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Free energy of the self-interacting relativistic lattice Bose gas at finite density
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The density of state approach has recently been proposed as a potential route to circumvent the sign
problem in systems at finite density. In this study, using the linear logarithmic relaxation (LLR) algorithm,
we extract the generalized density of states, which is defined in terms of the imaginary part of the action, for
the self-interacting relativistic lattice Bose gas at finite density. After discussing the implementation and
testing the reliability of our approach, we focus on the determination of the free energy difference between
the full system and its phase-quenched counterpart. Using a set of lattices ranging from 44 to 16*, we show
that in the low density phase, this overlap free energy can be reliably extrapolated to the thermodynamic
limit. The numerical precision we obtain with the LLR method allows us to determine with sufficient
accuracy the expectation value of the phase factor, which is used in the calculation of the overlap free
energy, down to values of O(107*3%). When phase factor measurements are extended to the dense phase, a
change of behavior of the overlap free energy is clearly visible as the chemical potential crosses a critical
value. Using fits inspired by the approximate validity of mean-field theory, which is confirmed by our
simulations, we extract the critical chemical potential as the nonanalyticity point in the overlap free energy,
obtaining a value that is in agreement with other determinations. Implications of our findings and potential
improvements of our methodology are also discussed.
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I. INTRODUCTION

Monte Carlo simulations of the system regularized on an
Euclidean spacetime lattice provide the most efficient method
for extracting quantitative information from nonsuper-
symmetric non-Abelian gauge theories at zero density. The
associated general methodology consists in generating con-
figurations according to the Boltzmann weight W(S) = e~5,
with S the Euclidean action of the system, and then computing
averages of observables over the generated sample. In order
for the method to work, the action S needs to be real. This
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guarantees that the Euclidean path integral be positive
definite, which allows us to interpret it as the partition
function of an equivalent statistical system. However, there
are physically relevant cases in which the action is complex
and the Euclidean path integral becomes nonpositive-definite.
This gives rise to large numerical cancellations that generate
noise overcoming by several orders of magnitude the typical
signal one would like to observe, resulting in the inappli-
cability of importance sampling Monte Carlo for extracting
physical observables. This cancellation, known in the liter-
ature as the sign problem (see e.g., [1] for a recent review)
characterizes, among others, finite density systems in
Quantum Field Theory and strongly correlated electron
systems in condensed matter physics.

Resolving the difficulties caused by the sign problem
would enable us to make substantial progress for systems
such as finite density QCD, which at the moment can not be
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reliably studied either numerically or analytically. While a
general algorithm that solves the sign problem for any
system has been shown not to exist [2], it is possible to
devise numerical approaches that make the problem trac-
table in specific cases.' Recent examples include the
complex Langevin approach [3], thimble regularization
[4] and the density of states route, which, following the
original proposal of [5] and further refinements [6,7], has
been recently revisited in [8,9]. Key to the latter two studies
is the introduction of a restricted sampling [10] in terms
of the independent variable used to define the density of
states. This allows us to determine the logarithm of the
density of states with exponential error reduction, hence
enabling us to perform extremely accurate measurements.
If the precision of the determination of the density of states
is high enough, one may eventually overcome cancellations
that arise when computing numerical integrals. Examples
of successful applications of the density of state method
along these lines to systems affected by the sign problem
have been provided in [8,9].

Among theories used to test techniques to tame the sign
problem, the self-interacting Bose gas at non-zero chemical
potential is among the most widely studied. Here, we shall
investigate this system at finite density as a function of the
chemical potential using the density of state approach.
Recently, this system has been studied with Complex
Langevin [3] and dualization approaches [11,12], which,
together with the good agreement with mean-field theory
[13], can be used to validate our results and hence to assess
the viability of our proposal for the self-interacting Bose
gas. These studies provide a scan in the parameters’ space
of the system and extract the associated phase structure.
Using those results, we will fix the other action parameters
to a set of values such that system is known to undergo a
phase transition from zero particle net content to a dense
phase for a critical value of the chemical potential. The
density of states will be determined using the linear
logarithmic relaxation (LLR) algorithm [10,14], which
has been shown to provide exponential error reduction
in a range of lattice gauge theories applications involving
e.g., tunneling suppression at a first order phase transition
[14], the determination of the free energy for a system with
shifted boundary conditions [15] and the decorrelation of
the topological charge near the continuum limit [16].
Earlier studies of complex action systems with the LLR
and the closely related FFA method can be found respec-
tively in [8,17-21] and [9,22-25] (see also [26]). In this
work, we will focus on the full-phase quenched overlap
free energy. This quantity is defined as the free energy

"It is worth noting that for some systems, it has been shown
that the sign problem disappears when the theory is reformulated
in appropriate dual variables. While this may be a more general
fact, currently the solution of the sign problem by dualization is
possible only on prototype models. A recent review of this
approach can be found in [1].

difference between the original system and the system
obtained by setting to zero the imaginary part of the action,
the latter being referred to as phase quenched system. The
reason for choosing this observable is twofold: (1) as it will
be shown below, the overlap free energy controls the
severity of the sign problem; (2) in the formulation of
the density of states used in this work, this free energy is a
central quantity to determine the density of particles (see
e.g., [8]). Given its characteristic exponential error reduc-
tion, the LLR algorithm provides an efficient method to
compute this free energy, or equivalently the ratio of the
two partition functions that defines this observable. The
purpose of this work is to understand whether the method
we are introducing can be used for characterizing the
phases of the system and if the numerical measurements are
precise enough for studying the phase transition that occurs
at a critical value of the chemical potential.

