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We present results for the isovector (p − n) electromagnetic form factors of the nucleon using 11
ensembles of gauge configurations generated by the MILC Collaboration using the highly improved
staggered quark action with 2þ 1þ 1 dynamical flavors. These ensembles span four lattice spacings
a ≈ 0.06, 0.09, 0.12 and 0.15 fm and three values of the light-quark masses corresponding to the pion
masses Mπ ≈ 135, 225 and 315 MeV. High-statistics estimates using the truncated-solver method allow us
to quantify various systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing,
lattice volume and light-quark masses. We analyze the Q2 dependence of the form factors calculated over
the range 0.05≲Q2 ≲ 1.4 GeV2 using both the model-independent z expansion and the dipole Ansatz. Our
final estimates, using the z-expansion fit, for the isovector root-mean-square radius of nucleon
are rE ¼ 0.769ð27Þð30Þ fm, rM ¼ 0.671ð48Þð76Þ fm and μp−n ¼ 3.939ð86Þð138Þ Bohr magneton.
The first error is the combined uncertainty from the leading-order analysis, and the second is an estimate
of the additional uncertainty due to using the leading-order chiral-continuum-finite-volume fits. The
estimates from the dipole Ansatz, rE ¼ 0.765ð11Þð8Þ fm, rM ¼ 0.704ð21Þð29Þ fm and μp−n ¼
3.975ð84Þð125Þ Bohr magneton, are consistent with those from the z expansion but with smaller errors.
Our analysis highlights three points. First, all our data for form factors from the 11 ensembles and existing
lattice data on, or close to, physical mass ensembles from other collaborations collapse more clearly onto a
single curve when plotted versusQ2=M2

N as compared toQ2 with the scale set by quantities other thanMN .
The difference between these two ways of analyzing the data is indicative of discretization errors, some of
which presumably cancel when the data are plotted versus Q2=M2

N . Second, the size of the remaining
deviation of this common curve from the Kelly curve is small and can be accounted for by statistical and
possible systematic uncertainties. Third, to improve lattice estimates for hr2Ei, hr2Mi and μ, high-statistics
data for Q2 < 0.1 GeV2 are needed.

DOI: 10.1103/PhysRevD.101.014507

I. INTRODUCTION

Experiments studying electron scattering off protons and
neutrons have a long history of providing an understanding
of the structure of nucleons [1,2]. Quantitative under-
standing of the distribution of charge is described by the
electric and magnetic form factors GEðQ2Þ and GMðQ2Þ,
respectively [3]. Quantities of phenomenological interest
obtained from the slope of the form factors at four-
momentum transfer squared Q2 ¼ 0 are the electric and
magnetic charge radii of the nucleons. At present there is a
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6σ discrepancy between the electric charge radius of the
proton obtained from electronic energy levels combined
with electron scattering data [4] versus that from the Lamb
shift in muonic hydrogen Eμpð2S − 2PÞ [5,6]. A second
issue that needs resolution is the behavior of the ratio
GE=GM at Q2 > 1 GeV2 [7] and whether this ratio crosses
zero at about 8 GeV2 as indicated by experiments at JLab
[8,9]. In this work, we focus on determining the electro-
magnetic form factors in the range 0.05≲Q2 ≲ 1 GeV2

and extracting the charge radii from them.
The electric and magnetic form factors, GE and GM, of

the nucleon can be calculated directly from large-scale
simulations of lattice QCD. In recent years, advances in
algorithms and computing power have allowed the com-
munity to push the calculations toward physical masses for
the light u and d quarks and on lattice spacings that are small
enough that discretization effects are expected to be at the
few percent level [10–13]. In this paper we present
results from 13 calculations on 11 ensembles that cover a
range of lattice spacings (0.06≲ a≲ 0.15 fm), pion
masses (135≲Mπ ≲ 320 MeV) and lattice volumes
(3.3≲MπL≲ 5.5). These ensembles were generated using
2þ 1þ 1 flavors of highly improved staggered quarks
(HISQ) [14] by the MILC Collaboration [15]. This suite
of calculations allows us to understand and assess various
sources of systematic errors. The analysis is carried out
using both the dipoleAnsatz and the z expansion,which give
consistent estimates for the isovector mean-square charge
radii hr2Ei and hr2Mi and the magnetic moment μp−n.
Our final results for the isovector mean-square charge

radii hr2Ei and hr2Mi (also for Dirac, hr21i, and Pauli, hr22i,
radii) defined in Eqs. (10)–(12) and for the magnetic
moment μ are given in Table IX. We also present a
comparison with lattice data obtained close to the physical
pion mass by other collaborations and with the Kelly
parameterization of the experimental data [16] in
Fig. 22. Our estimates for hr2Ei, hr2Mi and μp−n are about
17%, 19%, and 16% smaller, respectively, than the phe-
nomenological values given in Eq. (D1) and the precise
experimental value in Eq. (9). Throughout this paper, we
have paid attention to the size of possible statistical and
systematic errors and find that a linear combination of these
is large enough to explain the deviations.
We analyze the world data forGE andGM in Sec. VII and

find that data from all 13 of our calculations and those from
other collaborations done at or near the physical pion mass
fall roughly onto a single curve when plotted versus Q2 or
Q2=M2

N . However, there is a noticeable shift between the
two curves when compared to the Kelly fit. The difference
between the two ways of analyzing the data is a discretiza-
tion artifact: Specifically, it is a consequence of the
difference in values of the lattice scale obtained from
different observables. The size of the difference again
indicates that the present underestimate of hr2Ei, hr2Mi

and μ should not be considered significant. Our overall
conclusion is that to significantly reduce the systematics
and improve the precision with which these observables
can be extracted will require high-statistics data at smaller
values of the lattice spacing and with Q2 < 0.1 GeV2.
We stress that the long-term goal of lattice QCD is to

directly predict the form factors and not to reproduce the
Kelly curve, a parameterization of the experimental data.
Throughout this paper, we use the Kelly curve to provide a
reference point for comparison and for discussing system-
atics and trends in the lattice data. We do not show an error
band on the Kelly curve as it is negligible on the scale of the
errors in the lattice data.
This paper is organized as follows. In Sec. II, we review

the theory, computational approach and the status of the
experimental and phenomenological results. In Sec. III, we
describe the salient features of the calculation. The fits used
to isolate excited-state contamination (ESC) and extract the
form factors are described in Sec. IV. Fits to quantify
theQ2 behavior of the (p − n) form factors are discussed in
Sec. V, and the extraction of our final results for the
isovector mean-square charge radii hr2Ei and hr2Mi and the
anomalous magnetic moment μp−n are presented in Sec. VI.
Comparisons with form factors extracted from experiments
and with previous lattice QCD calculations are made in
Sec. VII. We end with conclusions in Sec. VIII. Some
further details of the calculations are given in four
Appendixes: lattice parameters in Appendix A, analysis
of nucleon mass in Appendix B, ESC in Appendix C, and a
review of the experimental data for the form factors in
Appendix D.

II. ELECTROMAGNETIC FORM FACTORS
OF THE NUCLEON

The Dirac, F1, and Pauli, F2, form factors are extracted
from the matrix elements of the electromagnetic current
within the nucleon state N through the relation

hNðp⃗fÞjVem
μ ðq⃗ÞjNðp⃗iÞi

¼ ūNðp⃗fÞ
�
F1ðQ2Þγμ þ σμνqν

F2ðQ2Þ
2MN

�
uNðp⃗iÞ; ð1Þ

where q⃗ ¼ p⃗f − p⃗i is the momentum transfer. The discrete
lattice momenta are given by 2πn=La with the entries of
the vector n≡ ðn1; n2; n3Þ taking on integer values,
ni ∈ f0; Lg. The spacing between the momenta is con-
trolled by the spatial lattice size La. The normalization used
for the nucleon spinors in Euclidean space is

X
s

uNðp⃗; sÞūNðp⃗; sÞ ¼
Eðp⃗Þγ4 − iγ⃗ · p⃗þM

2Eðp⃗Þ ; ð2Þ

and in Eq. (1), the electromagnetic current is
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Vem
μ ¼ 2

3
ūγμu −

1

3
d̄γμd: ð3Þ

In the isospin symmetric limit, the difference of its matrix
elements between a proton and a neutron state are related to
the isovector form factors of the proton by the relation

hpðp⃗fÞjūγμu − d̄γμdjpðp⃗iÞi
¼ hpðp⃗fÞjVem

μ ðq⃗Þjpðp⃗iÞi − hnðp⃗fÞjVem
μ ðq⃗Þjnðp⃗iÞi: ð4Þ

The quantity we calculate on the lattice is the left-hand side
of Eq. (4), i.e., the isovector form factors of the proton.
Throughout this paper, the term isovector form factors of
the proton and the (p − n) form factors refer to the same
quantities as defined in Eq. (4). These will henceforth be
analyzed in terms of the spacelike four-momentum
squared, Q2 ¼ p⃗2 − ðE −mÞ2 ¼ −q2.
Another common set of definitions of the electromag-

netic form factors, widely used in the analysis of exper-
imental data, are the Sachs electric, GE, and magnetic, GM,
form factors that are related to the Dirac and Pauli form
factors as

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4M2
N
F2ðQ2Þ; ð5Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð6Þ

From these, the vector charge is given by

gV ¼ GEjQ2¼0 ¼ F1jQ2¼0 ð7Þ

and the difference between the magnetic moment of the
proton and the neutron by

μp−μn ¼GMjQ2¼0¼ðF1þF2ÞjQ2¼0 ¼ 1þ κp− κn: ð8Þ

The anomalous magnetic moments of the proton and the
neutron, in units of the Bohr magneton, are known very
precisely [17]:

κp ¼ 1.79284735ð1Þ ðprotonÞ;
κn ¼ −1.91304273ð45Þ ðneutronÞ: ð9Þ

The electric and magnetic size of the nucleon are
defined as the slope of the form factors with respect to
Q2 at Q2 ¼ 0 [18]:

hr2E;Mi ¼ −6
d

dQ2

�
GE;MðQ2Þ
GE;Mð0Þ

�����
Q2¼0

: ð10Þ

The form factors GE;M are normalized by their values at
Q2 ¼ 0:GEðQ2 ¼ 0Þ≡ gV andGMðQ2 ¼ 0Þ=gV ≡ μ. This
definition makes them independent of the renormalization

constant ZV of the lattice vector current and improves the
signal because some of the systematics cancel in the ratios.
Therefore, in this work, we will use Eq. (10) when
calculating hr2Ei and hr2Mi. Note thatZVgV ¼ 1 as the electric
charge is conserved. A second independent estimate of ZV ,
obtained using nonperturbative lattice calculations in the
regularization-independent symmetric momentum- subtrac-
tion (RI-sMOM) scheme, is given in Ref. [19], where the
difference between the two estimates was shown to be≲3%.
One similarly defines the isovector Dirac and Pauli

mean-square radii as

hr21;2i ¼ −6
d

dQ2

�
F1;2ðQ2Þ
F1;2ð0Þ

�����
Q2¼0

: ð11Þ

These are related to hr2Ei, hr2Mi and μ≡ 1þ κ as

hr21i ¼ hr2Ei −
6κ

4M2
N
;

κhr22i ¼ μhr2Mi − hr2Ei þ
6κ

4M2
N
: ð12Þ

Our analysis of the lattice data is carried out in terms of GE

and GM. After extracting hr2Ei and hr2Mi in Sec. VI, we also
give results for hr21i and hr22i in Table IX using these
relations.
The electric root-mean-square charge radius rE ≡ ffiffiffiffiffiffiffiffiffi

hr2Ei
p

of the proton has been measured in three ways: (i) laser
spectroscopy of the Lamb shift in muonic hydrogen
[5,6,20], (ii) continuous-wave laser spectroscopy of hydro-
gen [21], and (iii) elastic scattering of electrons off protons
[22,23]. Results using electrons, i.e., the latter two ways,
are included in the committee on data (CODATA) 2014
world average [4,24]:

rpE ¼ 0.875ð6Þ fm CODATA − 2014;

rpE ¼ 0.8414ð19Þ fm CODATA − 2018;

rpE ¼ 0.8409ð4Þ fm Eμpð2S − 2PÞ; ð13Þ

and the third result is from muonic hydrogen. The large
difference between the CODATA 2014 and muonic-
hydrogen values was termed the “proton radius puzzle.”
The new CODATA 2018 value [25] resolves the puzzle in
favor of the muonic-hydrogen result. The magnetic radius
of the proton extracted from experiments using electrons is
[4,24]

rpM ¼ 0.776ð38Þ fm: ð14Þ

Values for the isovector charge radii, extracted from the
experimental data and used to compare lattice data against,
are given in Eq. (D1) in Appendix D.
To reduce the uncertainty in results from electron

scattering experiments, which have been done down to
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Q2 ≈ 0.004 GeV2, new experiments to constrain the low
Q2 behavior have been initiated [26,27]. Similarly, for
lattice QCD calculations to help resolve the puzzle, we
need to calculate the form factors to Q2 ≈ 0.004 GeV2 to
extract rE with better than 1% accuracy.
A challenge to the direct extraction of hr2i i from the

lattice data is that the value of the smallest momenta,
2π=La, is large in typical lattice simulations. In our
calculations, it is ≳220 MeV, and the range of Q2 values,
given in Table I, are in the range 2–10M2

π . It is, therefore,
traditional to fit the data for theGi to an Ansatz and then use
the fit to evaluate the derivative given in Eq. (10). Both using
anAnsatz and estimating its parameters from fits to datawithffiffiffiffiffiffi
Q2

p ≳ 200 MeV introduce systematic uncertainties when
evaluating the derivative at Q2 ¼ 0. We estimate the
dependence of hr2i i on the choice of theAnsatz by comparing
results for each ensemble obtained using two different fits:
the dipole model and the z expansion.
Two alternate approaches are, first, to calculate the form

factors at fixed Q2 and extrapolate these to the continuum
limit and then fit the Q2 behavior. Unfortunately, the
values of Q2 are different on each ensemble. Second,
combine the dipole or the z-expansion parameterization of
the Q2 behavior with the chiral-continuum-finite-volume
(CCFV) Ansatz for one overall fit. This combined fit is

discussed in Sec. VI D. The central analysis presented
here consists of first fitting the data versus Q2 using the
dipole model and the z expansion to extract hr2i i and μ on
each ensemble and then getting the physical results from a
CCFV fit in a, Mπ and MπL that addresses the associated
systematics.
It is important to note that both the electron scattering

experiments and lattice QCD calculations suffer from
paucity of data close to Q2 ¼ 0 that impacts the extraction
of the charge radii. However, there is a large range,
0.004≲Q2 ≲ 1 GeV2, over which accurate experimental
data exist. Thus, more than just extracting the charge radii,
our goal is to directly compare the lattice and the exper-
imental data over this range of Q2 as discussed in Sec. V.
An Ansatz that is commonly used to fit the experimental

data is the dipole. It arises if one assumes an exponentially
falling charge distribution. The resulting form factor is
characterized by a single parameter, the mass M,

GiðQ2Þ ¼ Gið0Þ
ð1þQ2=M2

i Þ2
⇒ hr2i i ¼

12

M2
i
; ð15Þ

and normalized to F1 ¼ GE ¼ gV atQ2 ¼ 0. It goes asQ−4

in theQ2 → ∞ limit in accordwith perturbation theory [28].
The second Ansatz is a model-independent parameter-

ization called the z expansion [29,30]:

TABLE I. The values of the spacelike four-momentum squared, Q2, transferred to the ground-state nucleon, in units of GeV2.
The data for the 13 calculations defined in Table XII are labeled by the three-momentum vector n⃗. The ground-state energy is obtained
from a 4-state fit.

n⃗ a15m310 a12m310 a12m220L a12m220 a12m220S a09m310 a09m220

(1,0,0) 0.2519(5) 0.1765(5) 0.0670(1) 0.1047(4) 0.1747(15) 0.1834(3) 0.0861(2)
(1,1,0) 0.4831(14) 0.3415(13) 0.1318(2) 0.2060(15) 0.3386(35) 0.3558(12) 0.1685(4)
(1,1,1) 0.7034(25) 0.4982(24) 0.1947(4) 0.3012(20) 0.4905(61) 0.5198(43) 0.2479(8)
(2,0,0) 0.9111(60) 0.6459(35) 0.2565(8) 0.3909(25) 0.6358(87) 0.6735(44) 0.3244(14)
(2,1,0) 1.1020(67) 0.7871(42) 0.3159(10) 0.4824(37) 0.774(10) 0.8186(79) 0.3983(18)
(2,1,1) 1.2971(91) 0.9202(52) 0.3740(13) 0.5678(47) 0.910(13) 0.9610(127) 0.4703(23)
(2,2,0) 1.6372(215) 1.178(9) 0.4872(21) 0.7321(81) 1.178(23) 1.1974(92) 0.6077(37)
(2,2,1) 1.8026(222) 1.293(10) 0.5413(25) 0.8077(103) 1.307(25) 1.3229(131) 0.6743(44)
(3,0,0) 1.7896(289) 1.315(19) 0.5412(28) 0.8064(118) 1.238(33) 1.3248(168) 0.6713(46)
(3,1,0) 1.9171(314) 1.435(18) 0.5950(32) 0.8845(124) 1.358(36) 1.4210(144) 0.7357(51)

n⃗ a09m130W a06m310 a06m310W a06m220 a06m220W a06m135

(1,0,0) 0.0492(2) 0.1888(13) 0.1899(6) 0.1101(3) 0.1093(3) 0.0513(2)
(1,1,0) 0.0974(5) 0.3648(33) 0.3653(15) 0.2159(11) 0.2132(9) 0.1014(6)
(1,1,1) 0.1450(9) 0.5322(70) 0.5277(29) 0.3175(24) 0.3130(19) 0.1510(12)
(2,0,0) 0.1913(15) 0.6828(99) 0.6895(48) 0.4142(46) 0.4120(55) 0.1975(15)
(2,1,0) 0.2373(18) 0.8457(118) 0.8402(65) 0.5087(57) 0.5045(61) 0.2459(22)
(2,1,1) 0.2824(23) 0.2941(32)
(2,2,0) 0.3704(33) 0.3866(47)
(2,2,1) 0.4108(41) 0.4323(51)
(3,0,0) 0.4067(48) 0.4259(60)
(3,1,0) 0.4490(50) 0.4703(65)
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GE;MðQ2Þ
GEð0Þ

