dimensional
induced metric at the throat, respectively, equator, and R̄ is
the corresponding Ricci scalar. Substitution of the metric
then yields the junction conditions

8 _Fϕ0e−
3f1
2 ¼ λ1η

2
0 þ 4λ0Fe−f1 − ρη20; ð40Þ

e−
f1
2 f00 ¼ λ1 þ p; ð41Þ

e−f1ϕ0 − 4
_F
η20

f00e
−2f1 ¼ −4λ0

_F
η20

e−
3f1
2 þ ρscal

2
; ð42Þ

where all quantities are taken at η ¼ 0. The above junction
conditions determine ρ, p, and ρscal in terms of the arbitrary
constants λ0 and λ1 and the form of the scalar field and
metric functions close to the boundary.

For every form of the coupling function FðϕÞ, we may
find an extensive (λ0, λ1)-parameter regime over which ρ is
always positive, and the necessity of the exotic matter is
thus avoided. An interesting special case is when the matter
distribution around the throat/equator has a vanishing
pressure, i.e., p ¼ 0, and therefore its equation of state
is the one of dust. In this case, Eq. (41) gives λ1 ¼ e−f1=2f00.
If we choose λ0 ¼ λ1, Eqs. (40) and (42) easily yield

ρ ¼ e−
3f1
2

η0
½ð4F þ η20e

f1Þf00 − 8 _Fϕ0�; ρsc ¼ 2e−f1ϕ0;

ð43Þ

respectively, where again all quantities are evaluated at
η ¼ 0. In Fig. 6, we depict the energy density ρ at the
throat, respectively, equator, as a function of the scaled
scalar charge D=M, for a variety of wormhole solutions
arising for FðϕÞ ¼ αϕ2 and for the aforementioned values
of p, λ0 and λ1. We note that in this example the energy
density ρ is positive for all wormhole solutions. As in the
construction of the solution, where the synergy of an
ordinary distribution of matter with a gravitational source
kept the throat, respectively, equator, open, here a similar
synergy creates a symmetric wormhole free of singularities.

V. EMBEDDING DIAGRAM

A useful way to visualize the geometry of a given
manifold is the construction of the corresponding embed-
ding diagram. In this case, we consider the isometric
embedding of the equatorial plane of our wormhole
solutions, defined as the line element (5) for t ¼ const.
and θ ¼ π=2. The isometric embedding follows by equat-
ing the line element of the two-dimensional equatorial
plane with a hypersurface in the three-dimensional
Euclidean space, namely,

ef1 ½dη2 þ ðη2 þ η20Þdφ2� ¼ dz2 þ dw2 þ w2dφ2; ð44Þ

where (z, w, φ) is a set of cylindrical coordinates on the
hypersurface. Considering z and w as functions of η, we
find

w ¼ ef1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ η20

q
; ð45Þ

�
dw
dη

�
2

þ
�
dz
dη

�
2

¼ ef1 : ð46Þ

Then, combining the above equations, we find

zðηÞ ¼ �
Z

η

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ef1ðη̃Þ −

�
d
dη̃

h
ef1ðη̃Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η̃2 þ η20

q i�2

s
dη̃:

ð47Þ
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Therefore, fwðηÞ; zðηÞg is a parametric representation of a
slice of the embedded θ ¼ π=2 plane for a fixed value of
the φ coordinate, while the corresponding surface of
revolution is the three-dimensional representation of the
wormhole’s geometry.
In Fig. 7(a), we depict the isometric embedding of

the geometry of a symmetric, traversable, double-throat
wormhole solution. The three-dimensional view of the
surface follows from the parametric plot ðwðηÞ cosφ;
wðηÞ sinφ; zðηÞÞ as described above. The diagram clearly
features an equator and two throats smoothly connected to
two asymptotic regimes. In Fig. 7(b), we also show the
geometry transition between single- and double-throat
wormholes, by plotting w versus z, for a sequence of
solutions for fixed α=η20 ¼ 0.25. We observe that, with
increasing scaled throat area, the double-throat wormholes
develop a degenerate throat and turn into single-throat ones.
If the scaled throat area is increased further, a second
transition takes place where the single-throat wormholes
turn again to double-throat ones.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have considered a general class of EsGB
theories with an arbitrary coupling function between the
scalar field and the quadratic Gauss-Bonnet term. By
employing a novel coordinate system, we have allowed
for wormhole solutions with either single- or double-throat
geometries to emerge. We have determined the asymptotic
form of the metric functions and scalar field in the small
and large radial-coordinate regimes, and demonstrated that
the null and weak energy conditions may be violated,
especially in the inner regime where the effect of the GB
term is dominant.
We have then numerically integrated our set of field

