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In the absence of a genuine solution to the sign problem, lattice studies at imaginary quark chemical
potential are an important tool to constrain the QCD phase diagram.We calculate the values of the tricritical
quark masses in the Roberge-Weiss plane, μ ¼ {πT=3, which separate mass regions with chiral and
deconfinement phase transitions from the intermediate region, for QCD with Nf ¼ 2 unimproved staggered
quarks on Nτ ¼ 6 lattices. A quantitative measure for the quality of finite size scaling plots is developed,
which significantly reduces the subjective judgement required for fitting. We observe that larger aspect
ratios are necessary to unambiguously determine the order of the transition than at μ ¼ 0. Comparing with
previous results from Nτ ¼ 4 we find a ∼50% reduction in the light tricritical pion mass. The heavy
tricritical pion mass stays roughly the same, but is too heavy to be resolved on Nτ ¼ 6 lattices and thus
equally afflicted with cut-off effects. Further comparison with other discretizations suggests that current
cut-off effects on the light critical masses are likely to be larger than ∼100%, implying a drastic shrinking
of the chiral first-order region to possibly zero.
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I. INTRODUCTION

The theoretical prediction of the QCD phase diagram
as a function of temperature T and baryon chemical
potential μB has proved to be a difficult challenge for
several decades. Because of the nonperturbative nature of
the strong interactions on hadronic scales, a first principles
approach such as lattice QCD is required. On the other
hand, because of the severe sign problem of lattice QCD at
finite μB, standard Monte Carlo simulations are limited
to addressing small densities, μB < 3T, only [1,2]. Even at
zero baryon density, there remain open questions. While
the thermal transition from a hadron gas to a quark gluon
plasma
is well established to be an analytic crossover for physical
quark masses [3], the universality class of the transition in

the chiral limit of the u, d-quarks is still not settled since it
cannot be simulated directly.
For these reasons, it is useful to study the dependence

of the thermal transition on QCD parameters like quark
masses, numbers of flavors, imaginary chemical potential,
for which there is no sign problem, as well as on the lattice
spacing. The current knowledge of the nature of the QCD
thermal transition as a function of the three light quark
masses and imaginary chemical potential, as obtained on
coarse lattices with unimproved actions, is sketched in
Figure 1. For large and small quark masses, there are
regions with first-order deconfinement and chiral phase
transitions, which in the infinite and zero mass limits are
associated with the breaking and restoration of the center
and chiral symmetries, respectively. These are separated by
surfaces of second order transitions from a large region
where the transition is merely an analytic crossover, to which
also QCD with physical parameters belongs [3,4]. Note
that this qualitative picture is the same for unimproved
staggered [5,6] and unimproved [7] as well as improved [8]
Wilson discretizations, whereas the precise location of
the boundary at μ ¼ 0 differs significantly between them,
indicating large cutoff effects. These are also observed for
Nf ¼ 4 staggered fermions without rooting [9]. By contrast,
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simulations with improved staggered actions do not see any
region of first-order chiral transitions within the available
mass range, neither at zero [10] nor imaginary chemical
potential [4,11] thus providing upper bounds on the critical
mass values.
In the present work we continue earlier studies using

the unimproved staggered discretization at imaginary
chemical potential on finer lattices. In particular, referring
to Fig. 1, we investigate how the (red) tricritical points
on the Nf ¼ 2 line in the Roberge-Weiss-plane (bottom
plane at ðμ=TÞ2 ¼ −ðπ=3Þ2) move as the lattice spacing is
reduced to ∼2=3 of its previous values. Together with
similar investigations at μ ¼ 0, this establishes the behavior
of the critical surfaces when approaching the continuum.
Such studies are complementary to ones with improved
actions, where no nonanalytic chiral transition is seen, and
necessary, if all discretizations are to be understood in the
same manner, with expected agreement in an eventual
continuum limit. As a by-product of our study, we develop
a new analysis of the finite size scaling of cumulants, which
significantly reduces the amount of subjective judgement
required for fitting.
In order to render the paper self-contained, we briefly

summarize the main features of QCD at imaginary chemi-
cal potential in Sec. II. We then proceed to describe our
numerical methodology in Sec. III and our novel analysis
method in Sec. IV. Our numerical results are given in
Sec. V before we conclude in Sec. VI.