¼
X∞
k¼0

akzðQ2Þk; ð16Þ

where the ak are fit parameters and z is defined as

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þ t̄0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tcut þQ2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þ t̄0
p ; ð17Þ

with tcut ¼ 4M2
π denoting the nearest singularity in

GE;MðQ2Þ. In terms of z, the domain of analyticity of
GEðQ2Þ is mapped into the unit circle with the branch
cut at Q2 ¼ −4M2

π [30]. We analyzed the data with
two choices of the parameter t̄0: t̄0¼0 and t̄0mid¼
f0.12;0.20;0.40gGeV2 for the Mπ≈f135;220;315gMeV
ensembles. By choosing the value of t̄0 to lie in the middle
of the range of Q2 at which we have data, we reduce the
maximum value of z and hope to improve the stability of
the estimates. In practice, for our data, we find that the
quality of the fits and the results from different truncations
of the series are insensitive to the choice of t̄0. The final
results for the charge radii and magnetic moment are
obtained from fits using t̄0mid.
The values of Q2 ¼ p⃗2 − ðE −mÞ2 for the 13 calcula-

tions are given in Table I. Note that in four cases there are
only five nonzero values. The data forGEðQ2Þ andGMðQ2Þ
versus z with t̄0mid are shown in Fig. 8. As discussed in
Sec. V B, we restrict our fits to Q2 ≤ 1 GeV2 because the
reliability of some of the higher Q2 data is questionable.
To implement the perturbative behavior GiðQ2Þ → Q−4

asQ2 → ∞ [28] in the z expansion requiresQnGiðQ2Þ → 0
for n ¼ 0, 1, 2, 3. These constraints can be incorporated
into the z expansion as four sum rules [31]:

Xkmax

k¼n

kðk − 1Þ…ðk − nþ 1Þak ¼ 0; n ¼ 0; 1; 2; 3: ð18Þ

For n ¼ 0 it reduces to
Pkmax

k¼0 ak ¼ 0. Using these sum rules
ensures that the ak are not only bounded but must also
decrease at large k [31].
A key issue in the z-expansion analysis is the value of

kmax required to obtain results with a certain precision. The
analysis of the experimental data carried out in Appendix D
shows that results stabilize for kmax ≈ 4 with and without
sum rules. For the lattice data, the choice has to take into
account the number of values ofQ2 at which data have been
generated to not overparameterize the fit. For our data and
fits without priors, the ak fluctuate and the higher-order
coefficients (k ≥ 4) are ill determined due to the over-
parameterization of the fits. To avoid the resulting large
fluctuations in ak, we put a bound on them as suggested in
[31]. For GE andGM=5, we constrain jakj ≲ 5.0 for all k by
using Gaussian priors with central value zero and width
five. With this constraint, results for hr2Ei, hr2Mi and μ do not

change significantly for kmax ≤ 3 and stabilize for kmax ≥ 4
as shown in Fig. 9. The convergence of estimates from fits
with sum rules is slower and occurs for kmax ≥ 7 as also
shown in Fig. 9. We, therefore, use the fits without sum
rules and with kmax ¼ 4 for our final results. Since hr2Ei,
hr2Mi and μ are best extracted from data at smallQ2, the sum
rule constraints imposed to guarantee the largeQ2 behavior
are not essential for their determination. In short, results
with sum rules are used only as consistency checks.
Overall, the fits to GEðQ2Þ are more stable than those to

GMðQ2Þ. The main reason is the extra data point at
GEðQ2 ¼ 0Þ which pins down the sign of the slope of
GEðQ2Þ at smallQ2. Using a value forGMð0Þ, derived from
the ratio GMðQ2Þ=GEðQ2Þ as discussed in Sec. IV B,
greatly improved the stability of fits to GMðQ2Þ.

III. LATTICE METHODOLOGY

The parameters of the 13 calculations done on 11 HISQ
ensembles are the same as used in Ref. [19] for the
calculation of isovector charges. To keep this work self-
contained, the lattice parameters of the calculations and
the number of measurements made are summarized in
Table XII in Appendix A. The parameters used to generate
the Wilson-clover quark propagators using the multigrid
algorithm [32] are also given in Table XIII. We remind the
reader that two ensembles, a06m310 and a06m220, have
been analyzed twice with different smearing parameters
giving a total of 13 calculations. Also, compared to
Refs. [33,34], six ensembles (a12m220S, a12m220,
a12m220L, a09m310, a09m220 and a09m130W) have
been simulated afresh with randomly chosen source points
on each configuration to increase their statistical independ-
ence, and data at a larger number of momenta have been
accumulated.
To increase the statistics cost-effectively, we used a

truncated solver with bias correction method [35,36]. We
also used the coherent source method [37,38] to construct
sequential propagators from the sink time slice, at which a
zero-momentum nucleon state is inserted.
The details of our strategy for the calculations and the

analysis have been published in earlier works [19,33,34].
Here we provide a brief summary of the points relevant to
the calculation of the electric and magnetic form factors:

(i) In our calculation, the nucleon operator used is

χðxÞ ¼ ϵabc
�
qa1

TðxÞCγ5
ð1� γ4Þ

2
qb2ðxÞ

�
qc1ðxÞ ð19Þ

with color indices fa; b; cg, charge conjugation
matrix C ¼ γ0γ2, and q1 and q2 denoting the two
different flavors of light Dirac quarks. The quark
propagator is smeared both at the source and the sink
using a gauge-invariant Gaussian smearing pro-
cedure [39] described in Appendix A. To improve
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the signal, the amplitude A0
0 with which the nucleon

interpolating operator at the source time slice cou-
ples to the ground state j00i with energy E0 and
momentum p0 should be large while the coupling to
excited states should be small. We find that for
the smearing parameters given in Table XIII, the
signal in all ten momentum channels analyzed is
good in most cases. Note that the nonrelativistic
projection ð1� γ4Þ=2, inserted to improve the signal
[33,40,41], as well as the smearing at the source and
the sink time slices, breaks Lorentz covariance.

(ii) All errors are determined using a single-elimination
jackknife method over configurations; i.e., we first
construct the bias corrected average for each con-
figuration and then carry out the fits to the two- and
three-point functions within the same jackknife
procedure over these configuration averages.

(iii) To control excited-state contamination, we use the
same toolkit as in Ref. [19]. The two-point functions
are fit keeping four states in the spectral decom-
position. The amplitudes and the masses obtained
from these fits are input into the analysis of three-
point functions. The results for the masses are given
in Table XIV in Appendix B.

(iv) On each ensemble, we calculate the three-point
functions at multiple values of source-sink separa-
tion τ. These values of τ, given in Table XII, are the
same as in Ref. [19].

(v) The insertion of the vector current at definite mo-
menta p is carried out on each time slice t between the
source and the sink and for each value of τ. These data

for the three-point functions, Cð3ptÞ
Γ ðt; τ; p0; pÞ, at a

large number of values of t and τ are fit using three
states in the spectral decomposition:

C3pt
Γ ðt;τ;p0;pÞ¼jA0

0jjA0jh00jOΓj0ie−E0t−M0ðτ−tÞþjA0
0jjA1jh00jOΓj1ie−E0t−M1ðτ−tÞþjA0

1jjA0jh10jOΓj0ie−E1t−M0ðτ−tÞ

þjA0
1jjA1jh10jOΓj1ie−E1t−M1ðτ−tÞþjA0

0jjA2jh00jOΓj2ie−E0t−M2ðτ−tÞþjA0
2jjA0jh20jOΓj0ie−E2t−M0ðτ−tÞ

þjA0
1jjA2jh10jOΓj2ie−E1t−M2ðτ−tÞþjA0

2jjA1jh20jOΓj1ie−E2t−M1ðτ−tÞþjA0
2jjA2jh20jOΓj2ie−E2t−M2ðτ−tÞ; ð20Þ

where the source point is translated to t ¼ 0, the
operator is inserted at time t, and the nucleon state is
annihilated at the sink time slice τ, which numeri-
cally is also the source-sink separation. In this
relation, the numbers refer to the state jni, and a
state with superscript prime denotes that it could have
nonzero momentum p0. The momentum p at the sink
is fixed to zero in all three-point functions.

(vi) With our data, the term h20jOΓj2i could not be
resolved. So, in all the fits we set the contribution of
the term with h20jOΓj2i equal to zero and call these
3�-state fits. There is a caveat to the a12m220S
ensemble: The p0 ¼ 0 data are analyzed using 3�-
state fits, while the p0 ≠ 0 data are fit using two states
because the 3�-state fits for Q2 ≠ 0 are unstable.

(vii) The values of Q2 ¼ p⃗2 − ðE −MÞ2 at which the
form factors are calculated are collected in Table I.
These are obtained using the nucleon ground-state
energy Eðp⃗Þ extracted using 4-state fits to the two-
point functions.

(viii) To extract the desiredmatrix element h00jOΓj0i using
Eq. (20), the masses Mi, energies Ei, and the
amplitudes jAij and jA0

ij are taken from the fit to
the two-point function within one overall jackknife
procedure. This procedure assumes that the full tower
of excited states and their parameter are determined
accurately by the fits to the two-point functions.

(ix) Off-diagonal terms with nonzero momentum
transfer such as jA0

ijjAjjhi0jOΓjji are related to
jA0

jjjAijhj0jOΓjii by a combination of Lorentz
boost, parity and Hermitian transformation provided

the tower of states and the coupling to them are
the same on either side of the operator. Since the
latter is not guaranteed, we treat all such pairs of
matrix elements as independent free parameters in
the fits.

(x) The data for three-point functions at nonzero mo-
mentum transfer are not symmetric about the mid-
point, τ=2, between the source and the sink.
Nevertheless, in the simultaneous 3-state fit to the
data with multiple source-sink separations τ and
intermediate times t, we skip the same tskip points
adjacent to the source and the sink for every τ to
remove points with the largest ESC. Two consider-
ations motivated this choice: (i) The time slice of the
onset of the plateau in the nucleon effectivemass plot
is roughly independent of themomentum as shown in
Refs. [19,34], and (ii) because we choose the values
of tskip to be as small as possible based on the stability
of the covariancematrix used in the fits. The values of
tskip used here are the same as in Ref. [19].

(xi) The vector current in the continuum theory is
conserved; however, the local vector current used
in our lattice calculations is not. The renormalization
constant ZV for this current has been determined in
two ways: (i) nonperturbatively in the RI-sMOM
scheme and then converted to MS using perturbation
theory and (ii) measured directly from the matrix
element of V4 at Q2 ¼ 0, i.e., 1=gV . The two sets of
values are compared in Ref. [19] and differ by up to
3%. This size of difference is not unreasonable in
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our clover-on-HISQ formulation which has discreti-
zation effects starting atOðαsaÞ. Our final results are
obtained using the ratiosGiðQ2Þ=GEð0Þ, method (ii),
in which some of the systematics cancel. The dis-
cretization errors in hr2Ei, hr2Mi and μ are addressed by
the continuum extrapolation, a part of the CCFV fit.
The key input, other than statistical precision of the
three-point data, that impacts the stability of the n-
state fits to control ESC and obtain the ground-state
matrix elements is the energy of the first excited state
since the terms with h10jOΓj0i and h00jOΓj1i give the
dominant contribution. Once the ground-state matrix
elements have been determined, the procedure for
obtaining the form factors from them is described in
the next section.

IV. EXTRACTING FORM FACTORS FROM
MATRIX ELEMENTS

The following ratios Rμ of the three-point to the two-
point correlation functions:

Rμðt;τ;p0;pÞ¼
C3pt
μ ðt;τ;p0;pÞ
C2ptðτ;p0Þ

×

�
C2ptðt;p0ÞC2ptðτ;p0ÞC2ptðτ− t;pÞ
C2ptðt;pÞC2ptðτ;pÞC2ptðτ− t;p0Þ

�
1=2

;

ð21Þ
give the desired ground-state matrix elements (ME)
h00jOΓj0i, introduced in Eq. (20), in the limits t → ∞
and ðτ − tÞ → ∞. In the calculation of the nucleon three-
point functions, we use the spin projection operator
P3 ¼ ð1þ γ4Þð1þ iγ5γ3Þ=2. With this P3, and the vector
current defined in Eqs. (3) and (4) with Euclidean γμ, the
following quantities have a signal and give either the
electric or the magnetic form factors:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ReðRiÞ ¼ −ϵij3qjGM; ð22Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ImðRiÞ ¼ qiGE; ð23Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EpðMN þ EpÞ

q
ReðR4Þ ¼ðMN þ EpÞGE: ð24Þ

Note that, in practice, these ratios are used only to plot the
data. Our results are obtained by making n-state fits to the
correlation functions.
Exploiting the cubic symmetry under spatial rotations,

we construct two averages over equivalent three-point
correlators before doing fits to get the ground-state matrix
elements: over ReðC1Þ and ReðC2Þ for GMðQ2Þ and over
ImðC1Þ, ImðC2Þ and ImðC3Þ for GEðQ2Þ. We label these
form factors as GVi

M and GVi
E . Together with GV4

E extracted
from Eq. (24), they constitute the three form factors
analyzed. Their extraction is straightforward as each of
the three is given by a distinct three-point function. At the
same time, it is important to note that the discretization

artifacts and the excited-state contaminations in each can be
very different.
The data for the ratio defined in Eq. (21) and the results

of 3� fits to the three three-point correlators are illustrated in
Figs. 25–31 and 34–35, respectively. The ideal expected
behavior of all three-point functions with large t and τ − t is
a flat region near τ=2 that becomes independent of τ.
Our data show that this is not manifest even at τ ≈ 1.4 fm.
We, therefore, use 3�-state fits to data at the various values
of t and τ to obtain estimates of the ground-state matrix
elements. Results for the three sets of form factors, GV4

E ,
GVi

E and GVi
M , extracted from these matrix elements using

Eqs. (22), (23) and (24) are given in Tables II–IV for the 13
calculations.

