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Extra CP-violating source for electroweak baryogenesis can dynamically appear at finite temperature in
the complex two-Higgs doublet model, which might help to alleviate the strong constraints from the electric
dipole moment experiments. In this scenario, we study the detailed phase transition dynamics and the
corresponding gravitational wave signals in synergy with the collider signals at future lepton colliders. For
some parameter spaces, various phase transition patterns can occur, such as the multistep phase transition
and supercooling. Gravitational waves complementary to collider signals can help to pin down the
underlying phase transition dynamics or different phase transition patterns.
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I. INTRODUCTION

After the observation of the gravitational wave (GW) by
the Advanced Laser Interferometer Gravitational Wave
Observatory [1], a new era of GW astronomy has been
initiated and the GW detector provides a new technique to
study the fundamental physics. Especially, electroweak
(EW) baryogenesis [2–6], which is aimed to explain the
baryon asymmetry of the Universe, becomes a promising
and testable mechanism after the discovery of GW and the
Higgs boson. To generate the observed baryon asymmetry
of the Universe, all three Sakharov conditions need to be
satisfied [7]. These conditions are baryon number violation,
C and CP violation, and the departure from the thermal
equilibrium or CPT violation. An essential ingredient for a
successful EW baryongenesis is the process of a strong
first-order phase transition (FOPT) which can achieve the
departure from thermal equilibrium. As a by product, the
phase transition GW signal induced by a strong FOPT can
potentially be detected by the future space-based GW
interferometers.
In the standard model (SM), the discovery of Higgs

boson by ATLAS [8] and CMS [9] shows that a strong
FOPT can not be generated for a 125 GeV Higgs boson

based on lattice simulation [10,11]. It is just a smooth
crossover for 125 GeV Higgs boson in the SM. The CP
violation source is also too weak for successful EW
baryogenesis in the SM. Thus, the extension of the SM
is needed to provide a strong FOPT and a large enough
CP violation for successful EW baryogenesis. One of
the simplest extension of the SM, which is the so-called
2-Higgs doublet model (2HDM), is the SM with an
additional SUð2ÞL scaler doublet, where the sphaleron
process was studied in Ref. [12]. However, current
electric dipole moments (EDM) experiments [13] have
put strong constraints on the CP-violating source at
zero temperature for most of the new physics models. In
this work, we focus on the complex 2HDM (C2HDM).
Recent study [14] has shown that there are viable
parameter spaces in the C2HDM which can produce a
strong FOPT with spontaneous CP violation based on
the criterion vc=Tc > 1, where vc is the vacuum expect-
ation value (VEV) at the critical temperature Tc.
They also discuss the collider phenomenology including
the modification of Higgs trilinear coupling and Higgs
boson pair production at hadron collider. Further,
Ref. [15] has revisited the constraints from colliders
and EDM, and future predictions in details. Based on
these two comprehensive studies [14,15], we investigate
the phase transition dynamics with different phase
transition patterns. Besides the dynamical CP-violating
behavior, we also find the multistep phase transition
patterns and supercooling patterns. The dynamical proc-
ess might help to provide the CP-violating source for
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successful EW baryogenesis.1 We discuss other possible
approaches to explore this scenario in C2HDM. On one
hand, during a strongFOPT, detectableGWs can be produced
by three mechanisms: bubble collisions, sound waves, and
magnetohydrodynamic turbulence. Based on the viable
parameters from Refs. [14,15], we discuss the possibility
to detect the GW signals by the future space-based experi-
ments, such as the approved Laser Interferometer Space
Antenna (LISA) [18] (launch in 2034 or even earlier),
Deci-hertz Interferometer Gravitational wave Observatory
(DECIGO) [19,20], Ultimate-DECIGO (U-DECIGO) [21],
Big Bang Observer (BBO) [22], Taiji [23,24], and TianQin
[25,26]. The dynamical CP-violation behavior can escape
the strong constraints from electric dipole moment (EDM)
measurements [27–32]. On the other hand, the strong FOPT
could obviously modify the Higgs trilinear coupling and thus
can be tested by the future lepton collider, such as Circular
Electron-Positron Collider (CEPC) [33], International Linear
Collider (ILC) [34] as well as Future Circular Collider
(FCC-ee) [35]. Combined with the GW signals, they can
make a complementary test on this scenario and the under-
lying phase transition patterns.
This paper is organized as follows. In Sec. II, we describe

the C2HDM and the basic idea of dynamical CP-violation
at finite temperature. In Sec. III, the one-loop effective
potential at finite temperature and the renormalization
prescription are presented.2 In Sec. IV, we investigate the
phase transition dynamics including the corresponding GW
signals and its correlation with the collider signatures. We
discuss the consistent check of the dynamical CP-violation
and supercooling case in Sec. V. Section VI contains our
conclusions.

II. MODEL WITH DYNAMICAL CP-VIOLATION

The tree-level potential of the C2HDM can be written as

V tree ¼ m2
11Φ

†
1Φ1 þm2

22Φ
†
2Φ2 − ½m2

12Φ
†
1Φ2 þ H:c:�

þ 1

2
λ1ðΦ†

1Φ1Þ2 þ
1

2
λ2ðΦ†

2Φ2Þ2 þ λ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ

þ λ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
�
1

2
λ5ðΦ†

1Φ2Þ2 þ H:c:

�
;

ð1Þ

where m2
12 and λ5 are complex numbers. It is obvious that

the C2HDM has a softly broken Z2 symmetry (Φ1 → Φ1,
Φ2 → −Φ2). At zero temperature, we have

Φð0Þ
1 ¼ 1ffiffiffi

2
p

�
ρ1 þ iη1

v1 þ ζ1 þ iψ1

�

Φð0Þ
2 ¼ 1ffiffiffi

2
p

�
ρ2 þ iη2

v2 þ ζ2 þ iψ2

�
: ð2Þ

We have real vacuum at zero temperature. This model has
been extensively studied including the EDM constraints and
collider phenomenology, such as the recent works [14,15]
and references therein. However, at finite temperature, there
would be dynamical CP-violating behavior [14] as

ΦðTÞ
1 ¼ 1ffiffiffi

2
p

�
ρ1 þ iη1

ṽ1 þ ζ1 þ iψ1

�

ΦðTÞ
2 ¼ 1ffiffiffi

2
p

�
ṽCB þ ρ2 þ iη2

ṽ2 þ iṽCP þ ζ2 þ iψ2

�
: ð3Þ

The ṽ with tilde represents the VEV at finite temperature.
This is the starting point of this work. It means there exists
extra CP-violation at high temperature, which might provide
the CP-violating source for successful EW baryogenesis. At
zero temperature, this extra CP-violating source disappears
to escape the severe EDM constraints. To consider more
general situation, we also assume there is charge-breaking at
high temperature. In Sec. V, we show the numerical results
on the evolution of these CP-violating source with the
decreasing of the temperature which confirms the starting
point is consistent. Various phase transition patterns can also
be triggered based on Eq. (3), which are discussed carefully
in next section.
For more compact form, the VEVs at zero temperature

are denoted as

ṽ1ðT ¼ 0Þ ¼ v1; ṽ2ðT ¼ 0Þ ¼ v2;

ṽCPðT ¼ 0Þ ¼ vCP ¼ 0; ṽCBðT ¼ 0Þ ¼ vCB ¼ 0; ð4Þ

with this convention,

v≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22 þ v2CP þ v2CB

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

q
; ð5Þ

where v ≈ 246 GeV is the SM VEV, and the stationary
conditions are

∂V tree

∂Φi

����
Φi¼hΦii

¼ 0;
∂V tree

∂Φi†

����
Φi¼hΦii

¼ 0; i ¼ 1; 2; ð6Þ

and give the following relations

m2
11 ¼ Reðm2

12Þ
v2
v1

−
v21
2
λ1 −

v22
2
λ345; ð7Þ

1Refs. [16,17] studied the realization of EW baryogenesis in
the CP-violating 2HDM. Although, this work is motivated
by EW baryogenesis, we do not study the realization of EW
baryogenesis in this work. The GW signal in the CP-violating
2HDM with CP-violating vacuum at zero temperature was also
studied in Ref. [17]. However, for the model used in this work,
the vacuum is real at zero temperature.