II. QCD AT IMAGINARY CHEMICAL
POTENTIAL

Because of charge conjugation symmetry and its explicit
breaking by a nonvanishing baryon density, the QCD
partition function is an even function of quark chemical
potential, ZðμÞ ¼ Zð−μÞ. For purely imaginary chemical
potential, μ ¼ {μi; μi ∈ R, it is furthermore periodic [12],

Zðμi=TÞ ¼ Zðμi=T þ 2πk=NcÞ; k ¼ 0;…Nc − 1; ð1Þ

and we use Nc ¼ 3 colors for the QCD gauge group. These
symmetries imply the phase structure shown in Fig. 2,
with three different Zð3Þ center sectors, which are peri-
odically repeated for higher μi. Physical observables, and in
particular the thermodynamic functions, are invariant under
a change of sectors, which are characterized by different
phases of the Polyakov loop

LðxÞ ¼ 1

3
Tr

YNτ−1

τ¼1

U4ðτ;xÞ≡ jLðxÞje−iφ; ð2Þ

with hφi ¼ 2kπ=3; k ∈ f0; 1; 2g. At high temperatures,
there are first-order phase transitions between the center
sectors, whereas at low temperatures they are analytically
connected. The dotted line represents the analytic continu-
ation of the thermal transition, whose order depends on the
quark masses. For large and small quark masses, these lines
represent first-order deconfinement and chiral transitions,
respectively, whereas for intermediate quark masses they
correspond to an analytical crossover. Consequently, there
are three possibilities for the endpoint of the Roberge-Weiss
transition: for large and small quark mass it is a first-order
triple point, where the thermal first-order transition lines

FIG. 1. Qualitative sketch of the three-dimensional Columbia
plot realized on coarse lattices. Whether the chiral, first-order
triple region in the Roberge-Weiss plane shrinks on finer lattice
enough to make an Oð4Þ-region appear in the mu;d ¼ 0 plane
remains unclear.

FIG. 2. QCD phase diagram in the T − μ̂i plane. The dashed
line depicts the chiral/deconfinement transition whose nature
depends on the quark masses. The orange lines represent the
Roberge-Weiss (RW) transitions. The black dots, where the first-
order lines terminate, can be first-order triple points, tricritical
points or second-order endpoints.
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meet that of the center transition. For intermediate quark
masses, the thermal transition is only a crossover and the
center transition ends in a critical endpoint in the 3D Ising
universality class. At the boundaries between these sit-
uations, corresponding to specific quark mass values, the
endpoint is tricritical and corresponds to the red boundary
points in the Roberge-Weiss plane of Fig. 1. The purpose
of the present work is to locate these tricritical masses on
Nτ ¼ 6 lattices with Nf ¼ 2 and compare their values with
previous determinations on a coarser Nτ ¼ 4 lattice [13], as
well as with those of other discretization schemes.

III. NUMERICAL SETUP

We consider the QCD partition function of Nf ¼ 2mass-
degenerate quarks with a purely imaginary chemical
potential. After integration over the fermionic fields it
can be written as

ZðT; μ̂iÞ ¼
Z

DUðdetD½U; μ̂i�Þ1=2e−Sg½U�; ð3Þ

where Sg is the gauge part of the action and D is the
fermion matrix. For our investigation we used the standard
Wilson gauge action and the standard staggered discretiza-
tion of dynamical fermions. Denoting the lattice gauge
coupling by β ¼ 6=g2, with the continuum gauge coupling
g, and an elementary plaquette by P, we have