The rest of the paper is organized as follows. In Sec. 11
we review the density of state method and we discuss
the main observables targeted in our study. Section III
describes the self-interacting Bose gas at finite chemical
potential on a spacetime lattice. A description of the
numerical methodology used in our work is reported in
Secs. IV-VIIIL. Numerical results are presented and dis-
cussed in Sec. IX. Finally, Sec. X contains a critical
discussion of our findings and their implications. Some
earlier results related to the current study have been
reported in [27] and, more recently, in [28].

II. GENERALIZED DENSITY OF STATES

The generalized density of states method provides a
straightforward approach to the problem of simulating
systems with a complex action

Sp] = S¥[¢] + iuS'[¢]. (1)

where we have explicitly separated the real and imaginary
part. For convenience, we have assumed a linear depend-
ence of the latter on the chemical potential, and suppressed
any parameter dependence of SR and S', which, in
particular, may also depend on . Without loss of general-
ity, any partition function can be written as a functional
integral over the fields,

Z(u) = / D¢e—SR[¢]—iuS’[¢]_ (2)
Introducing a generalized density of states (DoS) function,
p(s) = / Dpd(s — S'g])e>" W, (3)

the partition function can be obtained from a 1-dimensional
integration
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This reformulation suggests to split up the problem of
evaluating the partition function of systems with complex
action in two separate steps: first, to evaluate p(s) numeri-
cally to a high level of precision, and then tackle the
influence of the imaginary part of the action separately
by performing the remaining one dimensional integral.
Although we still expect a sign problem manifesting from
the need of cancellations over multiple orders of magnitude
in the oscillatory integral, we have transformed a multidi-
mensional oscillatory integration to a softer variant where
the resulting one dimensional Fourier transform is sepa-
rated from the Monte Carlo integration.

The theory obtained by neglecting the imaginary part of
the action is usually referred to as “phase quenched” and
the associated partition function is given by

Zpy = / Depe=S"#) = / p(s)ds. (5)

It is worth noting that the phase-quenched system can be
studied via standard importance sampling techniques, as it
is a sign problem-free system. However, the physics
described by it is not a good representation of the physics
of the full system.

To evaluate the hardness of the sign problem it is
possible to evaluate the overlap factor between the full
and phase quenched theory defined as the ratio of the two
partition functions

z Depe=5" 19l g=ins'[4] ®)
Zpy  [DpeSW

We can interpret this quantity as the expectation value of
the phase in the phase quenched theory, from here on
defined as (e'?) ,,. Thanks to the symmetry p(s) = p(—s)
of the DoS, the phase factor is obtained from the real part of
the Fourier transform of the DoS

iy _ 2 _ [ pls)cos(us)ds
(epq = Z,, a [ p(s)ds ' )

Physically, (') ,, is related to the free energy difference
between the full and phase quenched systems. Specifically,
writing

Z=c¢* and Z,, = e FraV, (8)

with F' (F,,) being the free energy per unit of volume V of
the full (phase quenched) system, we have that

1 .
AF=F-F,, = —V10g<e"/’>pq. 9)

Since (e?) ,, < 1, the phase quenched model provides a
lower bound for the free energy. To provide the expected

finite AF in the thermodynamic limit, [log(e?),,| « V,
hence (¢'?) ,, has to be exponentially small in V, implying
that the oscillatory integral (7) that defines it must provide
cancellations over many orders of magnitude.

In our density of states approach for complex
action systems, we will show that high precision data for
the discretized DoS can be obtained by specialized
Monte Carlo methods as provided by the linear logarithmic
relaxation (LLR) algorithm. However, in order to obtain a
precise and numerically stable evaluation of the Fourier
integral, the full continuous DoS must be reconstructed.
The relativistic Bose gas studied in this work provides a
concrete frame of application for our methodology and at
the same time a probing benchmark to assess how effective
it can be.

III. MODEL: RELATIVISTIC BOSE GAS

In this paper we will concentrate on the relativistic Bose
gas. This model has been extensively studied in the context
of the sign problem of lattice field theories via complex
Langevin dynamics and mean-field approximation [13] as
well as complete dualization [12]. Therefore, it is a good
candidate for a benchmark study to test whether or not the
DoS approach can be used to mitigate the sign problem in
lattice field theories.

The lattice discretized action can be expressed as:

5= 3| a )it + A0,

4

=Y (pre s+ i e ad)|. (10)

v=1

Splitting the field into its real and imaginary part,
¢, = ¢y, + ig, ., we can separate real and imaginary part
of the action,

S = SR + isinh(u)S’

1 A °
SR — Z |:§ (2d + m2)¢§.x + 4 ( 3,x)2 - ; PaxPaii
- COSh(/‘)¢a,x¢a.x+ﬁ:|
St = Zgab¢a,x¢b,x+fl' (1)

X

It is worth noting that the phase quenched system differs
from the system at zero chemical potential due to the
presence of the cosh(u) term in the real part of the action.
Throughout all our studies we have set the action param-
eters A = m = 1.0. This choice is motivated by the exist-
ence of extensive literature results for this set of parameters.
Moreover, it has been shown that, in this setup, numerical
investigations results are well described by a mean-field
evaluation.
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IV. LLR ALGORITHM

The LLR (linear logarithmic relaxation) algorithm pro-
vides a way to estimate the slope of the density of states by
solving a nonlinear stochastic equation. In the following we
briefly review the method and our implementation.

We define a restricted and reweighed expectation value
of a general operator O as following

1 [Si+A2

(((’)))k(a)zﬁ a2 p(S)(’)(s)e-u(S—Sl)ds (12)

for a given reweighing parameter a, and with p(s) defined
as in (3). The normalization factor N is defined as

Si+4/2
N= [

Si—A/2
The heart of the LLR algorithm is the dynamical tuning
s—S1)

5)e =S ds. (13)

of a, such that the reweighing factor e~ counter-
balances the intrinsic density of states distribution of the
system, resulting in an uniform sampling in a interval
around S%.