2In the Appendix A, we present the thermal corrections of the
masses for the C2HDM in the Landau gauge. In Appendix B, we
derive the field dependent mass matrix elements for the gauge
bosons, the scalar bosons and the top quark for C2HDM in the
Landau gauge.
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m2
22 ¼ Reðm2

12Þ
v1
v2

−
v22
2
λ2 −

v21
2
λ345; ð8Þ

v1v2Imðλ5Þ
2

¼ Imðm2
12Þ; ð9Þ

where

λ3 þ λ4 þ Reðλ5Þ≡ λ345: ð10Þ
We introduce a mixing angle Θ, which is defined as

tanΘ ¼ v2
v1

; ð11Þ

then transform the fields into a new basis

ζ3¼−sinΘψ1þcosΘψ2; A¼ cosΘψ1þsinΘψ2: ð12Þ
In this C2HDM, there is only one independent CP-violating
phase, which satisfies the relations in Eqs. (7–9) at zero
temperature. Compared to Ref. [17], v1, v2 are real in this
work as shown in Eq. (2). We can use similar invariant
definition of the CP-violating phase as in Refs. [17,36]
below

δ1 ¼ arg½ðm2
12Þ2λ�5�; ð13Þ

δ2 ¼ arg½m2
12v1v

�
2λ

�
5�; ð14Þ

jm2
12j sinðδ1 − δ2Þ ¼ v2 sinΘ cosΘjλ5j sinðδ1 − 2δ2Þ: ð15Þ

However, at finite temperature, it becomes difficult to define
such simple invariant quantity, which is investigated at zero
temperature [37,38]. And the extra CP violation can not be
rotated away by field redefinition at high temperature while
keeping the original CP-violation at zero temperature
unchanged since the temperature dependent CP violation
occurs in the same basis used in the zero temperature case.
It is numerically confirmed in the discussion Sec. V.A.
In the C2HDM, the neutral components ζ1, ζ2 and ζ3

mix into the neutral mass eigenstates Hi (i ¼ 1, 2, 3)
through the mixing matrix

0
B@

H1

H2

H3

1
CA ¼ R

0
B@

ζ1

ζ2

ζ3

1
CA: ð16Þ

The mixing matrix R can diagonalize the neutral mass
matrix

Mij ¼
∂2V

∂ζi∂ζj ; ð17Þ

and derive

RMRT ¼ diagðm2
1; m

2
2; m

2
3Þ; ð18Þ

where m1 ≤ m2 ≤ m3 are the masses of the neutral
Higgs bosons. We can parametrize the matrix R as the
following [39]

R ¼

0
B@

c1c2 s1c2 s2
−c1s2s3 − s1c3 c1c3 − s1s2s3 c2s3
−c1s2c3 þ s1s3 −c1s3 − s1s2c3 c2c3

1
CA; ð19Þ

where si ¼ sin θi, ci ¼ cos θi (i ¼ 1, 2, 3), and − π
2
≤ θi <

π
2
[14,15]. Note the above mixing matrix is valid at zero

temperature. When we consider the finite-temperature
situation in the next section, this result should be modified.
The Higgs potential in Eq. (1) has 9 independent param-
eters. We follow Ref. [40] and choose 9 input parameters v,
tanΘ, mH� , θ1, θ2, θ3, m1, m2, and Reðm2

12Þ. For these
input parameters, m3 can be expressed as

m2
3 ¼

m2
1R13ðR12 tanΘ − R11Þ þm2

2R23ðR22 tanΘ − R21Þ
R33ðR31 − R32 tanΘÞ

:

ð20Þ

The analytic relations between the above parameter set and
the coupling parameters λi in the original Lagrangian can
be written as [41]

λ1 ¼
1

v2cos2Θ
½m2

1c
2
1c

2
2 þm2

2ðc3s1 þ c1s2s3Þ2 þm2
3ðc1c3s2 − s1s3Þ2 − μ2sin2Θ�;

λ2 ¼
1

v2sin2Θ
½m2

1s
2
1c

2
2 þm2

2ðc1c3 − s1s2s3Þ2 þm2
3ðc3s1s2 þ c1s3Þ2 − μ2cos2Θ�;

λ3 ¼
1

v2 sinΘ cosΘ
½ðm2

1c
2
2 þm2

2ðs22s23 − c23Þ þm2
3ðs22c23 − s23ÞÞc1s1 þ ðm2

3 −m2
2Þðc21 − s21Þs2c3s3� −

μ2 − 2m2
H�

v2
;

λ4 ¼
m2

1s
2
2 þ ðm2

2s
2
3 þm2

3c
2
3Þc22 þ μ2 − 2m2

H�

v2
;

Reðλ5Þ ¼
−m2

1s
2
2 − ðm2

2s
2
3 þm2

3c
2
3Þc22 þ μ2

v2
;

Imðλ5Þ ¼
2c2

v2 sinΘ
½ð−m2

1 þm2
2s

2
3 þm2

3c
2
3Þc1s2 þ ðm2

2 −m2
3Þs1s3c3�; ð21Þ
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where

μ2 ¼ v2

v21v
2
2

Reðm2
12Þ: ð22Þ

In general, 2HDM can be classified into type I, type II,
lepton-specific and flipped, according to the interactions of
the fermions to the Higgs doublets. In this work we only
study type I case as an example, and only consider the top
quark’s contribution to the EW phase transition among all
the fermions. For EW phase transition, there exist only
slight differences when switching to a different type of
2HDM since only top Yukawa coupling is considered
among all the fermions in the phase transition calculations.
However, for the constraints from colliders and EDM,
different types have different constraints, such as the bound
on themH� − tanΘ plane. For example, the constraint from
EDM in type I model is weaker than the one in type II
[15,36]. There is larger parameter space for type I 2HDM.

III. PHASE TRANSITION DYNAMICS AND
CP-VIOLATION AT FINITE TEMPERATURE

To study the phase transition dynamics in the C2HDM,
we use the finite-temperature effective field theory [42–44].
The full one-loop finite-temperature effective potential
reads

Veffðṽ; TÞ≡ V treeðṽÞ þ VCWðṽÞ þ VCTðṽÞ þ VTðṽ; TÞ;
ð23Þ

where V tree, which is obtained by replacing the doublets
with their classical background fields (ṽ1, ṽ2, ṽCP, ṽCB)
from Eq. (3), is the tree-level potential at zero temperature
as shown in the following

V treeðṽÞ¼
1

2
m2

11ṽ
2
1þ

1

2
m2

22ðṽ22þ ṽ2CBþ ṽ2CPÞ

−Reðm2
12Þṽ1ṽ2þ Imðm2

12Þṽ1ṽCPþ
1

8
λ1ṽ41

þ1

8
λ2ðṽ22þ ṽ2CPþ ṽ2CBÞ2þ

1

4
λ3ṽ21ðṽ22þ ṽ2CBþ ṽ2CPÞ

þ1

4
λ4ṽ21ðṽ22þ ṽ2CPÞþ

1

4
Reðλ5Þṽ21ðṽ22− ṽ2CPÞ

−
1

2
Imðλ5Þṽ21ṽ2ṽCP: ð24Þ

VCW is the Coleman-Weinberg potential (CW) at zero
temperature. In the MS scheme, the CW potential can be
written as