Sg½U� ¼ β
X
P

f1 −ℜ½TrCP�g: ð4Þ

The fermion matrix reads

Di;j ¼ m̂u;dδi;j þ
1

2

X4
ν¼1

ηi;νðŨi;νδi;j−ν̂ − Ũ†
i−ν̂;νδi;jþν̂Þ; ð5Þ

where m̂u;d ¼ amu;d is the quark bare mass in lattice units,
a is the lattice spacing, i, j refer to lattice sites, ηi;ν are the
staggered phases, ν̂ is a unit vector on the lattice and Ũi;ν

are the gauge links, which include the purely imaginary
chemical potential μ̂i ¼ aμi in the temporal direction,

Ũi;ν ¼
�
Ui;ν ν ∈ f1; 2; 3g
eiμ̂iUi;ν ν ¼ 4

: ð6Þ

The temperature is specified by the inverse Euclidean time
extent of the lattice,

T ¼ 1

aðβÞNτ
: ð7Þ

In order to locate a phase transition and study its nature,
we calculate standardized cumulants

BnðX; β; m̂u;d; μ̂iÞ≡ hðX − hXiÞni
hðX − hXiÞ2in2 ; ð8Þ

constructed from an (exact or approximate) order param-
eter X. In particular, a nontrivial zero of the skewness
of the X-distribution,

B3ðβcÞ ¼ 0; ð9Þ

determines at which value of β ¼ βc a thermal transition
takes place, while the value of the kurtosis B4 in the
thermodynamic limit, evaluated at the critical coupling,
will determine the order of the phase transition (refer
to Table I for common kurtosis values). Note that the so-
called Binder cumulant [14],

U4ðXÞ≡ 1 −
hðX − hXiÞ4i
3hðX − hXiÞ2i2 ¼ 1 −

1

3
B4; ð10Þ

is trivially related to the kurtosis (of the same observable)
and contains the same information.
We fix μi=T ¼ π since in this case the imaginary part of

the Polyakov loop is an exact order parameter,

X ¼ LIm ≡ 1

N3
s

X
x

ImðLðxÞÞ: ð11Þ

Referring to (2), it distinguishes between the low T
disordered phase and the high T ordered phase with
two-state coexistence,

� hφi ¼ 0 ⇒ hLImi ¼ 0 low T

hφi ≠ 0 ⇒ hLImi ≠ 0 high T
; ð12Þ

with the advantage of knowing its mean value exactly.
On a Nτ ¼ 6 lattice, we thus set μ̂i ¼ π=6. Since this

is the boundary between two Roberge-Weiss sectors for
all temperatures, B3ðLImÞ ¼ 0 for any value of β and we
cannot use (9) to locate the Roberge-Weiss endpoint.
However, the kurtosis B4 is expected to vary from values
close to 3 (crossover) at low T to values close to 1 (first
order) at high T. Although it becomes a nonanalytic step
function in the V → ∞ limit, it is a smooth function on
finite volumes, with the curves for different volumes
crossing at a universal value for B4 at the critical point
β ¼ βc, provided that the spatial lattice extent is large

TABLE I. Critical values of ν, γ and B4 ≡ B4ðX;…Þ for some
universality classes [15].

Crossover 1st triple Tricritical 3D Ising

B4 3 1.5 2 1.604
ν � � � 1=3 1=2 0.6301(4)
γ � � � 1 1 1.2372(5)
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enough. This crossing provides the location of the Roberge-
Weiss end-point. In the neighborhood of the critical point
βc, the kurtosis shows a well-defined finite size scaling
behavior as a function of the scaling variable

x≡ ðβ − βcÞN1=ν
s : ð13Þ

Its Taylor expansion around the critical point x ¼ 0 is

B4ðβ; xÞ ¼ B4ðβc;∞Þ þ a1xþ a2x2 þOðx3Þ: ð14Þ

Sufficiently close to the thermodynamic limit, the coef-
ficient B4ðβc;∞Þ and the critical exponent ν take their
universal values depending on the type of transition.
In order to locate the two tricritical points in the