To achieve such a result we consider the specific
observable O(s) = s — Si. As it has been shown in [14],
in the limit of vanishing A the expectation value of this
observable has a monotonous behavior in a, and, more
importantly, it vanishes when the corresponding value of a
coincides with the derivative of the DoS logarithm

(ASHi(a) = (s —SiHa) =0 s a=gq

_dn(p(s)

e PR O(A?). (14)

S=9,

Corrections of order A are not present due to the
symmetry of the integrand function.

To solve this implicit equation for a, we use two different
techniques. Initially we use a Newton-Raphson method,

(n)

generating a chain of reweighing factor a; ’ according to

wi o, (ASD(a”)
a,(<+):a() o (kn) ) (15)
o’ (AS", a; )
Approximating the variance of the distribution by
AZ
o*(AS!,a\") =+ O(A%), (16)
our actual update step can be written as

. o 12¢AS™Y, (a\"
a( +1) a()+ ( »k(ak)_

k = dy A2 (17)

As shown in Fig. 1, Newton-Raphson manages to approach
the root extremely rapidly. However, due to the stochastic

0.0F
Newton Raphson
-0.2} .
V=85, =0.0399V
-04+
& _06l
-0.8}
-1.0f
5 10 15 20
Steps
-1.040
Robbins Monro
-1.045+ V=8%5/=0.0399V
a, -1.050+ 'M‘”,_ /G
-1.055¢
-1.060 : ‘ : ‘
0 500 1000 1500 2000
Steps
FIG. 1. Top: evolution of the Newton-Raphson method for 10

independent simulations (replicas). A very rapid initial conver-
gence toward the root of (14) and a subsequent nonconverging
oscillatory regime are clearly visible. Bottom: evolution of the
Robbins-Monro stochastic root finding procedure for 10 inde-
pendent simulations (replicas).

nature of Eq. (14), the statistical uncertainty intrinsic to the
evaluation of { AS"),(a;) eventually prevents the Newton-
Raphson method to converge to high level of precision.
To overcome this issue, we employ the Robbins-Monro
procedure [29], applied to the determination of the a; once
the once the Newton-Raphson method starts to oscillate
around the solution. The Robbins-Monro method is based
on iterative procedure

A7) _ g 4 o CAS (e

o*(AS!, al")
ch:oo, Zc%,<oo, (18)
n=0 n=0

where the conditions on the parameters c, ensure con-
vergence to the correct root in the limit of Niy — o0,
where by Ngpy we indicate the total number of Robbins-
Monro steps, even in presence of non white noise in the
iteration estimator. To maximize the speed of convergence,
we choose ¢, = 1/(n+ 1) to maximizes the damping
while respecting the bounds of the Robbins-Monro pro-
cedure leading to the sequence
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a/((n+1) _ al((n) 1 12(<ASI)Zk(a1(<n)).
n—+1 A

(19)

Such a procedure converges in L?> norm and hence
in probability to the exact value, meaning that for each
interval [SL—A/2, S+ A/2] the estimator a!” is nor-
mally distributed around a; with variance scaling asymp-
totically as 1/Ngy. We report in Figs. 1 and 2 a detailed
study of the convergence properties of the mean and
standard deviation of the Robbins-Monro and Newton-
Raphson algorithms, performed over various independent
replicas reported as colored lines in the plots.

By applying this combined root finding procedure to all
intervals, we can determine dlogp/ds for an uniformly
distributed set of S% values in the imaginary phase domain.
In Sec. VI we will discuss how to extend these results of the

2.0 .
Newton Raphson v =8*
1.5¢
o
1.0F
{OnR)
0.5}
0.0 : : : :
0 5 10 15 20
Steps
Robbins Monro v =8*
1
0.50
a
(9nR) o101t
0.05+
0.01 e SR "
1 5 10 50 100 500 1000
Steps

FIG. 2. The plots show the standard deviation during the
two different root finding procedures: Top: Newton-Raphson,
Bottom: Robbins-Monro. Values of the standard deviation of
independent simulations normalized to the mean value during
the Newton-Raphson procedure ({ong)) are plotted against the
number of root finding steps. Each thin colored line represent a
set of 10 independent simulations centred at the same value of Sy,
while the red line is the mean of such values for different S.
Plotted in grey, we show the 416 region and the dashed black line
represent the theoretical best scaling of the standard deviation
(1/4/Ngm) for the Robbins-Monro procedure.

LLR procedure to the full domain of the DoS to fully
reconstruct p(s).

V. LLR INTRINSIC BIAS

As it has been discussed in the previous section the LLR
algorithm is exact for A — 0. However, this regime is
unfavorable in numerical simulations as the Robbins-
Monro step size scales as A2 leading to huge jumps in
the root finding procedure and a consequent really long
convergence time. For this reason we are interested in
studying the behavior of the LLR algorithm when A is
small, but not so much that the higher order correction to
the DoS are negligible compared to the linear relaxation in
the interval [St — A/2,81 + A/2]. To do so we consider
{AS"Wi(a) witha = a; = dlogp/ds|xzsi, writing for ease
of notation p(s) = exp(f(s)) and including also higher
order corrections

1 [Si+A/2
{AS Y (a = a;) = —/ T sl emals=Sds
N Jsi—aj2

_sh At
3! 80

+O(A5). (20)

