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Past and current direct neutrino mass experiments set limits on the so-called effective neutrino mass,
which is an incoherent sum of neutrino masses and lepton mixing matrix elements. The electron energy
spectrum which neglects the relativistic and nuclear recoil effects is often assumed. Alternative definitions
of effective masses exist, and an exact relativistic spectrum is calculable. We quantitatively compare the
validity of those different approximations as function of energy resolution and exposure in view of tritium
beta decays in the KATRIN, Project 8, and PTOLEMY experiments. Furthermore, adopting the Bayesian
approach, we present the posterior distributions of the effective neutrino mass by including current
experimental information from neutrino oscillations, beta decay, neutrinoless double-beta decay, and
cosmological observations. Both linear and logarithmic priors for the smallest neutrino mass are assumed.

DOI: 10.1103/PhysRevD.101.016003

I. INTRODUCTION

Neutrino oscillation experiments have measured with
very good precision the three leptonic flavor mixing
angles fθ12; θ13; θ23g and two independent neutrino
mass-squared differences Δm2

21 ≡m2
2 −m2

1 and jΔm2
31j≡

jm2
3 −m2

1j. The absolute scale of neutrino masses, how-
ever, has to be determined from nonoscillation
approaches, using beta decay [1], neutrinoless double-
beta decay [2], or cosmological observations [3]. Once
the neutrino mass scale is established, one knows the
lightest neutrino mass, which is m1 in the case of normal
neutrino mass ordering (NO) with m1 < m2 < m3, or m3

in the case of inverted neutrino mass ordering (IO) with
m3 < m1 < m2.
As first suggested by Fermi and Perrin [4–6], the

precise measurement of the electron energy spectrum in
nuclear beta decays A

Z N → A
Zþ1

N þ e− þ νe, where A and
Z denote the mass and the atomic number of the decaying
nucleus, can be utilized to probe absolute neutrino masses.
Since the energy released in beta decays is distributed to
massive neutrinos, the energy spectrum of electrons in the

region close to its end point will be distorted in com-
parison to that in the limit of zero neutrino masses. This
kinematic effect is usually described by the effective
neutrino mass [7]

mβ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUe1j2m2

1 þ jUe2j2m2
2 þ jUe3j2m2

3

q
; ð1Þ

where Uei (for i ¼ 1, 2, 3) stand for the first-row elements
of the leptonic flavor mixing matrix U, i.e., jUe1j ¼
cos θ13 cos θ12, jUe2j ¼ cos θ13 sin θ12, jUe3j ¼ sin θ13 in
the standard parametrization [8], and mi (for i ¼ 1, 2, 3)
for the absolute neutrino masses. Very recently, the
KATRIN Collaboration has reported its first result on
the effective neutrino mass using tritium beta decay
3H → 3Heþ e− þ ν̄e and reached the currently most strin-
gent upper bound [9,10]

mβ < 1.1 eV ð2Þ

at the 90% confidence level (CL). With the full
exposure in the near future, KATRIN aims for an
ultimate limit of mβ < 0.2 eV at the same CL [11],
which is an order of magnitude better than the result
mβ ≲ 2 eV from the Mainz [12] and Troitsk [13]
experiments.
Motivated by this impressive achievement of the

KATRIN experiment, we revisit the validity of the effective
neutrino mass mβ in Eq. (1) and clarify how it depends
on the energy resolution and the sensitivity of a realistic
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experiment for tritium beta decays.1 More explicitly, we
shall consider the KATRIN [11], Project 8 [17], and
PTOLEMY [18–20] experiments. Their main features
and projected sensitivities have been summarized in
Appendix A and Table I. We compare mβ in Eq. (1) with
other effective neutrino masses proposed in the literature
and also consider the exact relativistic spectrum of tritium
beta decays. A measure of the validity ofmβ in terms of the
exposure and energy resolution for a beta-decay experiment
can be set. As a result, we find that the standard effective
mass mβ and the classical spectrum form can be used for
KATRIN and Project 8 essentially without losing accuracy.
Furthermore, it is of interest to estimate how likely a

signal in upcoming neutrino mass experiments, including
those using electron capture, is. Toward this end, we
perform a Bayesian analysis to obtain the posterior dis-
tributions of mβ. The probability to find the beta-decay
signal depends on the experimental likelihood input one
considers, in particular the neutrino mass information from
cosmology and neutrinoless double-beta decays. The cos-
mological constraints on neutrino masses reply on the
datasets one has included in generating the likelihood,
whereas the constraints from neutrinoless double-beta
decays are subject to the assumption whether neutrinos
are Dirac or Majorana particles. It is thus quantified what
the consequences of adding more and more additional
mass information are. Moreover, the prior on the smallest
neutrino mass, which could be linear or logarithmic, is
important for the final posteriors.
The remaining part of our paper is organized as follows.

In Sec. II, we make a comparison between the exact
relativistic spectrum of electrons from tritium beta decays
with the ordinary one with an effective neutrino mass mβ.
Then, a quantitative assessment of the validity of the
effective neutrino mass is carried out. The posterior
distributions of the effective neutrino mass are calculated
in Sec. III, where the present experimental information
from neutrino oscillations, neutrinoless double-beta decays,
and cosmology are included. Finally, we summarize our

main results in Sec. IV. Technical details on the considered
experiments and on the likelihoods used for our Bayesian
analysis are delegated to Appendices.

II. THE EFFECTIVE NEUTRINO MASS

A. The relativistic electron spectrum

Before introducing the effective neutrino mass for beta
decays, we present the exact relativistic energy spectrum
of the outgoing electrons for tritium beta decays (or
equivalently the differential decay rate), which can be
calculated within standard electroweak theory [21–24],
the result being

dΓrel

dKe
¼ NT

σ̄ðEeÞ
π2

X3
i¼1

jUeij2HðEe;miÞ: ð3Þ

Here NT is the target mass of 3H, and Ee ¼ Ke þme is the
electron energy with Ke being its kinetic energy. In Eq. (3),
the reduced cross section is given by

σ̄ðEeÞ≡ G2
F

2π
jVudj2FðZ; EeÞ

m3He

m3H
Ee

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

q

×

�
hfFi2 þ

�
CA

CV

�
2

hgGTi2
�
; ð4Þ

where GF ¼ 1.166 × 10−5 GeV−2 is the Fermi constant,
jVudj ≈ cos θC is determined by the Cabibbo angle
θC ≈ 12.8°, FðZ; EeÞ is the ordinary Fermi function with
Z ¼ 1 for tritium taking account of the distortion of the
electron wave function in the Coulomb potential of the
decaying nucleus,2 CV ≈ 1 and CA ≈ 1.2695 stand for
the vector and axial-vector coupling constants of the
charged-current weak interaction of nucleons, respectively.
In addition, hfFi2 ≈ 0.9987 and hgGTi2 ≈ 2.788 are the
squared nuclear matrix elements of the allowed Fermi and
Gamow-Teller transitions. The kinematics of the tritium
beta decays is encoded in the functionHðEe;miÞ in Eq. (3),
namely,

TABLE I. The configurations of tritium beta-decay experiments and the resulting χ2β and Δχ2true defined in Eqs. (19) and (20) arising
from the description of the electron spectrum by using the effective neutrino mass mβ. One year of data taking has been assumed. No
background is assumed, and the χ2 values can be further reduced taking into account possible background contributions.

mL ¼ 0 eV Target mass Δ χ2β, NO χ2β, IO Δχ2true, NO Δχ2true, IO

KATRIN 2.5 × 10−4 g 1 eV 7.4 × 10−7 5.6 × 10−7 1.3 × 10−7 1.1 × 10−7

Project 8 (Molecular 3H) 5 × 10−4 g 0.36 eV 8.9 × 10−5 6.1 × 10−5 2.0 × 10−5 1.4 × 10−5

Project 8 (Atomic 3H) 5 × 10−4 g 0.05 eV 0.064 0.13 0.032 0.015
PTOLEMY 100 g 0.15 eV 428 331 141 81

1In this work, we focus only on tritium beta-decay experi-
ments. Similar analyses of the effective neutrino mass can be
performed for the electron-capture decays of holmium, namely,
e− þ 163Ho → νe þ 163Dy, which are and will be investigated in
the ECHo [14] and HOLMES [15], NuMECS [16] experiments.

2The Fermi function is given by FðZ; EeÞ ¼ 2πη=ð1 − e−2πηÞ,
where η≡ ZαEe=pe with pe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
e −m2

e

p
being the electron

momentum and α ≈ 1=137 the fine-structure constant.
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HðEe;miÞ≡ 1−m2
e=ðm3HEeÞ

ð1− 2Ee=m3H þm2
e=m2

3HÞ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

�
yþ 2mim3He

m3H

�s �
yþ mi

m3H
ðm3He þmiÞ

�
;

ð5Þ

where y≡ Kend − Ke with Kend ¼ ½ðm3H −meÞ2−
ðm3He þmiÞ2�=ð2m3HÞ being the end point energy corre-
sponding to the neutrino mass mi. Some comments on the
kinematics are in order:

(i) Given the nuclear masses m3H ≈ 2808920.8205 keV
and m3He ≈ 2808391.2193 keV [23], as well as
the electron mass me ≈ 510.9989 keV, one can
obtain the Q value of tritium beta decay Q≡
m3H −m3He −me ≈ 18.6023 keV. In the limit of
vanishing neutrino masses, the end point energy
Kend turns out to be

Kend;0 ≡ ½ðm3H −meÞ2 −m2
3He�=ð2m3HÞ

≈ 18.5989 keV; ð6Þ

which is lower than theQ value by a small amount of
Q − Kend;0 ≈ 3.4 eV. This difference arises from the
recoil energies of the final-state particles and is
naturally included when one considers fully relativ-
istic kinematics. Since the electron spectrum near its
end point is sensitive to absolute neutrino masses,
which are much smaller than this energy difference
of 3.4 eV, it is not appropriate to treat the Q value as
the end point energy.