VCWðṽÞ ¼
1

64π2
X
s

nsm4
sðṽÞ

�
log

m2
sðṽÞ
μ2

− Cs

�
; ð25Þ

where ṽ≡ fṽ1; ṽ2; ṽCP; ṽCBg, and m2
sðṽÞ is the eigenvalue

for the particle s in the mass matrix in terms of the
background fields ṽ. The details are shown in
Appendix B. ns denotes the numbers of the degree of
freedom (d.o.f.). Because of the charge-breaking VEV,
photon becomes massive roughly from several tens GeV
to about 20 GeV during the phase transition. It mainly
contributes to the phase transition at high temperature and
quickly becomes massless when the temperature becomes
lower. There would be no other important cosmological
effects except for the EW phase transition. And we have to
take into account different masses and numbers of d.o.f. for
the charge conjugated particles. For each particle s, the
numbers of d.o.f. are fnHi

; nA; nHþ ; nH− ; nGþ ; nG− ; nWþ ;
nW− ; nZ; nγ; nt; nt̄g ¼ f1;1;1;1;1;1;3;3;3;3;−6;−6g and
the constants Cs are

Cs ¼
� 5

6
; s ¼ W�; Z; γ

3
2
; others

: ð26Þ

The masses and the mixing angles with one-loop
corrections are different from those extracted from the
tree-level potential. To enforce the one-loop corrected
masses and the mixing angles to be equal to the tree-level
values, we use the on-shell renormalization prescription
as in Refs. [14,45,46]. Then, a counterterm potential VCT is
added to the one-loop effective potential. The general
formula of the counterterm contribution VCT reads [46]

VCT ¼
Xn
i¼1

∂V tree

∂pi
δpi þ

Xm
k¼1

δTkðϕk þ ṽkÞ; ð27Þ

where δpi and n are the counterterms and the number of
parameters of the tree-level potential, respectively. δTk
denotes the counterterms of the tadpole Tk, and m is the
number of background field or the number of field that is
allowed for the development of a non-zero VEV. In the
C2HDM, the counterterm potential can be written as

VCT ¼ δm2
11Φ

†
1Φ1 þ δm2

22Φ
†
2Φ2 − ½ðδReðm2

12Þ þ iδImðm2
12ÞÞΦ†

1Φ2 þ H:c:� þ 1

2
δλ1ðΦ†

1Φ1Þ2 þ
1

2
δλ2ðΦ†

2Φ2Þ2

þ δλ3ðΦ†
1Φ1ÞðΦ†

2Φ2Þ þ δλ4ðΦ†
1Φ2ÞðΦ†

2Φ1Þ þ
1

2
½ðδReðλ5Þ þ iδImðλ5ÞÞðΦ†

1Φ2Þ2 þ H:c:�
þ δT1ðζ1 þ ṽ1Þ þ δT2ðζ2 þ ṽ2Þ þ δTCPðψ2 þ ṽCPÞ þ δTCBðρ2 þ ṽCBÞ: ð28Þ
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The on-shell renormalization conditions at zero temper-
ature are

∂ϕi
VCWðϕÞjϕ¼hϕciT¼0

þ ∂ϕi
VCTðϕÞjϕ¼hϕciT¼0

¼ 0;

∂ϕi
∂ϕj

VCWðϕÞjϕ¼hϕciT¼0
þ ∂ϕi

∂ϕj
VCTðϕÞjϕ¼hϕciT¼0

¼ 0;

ð29Þ

where

ϕi ≡ fρ1; η1; ρ2; η2; ζ1;ψ1; ζ2;ψ2g; ð30Þ

hϕciT¼0 ¼ f0; 0; 0; 0; v1; 0; v2; 0g: ð31Þ

The second derivatives of the CW potential lead to the well-
known problem of infrared (IR) divergences for the Gold-
stone bosons [47–50] in the Landau gauge. In practice,
we can introduce an IR regulator for the Goldstones and
then discard the terms proportional to the IR divergence.
Previous study [47] has dealt with this problem and derived
analytic formulas for the first and second derivatives of the
CW potential in the physical basis

∂ϕi
VCWðϕÞjϕ¼hϕciT¼0

¼ OH
ij

X
s

ð−1Þχsð1þ χsÞ
32π2

m2
ðsÞaλðsÞaaj

�
log

m2
ðsÞa
μ2

− Cs þ
1

2

�
; ð32Þ

∂ϕi
∂ϕj

VCWðϕÞjϕ¼hϕciT¼0
¼ OH

ikO
H
jl

X
s

ð−1Þχsð1þ χsÞ
32π2

Sij

�
λðsÞabjλðsÞbaj

�
fð1ÞðsÞab − Cs þ

1

2

�

þ λðsÞaaijm2
ðsÞa

�
log

m2
ðsÞa
μ2

− Cs þ
1

2

��
; ð33Þ

with

fð1ÞðsÞa1a2 ¼
X2
x¼1

m2
ðsÞax log

m2
ðsÞax
μ2Q

y≠xðm2
ðsÞax −m2

ðsÞayÞ
; ð34Þ

where χs is the spin of different particles, m2
ðsÞa is the

physical mass of particle s at zero temperature, OH
ij is the

rotation matrix that transform scalar fields from Laudau
gauge basis to mass eigenstate basis, Sij denotes symmet-
rization with respect to the two indexes, λðsÞabi and λðsÞabij
are the cubic and quartic couplings for particle s in
mass eigenstate basis. Note that we need to deal with
degenerate mass limit carefully in Eq. (34). For more detail,
see Ref. [47]. Then the counterterms can be expressed in
terms of the derivatives of the CW potential. For the
analytic formulas of the counterterms, see Refs. [14,46].
VT is the one-loop thermal correction including daisy
resummation [51,52] at finite temperature. The thermal
correction reads

VT ¼
X
F

T4

2π2
nFJF

�
m2

F

T2

�
þ
X
B

T4

2π2
nBJB

�
m2

B

T2

�
; ð35Þ

with the thermal functions

JB=F ¼
Z

∞

0

dx x2 log
h
1 ∓ e−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þm2

i =T
2

p i
; ð36Þ

where the plus sign is for fermions and the minus sign is for
bosons, nF and nb are the d.o.f. for fermions and bosons,
respectively. In order to include the contribution of daisy
resummation, we make the following replacement for the
scalar boson mass and the longitudinal components of the
gauge boson mass

m2
B → m̄2

B ¼ m2
B þ ΠB; ð37Þ

where ΠB is the thermal correction of the scalar boson and
the longitudinal components of gauge boson at finite
temperature, which can be found in Appendix A. The
Debye corrected masses are applied in the all terms of JB
and also used in the CW potential [52]. It is worth noticing
that Parwani scheme is used in this work, while Arnold-
Espinosa scheme is used in Ref. [14].
With the full effective potential in Eq. (23), we can use

the method that is introduced below to numerically calcu-
late the phase transition dynamics. From the comprehen-
sive studies of the C2HDM [14], we know there are viable
parameter space to induce a strong FOPT. According to
the Ref. [14], we scan the viable parameter space within the
allowed parameter spaces by the current collider and EDM
constraints from Ref. [15].
For completeness and self-consistency, we show a brief