A. Extraction of GEðQ2Þ
The pattern of the ESC in the extraction of GVi

E versus
GV4

E can be, and is found to be, very different as shown in
Figs. 25 and 26 for the two physical mass ensembles. The
data for GV4

E show a clear monotonic but slow convergence
from above and a flattish region near the middle. The
estimates of the τ → ∞ values given by the 3� fits are found
to be stable under variations in tskip and the values of τ
included in the fits.
The data for GVi

E show much larger ESC and the ME
h00jOΓj1i and h10jOΓj0i are an order of magnitude larger
for n2 ¼ 1 as compared to those from GV4

E . The resulting
pattern versus t is essentially linear for each τ. As τ is
increased, this “line” rotates toward becoming flat, but the
rotation is slow. The pivot point is approximately the point
of intersection of the various τ lines and converges to the
ground-state estimate as t and ðτ − tÞ → ∞.
The difference in the shape of the ESC between GVi

E and
GV4

E can be explained by the behavior of the transition
matrix elements under parity transformation and Hermitian
conjugation. The imaginary parts of the matrix elements of
Vi at nonzero momentum pick up a negative sign under the
combined transformations. As a result, for example, the
term jA0

0jjA1jh00jOΓj1ie−E0t−M1ðτ−tÞ has opposite sign to
that of its partner jA0

1jjA0jh10jOΓj0ie−E1t−M0ðτ−tÞ. Thus,
each such pair of terms give a “sinh”-like correction, that
makes the data look like a straight line at an angle to the
extracted ground-state result. On the other hand, the matrix
elements in the related pairs of terms from the real parts of
Vi and V4 have the same sign and therefore exhibit a
“cosh”-like correction. Even in this case, the magnitudes of
the two ME in such pairs of terms are not the same.
Therefore, in fits to the three-point data using Eq. (20), we
leave all the matrix elements as free parameters. In fact, in
practice, it is the product of the amplitudes and the ME,
such as jA0

0jjA1jh00jOΓj1i, that are free parameters in the
fits. Thus, in effect, only the energies are free parameters
and these are taken from the two-point functions.
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TABLE III. Results for the bare GEðQ2Þ extracted from ImðViÞ are listed for the 13 calculations defined in Table XII. The rest is the
same as in Table II.

n⃗ a15m310 a12m310 a12m220L a12m220 a12m220S a09m310 a09m220

(1,0,0) 0.610(15) 0.818(50) 0.871(30) 0.761(61) 0.774(59) 0.699(17) 0.814(30)
(1,1,0) 0.435(10) 0.592(32) 0.786(27) 0.634(69) 0.564(38) 0.536(16) 0.694(26)
(1,1,1) 0.336(10) 0.448(27) 0.711(28) 0.575(42) 0.439(36) 0.413(29) 0.619(25)
(2,0,0) 0.262(21) 0.410(32) 0.654(28) 0.527(42) 0.432(39) 0.358(14) 0.551(27)
(2,1,0) 0.205(13) 0.340(24) 0.585(24) 0.429(36) 0.316(32) 0.296(17) 0.479(22)
(2,1,1) 0.158(14) 0.284(24) 0.543(23) 0.334(37) 0.249(37) 0.255(14) 0.422(21)
(2,2,0) 0.135(10) 0.193(27) 0.464(22) 0.284(37) 0.181(33) 0.206(8) 0.362(18)
(2,2,1) 0.103(25) 0.166(30) 0.429(21) 0.250(43) 0.161(45) 0.182(8) 0.308(19)
(3,0,0) 0.139(43) 0.188(66) 0.445(25) 0.249(59) 0.202(59) 0.195(15) 0.342(17)
(3,1,0) 0.083(58) 0.178(76) 0.405(25) 0.150(74) 0.220(92) 0.172(17) 0.330(25)

n⃗ a09m130W a06m310 a06m310W a06m220 a06m220W a06m135
(1,0,0) 0.871(43) 0.733(59) 0.641(44) 0.718(46) 0.778(65) 0.793(65)
(1,1,0) 0.791(34) 0.515(49) 0.500(29) 0.600(40) 0.660(49) 0.688(57)
(1,1,1) 0.710(31) 0.367(64) 0.400(30) 0.534(43) 0.553(51) 0.626(64)
(2,0,0) 0.679(31) 0.390(48) 0.270(42) 0.444(53) 0.413(88) 0.643(49)
(2,1,0) 0.625(27) 0.219(34) 0.229(37) 0.420(42) 0.366(67) 0.529(52)
(2,1,1) 0.582(27) 0.446(55)
(2,2,0) 0.494(26) 0.399(54)
(2,2,1) 0.461(26) 0.354(54)
(3,0,0) 0.467(38) 0.367(60)
(3,1,0) 0.435(33) 0.311(58)

TABLE II. Results for the bare GEðQ2Þ extracted from ReðV4Þ are listed for the 13 calculations defined in Table XII. The results are
obtained using 4-state fits to the two-point functions and 3�-state fits to the three-point functions (2-state fits for the a12m220S
ensemble) as described in the text. The value GEð0Þ ¼ 1=ZV given in the first row provides one estimate of the renormalization constant
for the vector current. The momentum transfer Q2, in units of GeV2, associated with each n⃗ is given in Table I.

n⃗ a15m310 a12m310 a12m220L a12m220 a12m220S a09m310 a09m220

(0,0,0) 1.069(4) 1.061(8) 1.067(4) 1.071(9) 1.081(18) 1.045(3) 1.049(4)
(1,0,0) 0.650(4) 0.728(8) 0.908(12) 0.840(11) 0.706(17) 0.735(4) 0.859(5)
(1,1,0) 0.440(4) 0.536(9) 0.789(12) 0.666(23) 0.513(17) 0.549(6) 0.718(7)
(1,1,1) 0.321(4) 0.407(10) 0.694(11) 0.553(16) 0.402(20) 0.423(12) 0.614(8)
(2,0,0) 0.261(8) 0.332(11) 0.618(12) 0.469(15) 0.324(20) 0.348(7) 0.538(9)
(2,1,0) 0.212(5) 0.279(8) 0.553(10) 0.396(17) 0.279(18) 0.285(9) 0.472(8)
(2,1,1) 0.167(6) 0.239(9) 0.499(9) 0.349(15) 0.234(17) 0.240(9) 0.417(8)
(2,2,0) 0.140(15) 0.176(15) 0.413(8) 0.280(19) 0.156(24) 0.186(4) 0.338(8)
(2,2,1) 0.114(12) 0.161(12) 0.380(7) 0.260(16) 0.155(21) 0.162(4) 0.307(7)
(3,0,0) 0.110(30) 0.157(35) 0.387(8) 0.203(32) 0.148(42) 0.177(8) 0.315(9)
(3,1,0) 0.088(20) 0.155(24) 0.357(7) 0.200(23) 0.154(27) 0.153(5) 0.290(7)

n⃗ a09m130W a06m310 a06m310W a06m220 a06m220W a06m135
(0,0,0) 1.052(6) 1.043(6) 1.035(11) 1.050(7) 1.039(9) 1.042(10)
(1,0,0) 0.937(6) 0.700(16) 0.711(9) 0.822(8) 0.811(9) 0.919(10)
(1,1,0) 0.836(6) 0.502(21) 0.521(8) 0.670(10) 0.654(11) 0.814(13)
(1,1,1) 0.756(6) 0.373(24) 0.395(9) 0.552(14) 0.536(14) 0.716(18)
(2,0,0) 0.680(8) 0.306(24) 0.318(13) 0.465(17) 0.440(26) 0.664(15)
(2,1,0) 0.624(8) 0.232(23) 0.260(11) 0.398(17) 0.384(20) 0.588(18)
(2,1,1) 0.571(8) 0.528(20)
(2,2,0) 0.497(9) 0.433(21)
(2,2,1) 0.455(9) 0.399(19)
(3,0,0) 0.439(15) 0.422(21)
(3,1,0) 0.418(12) 0.380(20)
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It is also evident from Figs. 25 and 26 that the ESC in
GVi

E is the largest at the smallest nonzero momentum; i.e.,
the “angle” the data make with the horizontal line is the
largest. On the other hand, the ESC in GV4

E increases with
momentum. By comparing the data in the two figures, we
also conclude that the ESC increases with decreasing a for
both GVi

E and GV4

E .
A consequence of this difference in the ESC behavior is

that the errors in GVi
E are 3–10 times larger than in GV4

E (see
data in Tables II and III). Also, since one cannot extract a
value for GEðQ2 ¼ 0Þ using the operators Vi due to
kinematic constraint, the fits to GVi

E versus Q2, discussed
in Sec. V B, are less stable because they are not anchored at
Q2 ¼ 0. As a result, the extraction of the electric charge
radius from the GVi

E data has much larger errors. Because of
these two reasons, it has been common to analyze only
GV4

E ðQ2Þ. With our high-statistics data, we are able to
compare the ESC, the efficacy of the 3� fits, and the
discretization errors between GV4

E and GVi
E .

A comparison of results for GVi
E and GV4

E is presented in
Fig. 1 for the 13 calculations. As stated above, the errors in
GVi

E are much larger than those in GV4

E ; however, there are
two additional noteworthy patterns. First, the data for GVi

E
for Q2 ≲ 0.2 GeV2 on the a12m220, a09m220, a06m220
and the two physical mass ensembles a09m130W and

a06m135 have the largest errors and mostly lie below those
from GV4

E . On the other hand, the data for Q2 ≳ 0.2 GeV2

overlap in most cases. Our conclusion, based on these data,
is that for Q2 ≳ 0.2 GeV2 the two measurements can be
considered to have the same mean but with different
variance.
The pattern of data atQ2 ≲ 0.2 GeV2 is puzzling and we

do not have an explanation for the larger errors or the
systematic differences. In particular, we cannot discern
whether they are due to residual ESC, statistical fluctua-
tions and/or different discretization errors. In summary,
while our high-statistics data have allowed us to quantify
the larger errors and fluctuations in GVi

E , we do not have a
resolution for the difference. Operationally, using a
weighted average of the nonzero Q2 data from GVi

E and
GV4

E , i.e., assuming that the differences are statistical
fluctuations, gives results that are essentially identical to
those from GV4

E . We, therefore, analyze only the data from
GV4

E in the rest of this paper. To establish full control over
all systematics, future calculations should demonstrate
consistency between GVi

E and GV4

E .

B. Extraction of GMðQ2Þ
Examples of the size and shape of the ESC in the

extraction of GVi
M are shown in Figs. 29 and 30. For small

TABLE IV. Results for the bare magnetic form factor GMðQ2Þ for the 13 calculations defined in Table XII. Values of GMð0Þ are
obtained by a linear extrapolation of the data for GMðQ2Þ=ðGEðQ2Þ × ZVÞ to Q2 ¼ 0 as discussed in the text. The rest is the same as in
Table II.

n⃗ a12m310 a12m310 a12m220L a12m220 a12m220S a09m310 a09m220

(0,0,0) 4.596(61) 4.553(107) 4.538(107) 4.465(144) 4.597(217) 4.324(32) 4.505(76)
(1,0,0) 2.968(29) 3.318(51) 4.018(61) 3.657(90) 3.139(85) 3.207(19) 3.749(51)
(1,1,0) 2.160(32) 2.597(43) 3.557(41) 3.082(76) 2.352(75) 2.513(24) 3.249(40)
(1,1,1) 1.665(26) 2.092(46) 3.172(32) 2.660(68) 1.940(82) 2.041(42) 2.863(36)
(2,0,0) 1.255(45) 1.728(59) 2.874(31) 2.251(75) 1.566(98) 1.684(32) 2.468(46)
(2,1,0) 1.155(28) 1.532(41) 2.615(30) 2.009(66) 1.389(74) 1.471(35) 2.225(38)
(2,1,1) 0.959(31) 1.363(31) 2.407(29) 1.818(67) 1.257(68) 1.283(41) 2.034(36)
(2,2,0) 0.817(50) 1.106(54) 2.032(37) 1.643(76) 1.164(92) 1.074(18) 1.698(35)
(2,2,1) 0.760(47) 0.969(55) 1.913(32) 1.448(75) 0.963(82) 0.982(19) 1.554(36)
(3,0,0) 0.717(102) 1.241(128) 1.883(41) 1.422(88) 0.851(136) 0.947(35) 1.585(44)
(3,1,0) 0.734(33) 0.911(104) 1.771(41) 1.424(89) 0.917(111) 0.913(49) 1.467(36)

n⃗ a09m130W a06m310 a06m310W a06m220 a06m220W a06m135
(0,0,0) 4.297(82) 4.163(168) 4.303(134) 4.138(102) 4.293(142) 4.229(123)
(1,0,0) 3.956(67) 3.083(73) 3.181(70) 3.405(65) 3.505(99) 3.824(105)
(1,1,0) 3.547(50) 2.440(59) 2.491(57) 2.865(55) 2.873(83) 3.413(90)
(1,1,1) 3.281(47) 1.984(73) 2.020(60) 2.493(59) 2.411(89) 3.051(97)
(2,0,0) 2.992(48) 1.591(83) 1.655(69) 2.214(68) 2.196(117) 2.838(89)
(2,1,0) 2.820(39) 1.341(83) 1.459(58) 1.862(66) 1.837(104) 2.612(84)
(2,1,1) 2.616(37) 2.340(97)
(2,2,0) 2.286(39) 2.064(96)
(2,2,1) 2.156(39) 1.850(97)
(3,0,0) 2.158(59) 1.849(110)
(3,1,0) 2.041(46) 1.764(96)
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momentum transfer, the convergence is monotonic from
below as shown in Fig. 29 for n2 ¼ 1. The ESC is observed
to grow with decreasing a and Mπ .
The pattern of convergence changes with Q2: For small

n2 it is from below but by about n2 ¼ 6, it has changed to
from above in most cases as illustrated in Fig. 30. As a
result, removing ESC increases the value of GMðQ2Þ at
small momentum transfers and decreases it at larger
momenta. Consequently, if ESC is not removed, both
the magnetic charge radius and the magnetic moment
extracted are underestimated.
The results of the 3� fits to the data for the bare form

factor GMðQ2Þ are summarized in Table IV. A key
shortcoming of the analysis of the lattice GMðQ2Þ is the
lack of data at Q2 ¼ 0. To overcome this, we note that the
ratio GM=GE, shown in Fig. 12, is, within errors, linear in
Q2 for Q2 ≲ 0.6 GeV2. We, therefore make a linear fit to
the ratio of the form factor data, GMðQ2Þ=GEðQ2Þ, with

momenta up to n⃗ ¼ ð2; 1; 1Þ to obtain an estimate for the
renormalized GMðQ2 ¼ 0Þ. The corresponding unrenor-
malized values, which we call derived GMðQ2 ¼ 0Þ, are
also given in Table IV. These values are indistinguishable
from those obtained from taking a ratio of the two
correlators and then making a linear fit versus Q2 to these
data. Including these values of GMðQ2 ¼ 0Þ improved the
stability of the z-expansion fits. Note that the extrapolation
of GM=GE, inclusion of the extrapolated value of GMð0Þ,
and the fit to GM are done within a single jackknife loop;
therefore, the statistical errors are accounted for correctly.
To estimate the importance of using the derived point

GMðQ2 ¼ 0Þ, which anchors the fits to data, especially on
ensembles with largish values of the minimum Q2, we
performed the following test. We fit the nonzeroQ2 data for
GV4

E to extract the value and the slope at Q2 ¼ 0 for each
ensemble. Comparing the value for gV from this fit with the
data given in Table II, we find the magnitude of the

FIG. 1. Comparison of the renormalized form factor GVi
E ðQ2Þ=gV (red circles) versus GV4

E ðQ2Þ=gV (blue triangles). The first row gives
data for the Mπ ≈ 310 MeV ensembles; the second row for the Mπ ≈ 220 MeV ensembles; the third for the two physical mass
ensembles a09m130W and a06m135; and the data for the remaining three calculations are shown in the fourth row. The solid black line
shows the Kelly fit to the experimental isovector, Gp−n

E , data.
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difference for the dipole and z4 fit is between 0.01 and 0.04
for the 13 calculations. The difference in the slope, hr2Ei,
compared to the data in Table V is up to 9% for the dipole
fit and up to 20% for the z4 fit. Based on this test, it is not
unreasonable that an uncertainty of similar size can be
present in the extraction of μ and hr2Mi. Thus, to get high-
precision results without resorting to a derived value for
GMð0Þ or without using priors requires having data at
smaller values of Q2.

C. Dependence of GEðQ2Þ and GMðQ2Þ
on the lattice parameters

In Figs. 2–6, we explore the dependence of the
renormalized form factors GV4

E ðQ2Þ=gV and GVi
M ðQ2Þ=gV ,

which we henceforth labelGEðQ2Þ=gV andGMðQ2Þ=gV for
brevity, as a function of the pion mass, lattice spacing,
lattice volume and the smearing size. The significant
features are as follows.

(i) The dependence of GEðQ2Þ=gV on the pion mass,
keeping the lattice spacing roughly constant, is
shown in Fig. 2. The data show a steeper fall off
as the quark mass is lowered. The behavior of
GMðQ2Þ=gV is similar as shown in Fig. 4.

(ii) The data forGEðQ2Þ=gV do not show any significant
dependence on the lattice spacing a for fixed pion

mass as shown in Fig. 3. A similar insensitivity to
change in a is exhibited by GMðQ2Þ=gV as shown
in Fig. 5.

Estimates for hr2Mi from z-expansion fits without includ-
ing our derived value for GMð0Þ are, in many cases,
unstable even for the z3 or z3þ4 fits; i.e., estimates for
rM become negative. We conclude that the fits in these
cases are overparameterized. Including the derived value of
GMð0Þ and imposing the constraint on ak discussed in
Sec. II greatly improved the z-expansion fits. On the
other hand, the dipole fits give consistent estimates with
or without using a value for GMð0Þ. Our final results
for both types of Q2 fits are obtained including the
GMð0Þ points.
Lastly, the comparison of the lattice data with the Kelly

fit to the experimental data is shown in Figs. 3 and 5. Both
GEðQ2Þ=gV and GMðQ2Þ=gV move toward the Kelly curve
as Mπ and a are reduced. However, GEðQ2Þ=gV from the
two physical mass ensembles still shows significant devia-
tions from the Kelly fit. The data for GMðQ2Þ=gV show a
different curvature from the Kelly curve and points with
Q2 ≲ 0.2 GeV from the physical mass ensembles move
below the Kelly curve. This change in behavior in
GMðQ2Þ=gV results in an underestimate of both hr2Mi
and the magnetic moment μp−n as discussed in Sec. VI.

TABLE V. The isovector electric mean-square charge radius hr2Ei in units of fm2 from the seven fits (dipole, z3, z3þ4, z4, z4þ4, z5 and
z5þ4) to the isovector form factor GEðQ2Þ. The bottom half of the table gives the results of the four CCFV fits discussed in the text, with
and without the leading finite-volume term cE4 and for each Q2 fit.