(ii) It is straightforward to verify that Kend ≈ Kend;0 −
mim3He=m3H and thus yþmim3He=m3H ≈ Kend;0−
Ke, where a tiny term m2

i =ð2m3HÞ < 1.78 ×
10−10 eV for mi < 1 eV can be safely ignored.
Taking this approximation on the right-hand side
of Eq. (5), we can recast the kinematical function
into

HðEe;miÞ ≈
1 −m2

e=ðm3HEeÞ
ð1 − 2Ee=m3H þm2

e=m2
3HÞ2

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0 − KeÞ2 −

�
mi

m3He

m3H

�
2

s

× ðKend;0 − KeÞ; ð7Þ

from which it is interesting to observe that the
absolute neutrino massmi in the square root receives
a correction factorm3He=m3H ≈ 0.999811. The differ-
ence between Eqs. (7) and (5) is negligibly small, so
the former will be used in the following discussions.

Furthermore, given 1 −m3He=m3H ≈ 1.89 × 10−4 and
me=m3H ≈ 1.82 × 10−4, the relativistic electron spectrum
dΓrel=dKe approximates to the classical one

dΓc1

dKe
¼ NT

σclðEeÞ
π2

X3
i¼1

jUeij2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0 − KeÞ2 −m2

i

q
× ðKend;0 − KeÞ; ð8Þ

where σclðEeÞ ¼ σ̄ðEeÞ=ðm3He=m3HÞ and σ̄ðEeÞ has been
given in Eq. (4). Comparing the classical spectrum in
Eq. (8) with the relativistic one in Eq. (3), one can observe
that the end point energy in the former case deviates from
the true one by an amount of ð1 −m3He=m3HÞmi ≈ 10−4mi.
As the PTOLEMY experiment could achieve a relative
precision of 10−6 for the determination of the lightest
neutrino mass [20], it would be no longer appropriate to use
the classical spectrum in PTOLEMY. However, it is rather
safe for KATRIN and Project 8 to neglect the factor
1 −m3He=m3H, as their sensitivities to the neutrino mass
are weaker than for PTOLEMY. To be more specific, the 1σ
sensitivities of KATRIN and Project 8 to m2

β are σðm2
βÞ ≈

0.025 eV2 [11] and σðm2
βÞ ≈ 0.001 eV2 [17], respectively,

corresponding to σðmβÞ=mβ ≈ 0.05ð0.5 eV=mβÞ2 and
σðmβÞ=mβ ≈ 0.002ð0.5 eV=mβÞ2. Both values are much
larger than the correction of order 10−4 from the factor
m3He=m3H. To have an expression for the electron spectrum
applicable to experiments beyond KATRIN and Project 8,
i.e., leading to PTOLEMY, we can slightly modify the
classical energy spectrum as follows:

dΓ0
cl

dKe
¼NT

σclðEeÞ
π2

X3
i¼1

jUeij2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0−KeÞ2−

�
mi

m3He

m3H

�
2

s

×ðKend;0−KeÞ: ð9Þ

Let us now check whether the difference between the exact
relativistic spectrum dΓrel=dKe and the modified classical
one dΓ0

cl=dKe affects the determination of absolute neutrino
masses in future beta-decay experiments with a target mass
of tritium ranging from 10−4 g in KATRIN to 100 g in
PTOLEMY. In other words, we examine whether these two
spectra are statistically distinguishable in realistic experi-
ments. Consider the ratio of these two energy spectra

dΓrel=dKe

dΓ0
cl=dKe

¼ 1 −m2
e=ðm3HEeÞ

ð1 − 2Ee=m3H þm2
e=m2

3HÞ2
·
m3He

m3H

≈ 1.0036þ 1.7 × 10−9
�
Ke

eV

�
; ð10Þ

where an expansion in terms of the electron kinetic
energy Ke ¼ Ee −me has been carried out. First of all,
the constant on the rightmost side of Eq. (10) can be
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absorbed into the uncertainty of the overall normalization
factor Aβ in the statistical analysis, so it is irrelevant for our
discussions.3 Considering the term proportional to the
electron kinetic energy Ke in Eq. (10), it could potentially
disturb the determination of the normalization factor of the
spectrum. The distortion amplitude induced by the Ke-
dependent term can be characterized by the specified
energy window ΔKe below the end point. For example,
we have ΔKe ¼ 30 eV for KATRIN while ΔKe ¼ 5 eV
for PTOLEMY, which is limited by the detector perfor-
mance; see Appendix A. In this way, we can obtain
the distortion amplitude of 5.1 × 10−8 for KATRIN and
8.5 × 10−9 for PTOLEMY, respectively. To examine the
impact of this distortion, one can compare it with the
statistical fluctuation of the events within the corresponding
energy window. The integrated number of beta-decay
events within the energy window below the end point
can be calculated via

Nint ¼ T
Z

Kend;0

Kend;0−ΔKe

dΓ
dKe

dKe

≈ 3.2 × 1011 ·

�
ΔKe

eV

�
3

·

�
E

100 g · yr

�
; ð11Þ

where T is the operation time and E ≡ NT · T is the total
exposure. The statistical fluctuation of the beta-decay
events within the energy window is estimated asffiffiffiffiffiffiffiffi
Nint

p
=Nint ≈ 10−5 for KATRIN with ΔKe ¼ 30 eV and

E ¼ 10−4 g · yr, while
ffiffiffiffiffiffiffiffi
Nint

p
=Nint ≈ 10−7 for PTOLEMY

with ΔKe ¼ 5 eV and E ¼ 100 g · yr. Both values are
much larger than the corresponding distortion amplitudes.
It is thus evident that the uncertainty in Aβ will be
dominated by the intrinsic statistical fluctuation of the
observed beta-decay events in future experiments. As the
data fluctuation near the end point is most significant
among the entire spectrum, the influence of the spectral
distortion as indicated in Eq. (10) is not important.
Hence, we conclude that the classical spectrum with the
neutrino masses corrected by mi → mi · ðm3He=m3HÞ in
Eq. (9) works as well as the exact relativistic spectrum
in Eq. (3) for future beta-decay experiments.
It is worthwhile to emphasize that because of a finite

energy resolution Δ, which is normally much larger than
the absolute neutrino mass mi, it is difficult to resolve the
true end point. Hence, the experimental sensitivity to
neutrino masses is in fact governed by the integrated
number of beta-decay events within a specified energy
window below the end point. Taking this energy window to
be the experimental energy resolution, ΔKe ¼ Δ, we can

figure out the expected statistics around the end point
according to Eq. (11). For a conservative experimental
setup, e.g., that is achievable in KATRIN with Δ ¼ 1 eV
and E ¼ 10−4 g · yr, the expected event number within the
end point bin is 3.2 × 105. In the limit of mβ ≪ Δ, a finite
neutrino mass will induce a relative deviation of events
within the window Δ by 3=2 ·m2

β=Δ2. Therefore, the

sensitivity to mβ is roughly scaled as ðΔ=EÞ1=4. The choice
of energy window is limited by the smearing effect of finite
energy resolution, and the sensitivity to neutrino masses
will drop with a larger energy resolution. This can be
compensated by increasing the exposure, such that an
efficient event number can be acquired to resolve the
overall shift due to finite neutrino masses.
Unless stated otherwise, we will refer from now on to

dΓ0
cl=dKe as the exact spectrum in the remaining discussion.

B. Validity of the effective mass

In principle, it is the exact relativistic spectrum that
should be confronted with the experimental observation in
order to extract the absolute neutrino masses mi (for i ¼ 1,
2, 3), since jUeij2 (for i ¼ 1, 2, 3) can be precisely
measured in neutrino oscillation experiments. However,
often the effective electron spectrum with only one mass
parameter is considered (see e.g., [25]),

dΓeff

dKe
¼ NT

σc1ðEeÞ
π2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0 − KeÞ2 −

�
mβ

m3He

m3H

�
2

s

× ðKend;0 − KeÞ; ð12Þ

where the effective neutrino mass mβ is usually defined as
in Eq. (1). Note that for consistency we have kept the near-
unity factor m3He=m3H as in dΓ0

cl=dKe of Eq. (9), which is
necessary when it comes to experiments beyond KATRIN
and Project 8, i.e., PTOLEMY. However,m3He=m3H appears
as an overall factor to all neutrino mass parameters, so the
quantitative impact on our discussion of the validity of
the effective mass is actually negligible,4 but we keep it
nevertheless in our numerical calculations. Another impor-
tant point is that the end point energy in Eq. (6) should be
corrected if we take account of binding energies as well as
excitations of the daughter system in an actual experiment.
For instance, in KATRIN or Project 8 with the molecular
tritium target, a correction of 16.29 eV to the end point
energy should be considered owing to the binding energies

3For instance, in the statistical analysis of the simulated data
for the PTOLEMYexperiment [20], the prior of the normalization
factor Aβ is set to be in the range of (0…2), which is wide enough
to take account of the difference corresponding to the constant
term in the ratio in Eq. (10).