summary of the constraints from theoretical aspects,
colliders and EDM data based on Ref. [15] and references
therein. Reference [15] has imposed all available con-
straints on this C2HDM and scanned the parameter
space for their phenomenological analyses. Based on their
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allowed parameter space, we further limit the available
parameter space to smaller parameter space to satisfy the
condition of strong FOPT and the new EDM data. We
partially used the publicly available package in Ref. [15].
For the theoretical bounds, the perturbative unitarity and
vacuum stability are considered. Then, the constraints from
the oblique corrections to EW precision observables should
be taken into account within a 2σ compatibility of the EW
oblique parameters. As for the constraints of the charged
sector, the exclusion bounds on the mH� − tanΘ plane
depend on the type of the 2HDM. An important constraint
on this plane is from the measurements of B → Xsγ. For the
type I and lepton-specific models, the constraint strongly
depends on tanΘ. The charged Higgs mass should be
heavier than 400 GeV for tanΘ ≈ 1. For type II and flipped
models, the charged Higgs mass has to be heavier than
about 580 GeV, almost independent of tanΘ within 2σ
compatibility. Further, the flavor constraints from Rb ≡
Γ½Z → bb̄�=Γ½Z → hadrons� are considered on the mH� −
tanΘ plane. Another important bound from Higgs boson
search is checked with the HiggsBounds code [53]. The
C2HDM_HDECAY code [15] is used to calculate all the
branching ratios and decay widths of all the Higgs bosons.
There are also important constraints from various EDM
constraints, such as the recent ACME data [13]. Type I is
less constrained by the EDM bounds compared to type II
[36]. There are still available parameter spaces after
considering all the constraints as shown in the Fig. 14 of

Ref. [15] for the new EDM data jdej < 1.1 × 10−29 e · cm
at 90% confidence level. In the following, we will study the
collider signals at future lepton colliders. Detailed revision
of the collider phenomenology and EDM is beyond the
scope of this work.
Here, for simplicity, we only show 12 benchmark sets

which can induce various representative phase transition
patterns, and we choose H1 to be the SM Higgs boson.
Multistep FOPTs, supercooling and second-order phase
transition (SOPT) can occur.
In Table I, we show 8 benchmark sets. Each parameter set

can give a one-step strong FOPT, and the FOPT takes place

as ð0; 0; 0; 0Þ→FOPT ðṽ1; ṽ2; ṽCP; ṽCBÞ→T→0 ðv1; v2; 0; 0Þ with
the temperature decreasing from high value to zero. Only
one strong FOPT happens for these benchmark sets.
In Table II, two parameter sets are shown. Each

benchmark set can induce two FOPTs and they evolve

as ð0;0;0;0Þ→FOPT ðṽð1Þ1 ; ṽð1Þ2 ; ṽð1ÞCP; ṽ
ð1Þ
CBÞ→

FOPT ðṽð2Þ1 ; ṽð2Þ2 ; ṽð2ÞCP;

ṽð2ÞCBÞ→
T→0 ðv1;v2;0;0Þwith the temperature decreasing from

high value to zero.
Three-step phase transition can be produced for the

two benchmark sets in Table III. And they evolve like

ð0; 0; 0; 0Þ→SOPT ðṽð1Þ1 ; ṽð1Þ2 ; ṽð1ÞCP; ṽ
ð1Þ
CBÞ→

FOPT ðṽð2Þ1 ; ṽð2Þ2 ; ṽð2ÞCP;

ṽð2ÞCBÞ→
FOPT ðṽð3Þ1 ; ṽð3Þ2 ; ṽð3ÞCP; ṽ

ð3Þ
CBÞ→

T→0 ðv1; v2; 0; 0Þ with the
temperature decreasing from high value to zero. For these
two benchmark sets, two FOPTs and one SOPT occur.

TABLE II. Two-step phase transition benchmark points with two FOPTs.

v [GeV] m1 [GeV] m2 [GeV] mH� [GeV] Reðm2
12Þ ½GeV2� θ1 θ2 θ3 tanΘ

BP9 246 125.09 430.698 500.220 20192 0.832 0.0101 −0.514 1.458
BP10 246 125.09 440.698 500.220 20092 0.832 0.0101 −0.514 1.458

TABLE III. Three-step phase transition benchmark points with one SOPT and two FOPTs.

v [GeV] m1 [GeV] m2 [GeV] mH� [GeV] Reðm2
12Þ ½GeV2� θ1 θ2 θ3 tanΘ

BP11 246 125.09 489.698 550.220 20392 0.832 0.0101 −0.514 1.508
BP12 246 125.09 495.698 543.220 20292 0.832 0.0101 −0.514 1.508

TABLE I. One-step phase transition benchmark points.

v [GeV] m1 [GeV] m2 [GeV] mH� [GeV] Reðm2
12Þ ½GeV2� θ1 θ2 θ3 tanΘ

BP1 246 125.09 356.779 581.460 29939 1.470 0.0223 −0.097 4.17
BP2 246 125.09 603.699 629.564 73628 0.817 3.687 × 10−3 −1.557 1.216
BP3 246 125.09 455.834 685.479 85376 0.880 −0.0156 1.568 1.399
BP4 246 125.09 458.834 683.679 85376 0.880 −0.0156 1.568 1.399
BP5 246 125.09 490.698 525.220 20392 0.932 0.0101 −0.514 1.608
BP6 246 125.09 485.698 530.220 20392 0.932 0.0101 −0.514 1.608
BP7 246 125.09 495.698 525.220 20192 0.932 0.0101 −0.514 1.608
BP8 246 125.09 481.698 533.220 20192 0.932 0.0101 −0.514 1.608
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To obtain the parameter sets in the above tables, we need
to know the bubble dynamics during the phase transition
process. The essential quantity of bubble dynamics is the
bubble nucleation rate per unit time per unit volume [54]

Γ ¼ Γ0e−SE; ð38Þ

where SEðTÞ ¼ S3=T is the Euclidean action of a critical
bubble and Γ0 ∝ T4. S3 is the three-dimensional Euclidean
action, which can be denoted as [54]

S3 ¼ 4π

Z
drr2

�
1

2

�
dṽi
dr

�
2

þ Veffðṽi; TÞ
�
; ð39Þ

where ṽi ¼ fṽ1; ṽ2; ṽCB; ṽCPg. To calculate the nucleation
rate, we need to obtain the bubble profiles of the four scalar
fields by solving the following bounce equations

d2ṽi
dr2

þ 2

r
dṽi
dr

¼ ∂Veff

∂ṽi ; i ¼ 1; 2; CP; CB; ð40Þ

with the boundary conditions

lim
r→∞

ṽi ¼ ṽf;
dṽi
dr

����
r¼0

¼ 0; ð41Þ

where ṽf is the false VEVs. Conventionally, we use the so-
called overshooting (undershooting) method [55,56] to
solve the single-field bounce equation. However, the multi-
field case becomes much more complicated. We use the
path deformation method, which is introduced by Ref. [57],
to find a proper path that connects the initial and final
vacuum state. In our analysis, we make use of the publicly
available package CosmoTransitons to solve the four differ-
ential bounce equations. Then the nucleation temperature
Tn is defined as the temperature at time tn at which Γ
becomes large enough to nucleate a bubble per horizon
volume with the probability being Oð1Þ [58],Z

tn

0

dt
Γ
H3

≃ 1; ð42Þ

where H is the Hubble parameter. In other words, this
condition can be simplified as

S3ðTnÞ
Tn

¼ 4 ln ðTn=100 GeVÞ þ 137: ð43Þ

The properties of the bubbles are illustrated by two key
parameters α and β. Note α is the ratio of the latent heat
ϵðTnÞ to the energy density of the radiation bath ρrad. It is
defined as [59]

α ¼ ϵðTnÞ
ρradðTnÞ

; ð44Þ

where ρradðTÞ ¼ g⋆π2T4=30, and g⋆ is the number of the
relativistic d.o.f. in the thermal plasma at T. And ϵðTnÞ can
be written as

ϵðTnÞ ¼
�
−Veffðϕ; TÞ þ T

∂Veffðϕ; TÞ
∂T

�����
T¼Tn

: ð45Þ

Moreover, the parameter β is defined as [58]

β≡ −
dSE
dt

����
t¼tn

≃
1

Γ
dΓ
dt

����
t¼tn

: ð46Þ

However, in the actual calculations, the renormalized
parameter β̃ is more convenient:

β̃ ¼ Tn
d
dT

�
S3ðTÞ
T

�����
T¼Tn

: ð47Þ

The parameter α describes the strength of the phase
transition, namely, the larger value of α corresponds to
a stronger phase transition process. In addition, the inverse
of the parameter β is related to the time scale of phase
transition. Based on the above approaches, we can
numerically know the phase transition dynamics and
calculate the phase transition parameters of all the bench-
mark point sets.