Ensemble Dipole z3 z4 z5 z3þ4 z4þ4 z5þ4

a15m310 0.535(6) 0.523(10) 0.519(10) 0.519(10) 0.492(17) 0.531(8) 0.514(12)
a12m310 0.561(17) 0.542(23) 0.542(23) 0.542(23) 0.513(31) 0.573(22) 0.528(26)
a12m220L 0.575(10) 0.562(32) 0.575(33) 0.575(33) 0.574(45) 0.588(32) 0.562(35)
a12m220 0.596(23) 0.557(40) 0.558(40) 0.558(40) 0.546(59) 0.572(35) 0.548(44)
a12m220S 0.609(30) 0.686(69) 0.686(67) 0.686(67) 0.688(93) 0.690(57) 0.682(74)
a09m310 0.487(6) 0.485(8) 0.485(8) 0.485(8) 0.480(12) 0.494(10) 0.480(10)
a09m220 0.580(14) 0.575(26) 0.574(28) 0.573(28) 0.566(31) 0.576(29) 0.568(28)
a09m130W 0.587(15) 0.503(51) 0.507(67) 0.506(67) 0.577(85) 0.421(115) 0.546(72)
a06m310 0.548(34) 0.537(32) 0.537(32) 0.537(32) 0.533(41) 0.542(36) 0.534(33)
a06m310W 0.532(14) 0.502(21) 0.502(21) 0.502(21) 0.483(36) 0.522(20) 0.493(25)
a06m220 0.538(22) 0.560(40) 0.561(40) 0.561(40) 0.604(57) 0.543(35) 0.567(44)
a06m220W 0.565(22) 0.546(35) 0.546(35) 0.546(35) 0.548(54) 0.551(32) 0.542(39)
a06m135 0.599(25) 0.529(64) 0.545(83) 0.545(82) 0.735(135) 0.398(159) 0.649(101)

13-pt cE4 ≠ 0 0.592(17) 0.570(39) 0.596(40) 0.595(40) 0.658(55) 0.604(39) 0.601(43)
13-pt cE4 ¼ 0 0.581(13) 0.565(30) 0.597(34) 0.597(34) 0.674(47) 0.609(36) 0.618(37)

11-pt cE4 ≠ 0 0.586(17) 0.564(39) 0.591(41) 0.590(41) 0.653(56) 0.604(41) 0.597(44)
11-pt cE4 ¼ 0 0.572(14) 0.554(32) 0.588(36) 0.587(36) 0.665(49) 0.606(39) 0.609(39)

10-pt cE4 ≠ 0 0.587(36) 0.552(69) 0.567(70) 0.567(70) 0.632(93) 0.530(68) 0.592(76)
10-pt cE4 ¼ 0 0.558(24) 0.540(48) 0.570(53) 0.570(53) 0.662(74) 0.554(58) 0.618(59)

10�-pt cE4 ≠ 0 0.595(18) 0.587(40) 0.609(42) 0.608(42) 0.668(57) 0.607(41) 0.609(45)

10�-pt cE4 ¼ 0 0.571(14) 0.546(32) 0.577(36) 0.577(36) 0.657(50) 0.587(40) 0.600(40)
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FIG. 2. The data for the renormalized electric form factor
GEðQ2Þ=gV versus Q2 plotted to highlight the dependence onM2

π

for fixed a. The dotted lines show the z4 fit. The top figure is for
the a ≈ 0.12 fm ensembles, the middle for the a ≈ 0.09 fm
ensembles, and the bottom for the a ≈ 0.06 fm ensembles. The
color scheme used is black triangles for the Mπ ≈ 310 MeV, red
circles for Mπ ≈ 220 MeV, and blue squares for the Mπ ≈
135 MeV ensemble data.

FIG. 3. The data and fits for the renormalized electric form factor
GEðQ2Þ=gV versusQ2 plotted to highlight the dependence on a for
fixedMπ . The dotted lines show the z4 fit and the solid line is the
Kelly fit to the experimental Gp−n

E data. The top figure is for the
Mπ ≈ 310 MeV ensembles, the middle for the Mπ ≈ 220 MeV
ensembles, and the bottom for theMπ ≈ 135 MeVensembles. The
symbols used are purple diamond for the a ≈ 0.15 fm, green
triangles for the a ≈ 0.12 fm, orange circles for a ≈ 0.09 fm and
blue squares for the a ≈ 0.06 fm ensemble data.
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FIG. 4. The data and z4 fits to the renormalized magnetic form
factor GMðQ2Þ=gV plotted versus Q2 to highlight the dependence
onM2

π for fixed a. The top figure is for the a ≈ 0.12 fm ensembles,
the middle for the a ≈ 0.09 fm ensembles, and the bottom for the
a ≈ 0.06 fm ensembles. The symbols used are black triangles for
the Mπ ≈ 310 MeV, red circles for Mπ ≈ 220 MeV, and purple
squares for the Mπ ≈ 130 MeV ensembles.

FIG. 5. The data and the z4 fits (dotted lines) for the renormalized
magnetic form factorGMðQ2Þ=gV plotted versusQ2 to highlight the
dependence on a for fixedMπ . The solid line is the Kelly fit to the
isovector combination, (p − n), of the experimental data. The top
figure is for theMπ ≈ 310 MeVensembles, themiddle for theMπ ≈
220 MeV ensembles, and the bottom for the Mπ ≈ 130 MeV
ensembles. The symbols used are magenta diamonds for the
a ≈ 0.15 fm, green triangles for the a ≈ 0.12 fm, orange circles
for a ≈ 0.09 fm and blue squares for the a ≈ 0.06 fm ensembles.
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1. Dependence on lattice size

Simulations on large lattices are not only important for
reducing finite-volume effects but also provide the simplest
solution to obtaining data at smallerQ2 for fixed a andMπ .
To demonstrate the improvement possible, we compare
data from the a12m220S, a12m220 and a12m220L
ensembles in Fig. 31 in Appendix C. As the data move
to smallerQ2 with increasing L, the statistical quality of the
signal also improves for a fixed number of measurements.
In Fig. 32, we showGE andGM versusQ2 for these three

ensembles. The data on the two larger volumes, a12m220
(MπL ¼ 4.38) and a12m220L (MπL ¼ 5.49), overlap for
both GEðQ2Þ=gV and GMðQ2Þ=gV , indicating that finite-
volume effects are small for MπL≳ 4.4. On the smaller
volume a12m220S (MπL ¼ 3.29), GMðQ2Þ=gV falls off
faster with Q2.
In Fig. 33, we compare the results of three fits toGEðQ2Þ

and GMðQ2Þ given in Tables II and IV versus Q2 for these
three ensembles. For the z-expansion fits, the results for

hr2Ei and hr2Mi from the two larger volumes are consistent
within 1σ, while those on a12m220S differ. We find no
significant difference in the dipole fits. These comparisons
indicate that finite-volume corrections are smaller than the
statistical errors on the two larger volumes corresponding
to MπL≳ 4.4. For this reason, we carry out CCFV fits
including (11-point fit) and discarding the a12m220S point
(10�-point fit). Operationally, the fits are insensitive to the
12m220S point due to the larger errors in it. Nevertheless,
our final results, presented in Sec. VI, are from the
11-point fit.
The bottom line is that increasing L for fixed Mπ and a

improves the analysis in a number of ways because the
values of Q2 for a given n⃗ decrease. First, the statistical
errors for a fixed number of measurements decrease. The
reduction in errors roughly compensates for the increase in
cost of each measurement due to a larger volume. Second,
with the decrease in Q2, the ESC in GV4

E becomes smaller,
while that in GM becomes easier to control using n-state

FIG. 6. The data for the renormalized GEðQ2Þ=gV (left) and GMðQ2Þ=gV (right) form factors plotted versus Q2 for the two ensembles
a06m310 (top) and a06m220 (bottom) analyzed with two different source or sink smearing parameters given in Table XIII. The dotted
lines show the z4 fit.
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fits. Lastly, the extraction of hr2Ei, hr2Mi and μ improves,
since the fit parameters are determined from data with
values of Q2 closer to zero.

2. Dependence on smearing size

In Figs. 34 and 35 in Appendix C, we compare the ESC
in GV4

E and GVi
M for two different smearing sizes using data

from the a06m310 and a06m220 ensembles. The data
show that the ESC is smaller with the larger smearing size.
The results of the dipole, z4 and z5þ4 fits to GEðQ2Þ and

GMðQ2Þ versus Q2 for these two ensembles are shown in
Fig. 36. Results for hr2Ei and hr2Mi are consistent within 1σ
for the two smearings. The data in Fig. 6, however, show
that estimates of μ can differ by about 5% between the two
calculations with different smearing size. This level of
difference can be explained by a combination of statistical
and systematic uncertainties in either calculation.

3. Dependence on lattice scale setting

The two places the lattice scale enters our calculation is
in converting Q2a2 to physical units and in the CCFV fits.
In Table XII, we give the values of a for the HISQ
ensembles obtained by the MILC Collaboration using
the Sommer scale r1 [15,42]. In Table XIV in
Appendix B, we give the value of MN obtained on each
ensemble using these values of a and fit them using the
leading-order CCFV fit defined in Eq. (B1). The result in
the continuum limit isMN ¼ 976ð20Þ MeV. The deviation
of about 4% from the experimental value indicates a
systematic uncertainty of 2%–6% in the scale obtained
from r1 versus MN , the latter analyzed using the leading-
order CCFV fit. The question then is, how does this
difference impact the analysis of the form factors and
the extraction of hr2Ei, hr2Mi and μ?
The lattice data plotted in Figs. 2–5 show that the

dependence of the form factors on M2
π and a is small.

To explore the dependence further, we remove the use of a
taken from the analysis of the Sommer scale r1 on the HISQ
ensembles by plotting the data versus Q2=M2

N in Fig. 7
(bottom) where the lattice values of MN are used to
construct the dimensionless ratio Q2=M2

N for the lattice
data and MN ¼ 939 MeV for the Kelly curve. The relative
movement between the data and the Kelly curve, when
plotted versus Q2=M2

N as compared to Q2, brings the data
closer together onto a single curve as can be seen by
comparing the top and bottom set of panels. For the
physical mass ensembles, the size of the relative movement
of data depends only on the discretization errors, i.e., the
value of MN at that value of a, assuming finite-volume
corrections are negligible. Presuming a cancellation of
some of the systematics when the data are plotted versus
Q2=M2

N , this comparison indicates that the observed larger
deviation from the Kelly curve, when the data are plotted
versus Q2, can be explained partly as a systematic effect

due to discretization errors, i.e., variations in the lattice
scale set using different observables. This systematic is
avoided if data at a given Q2 are first extrapolated toMπ ¼
135 MeV and then to a ¼ 0 before comparing with the
Kelly curve. An attempt at doing this is described in
Sec. VI D.
It is important to note that hr2Ei, hr2Mi and μ extracted for

each ensemble are unchanged whether one calculates them
usingQ2 orQ2=M2

N as the independent variable in Eq. (10).
The result would be different if the product M2

Nhr2Ei is
calculated on each ensemble and extrapolated to the
continuum limit first and the result divided by the exper-
imental value forMN. We discuss this analysis in Sec. VI C.
Having made clear that part of the noticeable spread in

the behavior of the form factors shown in Fig. 7 can be
accounted for, in a large part, as due to discretization errors,
the question is—what is the more robust way of analyzing
the data? Should we use the scale set using r1 or work with
dimensionless variables in units ofMN? While our analysis
has exposed this systematic, our conclusion is that a larger
dataset, or the use of a lattice action with much smaller
discretization errors or a better-determined extrapolation
Ansatz, are needed to significantly reduce such systematics.
Having highlighted the size of this systematic uncertainty,
most of the analysis presented below is carried out versus
Q2. We provide comparison with results plotted versus
Q2=M2

N at appropriate places and analyze data for M2
Nhr2Ei

and M2
Nhr2Mi in Sec. VI C.

V. CHARACTERIZING THE Q2 BEHAVIOR
OF THE FORM FACTORS

In order to extract the charge radii defined in Eq. (10) and
the magnetic moment in Eq. (8), we need to parameterize
the form factors versus Q2. The two fits we explore are the
dipole and the z expansion truncated at some power k as
discussed in Sec. II. Since the dipole Ansatz is the solution
to an exponentially falling charge distribution (thus a
model) and the z expansion involves a truncation plus a
constraint on the size of the coefficients ak, it behooves us
to first test these Ansätze on the high-precision experi-
mental data as discussed next.

A. Experimental data for the form factors
and their Q2 behavior

Electromagnetic form factors of nucleons are extracted
from differential cross sections measured in the scattering
of electrons off nuclei. The process of going from mea-
surements of the differential cross sections to nucleon
form factors is nontrivial and involves modeling [1,31,43].
As already stated, we have two reasons to analyze the
experimental data: to compare them against the lattice
data over the range 0 < Q2 ≲ 0.8 GeV2 and to test the
efficacy of the dipole and z-expansion fit Ansätze. For
these purposes, we have collected together compiled
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experimental data for the proton and the neutron in
Appendix D (see Figs. 37 and 38). From these, we have
determined the Kelly parameterization for the isovector
combinations Gp

E −Gn
E and Gp

M −Gn
M. Henceforth, for

brevity, we will continue to use GEðQ2Þ=gV and GMðQ2Þ=
gV to represent the (p − n) combinationswhen comparing the
lattice and the experimental data.
Next, we test the fit Ansätze on the experimental data.

The results for hr2Ei and hr2Mi for the proton are shown in
Fig. 37. Based on the χ2=DOF, the dipole fit works
surprisingly well for GEðQ2Þ, and the deviation from the
data is less than a percent over the range 0 < Q2 ≤ 1 GeV2.
This difference is much smaller than the precision of our
lattice data. For GMðQ2Þ, the deviation is larger (up to 6%)
and the χ2=DOF of the fit is poor. In the z-expansion fits
with constraints, results for hr2Ei, hr2Mi and μ stabilize for
k ≥ 5 as shown in Fig. 39.
Based on this analysis, and as noted in Appendix D, one

should not expect a match between our lattice and the
experimental data to better than about 5% or be able to
resolve differences between the dipole and the z-expansion

fits at or below this level. These comparisons provide a
framework for our lattice analyses using the z expansion:
extract hr2Ei and hr2Mi from k ¼ 4 to avoid overparamete-
rization for some of the ensembles.
In the final estimates, we have assigned an additional

systematic uncertainty to account for the fact that the
CCFV fits have been made using just the leading-order
corrections. This is discussed further in Sec. VI.

B. Analysis of the lattice QCD data for the form factors

A comparison of the form factors GEðQ2Þ=gV and
GMðQ2Þ=gV from all 13 simulations with the Kelly param-
eterization of the experimental (p − n) data is shown in
Fig. 7. The data for GEðQ2Þ=gV lie above the Kelly curve
with those from the two physical mass ensembles being the
closest as shown in Fig. 3, whereas the data forGMðQ2Þ=gV
lie about the Kelly curve for Q2 ≳ 0.2 GeV2 and then fall
below it for smaller Q2 as highlighted in Fig. 5. In both
cases, these deviations from the Kelly curve impact the
slope at Q2 ¼ 0; i.e., both hr2Ei and hr2Mi come out smaller
than the phenomenological estimates. More importantly,

FIG. 7. The lattice data for the renormalized isovector form factors Gp−n
E ðQ2Þ=gV (left) and Gp−n

M ðQ2Þ=gV (right) from all 13
calculations plotted versus Q2 expressed in units of GeV2 (top) and versus Q2=M2

N with MN taken from the lattice (bottom). The solid
black line is the Kelly fit to the (p − n) experimental data with MN ¼ 939 MeV.
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the very precisely measured magnetic moment GMð0Þ ¼
μp − μn is underestimated by about 16%. As remarked
above in Secs. IVA and IV B, removing the ESC using
the 3� fits increases the value of all three; nevertheless, the
final results presented in Sec. VI are smaller than the

experimental values. Furthermore, deviations of the lattice
form factors from the Kelly curve are apparent over a range
of Q2.
As discussed in Sec. IV C 3, part of the difference

between the Kelly curve and the data is due to the mismatch

FIG. 8. The data for GE and GM=ðμ ¼ 4.7058Þ plotted versus z for the 13 calculations. The vertical red line on the left corresponds to
Q2 ¼ 0, while on the right toQ2 ¼ 1 GeV2 except for a15m310 (Q2 ¼ 1.4 GeV2) and a12m220 (Q2 ¼ 0.8 GeV2). In the two physical
mass cases, the right vertical red line lies outside the panel.
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in the scale set by r1 and MN . This is highlighted in Fig. 7,
where data are plotted versus Q2 (top panels), evaluated
using the lattice scale set by r1, and versus the dimension-
less variableQ2=M2

N (bottom panels). Note that this change
of variable does not impact the results for hr2Ei, hr2Mi and
μp−n on each individual ensemble and thus their extrapo-
lated values using the same CCFV Ansatz.
The data for GE and GM=ðμ ¼ 4.7058Þ versus z are

shown in Fig. 8. Our overall strategy for extracting hr2Ei,
hr2Mi and μp−n is the following: We first determine
by eye the largest value of Q2 up to which the data are
smooth in z. Next, since we are interested in the value and
slope of the fits at Q2 ¼ 0, we restricted the data to
Q2 ≤ 1 GeV2, except for the a15m310 (Q2 ≤ 1.4 GeV2)
and a12m220 (Q2 ≤ 0.8 GeV2) ensembles. The allowed
range 0–Q2jmax, where Q

2jmax is the largest value allowed
by the cuts defined above, is marked by the two vertical red
lines in Fig. 8. With these cuts, the points at all Q2 are
retained for most of the ensembles. Only the high Q2 data

for a15m310, a12m310, a12m220S and a12m220 ensem-
bles are removed. These show a break in the smooth
behavior in z as is clear from Fig. 8. Going back to the ESC
analysis, the reliability of these points is questionable since
the data have large errors and the ESC fits were poor.
The results from the z-expansion fits are stable for k ≥ 4

as shown in Fig. 9. Results from fits including the sum rules
are similar, except that stability is reached only for k ≥ 7.
Estimates from fits with and without sum rules are
consistent; however, the errors are larger with the sum
rules. The values and χ2=DOF of the dipole fits have been
stable under increase in statistics for all 13 calculations.
On the other hand, the results from the z-expansion fits
required high statistics to exhibit convergence with the
order of the truncation.
The results from seven fit Ansätze are collected

together in Tables V–VII. Overall, the seven estimates
are consistent within errors. Since hr2Ei, hr2Mi and μp−n

should be extracted from the small Q2 behavior, our final
results are from the z4 fits. Estimates with sum rules are

FIG. 9. Estimates of hr2Ei, hr2Ei and μ from each of the 13 calculations are shown as a function of order zk (left) and zkþ4 (right) of the
truncation of the z expansion. The dipole results is shown at k ¼ 0. For clarity, the data from the 13 calculations (using same symbol and
color code as in Fig. 7) are shifted slightly along the x axis for clarity.
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TABLE VI. Isovector magnetic charge radius hr2Mi in units of fm2 from the seven fits to the isovector form factorGMðQ2Þ. The derived
value for GMð0Þ is included in the fits as discussed in the text. The rest is the same as in Table V.