Roberge-Weiss plane, we performed simulations at differ-
ent values of m̂u;d and different values of β around the
critical temperature. Evaluating the kurtosis in the critical
region and fitting it to (14), considering the linear term
only, gives B4ðβc;∞Þ, a1, βc and ν for every value of m̂u;d.
The change of ν as a function of m̂u;d then permits to locate
the light and heavy m̂tric

u;d values.
Although our main quantitative analysis is based on the

kurtosis of the order parameter, we also calculated the
susceptibility of jLj,

χðjLjÞ≡ N3
s hðjLj − hjLjiÞ2i: ð15Þ

which is expected to scale around βc according to

χ ¼ Nγ=ν
s fðtN1=ν

s Þ: ð16Þ

Here t≡ ðT − TcÞ=Tc is the reduced temperature and f is
a universal scaling function. Comparing the collapse
plots obtained by fixing the critical exponents γ and ν to

the first-order or second-order values, and by plotting
χ=Nγ=ν

s evaluated on different lattice sizes against tN1=ν
s

also provides information about the nature of the thermal
transition and serves as a cross-check of the kurtosis
analysis. A similar cross-check using the chiral condensate
hψ̄ψiwas occasionally performed in the small-mass region,
leading to consistent conclusions.
We investigated 19 values of m̂u;d in the intervals [0.004,

0.011] and [0.15, 0.85]. For each value of m̂u;d, three to
five spacial lattice sizes have been used, keeping Nτ ¼ 6
and μ̂i ¼ π=6 fixed. This corresponds to aspect ratios
Ns=Nτ ∈ ½2; 7�. Larger spatial volumes than initially chosen
were added whenever the kurtosis of the order parameter
on different volumes was not crossing at the same point
(an example is reported in Fig. 3). For every lattice size,
between three and seven values of β around the critical
temperature have been simulated. In between those, the
observables have been evaluated at additional β-values
using the Ferrenberg-Swendsen multiple histogram method
(also known as reweighting technique) [16] to increase
resolution (see the discussion at the end of this and in the
next section).
Configurations were generated by a standard RHMC

algorithm [17], producing four different Monte Carlo
chains per β with unit-length trajectories. Where advanta-
geous (m̂u;d < 0.007), the multiple-pseudofermions tech-
nique [18] has been used. The algorithm acceptance
has been tuned to be not lower than 80%. At least 5k
trajectories were always discarded as thermalization and
afterwards observables of interests (i.e., the plaquette, the
Polyakov loop, and the chiral condensate for small masses)
have been computed for every trajectory. We increased
statistics until the standard deviation of the kurtosis B4ðXÞ
decreased below ∼0.2, and B4ðXÞ was the same on all
the four chains at the same β within two (three) standard

(a) (b)

FIG. 3. Kurtosis of the imaginary part of the Polyakov loop as function of β at two different values of the quark mass. The plot at
m ¼ 0.45 is a typical example of what can happen when finite size effects are too large. Clearly, the data at Ns ¼ 12 have not been
included in the finite size scaling analysis.
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deviations in the large (small) mass region. For this reason
the collected statistics per β is not uniform, detailed
information is given in the Appendix. In order to satisfy
these strict requirements, millions of trajectories per vol-
ume and almost half a billion in total have been produced.
This large statistics is necessary due to the large autocor-
relation times shown by LIm, especially when entering
the first-order regions (cf. Table III in the Appendix). We
always insisted on having at least 100 independent events
per β in the analysis.
In order to determine the lattice spacing and the pion

mass, also zero-temperature simulations have been per-
formed. We produced 800 independent configurations on
32 × 163 lattices for each value of m̂u;d. Using the publicly
available code described in Ref. [19], the scale was set by
the Wilson flow parameter w0. Pion masses, instead, were
measured with standard spectroscopy techniques [20,21].
All our numerical simulations (except those for scale

setting purposes) have been run using the publicly available
[22] OpenCL based code CL2QCD [23], which is optimized
for GPUs. The L-CSC [24] supercomputer at GSI in
Darmstadt has been used, and the thousands of jobs needed
in the study have been efficiently handled using the
simulation monitoring package BaHaMAS [25].
Our quite intricate fitting procedure used to extract the