In the above the first order (O(A?)) term vanishes for
a=a; = f'(S%), the second order (O(A%)), linked to
f"(S%), vanishes for symmetry of the integral, making
the term of third order in the derivative the leading term.
This term has the important characteristic of not depending
on a, the reweighing parameter, meaning that it will
introduce the same systematics in the Robbins-Monro
procedure regardless of the distance from the root. In

particular we can treat this term as an additive shift to
Eq. (14),

2 (3) (<l A4
(850~ ) = =) + L2

We can now evaluate what is the impact of this additive
term on the reweighing parameter a by solving the previous
equation with the lhs set to zero. Obtaining,

40 (22)

bias = apjyseq — ap =

Therefore the bias will depend on two parameters: f3)(S7),
the third derivative of the logarithm of the DoS that is
system specific thus impossible to control a priori, and, as
expected, A, the interval width. As shown in Fig. 3 the
effect of the bias is evident on the simulation results. Hence,
it is possible to define a region for which the bias influence
is negligible compared to the statistical uncertainty of
independent simulations.
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-1.0340} o
Intrinsic Bias

—1.0345 V=8%5,=0039V
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AN

FIG. 3. Simulation results (red points) performed at different
values of A compared to the predicted bias obtained by using the
best fitting polynomial to estimate the third derivative of log p.
Both the bias effect and the increase in precision are clearly
visible in the plot.

VI. DoS RECONSTRUCTION TECHNIQUES

We aim at a faithful reconstruction of the DoS of the
system over the whole domain. Thanks to the knowledge of
dlogp(s)/ds many different reconstruction strategies can
be formulated. In the following we will present two
different choices of reconstruction and we will highlight
the biases associated with each choice.

Assuming the logarithmic derivative to be constant in
each interval leads to the piecewise definition p,,,(s) =

>k Pi(s) with

Pi(s) = Crexp (ax(s = S})). s €[S, —A/2,5; +A/2].

(23)

and p,(s) = 0 for s outside the interval. The parameters Cy
are chosen to ensure continuity

k=1

Cy = exp{a;A/2} Hexp{aiA}. (24)

The LLR method achieves exponential error suppres-
sion, meaning that the relative error of p(s) stays constant
throughout the entire range of the imaginary action.
However, the piecewise approximation introduces a finite
number of second order discontinuity in the imaginary
action domain where the neighboring exponentials are
linked at the edge of the intervals. Such discontinuities
will lead to precision issues in the evaluation of the
oscillatory integral, Eq. (7).

To overcome this limitation, we introduce our second
reconstruction technique, the polynomial fitting [8] to
substantially improve on the piecewise approximation.

In the polynomial fit approach the LLR results are fitted
to a polynomial p;(s) = >°L_ ¢;s’. An analytic integration
of Eq. (14) allows to directly evaluate the a;. Due to
the symmetry properties of the DoS p(s) = p(—s), only

odd powers of s enter into the polynomial, p,(s) =
Sty ci-ns¥™! and ¢; are determined by fitting our
LLR results for a;. The density of state resulting from
the polynomial fitting can be expressed as

!
s CRi-1) »;
i) (5) = eXPA pi(x)dx = exp E (2i )21, (25)
i=1

where we are normalizing the DoS to have pg()(0) =1
as p;(0) =0.

As displayed in Fig. 4, this approximation provides
much smoother behavior than the piecewise one, from
which it shows bounded relative deviations. The jagged
appearance of the plotted quantity results from the artefacts
of the linear approximation involved in the reconstruction
of the piecewise DoS.

To compare the values of the phase factor obtained with
both approximations, we define the quantity

Shax sp(s 1 s
[(Sh) = o L CRCS)

This function can be evaluated with both the piecewise or
fitted definition of the DoS. In addition, 1(S%,,, ) is related to
the expectation value of the phase factor by

(26)

lim iz (Sllim Im(S{naX)) — (), (27)

=1 max >

where M is the size of an ensemble of Gaussianly
distributed realizations of the ay.

In Fig. 5 we compare the absolute values of the partially
integrated phase factor as a function of S!, for both
approximations for two different volumes V = 6%, 10* at
1 = 0.8 and a particular realization of the a;. Our results
show that using the piecewise approximation generates
much larger fluctuations than the polynomial interpolation:
for the 10* the relative amplitude of the fluctuations is of
around 45 orders of magnitude. While, when averaged over
multiple realizations the a; coefficients, both definitions

0.04 -
V=10* y=0.8,A=0.001V
0.02+
ppw = Lrit
— 0.00 11 Lanaalng 11404 |
Prit
-0.02+
-0.04+
0.00 0.01 0.02 0.03 0.04
SV
FIG. 4. Comparison between the piecewise approximation of

the DoS and the fitted approximation.
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V=6 y=08 —— Abs(ly)
—— Abs(/py)

------ Mean Field

0.01F

(€' 107°F
1078+
0.00 0.01 0.02 0.03 0.04
s'iv
1075 | T
v=10* y=08

107 —— Abs(/)

(ei‘ﬂ)pq —— Abs(/p)
------ Mean Field
107 F
10795 £, s s s s s L
0.000 0.005 0.010 0.015 0.020 0.025 0.030
s'v

FIG. 5. Partially integrated phase factor, Eq. (26), as a function

of the upper integration limit for volumes V = 6* and 10* at
u =0.8. Here, we plot the absolute value of the partially
integrated phase factor on a logarithmic scale, such a choice
affects only the region for which the integral has not yet
converged. These plot are obtained using polynomial order
[ =5 chosen according to the procedure described in Sec. VII.

give compatible results, only the polynomial interpolation
provides a value that is accurately different from zero
within the precision of the calculation and hence allows us
to detect the severe cancellations generated by the sign
problem. Indeed the piecewise approximation fails to
achieve sufficient precision as the integration generates
an intrinsic error of O(A?) for each interval (due to the
correction to the linear approximation neglected in this
procedure). When the sign problem gets exponentially
hard, an exponentially large number of small intervals
should be taken into account to achieve the required
precision in order to suppress the intrinsic error. On the
other hand, the polynomial approximated DoS seems to
show no difficulty at obtaining an accurate result broadly
compatible with the mean-field calculation also for the
harder V = 10* case.