Ensemble Dipole z3 z4 z5 z3þ4 z4þ4 z5þ4

a15m310 0.437(11) 0.466(15) 0.464(15) 0.464(15) 0.451(23) 0.472(13) 0.461(17)
a12m310 0.414(15) 0.457(30) 0.457(30) 0.457(30) 0.438(41) 0.484(28) 0.447(34)
a12m220L 0.456(16) 0.475(41) 0.475(41) 0.475(41) 0.485(58) 0.472(39) 0.473(44)
a12m220 0.442(25) 0.419(51) 0.425(50) 0.424(50) 0.406(74) 0.451(46) 0.408(56)
a12m220S 0.454(33) 0.597(89) 0.599(87) 0.599(87) 0.566(118) 0.617(77) 0.588(95)
a09m310 0.410(8) 0.409(11) 0.409(11) 0.409(11) 0.400(17) 0.423(12) 0.402(14)
a09m220 0.469(14) 0.489(30) 0.492(31) 0.492(31) 0.498(38) 0.499(32) 0.488(31)
a09m130W 0.478(18) 0.437(56) 0.386(84) 0.384(83) 0.478(132) 0.092(173) 0.485(85)
a06m310 0.409(31) 0.408(41) 0.408(41) 0.408(41) 0.436(55) 0.396(46) 0.413(43)
a06m310W 0.407(21) 0.406(32) 0.406(32) 0.405(32) 0.388(52) 0.416(33) 0.398(36)
a06m220 0.425(24) 0.485(49) 0.484(49) 0.484(49) 0.546(78) 0.438(44) 0.502(55)
a06m220W 0.474(35) 0.473(53) 0.473(53) 0.473(53) 0.477(88) 0.465(48) 0.473(59)
a06m135 0.519(34) 0.456(76) 0.427(97) 0.427(97) 0.634(214) 0.115(195) 0.567(133)

13-pt cM4 ≠ 0 0.497(29) 0.454(61) 0.462(64) 0.461(64) 0.560(90) 0.443(65) 0.496(68)
13-pt cM4 ¼ 0 0.482(19) 0.449(41) 0.458(49) 0.457(49) 0.575(77) 0.441(59) 0.520(54)

11-pt cM4 ≠ 0 0.495(29) 0.445(62) 0.450(65) 0.449(65) 0.548(92) 0.434(67) 0.486(69)
11-pt cM4 ¼ 0 0.480(20) 0.436(43) 0.443(51) 0.441(51) 0.558(80) 0.432(63) 0.505(56)

10-pt cM4 ≠ 0 0.537(44) 0.471(100) 0.467(102) 0.466(102) 0.617(141) 0.363(102) 0.539(110)
10-pt cM4 ¼ 0 0.497(28) 0.444(62) 0.447(71) 0.446(71) 0.610(112) 0.378(87) 0.549(80)

10�-pt cM4 ≠ 0 0.503(32) 0.481(65) 0.484(67) 0.484(67) 0.563(94) 0.449(67) 0.505(71)

10�-pt cM4 ¼ 0 0.480(20) 0.431(43) 0.433(52) 0.432(51) 0.550(80) 0.407(64) 0.498(57)

TABLE VII. Isovector magnetic moment of the nucleon, μp−n ≡ μp − μn, in units of the Bohr magneton from the seven fits to the
isovector form factor GMðQ2Þ and including the derived value for GMð0Þ. The rest is the same as in Table V.

Ensemble Dipole z3 z4 z5 z3þ4 z4þ4 z5þ4

a15m310 4.280(57) 4.295(57) 4.295(57) 4.295(57) 4.296(57) 4.296(57) 4.295(57)
a12m310 4.205(85) 4.303(94) 4.303(94) 4.303(94) 4.297(94) 4.310(94) 4.301(94)
a12m220L 4.215(65) 4.253(84) 4.253(84) 4.253(84) 4.257(85) 4.252(83) 4.253(84)
a12m220 4.103(125) 4.143(130) 4.143(130) 4.143(130) 4.134(130) 4.135(130) 4.141(130)
a12m220S 4.005(155) 4.256(182) 4.255(182) 4.255(182) 4.262(182) 4.262(182) 4.257(182)
a09m310 4.141(30) 4.141(31) 4.141(31) 4.141(31) 4.141(31) 4.140(31) 4.141(31)
a09m220 4.260(60) 4.292(66) 4.292(66) 4.292(66) 4.291(66) 4.292(67) 4.292(66)
a09m130W 4.086(71) 4.088(75) 4.087(75) 4.087(75) 4.095(74) 4.084(75) 4.089(75)
a06m310 4.044(149) 3.985(159) 3.985(159) 3.985(159) 3.989(157) 3.986(160) 3.985(159)
a06m310W 4.145(124) 4.163(126) 4.163(126) 4.163(126) 4.163(125) 4.161(126) 4.163(125)
a06m220 3.938(93) 3.941(94) 3.941(94) 3.941(94) 3.940(94) 3.941(94) 3.941(94)
a06m220W 4.119(131) 4.113(132) 4.113(132) 4.113(132) 4.113(132) 4.112(132) 4.113(132)
a06m135 4.100(115) 4.078(113) 4.077(113) 4.077(113) 4.078(112) 4.079(113) 4.076(113)

13-pt cμ4 ≠ 0 3.962(79) 3.930(81) 3.929(81) 3.929(81) 3.932(81) 3.927(81) 3.930(81)
13-pt cμ4 ¼ 0 3.950(79) 3.918(80) 3.917(80) 3.917(80) 3.920(80) 3.915(80) 3.917(80)

11-pt cμ4 ≠ 0 3.975(84) 3.940(86) 3.939(86) 3.939(86) 3.942(86) 3.937(86) 3.939(86)
11-pt cμ4 ¼ 0 3.968(84) 3.933(86) 3.932(86) 3.932(86) 3.935(85) 3.930(86) 3.933(86)

10-pt cμ4 ≠ 0 4.167(151) 3.982(164) 3.982(164) 3.982(164) 3.987(164) 3.976(164) 3.982(164)
10-pt cμ4 ¼ 0 3.999(122) 3.879(129) 3.877(129) 3.877(129) 3.884(129) 3.874(129) 3.879(129)

10�-pt cμ4 ≠ 0 3.970(85) 3.942(86) 3.941(86) 3.941(86) 3.945(86) 3.940(86) 3.942(86)

10�-pt cμ4 ¼ 0 3.964(84) 3.933(86) 3.932(86) 3.932(86) 3.936(85) 3.930(86) 3.933(86)

NUCLEON ELECTROMAGNETIC FORM FACTORS IN THE … PHYS. REV. D 101, 014507 (2020)

014507-19



FIG. 10. Results of the dipole, z4 and z5þ4 fits to the unrenormalized isovectorGEðQ2Þ versusQ2 (GeV2) for ten ensembles. The top two
panels show data from the a15m310 and a12m310 ensembles; the second row from a12m220 and a12m220L ensembles; the third row
from a09m310 and a09m220; the fourth row from a06m310 and a06m220; and the fifth row from the two physical mass ensembles
a09m130 and a06m135. Estimates of the dipole massME (GeV) and the charge radius rE (fm) from the three fits are given in the labels.
The numbers within the square parentheses are the χ2=DOF of the fit. Data points without circles around them are not included in the fits as
explained in the text.
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FIG. 11. Results of the dipole, z4 and z5þ4 fits to the unrenormalized isovector GMðQ2Þ versus Q2 (GeV2) for ten ensembles. The rest
is the same as in Fig. 10.
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used only as consistency checks. The dipole, z4 and z5þ4 fits
and results are shown in Figs. 10 and 11 for ten ensembles.
The data for the ratio μp−n × GEðQ2Þ=GMðQ2Þ are

shown in Fig. 12. Experimental data indicate that this ratio
for the proton is estimated to cross zero around Q2 ¼
8 GeV2 [44]. Our data for the isovector combination do
show a negative slope over the region Q2 ≲ 0.6 GeV2;
nevertheless, data at larger Q2 are needed to determine if
and where the ratio crosses zero. As discussed in Sec. IV B,
we have used this “linear” behavior at small Q2 to estimate
GMð0Þ from the ratio, including which helped stabilize the
fits to GMðQ2Þ. In the next section, we discuss the CCFV
fits used to get the physical estimates.

VI. RESULTS FOR hr2Ei, hr2Mi AND μ

To obtain results for hr2Ei, hr2Mi and μ in the limits a → 0,
Mπ → 135 MeV and MπL → ∞, we make a simultaneous
(CCFV) fit in these three variable to the data given in
Tables V–VII. Given the spread in the lattice parameters of
the 11 ensembles analyzed, we include the leading-order
correction term in each of the three variables, i.e., fits with
four free parameters, cE;M;μ

i . The fit Ansatz for the electric
mean-square charge radius used is

hr2Eiða;Mπ; LÞ ¼ cE1 þ cE2aþ cE3 lnðM2
π=λ2Þ

þ cE4 lnðM2
π=λ2Þ expð−MπLÞ; ð25Þ

where the mass scale λ is chosen to beMρ ¼ 775 MeV and
the form of the chiral and FV corrections are taken from
Refs. [45–47]. For the magnetic mean-square charge
radius, we use

hr2Miða;Mπ; LÞ ¼ cM1 þ cM2 aþ cM3
Mπ

þ cM4
Mπ

expð−MπLÞ;

ð26Þ

where the leading dependence on Mπ is taken from
Refs. [45,46]. Lastly, the Ansatz used for the magnetic
moment is

μða;Mπ; LÞ ¼ cμ1 þ cμ2aþ cμ3Mπ

þ cμ4Mπ

�
1 −

2

MπL

�
expð−MπLÞ; ð27Þ

where the forms of the chiral and finite-volume correction
terms are taken from Refs. [45,48]. We express all masses
in units of GeV and the lattice spacing in femtometers.
In all three CCFV fit Ansätze, Eqs. (25)–(27), heavy

baryon chiral perturbation theory (χPT) has been used only
to determine the form of the leading-order chiral correction.
For example, for μ, χPT predicts the slope cμ3 of the linear
dependence onMπ asMNg2A=ð4πF2

πÞ with Fπ ¼ 92.2 MeV
[49]; however, we leave cμ3 a free parameter. For hr2Ei and
hr2Mi, we do not have data at enough values ofMπ to test the
contribution of the different terms in the χPT prediction
[45] as discussed later in this section. To avoid over-
parameterization of the fit we, therefore, include only the
nonanalytical term in Eqs. (25) and (26). Our focus is on
obtaining estimates atMπ ¼ 135 MeV, and this is achieved
by relying on the data from the two physical mass
ensembles to anchor the chiral part of the fit.
In Tables V–VII, we also give the results of the CCFV

fits for the following four combinations of the 13 data
points:

(i) 13-point fit.—All 13 calculations are considered to
be independent, even though the a06m310 and
a06m220 ensembles have been analyzed twice with
different smearing sizes.

(ii) 11-point fit.—We use the average of the two values
for hr2Ei, hr2Mi and μ on the a06m310 and a06m220
ensembles as these have been analyzed twice. In this
averaging, we assume maximum correlation be-
tween data.

(iii) 10-point fit.—The coarsest ensemble, a15m310, is
removed from the 11 data points defined above.

(iv) 10�-point fit.–We remove the smallest volume en-
semble, a12m220S, from the 11 data points de-
fined above.

For each of these fits, we give results with (labeled extrap
cX4 ≠ 0) and without (labeled extrap cX4 ¼ 0) the finite-
volume correction. The values of the coefficients are given
in Table VIII. In the limit a → 0 and MπL → ∞, only the
terms proportional to cX1 and cX3 contribute. From these fits,
we observe the following:

(i) Of our estimate hr2Ei ≈ 0.59 fm2, roughly half comes
from cE1 and the other half from the chiral correction

FIG. 12. The ratio of isovector form factors GEðQ2Þ=GMðQ2Þ
multiplied by the experimental value of the magnetic moment
μp−n ¼ 4.7058. The deviation from unity atQ2 ¼ 0 is the amount
by which the lattice data underestimates μp−n.
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cE3 . Compared to the experimental value hr2Ei ≈
0.86 fm2 [see Eq. (D1)], about 0.27 fm2 is missing.

(ii) Of hr2Mi ≈ 0.46 fm2, roughly 60% comes from cM1
and the rest from cM3 . Compared to the experimental
value hr2Mi ≈ 0.85 fm2 [see Eq. (D1)], about
0.39 fm2 is missing.

(iii) There is a significant dependence of μ on the lattice
spacing a. As a result, we get a low value, μ ≈ 4
Bohr magneton, in the continuum limit.

(iv) The coefficient of the finite-volume term is poorly
determined, which is reflected in the larger error
estimates with cX4 ≠ 0. In all cases, the two types of
results overlap. To be conservative, we quote all final
results including the finite-volume term.

In Figs. 13–15, we show the CCFV fits versus a,Mπ and
MπL for three analyses: dipole, z4 and z5þ4. In addition, we

TABLE VIII. Values of the parameters, cE;M;μ
i , defined in

Eqs. (25)–(27) for the 11-point fit used to obtain hr2Ei, hr2Mi
and μ in the continuum limit from the dipole and z4 data.

hr2Ei cE1 (fm2) cE2 (fm) cE3 (fm2) cE4 (fm2)

Dipole 0.32(3) 0.62(12) −0.08ð1Þ 0.33(26)

z4 0.31(5) 0.50(23) −0.08ð2Þ 0.11(69)

hr2Mi cM1 (fm2) cM2 (fm) cM3 (fm2 GeV) cM4 (fm2 GeV)
Dipole 0.31(3) 0.32(18) 0.024(6) −0.14ð19Þ
z4 0.28(6) 0.77(32) 0.023(15) −0.09ð48Þ
μ cμ1 cμ2 (fm−1) cμ3 (GeV−1) cμ4 (GeV−1)
Dipole 3.93(11) 2.28(89) 0.33(40) −44ð39Þ
z4 3.91(11) 3.10(98) 0.22(42) −51ð45Þ

FIG. 13. The 11-point CCFV fits for hr2Ei to the dipole (top), z4 (middle) and z5þ4 (bottom) data given in Table V. In each panel, the
CCFV fit (pink band) is shownversus a single variable with the other two variables set to their values at the physical point. The extrapolated
values of hr2Ei are shown using the symbol red star. Fits in a single variable (a or Mπ) are shown as gray bands and the corresponding
extrapolated value by a black star. The solid red line is the prediction of χPT using the expressions given in Ref. [45].
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show fits versus a single variable a or M2
π (gray bands).

When the pink and gray bands are close or overlap, it
means that the dominant sensitivity of the CCFV fit is with
respect to the single variable of the gray band.
For hr2Ei, we also show the fit using the χPT expression

given in Ref. [45] as a solid red line in Fig. 13. The
variation with M2

π in the data obtained with the dipole, z4

and the z5þ4 fits is small over the range 135 < Mπ <
350 MeV and consistent with the prediction of χPT as
discussed in Sec. VI A and shown in Fig. 16: Over the
range 135 < Mπ < 350 MeV, the decrease in the log part
is partially compensated for by the increase in the analytical
contribution. Only belowMπ ∼ 135 MeV does the singular
term start to dominate.
The shape of the CCFV fit bands are similar for the

dipole, z4 and the z5þ4, except that the z-expansion data and
the fits have larger errors. A visual overview of all 13
individual results for hr2Ei and of the four CCFV fits is
presented in Fig. 17. The variation with a and Mπ in the

13 individual calculations is small and somewhat smaller in
the dipole than in the various z-expansion estimates.
For hr2Mi, the variation with a, Mπ and MπL for each of

the three cases, the dipole, z4 and the z5þ4, is small as
shown in Figs. 14 and 18. Again, as shown in Fig. 16, to
resolve the expected 1=Mπ chiral behavior [see Eq. (26)]
requires data belowMπ ∼ 135 MeV. Also, the CCFV fits to
the data from the threeQ2 fits, shown in Fig. 14, are similar.
The largest variation in μ is versus a as shown in Fig. 15.