4One can easily check that the relation m2
β ≡ jUe1j2m2

1 þjUe2j2m2
2 þ jUe3j2m2

3 is stable under mi → mi · ðm3He=m3HÞ
and mβ → mβ · ðm3He=m3HÞ. Thus, any quantitative conclusion
made by considering m3He=m3H corrections can be directly
applied to the case without correction of m3He=m3H by shifting
all neutrino masses with a relative fraction as small as 10−4, and
vice versa.
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of the mother tritium pair, the daughter tritium-helium
molecule, and the combination of the ionized electron [1].
Compared to the atomic case, the recoil energy of the
molecular state will also be reduced by a factor of two due
to the doubled mass, which will boost the end point energy
of electrons. For PTOLEMY, with a foreseen possibility of
atomic tritium weakly bounded to a graphene layer [18],
the ionized electron will inevitably interact with the
complex graphene binding system. Furthermore, the
recoiled helium (with a kinetic energy of 3.4 eV) will
escape the graphene binding structure with a sub-eV
binding energy. All these effects need to be systemically
considered in the experiment to evaluate the final end point
energy Kend;0. However, in our case, the spectrum in
Eq. (12) mostly depends on the relative deviation from
the end point energy Kend;0 − Ke, and σ̄c1ðEeÞ changes very
slowly as a function of Kend;0 − Ke near the end point.
Hence, our results which will be presented in terms of
Kend;0 − Ke are still valid if a different Kend;0 is considered.
On the other hand, the final-state excitations of molecules
will smear the energy of outgoing electrons [26–29], and
this effect will be taken into account as the irreducible
energy resolution of the experiment.
Let us summarize the existing expressions of the electron

spectra defined in this work: (i) the exact relativistic beta
spectrum dΓrel=dKe without making approximations; see
Eq. (3); (ii) the classical spectrum dΓcl=dKe in the limit
of m3He=m3H → 1 and me=m3H → 0; see Eq. (8); (iii) the
modified classical spectrum dΓ0

cl=dKe by making the
replacement mi → mi · ðm3He=m3HÞ in dΓcl=dKe; see
Eq. (9); (iv) the effective electron spectrum dΓeff=dKe
defined in Eq. (12). We have seen that the difference between
dΓ0

cl=dKe in Eq. (9) and the classical spectrum dΓcl=dKe

in Eq. (8) plays only a role when PTOLEMY is considered.
In addition, the difference to the relativistic spectrum
dΓrel=dKe in Eq. (3) is minuscule and the classical spectra
can be considered as the exact ones. It remains to compare
the so-defined exact spectrum dΓ0

cl=dKe in Eq. (9) to the
effective one dΓeff=dKe in Eq. (12).
Moreover, in the literature, two different definitions

of the effective neutrino mass have also been introduced
[30–32], namely,

m0
β ≡

X3
i¼1

mijUeij2; m00
β ≡m1: ð13Þ

The effective electron spectrum can then be obtained by
replacing mβ in Eq. (12) with m0

β or m
00
β. In this subsection,

we discuss the difference among those three effective
neutrino masses and clarify their validity with future
beta-decay experiments in mind.
As has been observed in Ref. [32], the three effective

neutrino masses have different accuracies in fitting the
exact spectrum. If neutrino masses are quasidegenerate, all

three effective masses provide very good fits and their
relative differences are very small. For example, it is easy to
verify that ðm02

β −m002
β Þ=m00

β ≲ 10−3. If the chosen energy
window satisfies ΔKe < 2mβ, then m0

β can give a better
fit than m00

β , whereas mβ is still an excellent parameter in
fitting the spectrum with an almost negligible difference
ðm2

β −m02
β Þ=m002

β ≲ 10−5. If neutrino masses are hierarchi-
cal,mβ always fits better to the spectrum than the other two
variants. In case of an extremely small value of the lightest
neutrino mass, both m0

β and m00
β are unable to offer a good

fit to the true spectrum. In Fig. 1, we plot three effective
neutrino masses in terms of the lightest neutrino mass
which is m1 for NO and m3 for IO. One can observe that
their differences are significant in NOwhenm1 is small, but
in IO the differences are always unnoticeable. The situation
of IO can be attributed to the fact that the contribution ofm3

is suppressed by jUe3j2 while the remaining two neutrino
masses m1 and m2 are always nearly degenerate due to the
relation Δm2

21 ≪ jΔm2
31j.

To be more explicit, we look carefully at the main
difference between the exact spectrum dΓ0

cl=dKe and the
effective one dΓeff=dKe. The difference stems from the
kinematical functions, namely [32],

dΓ0
cl=dKe ∝

X3
i¼1

jUeij2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0 − KeÞ2 −

�
mi ·

m3He

m3H

�
2

s

× ðKend;0 − KeÞ; ð14Þ

dΓeff=dKe ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðKend;0 − KeÞ2 −

�
mð0;00Þ

β ·
m3He

m3H

�
2

s

× ðKend;0 − KeÞ; ð15Þ

where the spectra involving our three effective neutrino
masses mβ, m0

β, and m00
β are collectively given. To analyze

the difference, we take mβ in the NO case, for example, but
the other effective masses and the IO case can be studied in
a similar way. Let us start with the end point of the electron
spectrum and then go to lower energies. For convenience,
the factor of m3He=m3H is omitted in the following quali-
tative discussion, which of course will not affect the main
feature of the result as we noted above.
(1) For the exact spectrum, the end point energy Kend

is set by the smallest neutrino mass, i.e.,
Kend;0 − Kend ¼ m1, while it is mβ for the effective
spectrum dΓeff=dKe. Since m2

β¼m2
1þΔm2

21jUe2j2þ
Δm2

31jUe3j2>m2
1, the end point energy of the

effective spectrum dΓeff=dKe is smaller than that
of the exact one dΓ0

cl=dKe. Therefore, starting from
the electron kinetic energy of Ke ¼ Kend;0 −m1 and
going to smaller values, the effective spectrum

EFFECTIVE NEUTRINO MASSES IN KATRIN AND FUTURE … PHYS. REV. D 101, 016003 (2020)

016003-5



dΓeff=dKe is always vanishing and thus should be
lying below the exact one dΓ0

cl=dKe.
(2) As Ke is decreasing further, we come to the point at

which Kend;0 − Ke ¼ mβ is satisfied. Note thatm2
β ¼

m2
3 − Δm2

31jUe1j2 − Δm2
32jUe2j2 < m2

3 holds. There-
fore, for mβ < Kend;0 − Ke < m3, dΓeff=dKe be-
comes nonzero. As indicated in Eqs. (14) and (15),
before the decay channel corresponding to m3 is
switched on, dΓeff=dKe is about to exceed dΓ0

cl=dKe.
At Ke ¼ Kend;0 −m3, we have dΓeff=dKe ∝ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUe1j2Δm2

31 þ jUe2j2Δm2
32

p
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jUe1j2 þ jUe2j2

pffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
and dΓ0

cl=dKe ∝ jUe1j2
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
þ

jUe2j2
ffiffiffiffiffiffiffiffiffiffiffi
Δm2

32

p
≈ ðjUe1j2 þ jUe2j2Þ

ffiffiffiffiffiffiffiffiffiffiffi
Δm2

31

p
, where

Δm2
21 ≪ Δm2

31 has been taken into account, leading
to dΓeff=dKe > dΓ0

cl=dKe.
(3) When we go far below the end point, e.g., Ke ≪

Kend;0 −mi or equivalently Kend;0 − Ke ≫ mi, the
neutrino masses can be neglected and thus these
two spectra coincide with each other. Therefore, for
mβ under consideration, the difference between
dΓeff=dKe and dΓ0

cl=dKe could change its sign in
the narrow range below the end point but finally
converges to zero.

For illustration, we show in Fig. 2 the electron spectra
in the narrow energy region −200 meV ≤ Ke − Kend;0 ≤
200 meV around the end point, where possible back-
ground events are ignored. In addition, the total exposure
for the tritium beta-decay experiment is taken to be
E ¼ 1 g · yr. In the left panel of Fig. 2, the exact spectrum
dΓ0

cl=dKe with m1 ¼ 10 meV is plotted as the gray solid
curve, while that with m1 ¼ 10.5 meV is represented by

the red dotted curve for comparison. The effective spectra
dΓeff=dKe formβ ¼ 13.4 meV,m0

β ¼ 11.9 meV, andm00
β ¼

10 meV are given by the dark, medium, and light blue
dashed curves, respectively. Those values are obtained for a
smallest mass of m1 ¼ 10 meV and the current best-fit
values of the oscillation parameters [34]. Since it is hard to
distinguish these spectra, as can be seen in the upper
subgraph in the left panel, we depict their deviations from
the exact spectrum,

ΔðdΓ=dKeÞ≡ dΓeff=dKe − dΓ0
cl=dKe;

with m1 ¼ 10 meV in the lower subgraph. The behavior of
these deviations can be well understood analytically, as we
have already explained by using Eqs. (14) and (15). As for
the exact spectrum dΓ0

cl=dKe with m1 ¼ 10.5 meV, it is
always lying below that with m1 ¼ 10 meV. The reason is
simply that the kinematical function ½ðKend;0 − KeÞ2 − ðmi ·
m3He=m3HÞ2�1=2 in the exact spectrum dΓ0

cl=dKe becomes
smaller for larger values of mi.
The finite energy resolution of the detector has

been ignored in the left panel of Fig. 2, but is taken into
account in the calculations of the energy spectra and
their deviations from dΓ0

cl=dKe with m1 ¼ 10 meV in
the right panel. Assuming the energy resolution5 of
the detector to be Δ ¼ 100 meV and taking the
Gaussian form, we can derive the energy spectrum with
smearing effects as follows:

FIG. 1. The effective neutrino masses versusm1 for NO (left panel) andm3 for IO (right panel). The 3σ CL uncertainties of oscillation
parameters have been considered. A similar plot for absolute neutrino masses was given in Ref. [33].