The different precision obtained by the two methods can
be analyzed further by computing the phase average.
In order to check the convergence of the result, we study
the latter quantity for different coarse-graining of the
ay, obtained by subsampling our initial set of data

0.0004 : ‘
V=6* =08
0.0002 ] A =0.00025 V, Ny = 200 ]
. 0.0000 - --}- ! . -
(©")pq [ -7
~0.0002 130T :
1.2x107 5{ Pl :
-0.0004 | 1.1x1077 ]
0 0.5 1
-0.0006 ‘ ‘

0.0 0.2 0.4 0.6 0.8 1.0
subsampling ratio (N/Ny)

FIG. 6. Results of the integration of the phase factor for
different values of the subsampling ratio for a V = 6* lattice
at y = 0.8. In the figure are plotted the results of the fitted
approach integration (red) and those of the piecewise one (blue).
The inset shows the remarkable level of precision obtainable with
the fitted approach.

(i.e., considering one every n values, maintaining even
spacing between the values in the new sample). In Fig. 6,
we contrast the level of precision on (e®) pq Obtained with
the two methods as the spacing between two central values
of the §; used to calculate the a; varies. For our finest
determinations (i.e., for N/N,, approaching the value of
one, which means that all the values we have determined
are used in the reconstruction), the data converge to an
asymptotic value, from which they deviate for coarser
spacing (N/N,, < 1). However, while the polynomial fit
provides a reliably accurate determination of the average
sign, the use of the piecewise interpolation generates a
statistical error that makes the result compatible with zero.
Figure 7 shows the quality of the determination of the free
energy difference AF corresponding to the polynomial fit.

In addition to the polynomial fit, we have performed
other interpolations to understand the regime of validity of
the results. In particular, we have interpolated the a; using

v=6* y=08
A =0.00025 V, Nyg; = 200 1

0.01234 -

0.01232} }

0.01230 -
F
0.01228 -

0.01226 +

0.01224 - 1

0.0 0.2 0.4 0.6 0.8 1.0
subsampling ratio (N/Nig)

FIG. 7. Values of the free energy difference obtained with the
data shown in Fig. 6 only for the fitted approach.
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(i) Expansions in an L? basis (in particular, using
Hermite functions);

(i1) Continuous local fits (loess/lowess), whereby a local
low-order polynomial fit is convoluted with local-
ized weight functions;

(iii) Gaussian processes, which use a multivariate Gaus-
sian a priori ansatz for modeling the distribution of
correlations among n-tuples of observations.

(iv) Padé approximants of various order.

Somehow surprisingly, all these methods produced results
that were less accurate than the simple (and a priori
simplistic) polynomial interpolator, basically failing at
disentangling a nonzero average phase from the noise
when a hard sign problem is present. The different reasons
for the observed failures are instructive:

(i) The L? expansion converges slowly, hence requiring
a high number of terms or equivalently a high
number of fitted parameters, which results in detect-
able overfitting (we will discuss overfitting in the
context of the polynomial interpolation below);

(i) Continuous local fits are too sensitive to the locally
projecting functions, generating noise at a frequency
that is roughly the inverse of the amplitude of the
window on which one performs the projection;

(iii) Gaussian processes presented localized high-
frequency oscillations that also resulted in noisy
measurements for the Fourier transform.

Among those methods, perhaps the most surprising failure
is associated to Padé approximants, which in general are
expected to converge faster than polynomial interpolations.
The better outcomes obtained with the latter may indicate
that the variation of the a; with §; is indeed described by a
(near-)polynomial function. We believe that this informa-
tion is physically relevant for understanding the system.
A possible explanation of the success of the polynomial
interpolation may be inferred from the behavior of the a;, as
a function of the relevant observable (e.g., the energy) for
systems at zero density, whereby higher power contribu-
tions are suppressed by powers of the volume [14]. It is
possible that this local property holds on a wider scale.

Having shown that, unlike other choices, the polynomial

fitting approach of the DoS allows us to achieve a high
level of precision for the determination of the average
sign, we shall now address the numerical stability of the
approach with respect to the order of the chosen poly-
nomial and estimate possible systematics related to the
determination of the maximum power of s appearing in the
polynomial.

VII. FIT VALIDATION

Concerning the stability of the polynomial fit, the choice
of the polynomial order / is of course of crucial importance.
In this section we will illustrate how to ensure that the
functional form choice avoids the two most likely source of
systematics, underfitting and overfitting.

14} .
V=10", 4=0.8,A=0.001V
12}

10/ [
208}

0.4} {
0.2+t

0.0 0 5 10 15 20

fit order

FIG. 8. 4? values resulting from a bootstrap analysis vs the
order of the fit, a clear plateau is visible starting from [ = 7.

A. Underfitting

Underfitting happens when the proposed polynomial is
too simple (the order is too low) to represent all the features
of the data. In this case a ¥ analysis of the fit residuals is able
to pin down the minimum number of polynomial coeffi-
cients needed to describe the LLR results. As shown in
Fig. 8, the y? value decreases while increasing the order of
the fitted polynomial. For the data considered at [ = 7 we
start to see a plateau forming. After the onset of the plateau,
due to the statistical uncertainty of our data, higher order
polynomials will start to pick up the statistical noise rather
than improve the approximation. For this reason one could
be tempted to choose simply the smallest order in accor-
dance with the Occam’s razor principle. Instead, we evaluate
(7) for a various choices of the polynomial fit order. If we see
a plateau also in the expectation values of the phase factor
we will accept the results, otherwise we will reject the result
and proceed to increase the precision of the simulation.