Again, the fit bands are similar for the dipole, z4 and the
z5þ4 data. The positive slope versus a lowers the continuum
limit result with respect to the experimental value
μjexpt ¼ 4.7058. The size of the difference between lattice
data and experimental results suggests that discretization
and other systematic errors in GMðQ2Þ are underestimated.
From the summary of the results presented in Fig. 19, it is
clear that the largest uncertainty is in the smallest volume,
a12m220S, and the two physical mass, a09m130W and
a06m135, points.

FIG. 14. The 11-point CCFV fits for hr2Mi to the dipole (top), z4 (middle) and z5þ4 (bottom) data given in Table VI. The rest is the same
as in Fig. 13.
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FIG. 15. The 11-point CCFV fits for μp−n to the dipole (top), z4 (middle) and z5þ4 (bottom) data given in Table VII. The rest is the
same as in Fig. 13.

FIG. 16. The prediction of chiral perturbation theory for the isovector hr2Ei (left) and μhr2Mi (right) using the expressions given in
Ref. [45]. The contribution of the subterms, “constant” (blue dot-dot-dash line), “log” (black dash line), “analytical” (green dot-dash
line) and the “1=Mπ”, defined in the text, are shown separately. Their sum is shown by the solid red line. The red plus sign marks the
physical point Mπ ¼ 135 MeV. The values of the LEC used in these fits are given in the text.
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A. Lessons from chiral perturbation theory

It is instructive to compare our data to the predictions of
chiral perturbation theory given in Ref. [45]. In Fig. 16 we
show the chiral expansion for the isovector hr2Ei (μhr2Mi) as
a sum of three (four) terms: those independent of Mπ

(labeled constant), proportional to lnM2
π=M2

N (labeled log)
and terms proportional to powers of M2

π (labeled analyti-
cal). For μhr2Mi, there is a fourth term proportional to 1=Mπ .
In making these plots, the low-energy constants (LEC) used
are c4 ¼ 3.4 GeV−1, c6 ¼ 4.77, dr6 ¼ 0.74, er74 ¼ 1.65,
gA ¼ 1.276 and Fπ ¼ 92 MeV.
For hr2Ei, the constant term is negative (≈ − 0.49 fm2). In

the range Mπ ¼ 135–350 MeV, hr2Ei is approximately
constant at 0.9 fm2; in this interval, the growth in the
lnM2

π=M2
N term compensates for the decrease in the

analytical term. Below Mπ ≈ 135, the log term drives
the rise in the sum. As shown in Fig. 13, lattice data are
significantly smaller in magnitude but show a similar small
variation between Mπ ¼ 135–350 MeV. Because of this
small variation, and having data at only three Mπ values,

even including one additional analytical term, say the
leading one proportional to M2

π, in our CCFV fits would
overparameterize the fit. Furthermore, over this range, a
simple M2

π term would equally well mimic the sum of
the log and the analytical terms. To avoid overparamete-
rization, we have included only one of the possible
Mπ-dependent terms, the log, in our CCFV fits.
In the case of μhr2Mi [see Fig. 16 (right)], the log and

analytical terms are small and the log shows little variation.
The largest contributions come from the 1=Mπ and constant
terms. Since the 1=Mπ term is dominant and has the largest
variation with Mπ , we only include it in the CCFV fit
defined in Eq. (26).
In short, even though the χPT-based expressions used for

both hr2Ei and hr2Mi, given in Eqs. (25) and (26), keep only
the leading chiral correction term from the expressions in
Ref. [45], the variation in our data at three values of Mπ

spanning 135–315 MeV is small, and including more terms
would result in overparameterization. In this situation,
having lattice data at Mπ ≈ 135 MeV is crucial for con-
trolling the uncertainty in the chiral fit to the lattice data.

FIG. 17. A summary of the results for hr2Ei in units of fm2

presented in Table V from the 13 calculations and the four CCFV
fits. In each case we show results for three Q2 fits: the dipole, z4

and z5þ4.

FIG. 18. A summary of the results for hr2Mi in units of fm2

presented in Table VI from the 13 calculations and the four CCFV
fits. In each case we show results for three Q2 fits: the dipole,
z4 and z5þ4.
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Also, note that the errors we quote in the CCFV fit results
are comparable to those in the two physical mass points.

B. Extraction of final results for hr2Ei, hr2Mi and μ

To choose between z-expansion analysis with and with-
out sum rules, we note that the convergence of estimates
given in Tables V–VII, and shown in Fig. 9, is better

without sum rules, i.e., k ≥ 4 versus k ≥ 7 versus. Also,
hr2Ei, hr2Mi and μ should ideally be extracted from the
smallest possible range of Q2 near Q2 ¼ 0 containing a
sufficiently large number of data points. On the other hand,
the sum rules are included to get the right asymptotic
behavior as Q2 → ∞. Our final results are therefore
obtained as follows: We take the z4 result without sum
rules for the central value and the first error in it represents
the analysis uncertainty, i.e., the composite of ESC,Q2 and
CCFV fits. We also quote a second systematic uncertainty
to account for having used just the leading-order CCFV fits.
This is taken to be the largest of the following:

(i) The difference between the two values on the physical
mass ensembles, a09m130W and a06m135. The
second error estimate for hr2Mi is given by this
difference.

(ii) The difference between the value at a06m135 and
the continuum value given by the CCFV fit. This
gives the second error estimate for hr2Ei and for μp−n,
which show the largest variation versus a.

(iii) For the z expansion, we also considered the differ-
ence between the z3 (z5) and z4 values. These turn
out to be smaller than the estimates from the
previous two cases.

The final results, obtained by applying this prescription to
the 11-point CCFV fit values summarized in Tables V–VII,
are given in Table IX. For completeness, we also give, in
Table IX, the results for the Dirac and Pauli radii derived
using Eq. (12).
The central values for rEp−n, rMp−n and μp−n are about

17%, 19% and 16% smaller, respectively, than the phe-
nomenological values given in Eq. (D1) and the precise
experimental value in Eq. (9). Estimates from the dipole
and z-expansion fits, given in Table IX, are consistent;
however, the errors in hr2Ei and hr2Mi from the z-expansion
fits are much larger, and about half the difference from the
experimental or phenomenological values. The errors in
the dipole fits are small compared to the difference between
the lattice and the phenomenological and experimental
estimates. As discussed in a number of places above,

FIG. 19. A summary of the results for μ presented in Table VII
from the 13 calculations and the four CCFV fits. In each case we
show results for three Q2 fits: the dipole, z4 and z5þ4.

TABLE IX. Our final results for hr2Ei, hr2Mi and μ from the 11-point CCFV fit to the dipole and the z4 analysis data. The determination
of the second error in these two estimates is explained in the text. The combined analysis, defined by Eq. (28) with the z4 truncation for
the Q2 behavior, has a single overall error. The bottom half of the table gives results for the Dirac, hr21i, and Pauli, hr22i, radii obtained
using Eq. (12).

hr2Ei (fm2)
ffiffiffiffiffiffiffiffiffi
hr2Ei

p
(fm) hr2Mi (fm2)

ffiffiffiffiffiffiffiffiffiffi
hr2Mi

p
(fm) μ (Bohr magneton)

Dipole fit 0.586(17)(13) 0.765(11)(8) 0.495(29)(41) 0.704(21)(29) 3.975(84)(125)
z4 fit 0.591(41)(46) 0.769(27)(30) 0.450(65)(102) 0.671(48)(76) 3.939(86)(138)
Combined fit 0.564(114) 0.751(76) 0.459(189) 0.678(140) 3.922(83)

hr21i (fm2)
ffiffiffiffiffiffiffiffi
hr21i

p
(fm) hr22i (fm2)

ffiffiffiffiffiffiffiffi
hr22i

p
(fm)

Dipole fit 0.389(18)(15) 0.623(15)(12) 0.531(44)(63) 0.729(30)(43)
z4 fit 0.396(42)(49) 0.629(33)(37) 0.469(90)(141) 0.685(66)(103)
Combined fit 0.370(115) 0.609(94) 0.490(258) 0.700(184)
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differences of this magnitude can be accounted for if a
linear combination of the statistical and the various sys-
tematic errors is taken.
The encouraging results from our analysis are (i) the data

for both GEðQ2Þ and GMðQ2Þ are seen to converge toward
the Kelly parameterization as a and Mπ are decreased;
(ii) the stability of the z-expansion fits improves with
statistical precision—however, constraints on the coeffi-
cients ak are still needed; (iii) while it is hard to test the
nonanalytical chiral behavior predicted in Eqs. (25) and
(26) with data at only three values ofM2

π , having data at the
two physical mass ensembles anchors the CCFV fit and
provides control over the uncertainty in values obtained
from the fits.
A weakness of the lattice analysis is that GMð0Þ cannot

be calculated directly due to kinematic constraints. We have
motivated the use of a derived value of GMð0Þ to stabilize
fits to GMðQ2Þ. Looking ahead, the most significant
improvement needed for extracting all three quantities
with higher precision is generating data at smaller values
of Q2. This, unfortunately, requires ensembles with larger
spatial volumes and/or new approaches such as a lattice

formulation of the Dirac action with twisted boundary
conditions [50,51]. Both options are beyond the scope of
this work as they require new simulations.
Two variants of the above analysis are described

briefly next.

C. Alternate analysis: M2
Nhr2Ei and M2

Nhr2Mi
The dimensionless quantities M2

Nhr2Ei and M2
Nhr2Mi are

plotted in Fig. 20 versus M2
π . For comparison, the phe-

nomenological values for the isovector mean-square
charge radii given in Eq. (D1) imply M2

Nhr2Ei ≈ 19.5 and
M2

Nhr2Mi ≈ 17.3. If some of the systematics cancel in
the product, then one may get smaller variation with a
and Mπ . The data forM2

Nhr2Ei andM2
Nhr2Mi in Fig. 20 show

that there is significant variation with Mπ . Lacking a well-
motivated fit Ansatz, a reasonable option is to take the
average of the values from the two physical mass ensembles.
These estimates are again low: M2

Nhr2Eijdipole ¼ 13.75ð32Þ,
M2

Nhr2Eijz4 ¼ 12.16ð1.22Þ, M2
Nhr2Mijdipole ¼ 11.34ð38Þ,

and M2
Nhr2Mijz4 ¼ 9.40ð1.50Þ. Similar values are

obtained on multiplying the results given in Table IX by

FIG. 20. The data for the dimensionless quantities M2
Nhr2Ei and M2

Nhr2Mi are plotted versus M2
π . The top two panels show the data

obtained using the dipole fit, and the lower two using the z4 fit.
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M2
N ¼ 22.7 fm−2. Given that the errors are also similar and

because these estimates neglect possible a dependence, we
do not find this variant of the analysis as providing an
obvious improvement.

D. Combined Q2-CCFV fit

We also carried out a combined Q2-CCFV fit to the
GEðQ2Þ and GMðQ2Þ data from the 13 calculations using a
product of the z expansion for the Q2 behavior and the
functional forms for the CCFV Ansatz given in Eqs. (25)
and (26):

Gðz; ηÞ ¼
XM
k¼0

dkðηÞzk: ð28Þ

Here η represents the vector of variables in the CCFV fit,
and each coefficient dk of the z expansion has a CCFV
expansion of the form given in Eq. (25) or in Eq. (26). For
example, for the four-term CCFV Ansatz given in Eq. (25),
η ¼ ð1; a; logðM2

π=λ2Þ; logðM2
π=λ2Þe−MπLÞ, and the com-

bined fit has 20 parameters for the z4 analysis. In perform-
ing these fits, we used Gaussian priors with mean 0 and

width 5, in their appropriate units, for all the parameters.
The resulting central values of the parameters were within
this range.
The central values of the results with and without the

finite-volume term are consistent; however, the errors with
the finite-volume correction term included are about a
factor of 2 larger. In Fig. 21, we show, for the z4 case, the
combined fits neglecting the finite-volume correction term.
The results of these combined fits are summarized in
Table IX and found to be consistent with those obtained
by doing the z4 and CCFV fits separately (labeled z4 fit).

VII. COMPARISON WITH PREVIOUS WORK

There have been a number of lattice QCD calculations of
electric and magnetic isovector form factors of the nucleon.
Recent ones include LHPC’14 [11], Mainz’15 [12],
LHPC’15 [52], ETMC’17 [53], LHPC’17 [54], PACS’18
[55], PACS’18A [56] and ETMC’18 [57]. In this work, we
restrict the comparison to calculations that have presented
results at or near the physical pion mass. Their lattice
parameters are given in Table X and the data for GEðQ2Þ
and GMðQ2Þ are plotted in Fig. 22. We focus on comparing

FIG. 21. The data for GEðQ2Þ=gV (left) and GMðQ2Þ=ðgV × 4.7058Þ (right) from the 13 calculations along with the combined Q2-
CCFV fit defined in Eq. (28). The solid red line and the turquoise error band show the z4-CCFV fit neglecting the finite-volume
correction term. The results for hr2Ei and hr2Mi (fm2) are given in the labels along with the [χ2=DOF] of the fit.

TABLE X. Lattice parameters of calculations that have presented results for GEðQ2Þ and GMðQ2Þ at or near the physical pion mass.

Ensemble ID a (fm) Mπ (MeV) L3 × T Mval
π L τ=a Nconf Nmeas Action

a09m130
(this work)

0.0871(6) 138(1) 643 × 96 3.90 f8; 10; 12; 14; 16g 1290 165 120 Clover-on-2þ 1
þ1-HISQ

a06m135
(this work)

0.0570(1) 136(2) 963 × 192 3.7 f16; 18; 20; 22g 675 43 200 Clover-on-2þ 1
þ1-HISQ

LHPC’17 [54] 0.093 135 643 × 64 4.08 f10; 13; 16g 442 56 576 2þ 1-clover
ETMC’18 [57] 0.0809(4) 138(1) 643 × 128 3.62 f12; 14; 16; 18; 20g 750 3–48 K 2þ1þ1-twisted mass
ETMC’17 [53] 0.0938(3) 130(1) 483 × 96 2.98 f10; 12; 14; 16; 18g 578–725 9–64 K 2-twisted mass
ETMC’18 [57] 0.0938(3) 130(2) 643 × 128 3.97 f12; 14; 16g 333–1040 5–17 K 2-twisted mass
PACS’18 [55] 0.0846(7) 146 963 × 96 6.01 f15g 200 12 800 2þ 1-clover
PACS’18A [56] 0.0846(7) 135 1283 × 128 7.41 f10; 12; 14; 16g 20 2.5–10 K 2þ 1-clover
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the data for GEðQ2Þ and GMðQ2Þ as these are the primary
quantities calculated. Since the calculations have been done
with different lattice actions, the data, even at the physical
pionmass, are only expected to agree in the continuum limit.
We find that, in fact, they agree remarkably well, much

better than our analyses of various systematics would
indicate.
All the data included in the comparison are shown in the

four panels in Fig. 22. From the plot versusQ2, we draw the
following overall conclusions:

FIG. 22. Comparison of the data for the renormalized isovectorGEðQ2Þ andGMðQ2Þ from collaborations that have published results at
Mπ ≈ 135 MeV. The lattice parameters of the various calculations are given in Table X. The data are plotted as a function of Q2 (top
row) and Q2=M2

N (bottom row). The solid line is the Kelly fit to the experimental isovector data.

TABLE XI. Results for rE, rM, μ and the nucleon mass from published calculations at or near the physical pion mass. The quantity
used to set the lattice scale is given in the third column, with r20Fðr0Þ and r1 extracted from the heavy quark potential [42]. ETMC’18
[57] results are derived from a single fit in Q2 to the combined 2- and (2þ 1þ 1)-flavor data, i.e., neglecting the dependence on the
number of flavors Nf and the difference in the lattice spacing a. The LHPC’17 [54] results are from a single ensemble and taken from
their analysis using the summation method to control ESC. The calculation of the scale used in LHPC’17 is given in Ref. [58] and that by
the PACS Collaboration in Ref. [59].

Ensemble ID MN (MeV) a from Q2 fit rE (fm) rM (fm) μ

a09m130W 953(4) r1 z4 0.769(27)(30) 0.671(48)(76) 3.94(9)(14)
a06m135 951(10) r1 z4 0.765(11)(8) 0.704(21)(29) 3.98(8)(13)
LHPC’17 [54] 912(8) MΩ z5 0.887(49) 4.75(15)
ETMC’18 [57] 929(6) r20Fðr0Þ ¼ 1.65 Dipole 0.802(19)(12)(1) 0.714ð26Þð88Þð16Þð1

0
Þ 3.96ð14Þð3Þð7Þð1

0
Þ

ETMC’17 [53] 941(2) r20Fðr0Þ ¼ 1.65 Dipole 0.808(30)(19) 0.732(36)(45) 4.02(21)(28)
PACS’18 [55] 958(10) MΩ z8jz7 0.915(99) 1.437(409) 4.81(79)
PACS’18A [56] 942(11) MΩ Dipole 0.875(15)(28) 0.805(32)(274) 4.417(138)(317)
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(i) The GEðQ2Þ data approach the Kelly curve from
above, whileGMðQ2Þ from below forQ2<0.2GeV2.