IV. COLLIDER AND GRAVITATIONAL
WAVE SIGNATURES

After the three parameters α, β̃ and Tn are extracted from
the finite-temperature effective potential, we can predict the
phase transition GW signals which are produced by three
mechanisms: bubbles collisions, sound waves, and mag-
netohydrodynamic turbulence in the plasma after colli-
sions. Based on the envelope approximation [60–63], the
numerical simulation gives the formula of the GW spec-
trum from bubble collisions [64–66]:

h2ΩcoðfÞ ≃ 1.67 × 10−5β̃−2
�

κϕα

1þ α

�
2
�
100

g⋆

�
1=3 0.11v3b

0.42þ v2b

×
3.8ðf=fcoÞ2.8

1þ 2.8ðf=fcoÞ3.8
; ð48Þ

where g⋆ is the total number of d.o.f. at Tn, the coefficient
κϕ denotes the fraction of vacuum energy transformed into
the gradient energy of the scaler fields, and vb is the bubble
wall velocity. The peak frequency is

fco ≃ 1.65 × 10−5 Hz

�
0.62

1.8 − 0.1vb þ v2b

�
β̃

×

�
Tn

100 GeV

��
g⋆
100

�
1=6

: ð49Þ
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The second source is generated by the sound waves of the
bulk motion, and numerical simulation gives [67,68]

h2ΩswðfÞ ≃ 2.65 × 10−6β̃−1
�

κvα

1þ α

�
2
�
100

g⋆

�
1=3

× vbðf=fswÞ3
�

7

4þ 3ðf=fswÞ2
�

7=2
; ð50Þ

with the peak frequency

fsw ≃ 1.9 × 10−5 Hz
1

vb
β̃

�
Tn

100 GeV

��
g⋆
100

�
1=6

; ð51Þ

here κv represents the fraction of vacuum energy that gets
converted into bulk motion of the fluid. The turbulence
contribution to the GW spectrum is [69,70]

h2ΩturbðfÞ ≃ 3.35 × 10−4β̃−1
�
κturbα

1þ α

�
3=2

�
100

g⋆

�
1=3

vb

×
ðf=fturbÞ3

ð1þ f=fturbÞ11=3ð1þ 8πf=h⋆Þ
; ð52Þ

with the peak frequency

fturb ≃ 2.7 × 10−5 Hz
1

vb
β̃

�
Tn

100 GeV

��
g⋆
100

�
1=6

; ð53Þ

and

h⋆ ¼ 1.65 × 10−5 Hz

�
Tn

100 GeV

��
g⋆
100

�
1=6

: ð54Þ

For the velocity profile of a Jouguet detonation front, the
efficiency parameter κv, which is the ratio of bulk kinetic
energy to the vacuum energy, is possible to be established
as a function of α [59,63]

κv ¼
ffiffiffi
α

p

0.135þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.98þ α

p : ð55Þ

The precise calculation of bubble wall velocity is a very
hard task, which involves microphysics and hydrodynam-
ics. In the situation of bubble propagation by Jouguet
detonation, the bubble wall velocity can be expressed as the
following formula [59,63]

vb;J ¼
1=

ffiffiffi
3

p þ ðα2 þ 2α=3Þ1=2
1þ α

; ð56Þ

namely, vb ¼ vb;J for Jouguet detonation. Reference [59]
shows that, as long as bubble propagates as detonation and
deflagration mode, the gradient energy of the scaler fields is
negligible and most contribution to the GW signal is the

bulk motion of the fluid. Hence, for Jouguet detonation and
deflagration, κϕ → 0.
We also consider the deflagration mode with a bubble

wall velocity vb ¼ 0.5 given by hand. In this case, we use
the following efficiency parameter [59]

κv ≈
c11=5s κAκB

ðc11=5s − v11=5b ÞκB þ vbc
6=5
s κA

; ð57Þ

where cs ≅ 1=
ffiffiffi
3

p
is the sound velocity and

κA ≈ v6=5b
6.9α

1.36 − 0.037
ffiffiffi
α

p þ α
; ð58Þ

κB ≈
α2=5

0.017þ ð0.997þ αÞ2=5 : ð59Þ

However, recent study [71] shows the analytical fitting of
the efficiency parameter for deflagration Eq. (57) is not
valid for all the parameter space of vb and α, there can exist
a large kinetic energy deficit in some parameter space.
Therefore, the above modeling substantially overestimates
the GW signals for deflagration. For both Jouguet deto-
nation (vb > cs) and deflagration (vb < cs) mode, we set
κturb ≃ 0.1κv. However, the region where vb > cs is not all
detonation. When vb is larger than cs but smaller than vb;J
obtained by Eq. (56), it is called supersonic deflagration
(hybrid) [59,72]. Here, we use vb > cs to specify the
Jouguet detonation mode. We do not study the supersonic
deflagration mode in this work. Note we also use super-
sonic and subsonic to denote Jouguet detonation and
deflagration in this section for simplicity. We notice there
is a new numerical simulation of the acoustic gravitational
wave power spectrum [73], and gives some modifications
to the formula of sound wave source used in this work.
Strong GW signal favors supersonic bubble wall velocity.

However, the EW baryogenesis prefers subsonic bubble wall
velocity. Actually, the bubble wall velocity obtained from
Eq. (56) is not accurate enough here since these formula is
obtained in the simplest scalar model. It is still possible that
the real bubble wall velocity in this model is smaller than the
velocity of sound wave for nonsupercooling case. To see the
differences between the two choices of bubble wall velocity,
we show the GW spectra of the same benchmark sets with
a bubble wall velocity calculated by Eq. (56) and a fixed
input subsonic velocity vb ¼ 0.5, respectively.
It is worthy noticing that the above formulas of the

GW spectrum for the three sources, which are given by
numerical simulation, are based on a rapid phase transition
process and α < 1. Since a supercooling FOPT may induce
a longer and stronger transitions [74,75], it is not clear
whether these formulas are applicable to this situation. The
GW spectrum induced by the supercooling phase transition
is still controversial, we need a more detailed study.
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Therefore, we just give the GW spectra of the benchmark
sets without supercooling.
Since the energy in the scaler fields is negligible for

detonation and deflagration, the GW signals mainly come
from sound wave and turbulence. Combining the two
contributions, we show the numerical results of the
approximated GW spectra in the C2HDM for the above
benchmark sets in Figs. 1–3. In each figure, we use the
solid lines to represent the GW signals generated by the
supersonic bubble wall velocity and the dashed lines to
denote the signals induced by the subsonic bubble wall
velocity. For each benchmark set, the GW signal for the
supersonic bubble wall velocity is stronger than the GW
signal for the subsonic case. We also show the sensitivity
curve of the planed GW interferometers LISA, DECIGO,
U-DECIGO, BBO, Taiji, and TianQin in these figures.