B. Overfitting

The other way in which the fitting process could
introduce a systematic error is overfitting, when the poly-
nomial order is so high that the fitted function will start to
introduce noise not related to the statistical uncertainty of
the fitted data. To control the overfitting we are going to
study the expectation values of the second order derivative
of log p with the intent of comparing the numerical values
with the derivative of the fitted polynomial.

The second derivative of logp can be determined
numerically by evaluating restricted and reweighed expect-
ation values (12). We start by determining {(AS)? ), with
a = a;, where we are writing p(s) = exp f(s),

2 1 Ql
(@ a=a) =5+ T as o) oy

from which it is possible to obtain the value of the second
derivative as
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FIG.9. Second logarithmic derivative f”(S%) obtained from the
evaluation of {(AS’)?)) from a simulation at lattice volume of 10*
at 4 = 0.8.

75 =7 (Qash =3 + 0. @9)

This quantity is measurable to an acceptable level of
statistical relevance in our simulations, as shown in
Fig. 9, despite coming from an evaluation of the second
moment of the distribution. Rather than using the second
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derivative directly in the fitting procedure we look at how
well the polynomial fit of the a; describes this quantity
(i.e., we perform an a posterior validation of the functional
form of fit). We compare f”(s) with the derivative of the
polynomial fit p) by defining a x*-like function

N
Z (Pi(si) — f”(si))z/ﬁz//<si>-

i=1

1
)szc// - N (30)

To illustrate this principle we consider a subsampling of our
data, so that the effects of the over-fitting are evident even
at lower order of the fitting polynomial. The results of this
analysis are shown in Fig. 10, where three different
behaviors are visible: for small orders of the polynomial
fit (I = 1 ~ 5) the discrepancies are big as the polynomial is
not a good approximation of the original data; in the middle
section (I =7 ~ 11) we see a plateau indicating that in this
region the fit not only approximates well f'(s), but also its
derivative; for high orders (/ > 13) we see a clear indication
of over-fitting, as, while the )(2 of the fit of the a; would still
be on the plateau, ;(]%,, shows that the fitted function does not

approximate well the numerical derivative. This gives us a
quantitative indication of whether the chosen functional
form is overfitting the data. When using the full set of data
no sign of overfitting has been found in any of our analysis.

VIII. BIAS OPTIMIZED SIMULATIONS

The following scheme ensures a bias free and perfor-

mance optimized simulation:

(1) Run a low precision simulation [fewer Monte Carlo
samplings (Nyc) as well as Robbins-Monro steps
(Nrm)] with a small and constant A for each interval,
extract the values of the a;, and use those to estimate

-0.01%" % 0.01 0.02 0.03 0.04 the bias over the complex action range taken into
SV consideration.
(i1) Scale the simulation parameters (Nyic, Nry and A)
0.050 so that bias < o,. We use the known scalings
0.045+ \Y :84,[J=0.8 bias AZ and Oq, X (A . VNMC . NRM)_l, and the
fact that the simulation runtime is proportional
0.040} to NMC . NRM'
X5 0.035]
TABLE 1. Typical simulation parameters. Nyg: Newton-
0.030} Raphson steps; Nry: Robbins-Monro steps; Nyc Monte Carlo
R samples for each step; Ng: intervals taken into consideration;
0.025 . . L
e e e 4} Nyep: independent replicas.
0.020 : ‘ : :
0 5 10 15 20 v Nxr Nrm Nyc Nyt Niep
Fit order 44 10 1000 2000 40 10
4
FIG. 10. Top: f”(s) values obtained as result of our simulation 24 ;g éggg 3888 128 ig
(dots) and as the derivative of the fitted polynomials (lines). The 10* 50 2000 2000 200 10
highlighted red dots are those used in the 2 analysis. Bottom: > 4
16 50 2000 2000 300 10

analysis for the second derivative.
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(iii) With the scaled parameters run a high precision
simulation, the results of which will be used to
rebuild the DoS.

(iv) Finally, using the high precision results double
check that the bias is negligible in comparison to
the statistical noise of the results.

IX. RESULTS

Following the scheme described in the previous sections
we have been able to obtain the a; estimates for a wide

0.0 : : :
_02f p=0.4 ]
—0.4f b
-0.6/ ]

& _0.8} ]

-1.0} vegt \,

1.2} ]

1.4} ]

0.00 0.01 0.02 0.03 0.04
s'iv

0.0

-0.2}
-0.4f
-0.6

a _0.8/
-1.0f
-1.2f

-1.4! ]

0.00 0.01 0.02 0.03 0.04 0.05
s'iv

0.0

-05; K=18

-1.0¢
a -1.5¢

-2.0t

0.00 0.01 0.02 0.03 0.04
s'iv

FIG. 11. Estimates of the g, for the relativistic Bose gas for
different values of the imaginary part of the action at chemical
potential ¢ = 0.4 (top), # = 1.0 (middle) and x = 1.8 (bottom)
for different volumes.

range of values in the chemical potential, ranging from y =
0 to 2.0, and volumes ranging from 4* to 16*. The typical
values of the simulation parameters are reported in Table I.

A representative set of results of this evaluation has been
reported in Fig. 11. A general feature of the a, as a function
of S’ is the appearance of a sharp change of behavior for
large ST when u is close to a critical value, the location of
the inflection point decreasing for larger volumes. If the
inflection point is present in the interval of imaginary action
relevant for our numerical integration the fitting procedure
defined in the previous section fails to converge. As a
consequence, we can estimate the free energy only if the
above change of behavior does not occur, hence for large
volumes we can do the integral only outside a region
around the critical p.