(ii) No significant dependence on the number of flavors
or the lattice spacing a is manifest.

(iii) The PACS’18A data at Q2 < 0.1 GeV2, obtained
using a large volume, show a qualitatively different
behavior and lie closer to the Kelly curve. In this
range of Q2, the data are almost linear and highly
correlated. They give a larger slope in both GMðQ2Þ
and GEðQ2Þ and thus larger hr2Ei and hr2Mi.

(iv) We can also compare data at Q2 ≈ 0.05 and
0.1 GeV2 from our a09m130W and a06m135 en-
sembles, from ETMC’18 [57], and the low-error
LHPC’17 [54] points with that from PACS’18A.
Given the size of the statistical and systematic errors
in individual data points, it is not clear if the
observed small differences are significant at these
two Q2 values.

Two points become clear on plotting the data versus
Q2=M2

N , as shown in the bottom two panels of Fig. 22.
First, the collapse of all the data into a single curve over the
whole range Q2=M2

N ≲ 0.8 GeV2 becomes even more pro-
nounced. Second, the deviation of this common curve from
the Kelly curve is smaller. Thus, not only do all our data from
the 13 calculations fall on a common curve when plotted
versusQ2=M2

N , as shown in Fig. 7, but so do data from four
other collaborations using different lattice actions and
volumes. A priori, a common curve would suggest that all
the systematics cancel, and the apparent differences between
the various calculations when the data are plotted versusQ2

was largely a consequence of how the lattice scale is set.
Deviations from the Kelly curve are, however, significant

in GEðQ2Þ for Q2 > 0.1 GeV2. Data for GMðQ2Þ data
undershoot for Q2 < 0.2 GeV2 and are consistent with the
Kelly curve above it. These differences are a 2 − 3σ effect
and comparable to the size of the shift when the data are
plotted versusQ2=M2

N or Q2. While a full understanding of
how the different systematics contribute and whether there
is one that dominates requires future more detailed calcu-
lations, we remind the reader that, during the course of our
analyses, we have pointed out systematics, for example due
to ESC and the deteriorating signal in both the two- and
three-point correlation functions at large q⃗2, that could give
rise to uncertainties of this size.
We have already shown that the pattern of ESC in our

data is sensitive to the value of Q2. In particular, as
discussed in Sec. IV, the ESC in correlators from which
GE is extracted increases with momentum and the con-
vergence is from above. On the other hand, it is large at
small q⃗2 in correlators from which we get GM and the
convergence is from below. Thus, possible residual ESC
could account for the observed deviation from the
Kelly curve.
ForGE, there is a clear benefit to performing calculations

at small Q2. As illustrated in Figs. 25 and 26 for the

physical mass ensembles, the ESC in GEðQ2Þ is still small
for n⃗2 ¼ 2 corresponding to Q2 ≈ 0.1 GeV2. [Note that for
q⃗2 ¼ 0, the ESC is essentially zero as the vector charge is
conserved and the local current has no OðaÞ correction in
forward matrix elements.] There is, however, an increase in
the ESC with decreasing a as shown in the bottom panels
in Fig. 27. On the other hand, the ESC inGMðQ2Þ is large at
smallQ2 as shown in Fig. 29, and the resulting larger errors
in GMðQ2Þ reflect that uncertainty. In contrast, the
PACS’18A calculation claims that the ESC is removed
in both form factors by using a simple but tuned
smearing of sources (exponentially falling along the axis
in Coulomb gauge), for generating quark propagators as
opposed to the excited-state pattern observed using a
gauge-invariant Gaussian smearing in our and the other
four calculations summarized in Table X. Clearly, the
efficacy of the exponential source used by PACS’18A to
remove essentially all ESC needs to be validated.
The collapse of the data into a single curve indicates that

finite-volume corrections are already small for MπL ≥ 4,
and the main advantage of the large volume used in
the PACS’18A [56] study is access to data at low Q2.
These data for Q2 < 0.1 GeV2 represent a qualitative
change in the behavior of both GMðQ2Þ and GEðQ2Þ
which leads to larger values for hr2Ei and hr2Mi. Note that
since the PACS’18A estimateMN ¼ 942ð11Þ MeV is close
toMphy

N ¼ 939 MeV, their data do not move with respect to
the Kelly curve when plotted versus Q2=M2

N or Q2.
The authors attribute the much smaller errors, compared
to the much higher statistics PACS’18 [55] calculation,
to the use of the all-mode-averaging method and to a
better tuned smearing Ansatz (exponential in Coulomb
gauge) for the quark sources used to calculate the quark
propagators. Since the advantage of simulations on
large volume lattices to get data at low Q2, and thus
reliable estimates for hr2Ei and hr2Mi, is obvious, it is im-
portant to validate the relatively low-statistics PACS’18A
calculation.

VIII. CONCLUSIONS

We have presented calculations of the isovector electric
and magnetic form factors Gp−n

E and Gp−n
M , using 13

calculations on 11 ensembles of 2þ1þ1 flavors of HISQ
[14] fermions generated by the MILC Collaboration [15].
These ensembles are at four lattice spacings, a ≈ 0.06, 0.09,
0.12 and 0.15 fm, and three values of pion masses,
Mπ ≈ 135, 220 and 310 MeV, and the spatial lattice size
covers the range 3.3≲MπL≲ 5.5. Each of these ensem-
bles have been analyzed usingOð105Þmeasurements using
the truncated-solver method with bias correction. Using
these high-statistics data, we demonstrate control over
excited-state contamination and perform a simultaneous
fit in lattice spacing a, pion mass Mπ and lattice size MπL
to get results at the physical point that can be compared
with experimental values.
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Our work constitutes three improvements:
(i) The much higher statistics allowed us to understand

and control ESC better by keeping three states in the
spectral decomposition of the three-point correlation
functions.

(ii) Calculations at multiple values of a and Mπ show
that the variations in the data versus these two
parameters is small for Q2 ≳ 0.1 GeV2 as illustrated
in Figs. 2–5 and 7.

(iii) We have presented first results with a CCFV fit to
control the lattice artifacts due to discretization,
chiral and finite-volume effects. The data for hr2Ei
and hr2Mi and the CCFV fits in Figs. 13 and 14 show
the variation versus Mπ is small and consistent with
the predictions of chiral perturbation theory [45]
shown in Fig. 16. In the χPT prediction, the non-
analytical term in Mπ , included in Eqs. (25) and
(26), becomes significant only for Mπ < 135 MeV,
whereas over the range 350 > Mπ > 135 MeV, its
growth is compensated for by the decrease in the
analytical corrections. With such competing contri-
butions in Mπ, the data on the two physical pion
mass ensembles at a ≈ 0.09 and 0.06 fm play a
significant role in controlling the uncertainty of our
final results.

(iv) The data for μ exhibit significant dependence on a as
shown in Fig. 15. The result in the continuum limit
obtained from the CCFV fit is smaller than the
precise experimental value by ∼16%.

Our final results for the mean-square charge radii, hr2Ei
and hr2Mi (or equivalently the Dirac, hr21i, and Pauli, hr22i,
radii derived from them), and the magnetic moment μ are
given in Table IX. Using the dipole Ansatz and the z
expansion to fit the Q2 dependence give consistent results;
however, the errors from the latter approach are about 2–3
times larger. The central values for hr2Ei, hr2Mi and μ are
about 17%, 19% and 16%, respectively, smaller than the
phenomenological values given in Eq. (D1) and the precise
experimental value in Eq. (9). The trend in the data for
the form factors, however, is toward the experimental
values as the Q2, lattice spacing and the light-quark mass
are decreased.
With higher-precision data, the major improvement

observed has been in the z-expansion estimates.
Including constraints on the fit parameters, jakj≲ 5, the
z-expansion fits for different truncations became consistent.
Based on an analysis of the experimental data with the same
fit Ansätze and evaluation of various systematics in the
lattice calculations, the extraction of charge radii and
magnetic moment could have Oð10%Þ errors due to the
modeling of the Q2 behavior. Errors of similar size could
also be due to statistics and ESC fits. Keeping in mind these
estimates of the magnitude of possible systematics, the total
uncertainty in estimates given in Table IX, especially for
the dipole fit, are likely underestimated. Consequently, we

do not consider the current deviations from the exper-
imental values significant.
The magnitude of the systematic associated with what

variable is used to set the lattice scale is exposed by plotting
the data versus Q2 and Q2=M2

N . As shown in Fig. 7
(bottom), the collapse of our data from the 13 calculations
onto a common curve is better when plotted versus
Q2=M2

N . In Fig. 22, we further show that both GE and
GM from all lattice calculations done close to the physical
pion mass also collapse onto this curve. This collapse of the
data is remarkable considering that the number of quark
flavors, lattice size and lattice spacing are different in the
various calculations. On the other hand, the shift in the data
when GE and GM are plotted versus Q2=M2

N as compared
to Q2 is a discretization effect; i.e., the scale obtained from
MN is different from that obtained by the various collab-
orations using the quantities shown in Table XI. This
suggests that there are systematic uncertainties that are at
least as large as the shift. The deviation of the combined
lattice data from the Kelly curve is significantly reduced
when plotted versus Q2=M2

N .
Our analysis indicates that the improvement in estimates

reported by the PACS’18A [56] Collaboration from a
calculation with a large lattice size, MπL ¼ 7.41, is due
to data at smallerQ2; i.e., the agreement between data from
different collaborations presented in Sec. VII indicates that
finite-volume corrections are already small for MπL ≈ 4.
The PACS’18A data show no movement with respect to the
Kelly curve because their central value for the nucleon
mass is consistent with the physical value. This may be
because the lattice scale is set using the Omega baryon
mass MΩ, which is likely correlated with MN , rather than
indicating that discretization errors are already small at
a ≈ 0.09 fm. Given the low statistics, we consider it
important to validate, in future calculations, their data
and confirm that fits to data between 0.01 < Q2 <
0.1 GeV2 give estimates of hr2Ei and hr2Mi that are con-
sistent with the experimental values.
To conclude, our analysis highlights three points. First,

all lattice data are remarkably consistent and the form
factors show little dependence on the number of flavors,
lattice spacing, quark mass or the lattice volume, at least for
data with Mπ ≲ 300 MeV and MπL≳ 4. Second, the size
of the remaining deviations in GE and GM between the
lattice data and the Kelly curve are consistent with the
various quantifiable systematics such as excited-state con-
tamination and deteriorating signal at large q⃗. Third, current
results provide confidence that there are no hidden sys-
tematics that afflict the calculations of form factors on the
lattice.
With the lattice methodology in place, improved esti-

mates for form factors will be obtained in future high-
statistics calculations that provide data at Q2 < 0.1 GeV2

and use nucleon interpolating operators that have smaller
excited-state contamination.
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APPENDIX A: LATTICE PARAMETERS

In this Appendix, we summarize, in Table XII, the
parameters of the 11 ensembles used in the calculation.
Two ensembles, a06m310 and a06m220, have been

analyzed twice with different smearing sizes as listed in
Table XIII, where we give the parameters used in the
generation of the clover propagators. These two tables are
essentially the same as in Ref. [19] and have been
reproduced here to keep the discussion self-contained.

TABLE XII. Parameters, including the Goldstone pion mass Msea
π , of the 11 (2þ 1þ 1)-flavor HISQ ensembles generated by the

MILC Collaboration and analyzed in this study are quoted from Ref. [15]. All fits are made versus Mval
π and finite-size effects are

analyzed in terms of Mval
π L. Estimates of Mval

π , the clover-on-HISQ pion mass, are the same as given in Ref. [40] and the error is
governed mainly by the uncertainty in the lattice scale. In the last four columns, we give, for each ensemble, the values of the source-sink
separation tsep used in the calculation of the three-point functions, the number of configurations analyzed, and the number of
measurements made using the high-precision (HP) and the low-precision (LP) truncation of the inversion of the clover operator. The
smearing size used in the calculation of the quark propagator is given in Table XIII.

Ensemble ID a (fm) Msea
π (MeV) Mval

π (MeV) L3 × T Mval
π L τ=a Nconf NHP

meas NLP
meas

a15m310 0.1510(20) 306.9(5) 320.6(4.3) 163 × 48 3.93 f5; 6; 7; 8; 9g 1917 7668 122 688
a12m310 0.1207(11) 305.3(4) 310.2(2.8) 243 × 64 4.55 f8; 10; 12g 1013 8104 64 832
a12m220S 0.1202(12) 218.1(4) 225.0(2.3) 243 × 64 3.29 f8; 10; 12g 946 3784 60 544
a12m220 0.1184(10) 216.9(2) 227.9(1.9) 323 × 64 4.38 f8; 10; 12g 744 2976 47 616
a12m220L 0.1189(09) 217.0(2) 227.6(1.7) 403 × 64 5.49 f8; 10; 12; 14g 1000 4000 128 000

a09m310 0.0888(08) 312.7(6) 313.0(2.8) 323 × 96 4.51 f10; 12; 14; 16g 2264 9056 114 896
a09m220 0.0872(07) 220.3(2) 225.9(1.8) 483 × 96 4.79 f10; 12; 14; 16g 964 7712 123 392
a09m130W 0.0871(06) 128.2(1) 138.1(1.0) 643 × 96 3.90 f8; 10; 12; 14; 16g 1290 5160 165 120

a06m310 0.0582(04) 319.3(5) 319.6(2.2) 483 × 144 4.52 f16; 20; 22; 24g 1000 8000 64 000
a06m31W f18; 20; 22; 24g 500 2000 64 000
a06m220 0.0578(04) 229.2(4) 235.2(1.7) 643 × 144 4.41 f16; 20; 22; 24g 650 2600 41 600
a06m22W f18; 20; 22; 24g 649 2600 41 600
a06m135 0.0570(01) 135.5(2) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 675 2700 43 200

TABLE XIII. The parameters used in the calculation of the
clover propagators. The hopping parameter for the light quarks,
κl, in the clover action is given by 2κl ¼ 1=ðml þ 4Þ. ml is tuned
to achieve Mval

π ≈Msea
π . The parameters used to construct Gaus-

sian smeared sources [39], fσ; NKGg, are given in the fourth
column where NKG is the number of applications of the
Klein-Gordon operator and the width of the smearing is con-
trolled by the coefficient σ, both in Chroma convention [60]. The
resulting root-mean-square radius of the smearing in lattice units,

defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
dr r4S†S=

R
dr r2S†S

q
, is given in the last column.

ID ml cSW
Smearing
parameters

rms smearing
radius

a15m310 −0.0893 1.05094 {4.2, 36} 4.69
a12m310 −0.0695 1.05094 {5.5, 70} 5.96
a12m220S −0.075 1.05091 {5.5, 70} 5.98
a12m220 −0.075 1.05091 {5.5, 70} 5.96
a12m220L −0.075 1.05091 {5.5, 70} 5.96

a09m310 −0.05138 1.04243 {7.0,100} 7.48
a09m220 −0.0554 1.04239 {7.0,100} 7.48
a09m130W −0.058 1.04239 {7.0,100} 7.50

a06m310 −0.0398 1.03493 {6.5, 70} 7.22
a06m310W −0.0398 1.03493 {12, 250} 12.19
a06m220 −0.04222 1.03493 {5.5, 70} 6.22
a06m220W −0.04222 1.03493 {11, 230} 11.24
a06m135 −0.044 1.03493 {9.0,150} 9.56
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APPENDIX B: NUCLEON SPECTRUM

Our strategy for obtaining the nucleon spectrum is to
(i) use the largest possible Euclidean time interval between
the source and sink allowed by the stability of the
covariance matrix and (ii) keep as many states in the
spectral decomposition without overparameterizing the fits.
Comparison of results from 2-, 3- and 4-state fits and the
corresponding Euclidean time interval used in the fits is
given in Ref. [19]. Since some of the results have
changed slightly due to additional statistics, the masses
of the nucleon ground and three excited states pertinent
to this study are summarized in Table XIV. As shown in
Ref. [19], the ground-state masses are found to be stable
under changes in the number of states kept in the spectral
decomposition of the two-point function and the
Euclidean time interval used in the fits since the data
exhibit a reasonable plateau in the effective mass plot for
all the ensembles. Nevertheless, we note the possibility
that even the ground-state energy can shift if there exist
low-mass-excited states that are not captured by our
4-state fits.
On the other hand, with current statistics, the excited-

state energies are sensitive to the details of the fits. The
main reason is the small number, 6–10, of points at short
times that are available to determine the six excited-state
parameters in a 4-state fit before the ground-state dominates
the two-point function. This is particularly true of the
a15m310, a09m310 and a06m310W ensembles. In gen-
eral, even the first excited-state mass depends on the fit
range and the number of states kept. Within our strategy of
using the largest possible time interval and up to four states
in the spectral decomposition, the first excited-state mass is
also found to be consistent between the 3- and 4-state fits as
shown in Ref. [19].
In the fits to the nucleon two-point function, we find a

strong correlation between the excited-state energies and
the amplitudes. Thus, we often got a number of values of
the fit parameters with similar χ2=DOF, in fact regions of
nearly the same χ2=DOF. We, therefore, resorted to the
empirical Bayesian procedure discussed in Ref. [19]. Even
using priors poses a challenge: what priors to choose in the
3- and 4-state fits, especially when there are near flat
directions in the parameter space. On varying the priors, we
found that their choice can impact the second and third
excited-state parameters. To address such variation, we
iterated the values of the priors and used wide widths. Our
main goal was to establish a stable first excited-state energy
under a reasonably large range of variations. To summarize,
empirical Bayesian priors with wide widths were used for
the amplitudes and energies of the three excited states in the
4-state fit. With the current data, we find that estimates of
the parameters of the third and fourth states are not fully
independent of the input priors and expect much higher-
precision data are needed to get stable estimates. In each fit,
the propagation of errors, taking into account possible

correlations between parameters, is included using the
jackknife procedure; however, an uncertainty accounting
for the spread in the parameters under variations of the
priors is not included in the final results.
Overall, the estimates for the excited-state masses

extracted from fits to two-point function are larger than
values expected based on phenomenological arguments.
For example, the first excited-state mass listed in
Table XIV, while stable, is larger than the Nπ and
Nππ multiparticle states and the N(1440), “Roper”: For
our physical mass ensembles these should all be
between 1.2 and 1.5 GeV. This is of concern because
a reliable estimate of the first excited-state energy is
the key variable in 2- or 3�-state fits to control ESC in
the three-point functions, where we find that the j0i ↔
j1i transition is the dominant artifact.
The two physical mass ensembles give estimates forMN

that are about 13 MeV larger than the physical value
Mphy

N ¼ 939 MeV. To investigate the dependence ofMN on
the lattice spacing, pion mass and lattice size, we have
carried out two fits to the ground-state nucleon mass M0

given in Table XIV:

MN ¼c0þc1aþc2a2þc3M2
πþc4M3

πþc5M2
πe−MπL ðB1Þ

and

MN ¼ Mphys
N þ c1aþ c2a2 þ c3ðM2

π − ðMphys
π Þ2Þ

þ c4ðM3
π − ðMphys

π Þ3Þ þ c5M2
πe−MπL; ðB2Þ

where the second relation enforces Mphys
N ¼ 939 MeV at

Mπ ¼ Mphys
π ≡ 135 MeV. We keep the first two correction

terms, proportional to fa; a2g and fM2
π;M3

πg, to quantify
possible curvature in the data while not overparameterizing.