5The values of energy resolution in this work are all referred to
as the 1σ deviation of the energy reconstruction.
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dΓΔ

dKe
ðKeÞ ¼

1ffiffiffiffiffiffi
2π

p ðΔ= ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p Þ

Z þ∞

−∞
dK0

e
dΓ
dK0

e
ðK0

eÞ

× exp

�
−

ðKe − K0
eÞ2

2ðΔ ffiffiffiffiffiffiffiffiffiffiffi
8 ln 2

p Þ2
�
; ð16Þ

which has been plotted in the right panel for both dΓ0
cl=dKe

and dΓeff=dKe. Note that we have not yet specified any
planned experimental configuration so far, because the
main purpose here is to understand the behavior of
deviations caused by using different effective neutrino
masses. Two interesting observations can be made and
deserve further discussions.

(i) First, when energy smearing effects are included, the
difference between dΓeff=dKe and dΓ0

cl=dKe will be
averaged over the electron kinetic energy, reducing
the discrepancy between them. This effect is more
significant for the electron kinetic energy closer to
the end point. Therefore, if the energy resolution
is extremely good, the error caused by using the
effective spectrum becomes larger. In this case, one
needs to fit the experimental data by implementing
dΓ0

cl=dKe with the lightest neutrino mass as the
fundamental parameter.

(ii) Second, the effective spectrum dΓeff=dKe with mβ

converges to the exact one in the energy region far
below the end point. Moreover, it is interesting to
notice that even though the difference ΔðdΓ=dKeÞ
between dΓeff=dKe with mβ and dΓ0

cl=dKe can be

either positive or negative, the total number of beta-
decay events within a very wide energy window is
approximately vanishing. To be more concrete, the
integration of ΔðdΓ=dKeÞ over an energy window
ΔKe scales as ΔðdΓ=dKeÞ ∝ mβ=ΔKe [32], which
will be vanishing when ΔKe ≫ mβ. If the energy
resolution Δ ¼ 100 meV is larger than absolute
neutrino masses, we can evaluate the difference
between the effective spectra in the region of
Ke < Kend;0 − Δ via series expansion in terms of
m2

i =Δ2, namely,

dΓeff

dKe
−
dΓ0

cl

dKe
∝

8>><
>>:

0; for mβ;

m02
β −m2

β; for m0
β;

m002
β −m2

β; for m00
β;

ð17Þ

where all higher-order terms of Oðm4
i =Δ4Þ have

been omitted. Consequently, the effective spectrum
with mβ can fit perfectly the experimental observa-
tion, whereas a sizable overall shift is left for m0

β

as well as for m00
β. As we have mentioned before,

although the energy resolution is not good enough to
completely pin down the end point, the experimental
sensitivity to absolute neutrino masses can be
obtained by observing the total number of beta-
decay events within the energy window around the
end point.

FIG. 2. Illustration of the electron spectrum from tritium beta decays, where the total exposure E ¼ 1 g · yr and the best-fit values of
neutrino mixing angles and mass-squared differences are assumed. The exact spectra dΓ0

cl=dKe withm1 ¼ 10 meV andm1 ¼ 10.5 meV
are shown as the gray solid and red dotted curve, respectively. The effective spectra dΓeff=dKe with mβ ¼ 13.4 meV, m0

β ¼ 11.9 meV,
and m00

β ¼ 10 meV, corresponding to m1 ¼ 10 meV, are represented by the dark, medium, and light blue dashed curves. In the left
panel, the energy smearing is ignored, while an energy resolution of Δ ¼ 100 meV is taken into account in the right panel. In both
panels, the real spectra are depicted in the upper subgraph, whereas their deviations from the exact spectrum with m1 ¼ 10 meV are
given in the lower subgraph.
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An immediate question is whether the effective neutrino
mass is still a useful parameter for future beta-decay
experiments. Put alternatively, does dΓ0

cl=dKe in Eq. (9)
provide a good description of the effective spectrum
dΓeff=dKe in Eq. (12)? We will now investigate the validity
of the effective neutrino mass by following a simple
statistical approach. The strategy of our numerical analysis
is summarized as follows.
Given the target mass and the operation time T (i.e., the

total exposure E), we simulate the experimental data by
using the exact spectrum dΓ0

cl=dKe and divide the simulated
data into a number of energy bins with bin width Δ, which
is taken to be the energy resolution of the detector.
In general, the event number in the ith energy bin
½Ei − Δ=2; Ei þ Δ=2� is given by the integration of the
spectrum over the bin width

Ni ¼ T
Z

EiþΔ=2

Ei−Δ=2

dΓΔ

dKe
dKe; ð18Þ

where Ei denotes the mean value of the electron kinetic
energy in the ith bin and dΓΔ=dKe is the convolution of a
spectrum with a Gaussian smearing function as in Eq. (16).
The simulated event number Ncl

i in each energy bin is
calculated by using dΓ0

cl=dKe with a specified value of m1

(i.e., the lightest neutrino mass in the NO case). On the
other hand, to clarify how good dΓeff=dKe can describe the
true data, the predicted event number Neff

i in each energy
bin is calculated in the same way but with the effective
spectrum dΓeff=dKe, which will be subsequently sent to fit
the simulated true data Ncl

i .
It should be noted that KATRIN operating in the

ordinary mode with the MAC-E-Filter observes actually
the integrated number of beta-decay events and has to
reconstruct the differential spectrum by adjusting the
retarding potential to scan over a certain energy window
containing the end point. The number of events for the
differential spectrum in each energy bin turns out to be
Ni ¼ Nint

i − Nint
i−1, where Nint

i is the event number of the
integrated spectrum for the scanning point corresponding
to Ei. For this reason, the statistical fluctuation of the
event number for the reconstructed differential spectrum

can be estimated as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nint

i þ Nint
i−1

q
, which should be

compared with that of
ffiffiffiffiffi
Ni

p
for the direct measurement.

Meanwhile, a longer time of data taking is also expected.
Therefore, our result should be taken to be conservative
when considering KATRIN-like experiments operating in
integrated mode.
KATRIN can also directly measure the nonintegrated

beta spectrum in a possible MAC-E-TOF mode, as
described in Appendix A. Since tritium experiments in
the future tend to adopt nonintegrated modes to maximize
the neutrino mass sensitivity, we shall focus on this
scenario. For those tritium experiments operating in the

nonintegrated mode, we will use the following experimen-
tal configurations: (i) KATRIN with the target mass
mKATRIN ¼ 2.5 × 10−4 g and energy resolution ΔKATRIN ¼
1 eV; (ii) Project 8 loaded with molecular tritium gas with
mP8 ¼ 5 × 10−4 g and ΔP8m ¼ 0.36 eV; (iii) Project 8
loaded with atomic tritium gas with mP8 ¼ 5 × 10−4 g
and ΔP8a ¼ 0.05 eV; (iv) PTOLEMY with mPTOLEMY ¼
100 g and ΔPTOLEMY ¼ 0.15 eV. The details can be found
in Appendix A. For Project 8 loaded with molecular
tritium, the energy resolution is limited by the irreducible
width of the final-state molecular excitations [35]. This
limitation can be overcome by switching the target to
atomic tritium. Note that for KATRIN in the MAC-E-TOF
mode, which is still under development, the penalties of
the tritium decay rate and energy resolution due to the
chopping procedure (see Appendix A) are ignored, so the
configuration here is somewhat idealized for KATRIN.
Nevertheless, we will find the effect of using mβ even in
this ideal KATRIN setup is negligible. We adopt Gaussian
distributions as in Eq. (16) for the uncertainties caused by
finite energy resolutions in all experiments. In a more
realistic analysis with all experimental details taken into
account, one should consider a strict shape for the energy
resolution function, e.g., a trianglelike shape for KATRIN
in the developing MAC-E-TOF mode. The actual shape
for Project 8 with molecular tritium should also be
calculated with detailed consideration of final-state exci-
tations. However, a different shape of the energy reso-
lution from Gaussian should not affect our results by
orders of magnitude.
In Fig. 3, we show the difference in the event numbers

of dΓeff=dKe and dΓ0
cl=dKe, together with the statistical

fluctuation of the events. In the upper two panels, two
nominal experimental setups have been chosen for dem-
onstration, and in the remaining four panels, we illustrate
the cases of realistic experiments. In all panels, the data are
simulated with dΓ0

cl=dKe, for which a true value of the
lightest neutrino mass mtrue

1 ¼ 10 meV has been input, and
the data fluctuations are represented by the filled gray
histograms. For comparison, the event number difference in
each energy bin has been calculated for three effective
spectra with mβ ¼ 13.4 meV, m0