A. Phase structure away from criticality

In Fig. 12 we show the results of our simulations up
to V =10* (reported in Table II) and for chemical
potential values ranging from zero to u=2.0 and
A = m = 1.0. We stress that our procedure fails to converge
for large volumes in a window close to the critical x4, while
no issues are found for values of y sufficiently far from the
critical value.

In the region p,.=~1.15 (as predicted by mean-field
analysis) we expect, and observe, a phase transition.
A clear difference in the behavior of the free energy is
visible in the two phases, distinctly for 4* and 6*, and
reasonably clearly also for 8* and 10*.

In the region y < u, the free energy difference has been
fitted to the functional form AF(u) = ap® + bu* + cu®,
while in the y > u, a linear fit is enough to describe the
behavior of the data. By intersecting the fits in the two
regions we have been able to give an estimate for the critical

0.06 |
o V=4* .2
0.05f e
A V=6* I L
0.04 | o - 1
V=84 A{/ - R /’0/
e A (@/’
AF 0037\ o alo®
K2
0.02/ v V=wo o
,'/g/
0.01 &
el
0.00[ —&&-* " ‘ ‘ ]
0.0 0.5 1.0 15 2.0
u

FIG. 12. Values of the free energy difference, obtained through
the integration of the phase factor, as a function of the chemical
potential for volumes V = 4% 6% 8% 10* and for the infinite
volume extrapolation. The vertical line represent the critical value
of the chemical potential obtained via mean-field calculations
(u. ~ 1.15). The dashed lines are fit to the data meant to guide
the eyes.
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TABLE II. Free energy difference for volumes V = 44, 6%, 8*
and 10* in a wide range of values for the chemical potential.
The *** identify values of the parameters for which our

interpolation method did not produce a robust result.

AF x 10

Volume

u 4* 6* 84 10*
0.1 0.1448(1) 0.1541(1) 0.1547(1) 0.15473(5)
0.2 0.5840(4) 0.6233(3) 0.6255(2) 0.62575(9)
0.3 1.337(1) 1.428(1) 1.433(1) 1.4344(3)
0.4 2.423(2) 2.599(2) 2.616(2) 2.6167(5)
0.5 3.883(3) 4.194(4) 4.225(6) 4.227(1)
0.6 5.761(4) 6.277(1) 6.333(2) 6.340(1)
0.7 8.10(2) 8.938(5) 9.06(1) 9.068(3)
0.8 11.002) 12.28(1) 12.48(1) 12.523(3)
09 14.554) 16.52(2) 16.82(2) 16.90(4)
1.0 18.7(1) 21.59(2) oo ok
1.1 23.50(8) 27.7(4) oo ok
1.2 27.8709) 33.05) ok ok
1.3 30.10(8) 35.3(2) oAk ok
1.4 32.1(1) 38.1(2) 38.5(5) ok
1.6 36.2(1) 42.4509) 44.3(2) 44.0(7)
1.8 39.6(2) 47.5(1) 48.9(4) 49.5(7)
20 43.5Q2) 51.9(1) 54.0(5) 54.2(2)
TABLE III. Results for y. as a function of V.
Vv He Error
4 1.165 0.007
6* 1.155 0.004
8 1.152 0.014
10* 1.141 0.044

value of the chemical potential as well as its error via the
confidence intervals of the fits. Our data are reported in
Table III. As shown in Fig. 13, for volumes 4* and 6* the

1.20

118}

0.002 0.003 0.004

1/V

0.000 0.001

FIG. 13. Critical chemical potential estimates plotted against
1/V for volumes V = 4*, 6%, 8* and 10*. The dotted line indicates
the mean-field calculation, while the dashed line is the value
obtained in [12] (the error band is also indicated, but it is barely
visible on the scale of the plot).

extrapolation obtained has a good level of precision
(respectively .6% and .4% relative error), while the results
for the larger volumes suffer from the lack of points close to
the phase transition, resulting in relative errors of 1% for 8*
and 4% for 10*.

Since our ability to study values near y. decreases as
the volume increases, we have not performed an extrapo-
lation to the thermodynamic limit. However, our calcu-
lation shows that our results are compatible with the
mean-field calculations [13] (u, ~ 1.15) as well as with
the value obtained in [12] (u. = 1.146 £0.001) with a
dual formulation of the same theory in a work more
focused to the study of the phase transition than the
present one. The statistical uncertainty in our result is of
the order of a few percent. A careful determination of the
systematic error would require an improvement of our
method in order for us to be able to simulate closer to yu,
on larger lattices.

TABLEIV. Free energy difference results in the low density region (¢ = 0.1 to 4 = 0.9) for different volumes and

infinite volume extrapolation.

AF x 10°
Volume

u 44 6* 84 10* 16 00 exir.
0.1 0.1448(1) 0.1541(1) 0.1547(1) 0.15473(5) 0.15471(1) 0.15470(1)
0.2 0.5840(4) 0.6233(3) 0.6255(2) 0.62575(9) 0.6257(1) 0.6257(1)
0.3 1.337(1) 1.428(1) 1.433(1) 1.4344(3) 1.4343(4) 1.4344(4)
0.4 2.423(2) 2.599(2) 2.616(2) 2.6167(5) 2.617(1) 2.617(1)
0.5 3.883(3) 4.194(4) 4.225(6) 4.227(1) 4.227(3) 4.227(3)
0.6 5.761(4) 6.277(1) 6.333(2) 6.340(1) 6.343(2) 6.343(2)
0.7 8.10(2) 8.938(5) 9.06(1) 9.068(3) 9.069(5) 9.068(5)
0.8 11.00(2) 12.28(1) 12.48(1) 12.523(3) 12.541(6) 12.546(6)
0.9 14.55(4) 16.52(2) 16.82(2) 16.90(4) 16.967(1) 16.97(1)
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B. Low density region

Far from the phase transition the integration procedure
poses no threat. Hence, we could study more precisely the
low chemical potential region (1 = 0 ~ 0.9), extending the
results to higher volumes where the sign problem get
exponentially harder. The minimum polynomial order
required to describe the a; data in this region ranges from
5 to 9, and for all the volumes and values of the chemical
potential at least three subsequent polynomial orders
(i.e., {7,9,11}) managed to integrate to statistically com-
parable values.