critical exponent ν is completely analogous to the one

previously described in Appendix B of Ref. [26]. For each
value of the quark mass, nearly all possible fits of the data to
the linear part of (14) are performed, and a filtering
procedure is applied afterwards in order to pick the best
fits. This is needed because the range in which B4ðLImÞ can
be considered linear for each Ns value is not known a priori.
However, here we differ in a technical detail from the
previous study in Ref. [26]. As already mentioned,
reweighting was used not only to smoothen the signal,
but also to supply additional β-points for the fit. This
approach allows to reduce the number of required simu-
lations, provided there are clear criteria according to
which such points are added. Reweighted points introduce
a correlation with the others, and too many of them would
render the fits unreliable. Hence, we addedmore reweighted
points between simulated points only if with lower reso-
lution it was not possible to obtain a good fit. Moreover,
another important aspect should be considered in choosing
the reweighting resolution. The β-region where the kurtosis
is linear shrinks on larger volumes. Thus, choosing the same
resolution in β on different Ns would imply to include fewer
points from larger volumes in the fit and, consequently, to
enhance finite size effects. Therefore, we increased the
reweighting resolution in β on larger Ns, making the
information coming from the smallest volume systemati-
cally less important, see Table V for detailed overview in the

TABLE II. Results of the scale setting. T ¼ 0 simulations have been performed on 32 × 163 lattices always collecting 800 independent
configurations. w0=a has been determined and converted to physical scales using the publicly available code described in [19]. For the
pion mass determination, 8 point sources per configuration have been used. The table also contains the lattice spacing, the pion mass and
the temperature of the corresponding finite temperature ensemble in physical units.

Nτ m̂u;d β w0=a amπ a {fm} mπ {MeV} T {MeV}

4 0.038 5.356 0.75505(26) 0.5236(7) 0.2324(24) 445(5) 212.2(2.2)
0.043 5.362 0.75917(24) 0.5540(6) 0.2312(24) 473(5) 213.4(2.2)
0.048 5.368 0.76356(22) 0.5846(7) 0.2298(24) 502(5) 214.6(2.3)

6 0.004 5.4324 1.1542(9) 0.190(4) 0.1521(16) 247(5) 216.3(2.3)
0.005 5.4365 1.1638(8) 0.210(4) 0.1509(16) 275(6) 218.0(2.3)
0.006 5.4392 1.1643(9) 0.238(3) 0.1507(16) 305(5) 218.2(2.3)
0.007 5.4425 1.1713(9) 0.2487(22) 0.1498(16) 328(4) 219.5(2.3)
0.008 5.4451 1.1734(9) 0.2651(18) 0.1496(16) 350(4) 219.9(2.3)
0.009 5.4483 1.1799(8) 0.2802(18) 0.1487(16) 372(5) 221.1(2.3)
0.010 5.4515 1.1820(8) 0.2963(18) 0.1485(16) 394(5) 221.5(2.3)
0.011 5.4535 1.1830(9) 0.3066(16) 0.1483(16) 408(5) 221.7(2.3)

6 0.150 5.6479 1.3447(11) 0.9758(3) 0.1305(14) 1475(16) 252.0(2.7)
0.250 5.7118 1.3821(11) 1.2198(3) 0.1270(13) 1896(20) 259.0(2.7)
0.350 5.7555 1.4118(15) 1.4136(3) 0.1243(13) 2244(24) 264.6(2.8)
0.400 5.7736 1.4236(10) 1.4995(3) 0.1233(13) 2400(25) 266.8(2.8)
0.450 5.7878 1.4379(11) 1.5788(3) 0.1221(13) 2552(27) 269.5(2.8)
0.500 5.8004 1.4422(11) 1.6544(3) 0.1217(13) 2683(28) 270.3(2.8)
0.550 5.8109 1.4493(14) 1.7260(3) 0.1211(13) 2813(30) 271.6(2.9)
0.600 5.8201 1.4543(18) 1.7938(3) 0.1207(13) 2933(31) 272.5(2.9)
0.650 5.8279 1.4583(23) 1.8592(3) 0.1203(13) 3048(32) 273.3(2.9)
0.750 5.8411 1.4636(14) 1.9830(3) 0.1199(13) 3263(34) 274.3(2.9)
0.850 5.8512 1.4708(13) 2.0992(4) 0.1193(13) 3471(37) 275.6(2.9)
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Appendix. This aspect is even more explicit looking at how
many points per Ns have been included in the fit.