Figure 1 shows the GW spectra of BP1, BP2, BP5, and
BP6 that can induce a one-step FOPT. Figure 2 shows the
GW spectra of BP9 and BP10 which can generate a two-
step FOPT process. Even though the signals are not strong
enough compared to the proposed GW detector at current
stage, they are still intriguing phase transition patterns.
They can produce two copies of GW signals with different
peak frequencies [76–79]. Their signals are different from
the one-step FOPT as shown in Fig. 1, where there exists
only one copy of GW signals for given benchmark sets. In
Fig. 3, the GW spectra of the benchmark points with three-
step phase transition. The GW signal from the first FOPTof
the three-step phase transition is much more weaker than
the second one.
To claim a detection of a GW signal, the quantity signal-

to-noise ratio (SNR) is defined,

FIG. 2. The GW spectra of the two-step phase transition for BP9 and BP10. The black and the blue solid lines denote the GW spectra of
the first and the second FOPTof BP9 and BP10 with bubble velocity calculated by Eq. (56). The black and the blue dashed lines denote
the GW spectra of the first and the second FOPT of BP9 and BP10 with bubble velocity given by hand as vb ¼ 0.5.

FIG. 1. The GW spectra of the one-step phase transition for the benchmark sets BP1, BP2, BP5, and BP6. The color shaded regions
correspond to the expected sensitivity of the GW interferometers LISA, DECIGO, U-DECIGO, BBO, Taiji, and TianQin, respectively.
The black and the blue solid lines denote the GW spectra of BP1, BP2, BP5, and BP6 with the bubble wall velocity determined by
Eq. (56). The black and the blue dashed lines represent the GW spectra of BP1, BP2, BP5, and BP6 with a given subsonic bubble
velocity vb ¼ 0.5.
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SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
Z

fmax

fmin

df

�
h2ΩGW

h2Ωsens

�
2

s
;

where h2Ωsens represents the sensitivity of a given experi-
ment configuration and T is the duration time of the
mission. The signal is detectable if SNR is larger than a
threshold SNRthre, which is not a easy task to be quantified.
Based on Ref. [64], we use SNRthre ¼ 10. According to
[80,81], for T , we choose 4 years as the mission duration
and a duty cycle of 75%, yielding T ≃ 9.46 × 107 s, which
is the minimal data-taking time guaranteed by LISA. We
quantify the reaches of the planed experiments (LISA, Taiji,

and TianQin) by calculating the SNR of the one-step phase
transition benchmark sets, as shown in Table IV.
Besides the detectable GW signals, the strong FOPT

could also induce obvious deviation of Higgs trilinear
coupling compared to the SM [82], which can be para-
metrized as the following form

LHHH ¼ −
1

3!
ð1þ δHÞAHH3; ð60Þ

where AH is the Higgs trilinear coupling in the SM. Here
and below, we useH to label the Higgs boson instead ofH1

for simplicity. In Tables V–VII, we show the deviation of

TABLE IV. The SNR of the GW signals in C2HDM for the one-step phase transition benchmark sets which could be detected by the
planed LISA, Taiji, and TianQin experiments. vb > cs and vb < cs represent Jouguet detonation and deflagration case, respectively.

BP1 BP2 BP5 BP6

vb > cs vb < cs vb > cs vb < cs vb > cs vb < cs vb > cs vb < cs

SNRðLISAÞ 14.17 4.05 131.15 42.39 61.94 16.64 716.49 501.38
SNRðTaijiÞ 12.54 3.60 118.87 37.43 55.00 14.76 765.20 480.38
SNRðTianQinÞ 1.62 0.74 10.46 5.83 6.47 2.95 28.82 28.98

FIG. 3. The GW spectra of the three-step phase transition for BP11 and BP12. The black and the blue solid lines denote the GW spectra
of the first and the second FOPTof BP11 and BP12 with bubble wall velocity calculated by Eq. (56). The black and the blue dashed lines
denote the GW spectra of the first and the second FOPT of BP11 and BP12 with a bubble wall velocity vb ¼ 0.5.

TABLE V. Correlation between the GW parameters (α, β̃, Tn) and the collider parameter (the modification of Higgs trilinear coupling
at one loop δH) for the one-step phase transition pattern. δðZHÞ represents the corresponding loop-induced modification of ZH cross
section at 240 GeV CEPC.

Pattern Tn [GeV] ϵðTnÞ½GeV4� vb α β̃ δH@one-loop δðZHÞ
BP1 1-step 59.653 6.892 × 107 0.825 0.192 648.048 1.135 1.816%
BP2 1-step 45.291 4.493 × 107 0.875 0.376 630.773 1.338 2.141%
BP3 1-step 25.964 2.771 × 107 0.964 2.149 471.699 1.677 2.684%
BP4 1-step 23.644 2.714 × 107 0.974 3.060 414.956 1.723 2.737%
BP5 1-step 40.912 2.954 × 107 0.874 0.372 915.233 1.652 2.643%
BP6 1-step 36.639 2.61 × 107 0.895 0.510 313.287 1.672 2.674%
BP7 1-step 26.529 2.121 × 107 0.952 1.509 100.331 1.720 2.752%
BP8 1-step 27.621 2.188 × 107 0.947 1.325 81.825 1.680 2.687%
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the Higgs trilinear coupling for each benchmark set. The
deviation of Higgs trilinear coupling δH from SM roughly
varies from 1.049 to 1.863 at one-loop level for these
benchmark points, which are calculated using the package
BSMPT [14,46]. At LHC, it may be not easy to pin down this
deviation from Higgs pair production [83] due to the large
SM backgrounds. High luminosity LHC may improve the
sensitivity [31]. However, the significant modification of
Higgs trilinear coupling may be measured by the
Higgs boson pair production at future high energy hadron
collider. This obvious deviation can also modify the cross
section of eþe− → ZH process through loop contributions.
Therefore, it can be indirectly tested by the precise
measurements of the cross section for the Z boson and
Higgs boson associated production at the future lepton
collider, such as CEPC or ILC and FCC-ee [84–88]. The
deviation of the ZH cross section can be defined as

δðZHÞ ¼ σC2HDMZH

σSMZH
− 1 ð61Þ

At 240 GeV CEPC with 5.6 ab−1 integrated luminosity, the
estimated precision of σZH is about 0.5%, which means all
the benchmark sets are within the sensitivity of CEPC [33].
The sensitivity for FCC-ee is even better, about 0.4%. The
corresponding numerical results for each benchmark set are
shown in Tables V–VII. In the tables, each benchmark set
corresponds to α, β̃, Tn (they determine the GW signal) and
δH (it determines the collider signal), which means the
GW signal and collider signal are correlated by same set of
parameter of the EW phase transition dynamics. Therefore,
the future lepton colliders in complementary to GW
experiments [84–89] can help to unravel different phase

transition dynamics. Namely, these two complementary
experiments can help us to understand whether the phase
transition process is one-step FOPT, or two-step FOPTs or
even three-step phase transitions in the early universe.

V. DISCUSSIONS

For present study, we have not checked whether the
CP-violating source is enough for EW baryogenesis and
whether the sphaleron process is sufficiently quenched (We
can see ṽ1=Tn and ṽ2=Tn from the evolution of ṽ1 an ṽ2
with the temperature in Figs. 4–6). Especially, for multistep
phase transition case, they are no necessarily responsible
for EW baryogenesis. In this work, we focus on the phase
transition dynamics, the corresponding GW signals in
synergy with new collider signals at future lepton colliders.
We leave the study of realization of EW baryogenesis in our
future work. And we give brief discussion on the assumption
of the dynamical CP-violation and supercooling.