equations in order to determine the complete wormhole

solutions that interpolate between the derived asymptotic
solutions. We have found wormholes, with either a single
throat or a double throat and an equator, for every form of
the coupling function we have tried. The spacetime is
regular over the entire positive range of the radial coor-
dinate, as also is the nontrivial scalar field that characterizes
every wormhole solution. Our solutions are therefore
characterized by two independent parameters, their mass
and scalar charge. The domain of existence has been
studied in detail in each case, and here we have presented
the ones for the exponential and quadratic coupling
functions in order to discuss the qualitative differences
as the form of the coupling function and the value of the
scalar field at asymptotic infinity varies.
An important result of our analysis is that the EsGB

theories always feature wormhole solutions without the
need for exotic matter, since the higher-curvature terms
allow for gravitational effective negative energy densities.
This has been demonstrated by examining the null and
weak energy conditions for our solutions and showing that
indeed the coupling between the scalar field and the GB
term results in a negative energy density near the throat/
equator. The null energy condition is also violated since it is
associated with the appearance of a throat that every
wormhole solution must possess.
In order to construct traversable wormhole solutions with

no spacetime singularities beyond the throat or equator, our
regular solution over the positive range of the radial
coordinate was extended in the negative range in a
symmetric way. This construction demands the introduc-
tion of a distribution of matter around the throat or equator
that nevertheless may be shown to consist of physically
acceptable particles. We have provided an indicative
example where this distribution of matter is described by
the equation of state of dust with a vanishing isotropic
pressure and a positive energy density.
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FIG. 7. (a) The embedded equatorial plane is shown for the double-throat wormhole with α=η20 ¼ 0.35 and D=M ¼ 0.886. (b) The
profiles of the isometric embedding are shown for a sequence of solutions for the coupling function F ¼ 0.25e−ϕ.

GEORGIOS ANTONIOU et al. PHYS. REV. D 101, 024033 (2020)

024033-10



Let us address at this point the issue of the existing
bounds on the GB coupling constant. The parameters of
any modified gravitational theory, including the EsGB
theory, may be constrained by processes and observations
in strong gravitational regimes. The most recent bound on
the GB coupling parameter α was set in [53] where the
effect of the scalar dipole radiation on the phase evolution
of the gravitational waveform was taken into account—this
radiation was emitted during the merging process of two
binary systems in which one of the constituents is a
scalarized black hole (GW151226 and GW170608 as
detected by LIGO). This bound was set on the valueffiffiffi
α

p
< 10.1 km, taking into account the different definitions

of α; in dimensionless units, this translates to α=M2 < 1.72,
whereM is the characteristic mass scale of the system, i.e.,
the black-hole mass. In the absence of a direct bound on
wormholes, since no such object has been detected so far,
and demanding that the EsGB theory should allow for both
black-hole solutions and wormholes to emerge, we apply
the aforementioned bound by LIGO on our wormhole
solutions too. For an exponential coupling function, all of
our solutions satisfy the bound α=M2 < 0.91, while for a
quadratic coupling function we obtain α=M2 < 0.605 (for
solutions with no nodes for the scalar field), respectively,
α=M2 < 2.9 (for solutions with one node). Thus the
observational bound leaves unaffected the aforementioned
DOEs: all solutions in Figs. 2(b), 3(a), and 3(b) (with no
nodes) fall entirely within the allowed range.

Our next step will be to study the physical characteristics
of our solutions in greater detail and to generalize them to
admit also rotation [47]. In addition, a linear stability
analysis of these EsGB wormholes [39,40,54,55] will be
performed and their radial and quasinormal modes, which
could be observable signatures of their existence, will be
determined.
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APPENDIX: FIELD EQUATIONS

Employing the metric (5) in Eq. (3), the ðttÞ, ðηηÞ, and
ðθθÞ components of Einstein’s equations take the form

η60ð2f01ðϕ0ð _Fðf021 − 4f001Þ − 2f01F̈ϕ
0Þ − 2 _Ff01ϕ

00Þ þ ef1ðf021 þ 4f001 þ ϕ02ÞÞ þ η4½−4 _Fηf01ϕ00ðηf01 þ 4Þ
þ ef1ηðηð4f001 þ ϕ02Þ þ ηf021 þ 8f01Þ þ 2ϕ0ð _Fðf01ðη2f021 − 8Þ − 4ηf001ðηf01 þ 2ÞÞ − 2ηf01F̈ϕ