β ¼ 11.9 meV, and
m00

β ¼ 10 meV, which is denoted as the blue dashed curves.
In addition, the gray solid curve denotes the exact spectrum
with mtrue

1 ¼ 10 meV as in Fig. 2, while the red dotted
curve is for mtrue

1 ¼ 10.5 meV. From Fig. 3, two important
observations can be made. First, for a smaller exposure
such as in KATRIN and Project 8, the statistical fluctuation
can easily overwhelm the deviations, rendering the effec-
tive description of the beta spectrum more reliable. Second,
for mβ, the error caused by using the effective spectrum is
most significant in the energy bin containing the end point.
The reason is obvious, namely that the data fluctuation
increases and the deviation decreases, as the energy moves

HUANG, RODEJOHANN, and ZHOU PHYS. REV. D 101, 016003 (2020)

016003-8



FIG. 3. The difference of event numbers for the effective spectrum dΓeff=dKe and the exact one dΓ0
cl=dKe. The data are simulated by

takingmtrue
1 ¼ 10 meV. The blue histograms signify the event number deviations of the effective spectra from the exact one, whereas the

gray filled histograms stand for the statistical fluctuations. Two nominal experimental setups have been assumed in the upper two panels,
and in the remaining four panels, we illustrate the cases of realistic experiments including KATRIN, Project 8 with molecular tritium and
with atomic one, and PTOLEMY. Note that different scales on the axes have been adopted for each plot.
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away from the end point. For the other two effective masses
m0

β and m00
β , the deviations are even more significant.

To quantify the difference between the effective and
exact spectra in a statistical approach, we define ΔNi ≡
Neff

i − Ncl
i in each energy bin and take

ffiffiffiffiffiffiffi
Ncl

i

p
to be the

corresponding statistical uncertainty.6 In this way, if ΔNi is
negligible compared to

ffiffiffiffiffiffiffi
Ncl

i

p
, one can claim that the error

due to the use of the effective spectrum is unimportant in
that energy bin. For the whole energy spectrum, the χ2

function can be constructed as

χ2β ¼
X
i

ðΔNiÞ2
Ncl

i
; ð19Þ

where i runs over the number of energy bins. This χ2

function measures to what degree the effective spectrum
dΓeff=dKe deviates from the exact one dΓ0

cl=dKe. Because
we have used dΓ0

cl=dKe to generate the true data, from
the model selection perspective (i.e., fitting two different
models dΓ0

cl=dKe and dΓeff=dKe with the same data,
respectively), χ2β defines the statistical significance with
which one can favor dΓ0

cl=dKe over dΓeff=dKe. If one
insists in using the effective spectrum dΓeff=dKe to fit
the data, χ2β also measures the goodness-of-fit χ2β=v of
dΓeff=dKe given the degree of freedom v in fitting. Since
most deviations of dΓeff=dKe from dΓ0

cl=dKe distribute
only in a few energy bins around the end point, the degree
of freedom can be v ¼ Oð1Þ depending on the number of
bins we use in the actual fit. As has been mentioned

previously, we have fixed the bin size to be the energy
resolution Δ. In principle, the bin width can be chosen
freely. The smaller the bin width is, the more information
one can acquire in the fit. However, this is limited by the
energy resolution of an experiment, which will smooth out
the information within a comparable bin size, such that
further decreasing the bin size will not improve the result
anymore. We have numerically checked that by choosing
a bin width smaller than the energy resolution, e.g., Δ=8,
the χ2-function defined in Eq. (19) will increase only by a
factor of ∼70%. Further reducing the bin width will not
alter this result.
Let us make some remarks on the other input in our

numerical calculations. First, the best-fit values of neutrino
oscillation parameters from Ref. [34] are adopted. Second,
the energy window for the analysis has been taken to be
Ke − Kend;0 ∈ ð−4…4Þ eV. Third, we have assumed no
background contributions. The inclusion of possible back-
ground events will reduce the value of χ2β, leading to a
smaller statistical deviation of the effective spectrum
dΓeff=dKe from the classical one dΓ0

cl=dKe. Four, we take
the normalization factor to be one, as it can be precisely
determined by choosing a wider energy window in realistic
experiments.
In the left panel of Fig. 4, for each pair ofm1 in the range

of ð0…0.1Þ eV and Δ in the range of ð0.02…0.6Þ eV, we
present the value of χ2β for the total exposure of E ¼ 1 g · yr
in the NO case, where the effective spectrum with mβ is
adopted for illustration. Similar calculations have also been
carried out in the IO case and the results are given in the
m3 − Δ plane in the right panel. Roughly speaking, for
those values of Δ and m1 in the NO case (or m3 in the IO
case) corresponding to χ2β ≲ 0.1, the effective spectrum
dΓeff=dKe with mβ is reasonably good to describe the data,

FIG. 4. The contours of χ2β, see Eq. (19), arising from the description of the electron spectrum by using the effective neutrino massmβ,
are displayed in the plane of smallest mass versus resolution, i.e., them1 − Δ plane for the NO case (left panel) and them3 − Δ plane for
the IO case (right panel).

6This is true when the event number in each energy bin is large,
such that the fluctuation follows approximately a Gaussian
distribution, which turns out to be true for all tritium experiments
in our consideration as can be noticed in Fig. 3.
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i.e., with negligible and fragile statistical significance to
discriminate dΓ0

cl=dKe from dΓeff=dKe and no noticeable
impact on the goodness of fit. In the same sense, we can
also conclude that mβ is no longer a safe parameter for
those values ofΔ andm1 (orm3) corresponding to χ2β ≳ 10,
i.e., the statistical power to favor dΓ0

cl=dKe over dΓeff=dKe
is more than 3σ and a considerable impact on the goodness-
of-fit arises (the p value of fit is 0.001565 for χ2β ¼ 10 and
v ¼ 1, and the model dΓeff=dKe is almost ruled out by
the data).
Although we have fixed the exposure at E ¼ 1 g · yr, it is

straightforward to derive the values of χ2β for a different
exposure by noting the fact that ðΔNiÞ2=Ncl

i is linearly
proportional to E. As a consequence, for a different
exposure Ẽ, the original values of χ2β for E will be modified

to be χ2β · Ẽ=E. For instance, the original value of the
contour χ2β ¼ 10 for E ¼ 1 × g · yr should be changed to
χ2β ¼ 0.01 for E ¼ 1 mg · yr. Nevertheless, if we insist on
using dΓeff=dKe to fit the data regardless of the statistical
preference for the true model dΓ0

cl=dKe and a poor good-
ness of fit, the parameter estimation of mβ can always be
performed based on using dΓeff=dKe. In this case, a large
value of χ2β does not necessarily mean a large value of
Δχ2 ≡ χ2β − χ2βjmin in parameter estimations, where χ2βjmin

denotes the minimum of χ2β by freely adjusting mβ or m1.
To explicitly show the error of fitting, the neutrino

mass m1 with the effective spectrum, we calculate Δχ2
and present the final result with respect to m1 in Fig. 5. In
our calculations, we assume the true value of m1 to be
10 meV, corresponding to mβ ¼ 13.4 meV. The energy
resolution is fixed to 0.1 eV. The dark red curve
represents the result obtained by fitting with the exact
spectrum dΓ0

cl=dKe, while the dark blue one corresponds
to the fit by using the effective spectrum dΓeff=dKe, given
the exposure of E ¼ 100 g · yr. The light curves stand for
the case with E ¼ 1 g · yr. One can observe that if the
effective spectrum with mβ is used, the best-fit value of
m1 is found to be mbf

1 ¼ 9.6 meV, which deviates notably
from mbf

1 ¼ 10 meV obtained by using the exact spec-
trum. Even for the exposure of E ¼ 1 g · yr, the true
value is outside of Δχ2 ≲ 4 when fitting with the effective
spectrum. The situation becomes worse if we take a
larger exposure.
To systematically study how far the parameter value

fitted by using dΓeff=dKe can deviate from the true one, we
define the following difference of χ2:

Δχ2true ≡ χ2βðmβ ¼ mtrue
β Þ − χ2βðmβ ¼ mbf

β Þjmin; ð20Þ

where χ2βðmβ ¼ mtrue
β Þ is the χ2 value whenmβ is set tomtrue

β

when fitting with dΓeff=dKe, and χ2βðmβ ¼ mbf
β Þjmin is the

minimum value of the χ2 curve obtained by freely adjusting

mβ with mbf
β being the best-fit value. The value of mtrue

β can
be directly obtained with Eq. (1) once the input value ofm1

in dΓ0
cl=dKe for simulating the data is given. The difference

Δχ2true measures how likely one can recover the true value
of the model parameter mβ by fitting with dΓeff=dKe. We
present χ2β and Δχ2true in Fig. 6 as a function of the exposure
E and the energy resolution Δ. We fix the lightest neutrino
mass as 0 eV for these plots, as χ2β is maximized in this case
according to Fig. 4.
The experimental configurations of KATRIN, Project 8,

and PTOLEMY have been indicated in Fig. 6, and their
corresponding χ2 values have been explicitly summarized
in Table I. For PTOLEMY, the effective beta spectrum can
no longer be adopted. The use of the effective spectrum
with mβ would result in a huge error in fitting the neutrino
mass compared to the precision that is supposed to be
achieved in such an experiment, e.g., Δχ2true ¼ 141 for NO
and Δχ2true ¼ 81 for IO for 1 year of data taking. For
KATRIN and Project 8, with 1 year of exposure, the
effective mass mβ is fortunately applicable with χ2β,
Δχ2true ≲ 0.1. Note that there is a little risk for Project 8
loaded with the atomic tritium. To be more specific, in
the extreme case that the data taking time is set to 10 years
and an improvement on the energy resolution is made to
Δ ¼ 0.03 eV, Δχ2true for NO can be as large as 1, indicating
that the true value of mβ is out of the 1σ CL region by
fitting with the effective spectrum dΓeff=dKe; hence, the

FIG. 5. The function Δχ2 ≡ χ2β − χ2βjmin is shown with respect
to the lightest neutrino mass m1 in the NO case. The dark red
curve is generated by fitting with the exact spectrum dΓ0

cl=dKe,
while the dark blue one is by using the effective spectrum
dΓeff=dKe with mβ, for the exposure of E ¼ 100 g · yr. The light
curves are for E ¼ 1 g · yr with all else being the same. For
illustration, we use an energy resolution of Δ ¼ 0.1 eV.
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description by using the effective spectrum would not be
appropriate anymore.