A. Consistent check on our assumptions:
The evolution of the dynamical CP-violation

As mentioned above, we assume CP-violating VEV
ṽCP can get non-zero value at finite temperature and
disappear at zero temperature. To verify our assumption,
we do the numerical consistent check for the different
phase transition patterns, and show the evolution of
CP-violating VEV together with ṽ1 an ṽ2 in Fig. 4,
Fig. 5, and Fig. 6, respectively. For example, Fig. 4 depicts
the one-step FOPT pattern, and it shows that the CP-
violating VEV ṽCP increases with temperature, when it is
below critical temperature. And when the temperature
decreases, the CP-violating VEV ṽCP gradually evolves

TABLE VI. Correlation between the GW parameters (α, β̃, Tn) and the collider parameter (the modification of Higgs trilinear coupling
at one loop δH) for the two-step phase transition pattern (two consecutive FOPTs at different temperature). δðZHÞ represents the
corresponding loop-induced modification of ZH cross section at 240 GeV CEPC.

Pattern Tn [GeV] ϵðTnÞ½GeV4� vb α β̃ δH@one-loop δðZHÞ
BP9 2-step 96.995 1.532 × 107 0.638 0.00610 107292.81

1.049 1.678%
93.997 4.077 × 107 0.677 0.0184 1279659.55

BP10 2-step 93.462 2.56 × 107 0.659 0.0118 20542.25
1.104 1.766%

91.920 4.892 × 107 0.690 0.0241 479401.89

TABLE VII. Correlation between the GW parameters (α, β̃, Tn) and the collider parameter (the modification of Higgs trilinear
coupling at one loop δH) for the three-step phase transition pattern (two FOPTs and one SOPT). δðZHÞ represents the corresponding
loop-induced modification of ZH cross section at 240 GeV CEPC.

Pattern Tn [GeV] ϵðTnÞ½GeV4� vb α β̃ δH@one-loop δðZHÞ
BP11 3-step 68.046 2.15 × 106 0.624 0.00353 1457261.58 1.863 2.980%

51.316 2.966 × 107 0.807 0.151 2235.16

BP12 3-step 69.380 2.864 × 106 0.629 0.00436 1225417.53 1.854 2.966%
55.586 3.354 × 107 0.792 0.124 3142.96
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to zero. This is consistent with our assumption. For other
phase transition patterns, they are also consistent. As for the
charge-breaking VEV, it also numerically shows the similar
behavior except the VEV value is much smaller compared
to CP-violating case. The extra CP-violating source at
finite temperature may provide enough CP violation for
successful EW baryogenesis. And this extra CP-violating

source evolves to zero at zero temperature to avoid the
strong constraints from EDM data. Furthermore, we also
show the value of the effective potential at the vacua as
a function of temperature in Figs. 7–9. For different
phase transition patterns, the value of effective potential
at vacua shows very distinctive behavior. Taking Fig. 9 as
an example, we can see the evolution behavior of a SOPT

FIG. 5. Evolution of ṽCP, ṽ1, and ṽ2 for two-step phase transition with two FOPTs.

FIG. 6. Evolution of ṽCP, ṽ1, and ṽ2 for three-step phase transition with two FOPTs and one SOPT.

FIG. 4. Evolution of ṽCP, ṽ1, and ṽ2 for one-step phase transition.

XIAO WANG, FA PENG HUANG, and XINMIN ZHANG PHYS. REV. D 101, 015015 (2020)

015015-12



(from phase-3 to phase-2), is different from the FOPT
processes (phase-2 to phase-4 and phase-4 to phase-1).

B. Supercooling case

The benchmark sets BP3, BP4, BP7, and BP8 can
produce supercooling pattern of FOPT, where α > 1.
In this case, according to the definition of α, the PT latent
heat density dominates the plasma energy density. In the
previous figures, we show the GW signals for the α ≪ 1
since both the bubble dynamics and GW spectra are well
studied. However, for α > 1 case (BP3, BP4, BP7, and
BP8), it is still unclear and under investigating, such as
Ref. [90]. For a strong supercooling, bubbles become very
thin and relativistic. In this case, the bubble wall velocity vb
quickly approaches the speed of light. This is the so-called
runaway bubbles in vacuum [64], which means phase
transitions occur in a vacuum-dominated epoch. In prin-
ciple, these benchmark sets can trigger even stronger GW
signals. However, it is still controversial [91]. Therefore,
we leave the precise study of the GW spectrum for the
supercooling case in our future work. As for the implication
from this C2HDM, from numerical calculations, we find
that supercooling favors relatively large coupling constants.
And in some narrow parameter spaces, the nucleation
temperature decreases as the mass hierarchy of the two
neutral Higgs bosons decreases. More reliable results rely
on further lattice simulations.

VI. CONCLUSION

We have studied the phase transition dynamics in detail
with the existence of dynamical CP-violation at finite-
temperature in the complex two-Higgs doublet Model.
Various phase transition patterns have been investigated,
including multi-step phase transition and supercooling case
in this scenario. The dynamical CP-violation can not only
provide a possible cosmological origin of CP-violation
source, but also make the phase transition dynamics more
abundant. The corresponding GW signals in synergy with
collider signals have also been discussed, which can be
used to make complementary test on this scenario and
further unravel the underlying phase transition dynamics or
different patterns in the early universe. The detailed study
on the realization of the EW baryogenesis and GWs from
supercooling are left for our future work.
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APPENDIX A: TEMPERATURE CORRECTION
OF MASS IN C2HDM

There are contributions to the ring diagrams from the
gauge bosons and Higgs bosons. We need to calculate the
self-energy of the gauge bosons and Higgs bosons in the IR
limit. First, we consider the self-energy of the Higgs
bosons. The Higgs self-energy can be derived from the
propagator of the Higgs bosons with Higgs bosons, gauge
bosons, and top quark loops. We work in the original basis,
where the relevant fields are ϕi ≡ fρ1; η1; ρ2; η2; ζ1;ψ1;
ζ2;ψ2g, then the contributions to the Higgs self-energy
from the Higgs bosons are [14,16,45,92]

ΠS
ϕiϕi

¼ T2

24
ð6λ1 þ 4λ3 þ 2λ4Þϕi ¼ fρ1; η1; ζ1;ψ1g; ðA1Þ

ΠS
ϕiϕi

¼ T2

24
ð6λ2 þ 4λ3 þ 2λ4Þϕi ¼ fρ2; η2; ζ2;ψ2g: ðA2Þ

The contribution comes from the gauge bosons is
[14,16,45,92]

ΠGB
ϕiϕi

¼ T2

16
ð3g2 þ g02Þ: ðA3Þ

The contribution from top-quark loop is [14,16,45,92]

ΠF
ϕiϕi

¼ T2

4
y2tϕi ¼ fρ2; η2; ζ2;ψ2g: ðA4Þ

Thus, the total contributions to the Higgs boson self-energy
in the C2HDM are [14,16,45,92]

Π1
ϕiϕi

¼ T2

48
ð12λ1 þ 8λ3 þ 4λ4 þ 3ð3g2 þ g02ÞÞ

ϕi ¼ fρ1; η1; ζ1;ψ1g; ðA5Þ

Π2
ϕiϕi

¼ T2

48
ð12λ2 þ 8λ3 þ 4λ4 þ 3ð3g2 þ g02Þ þ 12y2t Þ

ϕi ¼ fρ2; η2; ζ2;ψ2g: ðA6Þ

Next, we calculate the self-energy of gauge bosons.
There are two relevant fields in original basisWa