0ðηf01 þ 4ÞÞ�
þ η40½2ϕ0ð _Fð3f01ðη2f021 − 4Þ − 4ηf001ð3ηf01 þ 2ÞÞ − 2F̈ϕ0ðηf01 þ 2Þð3ηf01 − 2ÞÞ − 4 _Fϕ00ðηf01 þ 2Þð3ηf01 − 2Þ
þ ef1ðηð3ηð4f001 þ ϕ02Þ þ 3ηf021 þ 8f01Þ þ 4Þ� þ ηη20½−4ηF̈ϕ02ðηf01ð3ηf01 þ 8Þ − 4Þ þ ef1ηð4þ ηð16f01
þ 3ηf021 þ 3ηðϕ02 þ 4f001ÞÞÞ þ 2 _Fðϕ0ð3η3ðf01Þ3 − 4η2f001ð3ηf01 þ 4Þ − 20ηf01 − 16Þ
− 2ηϕ00ðηf01ð3ηf01 þ 8Þ − 4ÞÞ ¼ 0; ðA1Þ

ef1 ½η3ð2f00ðηf01 þ 2Þ þ f01ðηf01 þ 4Þ − ηϕ02Þ þ 2η20ðηð2f00ðηf01 þ 1Þ þ f01ðηf01 þ 2Þ − ηϕ02Þ − 2Þ
þ η40ðf021 þ 2f00f

0
1 − ϕ02Þ� − 2 _Ff00ϕ

0ð12ðη2 þ η20Þηf01 þ 3ðη2 þ η20Þ2f021 þ 8η2 − 4η20Þ ¼ 0; ðA2Þ

η3½−4 _Ff00ϕ00ðηf01 þ 2Þ − 4f00F̈ϕ
02ðηf01 þ 2Þ − 2 _Fϕ0ð−2f00ðηf021 − ηf001 þ f01Þ þ 2f000ðηf01 þ 2Þ þ f020 ðηf01 þ 2ÞÞ

þ ef1ðηð2ðf000 þ f001Þ þ ϕ02Þ þ ηf020 þ 2f00 þ 2f01Þ� þ 2η20½ef1ðηðηð2ðf000 þ f001Þ þ ϕ02Þ þ ηf020 þ f00 þ f01Þ þ 2Þ
− 2 _Fϕ0ðf00ð2 − ηð2ηf021 − 2ηf001 þ f01ÞÞ þ 2ηf000ðηf01 þ 1Þ þ ηf020 ðηf01 þ 1ÞÞ − 4ηf00ðηf01 þ 1Þð _Fϕ00 þ F̈ϕ02Þ�
þ η40½−4f00f01F̈ϕ02 − 4 _Ff00f

0
1ϕ

00 − 2 _Fϕ0ðf01ðf020 − 2f01f
0
0 þ 2f000Þ þ 2f00f

00
1Þ þ ef1ðf020 þ 2ðf000 þ f001Þ þ ϕ02Þ� ¼ 0;

ðA3Þ

respectively. The scalar equation in turn yields
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η60ðf00ð4 _Ff01f001 − _Ff031 þ ef1ϕ0Þ þ 2 _Ff021 f
00
0 þ _Ff020 f

02
1 þ 2ef1ϕ00 þ ef1f01ϕ

0Þ þ η4½ _Fηf020 f01ðηf01 þ 4Þ
þ f00ð4 _Ff01ðη2f001 þ 2Þ þ ηð _Fð8f001 − ηf031 Þ þ ef1ηϕ0ÞÞ þ ηð2ð _Fðηf021 f000 þ 4f01f

00
0Þ þ ef1ηϕ00Þ

þ ef1ϕ0ðηf01 þ 4Þ� þ η40½f00ð12 _Ff01ðη2f001 þ 1Þ − 3 _Fη2f031 þ ηð8 _Ff001 þ 3ef1ηϕ0ÞÞ þ 6 _Fη2f021 f
00
0 þ 8 _Fηf01f

00
0

− 8 _Ff000 þ 6ef1η2ϕ00 þ _Ff020 ð3η2f021 þ 4ηf01 − 4Þ þ ef1ηϕ0ð3ηf01 þ 4Þ� þ ηη20½ _Fηf020 ð3η2f021 þ 8ηf01 − 4Þ
þ f00ð _Fð−3η3f031 þ 4ηf01ð3η2f001 þ 5Þ þ 16ðη2f001 þ 1ÞÞ þ 3ef1η3ϕ0Þ þ ηð2 _Ff000ð3η2f021 þ 8ηf01 − 4Þ
þ 6ef1η2ϕ00 þ ef1ηϕ0ð3ηf01 þ 8ÞÞ� ¼ 0: ðA4Þ

In the above equations, the prime denotes differentiation with respect to the radial coordinate η.
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