III. POSTERIOR DISTRIBUTIONS

As we have already demonstrated in the previous
section, the effective spectrum dΓeff=dKe cannot be used
for PTOLEMY, but is safe to use in the KATRIN and
Project 8 experiments. Following the Bayesian statistical
approach [36], we derive in this section the posterior
distributions of the effective neutrino mass mβ, based on
current experimental information from neutrino oscilla-
tions, beta decay, neutrinoless double-beta decay (0νββ),
and cosmology. Since the description of the beta spectrum
via the effective neutrino mass is still valid for KATRIN
and Project 8, posterior distributions of the effective
neutrino mass should be very suggestive for future experi-
ments. Our results in this section can also be used for the
electron-capture experiments ECHo [14], HOLMES [15],
and NuMECS [16], if CPT is assumed to be conserved in

the neutrino sector. For the similar analysis relevant for
the effective neutrino masses in β and 0νββ decays, see
Refs. [37–43]. Here we perform an updated analysis for the
direct neutrino mass experiments, in light of a good number
of experimental achievements.
As usual, two important ingredients for the Bayesian

analysis should be specified. First, we have to choose the
prior distributions for the relevant model parameters

fsin2θ12; sin2θ13;Δm2
sol;Δm2

atm; ρ; σ; G0ν; jM0νj; mLg;
ð21Þ

where Δm2
sol ¼ Δm2

21 and Δm2
atm ¼ Δm2

31 (or Δm2
32) in

the NO (or IO) case. For all oscillation parameters
fsin2 θ12; sin2 θ13;Δm2

sol;Δm2
atmg, we assume that they

are uniformly distributed in the ranges that are wide enough
to cover their experimentally allowed values. For the
absolute neutrino mass scale, which is represented by
the lightest neutrino mass mL (i.e., m1 in the NO case or

FIG. 6. The contours of χ2β and Δχ2true, see Eqs. (19) and (20), arising from the description of the electron spectrum by using the
effective neutrino mass mβ, are displayed in the exposure-resolution (E − Δ) plane for the NO case (left two panels) and the IO case
(right two panels). The lightest neutrino mass is fixed to 0 eV.
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m3 in the IO case), we consider the following two
possible priors:

(i) A flat prior on the logarithm of mL in the range of
ð10−7 � � � 10Þ eV, namely, Log10ðmL=eVÞ ∈ ½−7; 1�,
which will be referred to as the log prior in the
following discussion. This prior is scale invariant

and motivated by the approximately constant ratios
[44] of charged fermion masses mu=mc ∼mc=mt∼
λ2, md=ms ∼ms=mb ∼ λ, and me=mμ ∼mμ=mτ ∼ λ2

(where λ ¼ sin θC ≈ 0.22 is the Wolfenstein param-
eter), as well as by the in general exponential
fermion mass hierarchies. Note that an ad hoc lower

FIG. 7. The posterior distributions of the effective neutrino massmβ in the NO (upper row) and IO (lower row) cases, given a flat prior
on the lightest neutrino mass mL. In each of the four subfigures, the upper subgraph shows the posterior distributions whereas the lower
subgraph gives the accumulative distributions. The results for four different combinations of experimental information have
been displayed in the left column: (i) Losc þ Lβ (orange curves); (ii) Losc þ Lβ þ Lð1Þ

cosmo (red curves); (iii) Losc þ Lβ þ Lð2Þ
cosmo (blue

curves); (iv) Losc þ Lβ þ Lð3Þ
cosmo (green curves), while the data from 0νββ using L0νββ are further included in the right column. The

cosmological bounds on the sum of three neutrino masses corresponding to LðiÞ
cosmo (for i ¼ 1, 2, 3) have been summarized in Eq. (B5).

The latest result mβ < 1.1 eV from KATRIN is denoted as the vertical solid line, and future sensitivities of KATRIN and Project 8 are
represented by two vertical dashed lines.
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cutoff 10−7 eV for mL has been imposed, which is
necessary to bound the prior volume from below.
Decreasing this cutoff is equivalent to putting more
and more prior volume to very small and essentially
vanishing values of mL.

(ii) A flat prior on mL in the range of ð0…10Þ eV.
Note that the ratio of the heaviest to the second-

heaviest neutrino mass is rather small, at mostffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

31=Δm2
21

p
≈ 5 for NO and essentially 1 for

IO, motivating a moderate and nonexponential
ordering of neutrino masses.

Without a complete theory for neutrino mass generation,
we cannot judge which prior is favorable and therefore shall
treat both of them on equal footing. The prior dependence

FIG. 8. The posterior distributions of the effective neutrino massmβ in the NO (upper row) and IO (lower row) cases, given a log prior
on the lightest neutrino mass mL. In each of the four subfigures, the upper subgraph shows the posterior distributions whereas the lower
subgraph gives the accumulative distributions. The results for four different combinations of experimental information have been
displayed in the left column: (i) Losc þ Lβ (orange curves); (ii) Losc þ Lβ þ Lð1Þ

cosmo (red curves); (iii) Losc þ Lβ þ Lð2Þ
cosmo (blue

curves); (iv) Losc þ Lβ þ Lð3Þ
cosmo (green curves), while the data from 0νββ using L0νββ are further included in the right column. The

cosmological bounds on the sum of three neutrino masses corresponding to LðiÞ
cosmo (for i ¼ 1, 2, 3) have been summarized in Eq. (B5).

The latest result mβ < 1.1 eV from KATRIN is denoted as the vertical solid line, and future sensitivities of KATRIN and Project 8 are
represented by two vertical dashed lines.
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of the final posterior distributions reflects that current
experimental knowledge on the absolute scale of neutrino
masses is still very poor. If one attempts to set limits on
model parameters, a prior-independent approach may be
found in Ref. [45].
The likelihood functions for each type of experiments

can be found in Appendix B. Briefly speaking, the global-
fit results of all neutrino oscillation data from Ref. [34]
will be used to construct the likelihood function
Loscðsin2θ12; sin2θ13;Δm2

sol;Δm2
atmÞ. The tritium beta-

decay experiments Mainz [12], Troitsk [13], and
KATRIN [9] are taken into account and the likelihood
function Lβðm2

βÞ involves the model parameters fmL;
sin2 θ12; sin2 θ13;Δm2

sol;Δm2
atmg. As for 0νββ experiments,

the likelihood function L0νββðmββ; G0ν; jM0νjÞ actually
contains all the parameters in Eq. (21). For the two
Majorana CP phases ρ and σ relevant for 0νββ experi-
ments, we shall take flat priors in the range of ½0…2πÞ, as
there is currently no experimental constraint on them. For
the phase space factor G0ν, a Gaussian prior is assumed
with the central value and 1σ error available from Ref. [46].
The nuclear matrix elements jM0νj take a flat prior in the
range spanned by the predictions from different NME
models [39]. Finally, the upper bound on the sum of three
neutrino masses Σ ¼ m1 þm2 þm3 from cosmological
observations will be implemented, and the corresponding

likelihood function LðiÞ
cosmo depends on fmL;Δm2

sol;Δm2
atmg,

where i ¼ 1, 2, 3 refers, respectively, to the Planck data on
the cosmic microwave background, its combination with
gravitational lensing data, and their further combination
with baryon acoustic oscillation data, as explained in
Appendix B.
With the priors of model parameters and the likelihood

functions from the relevant experiments, we can compute
the posterior distribution of mβ, i.e., dP=dmβ, in the
standard way of Bayesian analysis. The sampling is done
with the help of the MultiNest routine [47–49]. The
numerical results for the flat and log priors on mL are

shown in Figs. 7 and 8, respectively. A summary of the
volume fractions of mβ posteriors covered by future
KATRIN and Project 8 sensitivities has been presented
in Table II. Some comments on the numerical results are
in order.
(1) In Fig. 7, a flat prior on mL is assumed. The plots in

the first row are for the NO case, whereas those in
the second row are for the IO case. In each row, the
upper subgraph in the left column shows the
posterior distributions of the effective mass in
four different scenarios of adopted experimental
information: (i) Losc þ Lβ for the neutrino oscilla-

tion and beta-decay data and (ii) Losc þ Lβ þ LðiÞ
cosmo

(for i ¼ 1, 2, 3) for a further inclusion of cosmo-
logical upper bounds on the sum of three neutrino
masses. The lower subgraph gives the accumulative
posterior distributions, which are defined as
Pðmβ > m0

βÞ ¼
R∞
m0

β
ðdP=dmβÞdmβ. In addition,

the plots in the right column differ from those in
the left column only by including the experimental
information on 0νββ. Hence, if neutrinos are Dirac
particles, the results including L0νββ do not apply.
The future sensitivities of KATRIN [11] (0.2 eV)
and Project 8 [17] (40 meV) are shown as the upper
and lower dashed boundaries of the gray bands. This
gray region represents the gradual improvement
of the sensitivities. In Fig. 8, the same computations
have been carried out for the log prior on mL, where
all notations follow those of Fig. 7.