TABLE XIV. Nucleon ground and excited-state masses in GeV
extracted from a 4-state fit.

ID M0 M1 M2 M3

a15m310 1.0848(28) 2.038(62) 2.40(8) 2.88(8)
a12m310 1.0888(44) 1.576(89) 2.55(16) 3.18(16)
a12m220L 1.0165(35) 1.691(175) 2.76(26) 3.44(26)
a12m220 1.0133(52) 1.634(116) 2.75(27) 3.42(27)
a12m220S 0.9915(86) 1.499(78) 3.00(22) 3.66(22)
a09m310 1.1001(31) 2.065(128) 3.61(32) 4.78(33)
a09m220 1.0172(45) 1.718(91) 2.56(16) 3.44(17)
a09m130W 0.9532(39) 1.761(88) 2.98(15) 3.81(15)
a06m310 1.1014(102) 1.646(105) 2.79(16) 3.73(22)
a06m310W 1.1109(61) 2.054(145) 3.00(24) 3.99(27)
a06m220 1.0365(65) 1.874(73) 3.05(11) 3.96(19)
a06m220W 1.0345(72) 1.816(144) 2.70(24) 3.69(31)
a06m135 0.9512(100) 1.734(89) 3.01(13) 4.01(17)
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The values of a for the HISQ ensembles used to convert the
lattice data to GeV are taken from Ref. [15] and given in
Table XII. The two fits are shown in Fig. 23 versusM2

π , and
the values of the fit parameters, with and without the a2

term, are given in Table XV. The constrained CCFV fit,
with and without the a2 term, is plotted versus a in Fig. 24.
With data at just three values of the pion mass and

four values of a, most of the fit parameters, ci, are
poorly determined as is evident from Table XV.
Qualitatively, we note that the χPT predicted value for
the coefficient c4 ¼ 3g2A=ð32πF2

πÞ ¼ −5.716 using gA ¼
1.276 and Fπ ¼ 92.2 MeV, whereas both fits give smaller
values. Both curvature coefficients c2 and c4 have large
uncertainty. The coefficient of the finite-volume correction,
c5, has been estimated in Ref. [49] and its sign is negative,
consistent with our fits.
The unconstrained fit gives a large value, MN ¼

976ð20Þ MeV, at the physical point. This could be due
to unresolved systematics in extracting M0 and/or the need
for including higher-order chiral corrections in the CCFV
Ansatz. In short, these fits highlight the need for data at
more values of a, Mπ and MπL to constrain the fit

parameters and allow us to carry out a defensible CCFV
analysis of lattice calculations of the nucleon mass.
In addition to impacting the analysis of the ESC, the

nucleon spectrum also has bearing on the shape of the form
factors versus Q2 if the scale a used to convert Q2 to
physical units is different when extracted from different
quantities. In this work, we examine the consequence of the
mismatch between the lattice scale a set on each HISQ
ensemble using r1 [15] versus that from MN calculated
using Wilson-clover fermions as discussed above. The
variation when the form factors are plotted versus Q2 (with
a from r1) and versus Q2=M2

N (with a from MN) is shown
in Fig. 7 and discussed in Sec. V B.

APPENDIX C: ESC IN THE EXTRACTION OF
THE FORM FACTORS

In this Appendix, we show the data and the 3�-state fits
used to control the ESC in the extraction of the electric and
magnetic form factors. There are three sets of figures:

(i) The comparison of the ESC on the various ensem-
bles and at different values of the momenta is shown
in Figs. 25–30.

FIG. 23. CCFV fits (pink band) to the ground-state nucleon mass. The left panel shows the fit using Eq. (B1). In the right panel, the
nucleon mass is fit using Eq. (B2), i.e., constrained to beMphys

N ¼ 939 MeV atMπ ¼ 135 MeV. The gray band in each panel shows the
fit keeping only the chiral corrections, i.e., M2

π- and M3
π-dependent terms in Eqs. (B1) and (B2).

TABLE XV. Values of the parameters of the two CCFV fits to the nucleon mass defined in Eqs. (B1) and (B2). The second row in each
case, with a blank entry for c2, is the result of the fit without the a2 term.

Fit c0 [GeV] c1 ½GeV fm−1� c2 [½GeV fm−2�] c3 [GeV−1] c4 [GeV−2] c5 [GeV−1] MN [GeV] χ2=DOF [p value]

Eq. (B1) 0.931(22) −0.273ð391Þ 0.34(1.96) 2.72(49) −2.2ð1.3Þ −10.9ð5.1Þ 0.976(20) 0.45 [0.87]
Eq. (B1) 0.928(9) −0.206ð45Þ 2.73(49) −2.2ð1.3Þ −10.3ð4.0Þ 0.972(6) 0.39 [0.92]
Eq. (B2) 0.430(80) −3.14ð53Þ 2.88(5) −2.6ð1.3Þ −5.6ð4.2Þ 0.939 0.81 [0.59]
Eq. (B2) 0.017(40) 4.02(44) −5.3ð1.2Þ −13.8ð4.0Þ 0.939 4.65 [0.0]
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(ii) The improvement in the quality of the signal with
increase in the lattice size L is shown in Fig. 31
using data from the three ensembles a12m220L,
a12m220 and a12m220S. A study of finite-size
effects in the form factors using these three
ensembles is made in Fig. 32 and in the extrac-
tion of hr2Ei and hr2Mi using the dipole, z4 and
z5þ4 fits in Fig. 33.

(iii) A comparison of the ESCwith two different smearing
sizes is shown in Figs. 34 and 35 for thea06m310 and
a06m220 ensembles, respectively.

APPENDIX D: SUMMARY OF EXPERIMENTAL
FORM FACTORS

In this Appendix, we collect in one place the exper-
imental data for the form factors for the proton and the
neutron. In Fig. 37, we show the data for Gp

EðQ2Þ and
Gp

MðQ2Þ compiled by Higinbotham [43,61,62] from the
cross sections provided in the Lee-Arlington-Hill supple-
mental material [31], who rebinned the original data
obtained by the A1 Collaboration using the MAMI beam
at Mainz [3,63]. The neutron data, Gn

EðQ2Þ, are collected
from Refs. [64–66] andGn

MðQ2Þ from Refs. [67–92]. These
are shown in Fig. 38. From these data, we evaluate the
isovector form factors Gp−n

E ðQ2Þ and Gp−n
M ðQ2Þ, against

which our lattice data are compared.
The construction of the isovector form factors is done as

follows: We first fit the four sets of experimental data for
Q2 ≲ 1 GeV2 using the Kelly parameterization as shown in
Figs. 37 and 38. Using the resulting Kelly fits, we then
construct the isovector combinations Gp

E −Gn
E and

Gp
M −Gn

M. This parameterization is used throughout the
paper to compare the lattice data against. From this
procedure we get

rp−nE jexp ¼ 0.929ð27Þ;
rp−nM jexp ¼ 0.849ð11Þ: ðD1Þ

whereas, using the parameter values given in the original
Kelly fit [16], we get

rp−nE jexp ¼ 0.926ð4Þ;
rp−nM jexp ¼ 0.872ð7Þ: ðD2Þ

It is clear that our simple analysis gives larger error
estimates. Lattice results for the isovector combination
of the radii should be compared to the values given in
Eq. (D1) since these are also obtained using the same less-
sophisticated analysis.
The results of the dipole fits to the proton data shown in

Fig. 37 give rpE ∼ 0.833 and rpM ∼ 0.795, which are roughly
consistent with the careful analysis of electron-experiment
results [43] given in Eqs. (13) and (14) and the Kelly fits
shown in the bottom row of Fig. 37. Overall, the dipole
Ansatz does a good job of fitting the experimental GEðQ2Þ
data, and the deviation is less than 1% for Q2 < 1 GeV2.
The dipole fit to GMðQ2Þ is less good as shown by the
large χ2=DOF.
The convergence of the z-expansion fits, including

constraints on the ak, versus k is shown in Fig. 39.
Estimates with k ≥ 5 are stable for all three quantities.
The results from z-expansion fits, also shown in Fig. 37, are
marginally larger than those from the dipole and differ by a
few percent from those in Eqs. (13) and (14). The errors in
the z-expansion estimates are larger, especially with the
inclusion of the sum rules. The overall lesson from this
exercise of analyzing the experimental data using the
methodology used to analyze the lattice data is that an
uncertainty ofOð5%Þ could be present in our analysis using
either the dipole or the z-expansion fits.

FIG. 24. Constrained CCFV fits (pink band) to the ground-state nucleon mass plotted versus the lattice spacing a. The left panel shows
the fit using Eq. (B2), while in the right panel the a2 term is dropped from the fit Ansatz.
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FIG. 25. Comparison of the ESC and the extraction of the unrenormalized isovector form factor GE from ImVi as defined in Eq. (23)
(left panels) and from ReV4 defined in Eq. (24) (right panels). The a09m130W data are plotted versus t − τ=2 for six values of the
momenta, p2 ¼ n2ð2π=LaÞ2 with n2 ¼ 0, 2, 4, 6, 8, and 10. The values of tskip and τ used in the 3�-state fits are shown in the legends.
The horizontal gray band is the τ → ∞ value, and the colored lines are the fit result for τ ¼ 12, 14, 16. The range of the y axis is chosen
to be the same for the left panels whereas the total interval Δy ¼ 0.3 is kept the same for the right panels.
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FIG. 26. Comparison of the ESC and the extraction of the unrenormalized isovector form factor GE from ImVi as defined in Eq. (23)
(left panels) and from ReV4 defined in Eq. (24) (right panels). The data from the a06m135 ensemble are plotted versus t − τ=2 for six
values of the momenta. The rest is the same as in Fig. 25.
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FIG. 27. Data and the 3�-state fits to the unrenormalized electric form factor GE extracted from the ReV4 channel using Eq. (24). The
data with p2 ¼ ð2π=LaÞ2 for eight ensembles are shown as a function of t − τ=2. The y-axis total interval Δy ¼ 0.2 is the same in all the
panels. The rest is the same as in Fig. 25.
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FIG. 28. Data and the 3�-state fits to the unrenormalized isovector GE extracted from the Re V4 channel using Eq. (24). The data with
p2 ¼ 5ð2π=LaÞ2 for eight ensembles are plotted versus t − τ=2. The y-axis total interval Δy ¼ 0.35 is the same in all the plots. The rest
is the same as in Fig. 25.
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FIG. 29. Data and the 3�-state fits to the unrenormalized isovector GM extracted from the Re Vi channels using Eq. (22). The data for
p2 ¼ ð2π=LaÞ2 and for eight ensembles are plotted versus t − τ=2. The interval Δy ¼ 1.0 is the same for all the plots. The rest is the
same as in Fig. 25. The size of the ESC is observed to increase as Mπ is decreased.
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FIG. 30. Data and the 3�-state fits to the unrenormalized isovector GM extracted from the Re Vi channels using Eq. (22). The
data for p2 ¼ 5ð2π=LaÞ2 and for eight ensembles are plotted versus t − τ=2. The y-axis total interval Δy ¼ 1.4 is the same for
all the plots. The rest is the same as in Fig. 25. The pattern of the ESC changes with momentum as can be seen by comparing
with Fig. 29.
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FIG. 31. Data and the 3�-state fits to the unrenormalized isovector form factors GV4

E and GVi
M for the three ensembles

a12m220L, a12m220 and a12m220S. The first two rows show GE for n2 ¼ 1 and n2 ¼ 5, while the last two
show GM. The plots for a12m220L are the same as in Figs. 27–30. Note that the data for fixed n but different L cannot
be compared since Q2, and thus the value of the form factor, changes with the lattice size L. For fixed a and Mπ , the
data shift to smaller values of Q2 for a given n2 as listed in Table I. Consequently, the quality of the signal improves
with L.
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FIG. 33. Comparison of results of the dipole, z4 and z5þ4 fits to the unrenormalized isovector form factors GEðQ2Þ (top) and
GMðQ2Þ (bottom) plotted versus Q2 (GeV2). The three ensembles a12m220L, a12m220 and a12m220S have different volumes
but the same lattice spacing a ≈ 0.12 fm and pion mass Mπ ≈ 220 MeV. The radii rE and rM are in units of femtometers and the
masses ME and MN in GeV.

FIG. 32. The data for the renormalized electric (left) and magnetic (right) form factors from the a12m220S, a12m220 and
a12m220L ensembles are plotted versus Q2 to investigate possible dependence on the lattice volume. The dotted-dashed lines
show the z4 fits. For both form factors, the differences between the a12m220 (323 × 64) and a12m220L (403 × 64) ensemble
data are within the statistical uncertainty. The GMðQ2Þ=gV data from the smallest (243 × 64) volume show a roughly 1σ
difference.
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FIG. 34. Comparison of the signal and ESC versus the smearing size on the a06m310 ensemble. The top two rows show data

for the unrenormalized isovector GV4

E and the bottom two rows show GVi
M . Plots on the left are with the smearing parameter

σ ¼ 6.5 and on the right with σ ¼ 12 as defined in Table XIII. Plots in the first and third rows show data with n2 ¼ 1 and in
the second and fourth rows with n2 ¼ 5.

NUCLEON ELECTROMAGNETIC FORM FACTORS IN THE … PHYS. REV. D 101, 014507 (2020)

014507-45



FIG. 35. Comparison of the signal and ESC versus the smearing size on the a06m220 ensemble. Plots on the left are with the smearing
parameter σ ¼ 5.5 and on the right with σ ¼ 11 as defined in Table XIII. The rest is the same as in Fig. 34.
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FIG. 36. Comparison of results of the dipole, z4 and z5þ4 fits to the unrenormalized isovector form factorsGEðQ2Þ andGMðQ2Þ versus
Q2 in units of GeV2 for the two different Gaussian smearing sizes given in Table XIII. The top two rows show data from the a06m310
ensemble and the bottom two rows from the a06m220 ensemble. In each row, the panels on the right show the data with the larger
smearing size. The radii rE and rM are in units of femtometers and the masses ME and MN in GeV.
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FIG. 37. The experimental data for the electric (left) and magnetic (right) form factors Gp
EðQ2Þ and Gp

MðQ2Þ for the proton are plotted
versusQ2. These data [43] are a rebinned version of the data from the A1 Collaboration at Mainz [3] provided by Higinbotham [43]. The
top row shows the results of the seven fits used by us to analyze the lattice data. The bottom row shows the same data fit with the Kelly
parameterization where “Kelly 2004” refers to using the parameters given in Ref. [16].

FIG. 38. The data for the electric (left) and magnetic (right) form factors of the neutron, Gn
EðQ2Þ and Gn

MðQ2Þ, plotted versus Q2

(GeV2). The Gn
EðQ2Þ data are compiled from Refs. [64–66], and the Gn

MðQ2Þ data from Refs. [67–92]. Also shown are the fits with the
Kelly parameterization.
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