μ, Bμ. Then

the contributions to the gauge bosons self-energy come
from the gauge bosons, Higgs bosons, and top quark,
respectively. Hence, the total self-energy for the gauge
bosons in the C2HDM are [14,16,45,92]

ΠWaWa ¼ 2g2T2; ΠBB ¼ 2g02T2: ðA7Þ

APPENDIX B: FIELD DEPENDENT MASS
MATRIX ELEMENTS OF C2HDM

Since we introduce a charge-breaking VEV, the mass
matrix of gauge bosons and Higgs bosons in the original
basis are fully mixed. We can not give the analytic form of
the field-dependent mass for each physical particle. Instead,
we derive the mass matrix in the original basis, and then
numerically calculate the eigenvalues which are the physi-
cal masses of the particles. The field-dependent mass
matrix elements of the gauge bosons in the original basis
can be written as [16,45,92]

mG
11 ¼ mG

22 ¼ mG
33 ¼

1

4
g2ðṽ21 þ ṽ22 þ ṽ2CP þ ṽ2CBÞ;

mG
44 ¼

1

4
g02ðṽ21 þ ṽ22 þ ṽ2CP þ ṽ2CBÞ;

mG
14 ¼

1

2
gg0ṽ2ṽCB;

mG
24 ¼

1

2
gg0ṽCPṽCB;

mG
34 ¼ −

1

4
gg0ðṽ21 þ ṽ22 þ ṽ2CP − ṽ2CBÞ: ðB1Þ

The mass matrix is

MGB ¼

0
BBBBB@

mG
11 0 0 mG

14

0 mG
22 0 mG

24

0 0 mG
33 mG

34

mG
14 mG

24 mG
34 mG

44

1
CCCCCA: ðB2Þ

For the longitudinal components of the gauge bosons, we
need to consider the Debye corrected masses, which are the
eigenvalues of

M̄GB ¼ MGB þ diagðΠWaWa;ΠWaWa;ΠWaWa;ΠBBÞ: ðB3Þ

The mass matrix elements of Higgs bosons in the original
basis can be expressed as [16,45,92]
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M11 ¼ m2
11 þ

1

2
λ1ṽ21 þ

1

2
λ3ðṽ21 þ ṽ2CPÞ þ

1

2
λ345ṽ2CB; M22 ¼ m2

11 þ
1

2
λ1ṽ21 þ

1

2
λ3ðṽ21 þ ṽ2CPÞ þ

1

2
λ̄345ṽ2CB;

M33 ¼ m2
22 þ

1

2
λ2ðṽ22 þ ṽ2CP þ 3ṽ2CBÞ þ

1

2
λ3ṽ21; M44 ¼ m2

22 þ
1

2
λ2ðṽ22 þ ṽ2CP þ ṽ2CBÞ þ

1

2
λ3ṽ21;

M55 ¼ m2
11 þ

3

2
λ3ṽ21 þ

1

2
λ345ṽ22 þ

1

2
λ̄345ṽ2CP þ 1

2
λ3ṽ2CB − Imðλ5Þṽ2ṽCP;

M66 ¼ m2
11 þ

1

2
λ3ṽ21 þ

1

2
λ345ṽ2CP þ 1

2
λ̄345ṽ22 þ

1

2
λ3ṽ2CB þ Imðλ5Þṽ2ṽCP;

M77 ¼ m2
22 þ

1

2
λ2ð3ṽ22 þ ṽ2CP þ ṽ2CBÞ þ

1

2
λ345ṽ21; M88 ¼ m2

22 þ
1

2
λ2ðṽ22 þ 3ṽ2CP þ ṽ2CBÞ þ

1

2
λ̄345ṽ21;

M12 ¼
1

2
Imðλ5Þṽ2CB; M13 ¼ −Reðm2

12Þ −
1

2
Imðλ5Þṽ1ṽCP þ 1

2
ðReðλ5Þ þ λ4Þṽ1ṽCP;

M14 ¼ Imðm2
12Þ −

1

2
Imðλ5Þṽ1ṽ2 þ

1

2
ðλ4 − Reðλ5ÞÞṽ1ṽCP; M15 ¼

1

2
½ðλ4 þ Reðλ5ÞÞṽ2ṽCB − Imðλ5ÞṽCPṽCB�;

M16 ¼
1

2
½Imðλ5Þṽ2ṽCB þ ðλ4 þ Reðλ5ÞÞṽCPṽCB�; M17 ¼

1

2
ðλ4 þ Reðλ5ÞÞṽ1ṽCB;

M18 ¼ −
1

2
Imðλ5Þṽ1ṽCB; M23 ¼ −Imðm2

12Þ þ
1

2
Imðλ5Þṽ1ṽ2 þ

1

2
ðReðλ5Þ − λ4Þṽ1ṽCP;

M24 ¼ −Reðm2
12Þ þ

1

2
ðλ4 þ Reðλ5ÞÞṽ1ṽ2 −

1

2
Imðλ5Þṽ1ṽCP; M25 ¼

1

2
½Imðλ5Þṽ2ṽCB − ðλ4 − Reðλ5ÞÞṽCPṽCB�;

M26 ¼
1

2
½ðλ4 − Reðλ5ÞÞṽ2ṽCB þ Imðλ5ÞṽCPṽCB�; M27 ¼

1

2
Imðλ5Þṽ1ṽCB; M28 ¼ −

1

2
ðλ4 − Reðλ5ÞÞṽ1ṽCB;

M35 ¼ λ3ṽ1ṽCB; M37 ¼ λ2ṽ2ṽCB; M38 ¼ λ2ṽCPṽCB; M56 ¼ Reðλ5Þṽ2ṽCP þ 1

2
Imðλ5Þðṽ22 − ṽ2CPÞ;

M57 ¼ −Reðm2
12Þ þ λ345ṽ1ṽ2 − Imðλ5Þṽ1ṽCP; M58 ¼ Imðm2

12Þ − Imðλ5Þṽ1ṽ2 þ λ̄345ṽ1ṽCP;

M67 ¼ −Imðm2
12Þ þ Reðλ5Þṽ1ṽCP þ Imðλ5Þṽ1ṽ2;

M68 ¼ −Reðm2
12Þ þ Reðλ5Þṽ1ṽ2 − Imðλ5Þṽ1ṽCP; M78 ¼ −

1

2
Imðλ5Þṽ21 þ λ2ṽ2ṽCP; ðB4Þ

where

λ345 ¼ λ3 þ λ4 þ Reðλ5Þ; λ̄345 ¼ λ3 þ λ4 − Reðλ5Þ: ðB5Þ
The mass matrix is

MS ¼

0
BBBBBBBBBBBBB@

M11 M12 M13 M14 M15 M16 M17 M18

M12 M22 M23 M24 M25 M26 M27 M28

M13 M23 M33 0 M35 0 M37 M38

M14 M24 0 M44 0 0 0 0

M15 M25 M35 0 M55 M56 M57 M58

M16 M26 0 0 M56 M66 M67 M68

M17 M27 M37 0 M57 M67 M77 M78

M18 M28 M38 0 M58 M68 M78 M88

1
CCCCCCCCCCCCCA
: ðB6Þ

The Debye corrected mass of the scalar bosons are given as the eigenvalues of

M̄S ¼ MS þ diagðΠ1
ϕiϕi

;Π1
ϕiϕi

;Π2
ϕiϕi

;Π2
ϕiϕi

;Π1
ϕiϕi

;Π1
ϕiϕi

;Π2
ϕiϕi

;Π2
ϕiϕi

Þ: ðB7Þ
Since we just consider the top quark in our work, the field dependent mass of top quark can be easily derived as

m2
t ¼

1

2
y2t ðṽ22 þ ṽ2CPÞ: ðB8Þ
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