IV. AN ALTERNATIVE TO FITTING:
QUANTITATIVE COLLAPSE PLOTS

Any fitting procedure, however careful, relies on a few
subjective decisions like the number of reweighted points
and the filtering parameters to judge a good fit. We now
propose an alternative procedure to independently determine
the critical exponent from scaling/collapse plots, which can
then be compared with the results of the fitting procedure.
A collapse plot is obtained if an observable, which

displays universal finite size scaling, is plotted as a function
of its scaling variables, such that the curves for different
volumes fall on top of each other provided the volumes are
sufficiently large to represent the thermodynamic limit.
There are several common observables used for this
purpose, here we focus on B4ðLImÞ as function of the
scaling variable x defined in Eq. (13). An example is shown
in Fig. 5.
Whenever the lattice volume is not large enough, scaling

is violated and no good collapse is obtained, even when the
known critical values (listed in Table I) are used. Finite size
corrections are responsible for that and, in principle, a
better collapse can be obtained using different (nonuniver-
sal) values of the exponents. The quality of the collapse
is usually judged by eye, which is mostly sufficient
to distinguish between a first and a second order phase
transition with known exponents (like in Fig. 4). However,
a more rigorous method is clearly needed in a situation
where the scaling exponents change from first
to second-order. On any finite volume, this will lead to
intermediate values of the exponents, which should be
determined unambiguously together with an associated
error. For this purpose we now construct a quantitative
measure of the collapse of our data.
Considering how we judge a collapse plot by eye, the

measure of the quality has to be related to the distance
between different points at the same value of the universal
scaling variable. Inspired by the method used by Barkema
and Newman [27] for the thermal random-field Ising model
(see also a similar analysis in Appendix A of Ref. [28]), we
associate a quantitative quality to the collapse of B4ðLImÞ
by estimating the average variance of the data as

Qðβ̄c; ν̄Þ≡ 1

Δx

Z
xmax

xmin

�
NV

XNV

i¼1

½B4ðxðβ̄c; ν̄; ViÞÞ�2

−
�XNV

i¼1

B4ðxðβ̄c; ν̄; ViÞÞ
�
2
�
dx: ð17Þ

Here, Δx≡ xmax − xmin is the considered range in the
scaling variable, V ≡ Ns, NV is the number of considered
lattice volumes, while β̄c and ν̄ are fixed values for the

critical temperature and for the critical exponent ν, respec-
tively. A normalisation factor N−2

V was neglected in front of
the expression, since it is irrelevant for the estimate of the
critical exponent. It is now possible to obtain an estimate
for βc and ν by minimizing Q as function of these two
variables. Nevertheless, this is a nontrivial task and there
are some problems to be addressed.
The integration in Eq. (17) must be done numerically,

since the exact functional form of B4ðxÞ is unknown. This,
in principle, would not be a problem, if only we had the
kurtosis at the same x on different volumes. However, in
lattice simulations the kurtosis B4 is measured at fixed
values of β, and the mapping (13) between β and x depends
on the unknown parameters βc and ν. Therefore, it is not
possible to have simulated data uniformly spaced in x for
any βc and ν. On the other hand, the measured data can be
interpolated in β using the multiple histogram method.

(a)

(b)