(2) By comparing among the different scenarios in both
Figs. 7 and 8, we can make the following important
observations:
(a) Let us first focus on the impact of 0νββ. If the

cosmological observations, namely, the upper
bounds on neutrino masses, are not considered,
then one can make a comparison between the
orange curves (corresponding to Losc þ Lβ) in
the left column and those (corresponding to

TABLE II. The volume fraction of the mβ posterior covered by KATRIN with a sensitivity of mβ ≃ 0.2 eV and Project 8 with a
sensitivity of mβ ≃ 0.04 eV, respectively. A flat and logarithmic prior on the lightest neutrino mass has been assumed for the upper and
lower tables, respectively.

Flat prior Losc þ Lβ þLð1Þ
cosmo þLð2Þ

cosmo þLð3Þ
cosmo þL0νββ þL0νββ þ Lð1Þ

cosmo þL0νββ þ Lð2Þ
cosmo þL0νββ þ Lð3Þ

cosmo

KATRIN, NO 73% 4.2% 6.9 × 10−5 <10−11 4.7% 0.23% 5.2 × 10−6 <10−11

KATRIN, IO 74% 4.9% 1.2 × 10−4 <10−11 6.5% 0.45% 1.2 × 10−5 <10−11

Project 8, NO 96% 60% 35% 6% 67% 43% 28% 4.9%
Project 8, IO 100% 100% 100% 100% 100% 100% 100% 100%

Log prior Losc þ Lβ þLð1Þ
cosmo þLð2Þ

cosmo þLð3Þ
cosmo þL0νββ þL0νββ þ Lð1Þ

cosmo þL0νββ þ Lð2Þ
cosmo þL0νββ þ Lð3Þ

cosmo

KATRIN, NO 7.2% 6.8 × 10−4 7.9 × 10−7 <10−11 0.15% 3.7 × 10−5 6.4 × 10−8 <10−11

KATRIN, IO 7.1% 9.3 × 10−4 1.4 × 10−6 <10−11 0.19% 6.6 × 10−5 1.7 × 10−7 <10−11

Project 8, NO 17% 3.5% 1.6% 0.17% 6.0% 2.3% 1.2% 0.15%
Project 8, IO 100% 100% 100% 100% 100% 100% 100% 100%
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Losc þ Lβ þ L0νββ) in the right column. It is
evident that the experimental constraints from
0νββ decays lead to a significant shift of the
posterior distribution to the region of smaller
values of mβ. Even in this case, it is very likely
that the future beta-decay experiments can de-
termine the absolute neutrino mass, no matter
whether NO or IO is true. For instance, in Fig. 7,
where the flat prior on mL is assumed, Project 8
can cover 67% of the posteriors in the NO case.

(b) One should investigate what role is played by the
cosmological observations. For this purpose, we
concentrate on the plots in the right columns of
Figs. 7 and 8. When the cosmological observa-
tions are considered, one can see that the
probability of discovering a nonzero effective
neutrino mass in beta-decay experiments drops
dramatically. In the worst situation, where the

likelihood set Losc þ Lβ þ Lð3Þ
cosmo þ L0νββ is

taken in the NO case, even Project 8 can only
cover 4.9% of the posterior. Therefore, the
detection of a positive signal in this case would
imply a tension between the beta-decay experi-
ments and cosmological observations.

(c) For the log prior on mL in Fig. 8, it is easy to
recognize that the posterior is remarkably
reduced in the region of effective neutrino masses
covered by the KATRIN and Project 8 experi-
ments. Compared to the flat prior, this can be
interpreted as a consequence of the fact that a
large fraction of the prior space has been distrib-
uted in the neighborhood of a nearly vanishing
mL. For the NO case, the effective neutrino mass
mβ takes the minimum value ∼8.9 × 10−3 eV as
mL ¼ m1 → 0 eV. The beta-decay experiments
like KATRIN and Project 8 are still far from
achieving this sensitivity.

Regardless of the prior and likelihood choices, Project 8
can always cover all the posteriors of the IO case. In this
connection, the discrimination between NO and IO seems
to be very promising in future beta-decay experiments [50],
e.g., an explicit study of the sensitivity has already been
performed for PTOLEMY in Ref. [20].

IV. SUMMARY

The determination of absolute neutrino masses is exper-
imentally challenging, but scientifically very important. As
fundamental parameters in nature, absolute neutrino masses
must be precisely measured in order to explore the origin of
neutrino masses, which calls for new physics beyond the
standard model. Motivated by the latest result from the
KATRIN experiment and upcoming tritium beta-decay
searches, we have performed a detailed study of the exact
electron spectrum dΓ0

cl=dKe in Eq. (9), which is a modified

relativistic one, and its difference to the effective electron
spectrum dΓeff=dKe in Eq. (12) which includes the usually
considered effective neutrino mass mβ or its variants.
Moreover, based on current experimental information from
neutrino oscillation data, tritium beta decays, neutrinoless
double-beta decays, and cosmology, we have computed the
posterior distributions of the effective neutrino mass mβ in
Eq. (1). Our main results are summarized as follows.
First, for tritium beta decays, the classical electron

spectrum dΓcl=dKe can be modified by replacing mi with
mi · ðm3He=m3HÞ to account for the exact electron spectrum
including relativistic corrections. In this case, the difference
between the exact relativistic spectrum and the modified
classical spectrum dΓ0

cl=dKe can be safely ignored, as the
dominant uncertainties in the measurements at KATRIN,
Project 8, and PTOLEMY arise from the statistical data
fluctuations. Furthermore, it is interesting to compare the
exact spectrumwith the effective one containing the usually
considered observable mβ. However, as we have demon-
strated in a quantitative way, the validity of the effective
mass mβ actually depends on the energy resolution and the
total exposure of a realistic beta-decay experiment. We
show that the use of the standard effective neutrino mass
for KATRIN and Project 8 is justified. For the future
PTOLEMY experiment with an exposure of 100 g · yr,
it will be problematic to introduce an effective neutrino
mass, and the lightest neutrino mass should be used
together with the exact spectrum. While this is known,
we have performed here a general analysis with keeping the
exposure and energy resolution as free parameters.
Second, as we have mentioned above, it is justified to

describe the exact electron spectrum dΓ0
cl=dKe by the

effective one with the effective neutrino mass mβ in the
KATRIN and Project 8 experiments. Therefore, it does make
sense to derive the posterior distributions of the effective
neutrino mass, given the latest experimental data on neutrino
oscillations, beta decays, neutrinoless double-beta decays,
and cosmological observations. Although the cosmological
upper bound on the sum of three neutrino masses pushes the
posterior distribution of mβ down to the region almost
outside of the sensitivity of Project 8 in the NO case, it
does not affect much the situation in the IO case due to the
lower bound on mβ ≳ 50 meV even in the limit of m3 → 0.
This also implies that future tritium beta-decay experiments
are able to discriminate between neutrino mass orderings.
As KATRIN continues to accumulate more beta-decay

events and the development of the techniques to be
deployed in Project 8 and PTOLEMY is well in progress,
it is timely and necessary to revisit the effective neutrino
mass and its validity in future beta-decay experiments. The
analysis presented in the present work should be helpful in
understanding the approximations made in expressions of
the beta spectrum and is suggestive for the improvement on
the usage of the effective masses. In light of the precision
measurement of the beta spectrum already in the first run of
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KATRIN, one may go further to extend the analysis to
consider the presence of sterile neutrinos and other new
physics, and/or to consider the electron-capture decay
of 163Ho.
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APPENDIX A: EXPERIMENTAL SETUPS

Some experimental details about KATRIN, Project 8 and
PTOLEMY experiments are as follows:

(i) The KATRIN experiment [11] implements the
so-called MAC-E-Filter (Magnetic Adiabatic Colli-
mation combined with an Electrostatic Filter) to
select electrons from tritium beta decays that can
pass through the electrostatic barrier with the po-
tential energy of EV. The observable in the MAC-E-
Filter is the integrated number of the electrons
that have passed through the energy barrier. The
sharpness of the filter is characterized by the ratio
between the minimum Bmin ¼ 3 × 10−4 T and the
maximum Bmax ¼ 6 T of magnetic fields, i.e., Δ ¼
EeBmin=Bmax ≈ 1 eV, where Ee ≈Q ¼ 18.6 keV is
the electron energy in the range close to the end
point and Q≡m3H −m3He −me is the Q value for
tritium beta decay. Since the filter is insensitive to
the transverse kinetic energy of electrons, the sharp-
ness denotes roughly the maximum of transverse
kinetic energies and thus can be regarded as the
energy resolution. Adopting the energy window
EV ∈ ½Q − 30 eV; Qþ 5 eV� and including all the
statistic and systematic uncertainties, the KATRIN
experiment [11] with a target tritium mass of
Oð10−4Þ g can measure m2