We report in Table IV our results for AF as a function of
u for volumes up to V = 16*. In the same table, we show
also the thermodynamic extrapolation of AF, obtained with
the ansatz

a b
AF(V) fAF(oo)—f—v V2 (31)
which is a good description of our data (see Fig. 14 for
some representative examples showing the fit quality and
Fig. 15, top, for a zoomed out picture of the extrapolation in
the whole range of u). The behavior of AF as a function of
u for p < . is displayed in Fig. 15, bottom.

0.0170,
0.0169 |
0.0168

AF 00167,

0.0166
0.0165 -

0.0126 -
&
0.0125" RRE O
AF
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0.0123+

0.00910

*
0.00905 |
AF
0.00900 |

0.00895 |
0.00634 [* ~~-e--__
0.00632

AF
0.00630+

0.00628 .

00000 00002  0.0004  0.0006  0.0008
W

FIG. 14. Infinite volume scaling analysis for three values of the
chemical potential 4 = 0.6,0.8,0.9 and for volumes V = 6*, 8%,
10*, 16*. The fit used to extrapolate the infinite volume results are
shown as well (dashed lines).
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0.000 (8848 -8 -------o-oooooooooooooooooooooooo-- B
0.000 0.001 0.002 0.003 0.004
1V
0.020 ; T : T -
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FIG. 15. Top: Free energy difference values obtained for
volumes V = 44, 6% 8%, 10%, 16% with 1 =m = 1.0 at values
of the chemical potential in the range u = {0.1 ~0.9}; also
shown is their extrapolation to the infinite volume limit. Bottom:
Comparison between the infinite volume extrapolation obtained
with the data on the top plot and the same analysis made with
mean-field calculations.

X. DISCUSSION AND CONCLUSIONS

In this work, we have further refined the LLR method for
complex action systems, studying the main sources of
systematic errors in an application to the Bose gas at finite
density. Using the expected scaling with the size of the
imaginary action intervals for restricted sampling, we were
able to eliminate for all practical purposes the error related
to this discretization. In addition, we have further inves-
tigated the necessity of interpolating the a; in order to
obtain a robust result for the oscillating integral. We expect
that these lessons are generalizable to other studies of
complex action systems with the LLR method. Concerning
the a; interpolations, we studied several possibilities.
Somewhat unexpectedly, the data support the necessity
of a polynomial interpolation, which has been shown to be
the only one in the set of those we analyzed that is able to
produce a controlled result for the highly oscillating
integral. In particular, we have shown that a polynomial
fitting approach produces numerically stable and reliable
results for phase factors down to O(10748%) occurring in
our model for the scenarios with the hardest sign problem
we have explored. Reasons for the failure of the other
studied interpolating methods have been analyzed.
However, at the moment it is unclear whether the poly-
nomial interpolation would have the same degree of
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success on other systems. Other studies in the literature
(e.g., [8,20]) also find the polynomial interpolator suffi-
ciently accurate, although no alternative methods have been
considered in these works. In our study, we also established
a criterium that allows us to select the a priori best
functional form for the interpolation of the DoS (poly-
nomial in our case) and to assess the requested order of the
fitting polynomial.

Armed with this machinery, we have then performed a
numerical investigation of the free energy difference AF
between the full and phase-quenched system. In the low
density phase, we have been able to determine this
observable and to extrapolate it to the thermodynamic
limit for up to volume V = 16*, for chemical potential
values for which the sign problem is indeed hard (as already
mentioned, we have successfully resolved and compared
with other methods phase factors of O(10743%)). Our results
are compatible with those obtained with complex
Langevin, mean-field calculations and dual methods. Our
method also allows us to determine AF for u values that put
the system in the dense phase, although the method fails in
a region around u,. whose upper bound seems to increase
with the volume. For the maximum volume we have
simulated in the dense phase, V = 10%, we have been able
to extract AF only for y > 1.6 (while the critical value is
u. =~ 1.15). The failure of the approach in the proximity of
U, is explained by the observation that, despite the a; turn
out to be very well determined, the polynomial interpola-
tion is not able to account for a sudden change of behavior
of these coefficients as S; increases in the region that gives
non-negligible contributions to the integral. We leave to
future studies to understand whether a more suitable ansatz
can enable us to make progress in the currently inaccessible
region. Similarly, we defer to further investigations the

question of whether the upper bound of the currently
inaccessible region keeps increasing with u or stabilizes.

Despite those difficulties, we have shown that the
intersection of two simple interpolation ansatz for AF
defines a critical value of y that is accurate at the order of
the percent over the range of the volumes we have simulated
and compares well with the current literature. Our analysis
for the determination of y. implicitly assumes the validity of
mean-field (in fact, since we can not determine AF suffi-
ciently close to u,., we are insensitive to any potential critical
behavior beyond mean-field). In four dimensions, one
expects that the critical region grows logarithmically
with the volume. Hence, the critical domain possibly is
very small and hidden in the region we can not access with
our numerical simulations. However, it is an interesting
question whether much larger lattices than those used
currently in the literature (including also studies based on
dual and Langevin methods) would be necessary in order to
pin down the correct critical behavior of the system.
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