β with a 1σ uncertainty
of 0.025 eV2, corresponding to the sensitivity of
mβ < 0.2 eV at the 90% CL in the assumption of
mβ ¼ 0 as the true value. KATRIN can also directly
measure the nonintegrated beta spectrum by
extracting the time of flight information from the
source to the detector, operating in the so-called
MAC-E-TOF mode. Since the emitting time of the
electron at source is not directly measurable, a
technique has been devised to infer the emitting
time by chopping the source with some high voltage
potential frequently. A lower counting rate and a
worse energy resolution will be caused by the
additional chopping procedure. The total target mass
of 3H planned to be loaded in the full KATRIN setup

can be inferred from the formula of the tritium
molecule number NðT2Þ ¼ AS · ϵT · ρd ≈ 2.518 ×
1019 with the source cross section AS ¼ 53 cm2,
the tritium purity ϵT ¼ 0.95, and the column density
ρd ¼ 5 × 1017 cm−2; see Eq. (25) and Table 7 of
Ref. [11] for details. Given the mass per tritium
nucleus ∼5 × 10−24 g, we obtain the total target
mass of the full KATRIN asmKATRIN¼2.5×10−4 g.
The energy resolution of KATRIN in this work is
fixed to ΔKATRIN ¼ 1 eV.

(ii) Unlike the KATRIN experiment, the Project 8
Collaboration will utilize the technique of cyclotron
radiation emission spectroscopy to measure the
electron energies [17]. If the magnetic field is
uniform in the spectrometer, the cyclotron radiation
of accelerating electrons can be observed for a few
microseconds and its frequency can be precisely
determined, leading to an excellent energy resolu-
tion. As has already been shown in Fig. 5 of
Ref. [17], with the deployment ofOð10−4Þ g atomic
3H and 1 year of running time, Project 8 is able to
push the upper limit on the effective neutrino mass
down tomβ < 40 meV at the 90% CL, assuming the
true value ofmβ ¼ 0. In this work, we will adopt two
extreme setups for Project 8: (i) an intermediate
phase with the molecular 3H, a target mass of mP8 ¼
5 × 10−4 g corresponding to 5 × 1019 tritium mol-
ecules, and an energy resolution ΔP8m ¼ 0.36 eV
limited by the irreducible width of the final state
molecular excitations [35]; (ii) an ultimate phase with
the atomic 3H, a target mass of mP8¼5×10−4 g, and
an energy resolution of ΔP8a ¼ 0.05 eV which is
limited by the inhomogeneity of the magnetic field
ΔB=B ∼ 10−7 [17].7 The target mass mP8 ¼
5 × 10−4 g can be achieved with a gas volume of
100 m2 as required by the phase IVof Project 8 and a
gaseous tritium number density of 1012 cm−3.

(iii) The PTOLEMY experiment has been designed
to detect the cosmic neutrino background (CνB)
[18–20] via the electron-neutrino capture on tritium
νe þ 3H → e− þ 3He, as suggested by Steven Wein-
berg in 1962 [51]. Thanks to the large target mass of
100 g tritium and the low background rate required
for the CνB detection, PTOLEMY would have an
overwhelmingly better sensitivity to the absolute
neutrino mass than KATRIN does, namely, the
relative uncertainty reaches σðm1Þ=m1 ≲ 10−2 for
m1 ¼ 10 meV with an energy resolution of Δ ¼
100 meV. In the PTOLEMYexperiment, the energy

7The energy resolution of Project 8 with atomic tritium may
be roughly obtained by the relation ΔE=me ¼ Δf=f ≈ ΔB=B,
where f is the frequency of the cyclotron radiation and B is the
assumed nearly uniform magnetic field.
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of electrons from tritium beta decays will be
measured in three steps. First, the MAC-E-Filter
is used to select the electrons close to the end point,
preventing the calorimeter from being swamped by
the huge number of events in the energy range below
the end point. Second, after passing through the
MAC-E-Filter, the electrons are then sent to a long
uniform solenoid, undergoing the cyclotron motion
in the magnetic field of 2 T. Hence, the radio signal
can be implemented to track each single electron.
Finally, the electrons are decelerated by the electro-
static voltage until their kinetic energies are 100 eV
or so to match the dynamic range of a cryogenic
calorimeter. The energy resolution of these electrons
can be as low as 50 meV [20].

APPENDIX B: EXPERIMENTAL LIKELIHOODS

The likelihood functions from the following different
classes of experiments have been used in our analysis:
(i) oscillation experiments Losc; (ii) β-decay experiments
Lβ; (iii) 0νββ experiments L0νββ; (iv) cosmological obser-
vations Lcosmo. To be specific, we collect all the details of
each likelihood function as follows:

(i) Losc—The likelihood information of neutrino oscil-
lation experiments will be taken from the latest
global-fit results of the Nu-Fit group [34]. The
likelihood function can be obtained as Losc ¼
exp ð−Δχ2=2Þ with Δχ2 defined as

Δχ2 ≡X
i

ðΘi − Θbf
i Þ2

σ2i
; ðB1Þ

where Θi ∈ fsin2θ13; sin2θ12;Δm2
sol;Δm2

atmg, Θbf
i is

the best-fit value of the parameter from the global
analysis, and σi is the symmetrized 1σ error. We take
the following central values and symmetrized 1σ
errors of oscillation parameters relevant for the β
decays:

sin2θ12 ¼ ð3.10� 0.12Þ × 10−1;

Δm2
sol ¼ ð7.39� 0.20Þ × 10−5 eV2;

sin2θ13 ¼ ð2.241� 0.065Þ × 10−2;

Δm2
atm ¼ ð2.525� 0.032Þ × 10−3 eV2

for NO, and

sin2θ12 ¼ ð3.10� 0.12Þ × 10−1;

Δm2
sol ¼ ð7.39� 0.20Þ × 10−5 eV2;

sin2θ13 ¼ ð2.264� 0.066Þ × 10−2;

Δm2
atm ¼ ð−2.512� 0.033Þ × 10−3 eV2

for IO. The preference of NO over IO can be
represented by the difference of their χ2 minima,
i.e., Δχ2MO ¼ χ2NO − χ2IO ≃ 9.3, implying a more than
3σ preference of NO.

(ii) Lβ—By measuring the end point of the β decay
spectrum, the tritium β-decay experiments (e.g.,
Troitsk [13], Mainz [12], and KATRIN [9,10])
can already provide us good constraints on the
absolute neutrino mass scale via the effective neu-
trino mass mβ ≡ ðPi m

2
i jUeij2Þ1=2. The limits of the

former two are given as

m2
β ¼ −0.67� 2.53 eV2ðTroitskÞ;

m2
β ¼ −0.6� 3.0 eV2ðMainzÞ: ðB2Þ

Similar to Eq. (B1) in the case of neutrino oscil-
lations, the likelihood function can be constructed
with the central values and 1σ errors of m2

β in
Eq. (B2). For KATRIN, we use the likelihood
presented in Fig. 4 of Ref. [9]. We find the likelihood
can be well approximated by a skewed normal
distribution

LKATRINðm2
βÞ ∝

1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðm2

β − μÞ2
2σ2

�

× erfc

�
−
αðm2

β − μÞffiffiffi
2

p
σ

�
; ðB3Þ

where erfcðxÞ is the complementary error function,
with σ ¼ 1.506 eV2, μ ¼ 0.0162 eV2, and m2

β in
units of eV2, as well as α ¼ −2.005. Since the
KATRIN experiment has the highest sensitivity to
mβ, we may have Lβ ≈ LKATRIN.

(iii) L0νββ—The constraints on the half-life of 0νββ are
given by the existing 0νββ searches. The limits
on the effective neutrino mass jmββj can be derived
by using

ðT0ν
1=2Þ−1 ¼ G0νjM0νj2

jmββj2
m2

e
; ðB4Þ

where G0ν denotes the phase-space factor, M0ν is
the nuclear matrix element (NME), and me ¼
0.511 MeV is the electron mass. In our numerical
analysis, we use the likelihood functions from
Refs. [39,52], which include the experimental in-
formation of GERDA [53], KamLAND-Zen [54],
EXO [55], and CUORE [52].

(iv) Lcosmo—The cosmological observations can set
very strong constraints on the sum of the three
neutrino masses Σ≡m1 þm2 þm3. The Planck
Collaboration has recently updated their results
in Ref. [56]. For illustration, we will adopt the
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likelihood functions by combining different datasets which yield the following bounds on the sum of the three
neutrino masses at the 95% CL:

Σ < 0.54 eVðLð1Þ
cosmo; Planck TTþ lowEÞ;

Σ < 0.24 eVðLð2Þ
cosmo; Planck TT;TE;EEþ lowEþ lensingÞ;

Σ < 0.12 eVðLð3Þ
cosmo; Planck TT;TE;EEþ lowEþ lensingþ BAOÞ: ðB5Þ

The likelihood functions have been obtained by analyzing the Markov chain files available from the Planck Legacy
Archive.

With the likelihood functions listed above, the total likelihood relevant for our analysis can be calculated as Ltot ¼
Losc × Lβ × L0νββ × LðiÞ

cosmo (for i ¼ 1, 2, 3).
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