FIG. 4. Collapse plot of the kurtosis of the imaginary part of the
Polyakov loop for m̂u;d ¼ 0.25 using known values of the critical
exponent ν. Since this mass is far from the tricritical points, a by-
eye judgement is enough to rule out the first order as possible
type of phase transition.
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Hence, it is possible to reweight the kurtosis in β in such a
way that its values at the same x are available for all the
volumes. After this step the calculation of Q is trivial. In
practice, this implies an interpolation for each pair ðβ̄c; ν̄Þ at
whichQ has to be evaluated, which is too costly if a precise
determination of the final value of the critical exponent
is desired. A cheaper alternative is to use the reweighting
technique to obtain the kurtosis as an approximately
continuous function of β, i.e., to add a large number of
points between two simulated temperatures. The numerical
integration to obtain Q can then be performed with
negligible additional error. However, due to the particular
form of the map xðβÞ, sometimes, especially for small
values of ν, the number of interpolated points needed to
have a sufficiently precise numerical integration can
become very large and, therefore, the reweighting very
costly. A smarter approach is then required.
As can be seen in Fig. 3, the kurtosis of the imaginary

part of the Polyakov loop is a quite regular function of β, in
the sense that no sudden variations are present. This means
that a numerical interpolation of the data which does not
take into account the physics—as the multiple histogram
method does—will probably still find the correct value of
the kurtosis. Clearly, this is true under the assumption that
the resolution of the data to be interpolated is high enough.
For example, the simulated data are usually too distant
in temperature to be correctly interpolated without the
reweighting technique. But after having applied the multi-
ple histogram method to the data, a second interpolation
can be done very cheaply. In practice, we used the software
Mathematica to obtain an interpolated function out of a
set of points and perform numeric operations on it. The
advantage of having a kurtosis as a function makes the
calculation of Q straightforward. Furthermore, it is then
possible to automatically minimize Qðβc; νÞ as function of
two variables.
Next, we need to estimate the statistical error on βc and

on ν, which has to contain the error on the reweighted
points and the statistical error of our simulations. An error
on reweighted points is often obtained using the bootstrap
method. This means that, in the reweighting procedure,

Nboot sets of reweighted kurtosis values are calculated, and
the bootstrap errors are extracted from them. Now, instead
of using these sets to compute errors on the kurtosis, they
can be used to minimize Q, obtaining Nboot different
estimates of βc and of ν, which will give the desired final
error. Since, typically, the number of bootstrap samples is
of the order of some hundreds, it is clear that the
minimization of Q should not take too much time.1

Finally, let us discuss how xmin and xmax should be
chosen. Clearly, no extrapolation outside the simulated
interval in β should be done. Thus, the largest Δx is the
interval in x around 0 where data from all volumes are
available. Since xc ¼ 0, we have xmin < 0 and xmax > 0
and, in order to have a symmetric Taylor expansion
interval [26], we chose

jxminj ¼ jxmaxj: ð18Þ

Using too large an interval of integration is, in general, not
correct, since it assumes data collapse possibly outside the
critical region. On the other hand, the width of the scaling
region is not known a priori. A clever solution to this
problem, successfully applied in [27], consists of repeated
analyses for successively decreasing Δx followed by an
extrapolation of the resulting parameters to Δx → 0. An
example is reported in Fig. 5.

V. NUMERICAL RESULTS AND DISCUSSION

As mentioned in Sec. III, our strategy to locate the
tricritcal points is to measure the critical exponent ν for
different quark masses and see where it changes from its
first-order value 1=3 for small and large masses to the 3D
Ising value 0 6301(4) for intermediate masses. The changes
approach a step function in the thermodynamic limit
but remain smooth as far as finite lattice volumes are used
to extract ν. The critical exponent ν is preferable over

FIG. 5. Example of linear extrapolation Δx → 0 in the quantitative collapse plot analysis for m̂u;d ¼ 0.009 for βc and ν.

1In Mathematica, for example, it is possible to use the
NargMin function, but a user implemented minimization based
on a scan in βc and in ν is more efficient, though less precise.
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B4ðβc;∞Þ, since it is known to suffer less from finite
volume corrections [26,29,30]. The main result of our
investigation is reported in 6 (more detailed information
about the displayed data is available in Tables IV and V
in the Appendix). For each value of the quark mass, the
critical exponent ν is extracted, both with the fit analysis
used already in Ref. [26] and with the new collapse
strategy introduced in Sec. IV. The agreement between
the two methods to extract the critical exponent ν is
evident in Fig. 6. The quantitative collapse analysis
has systematically smaller errors on ν, though. This,
together with the fact that no arbitrary decision in the
analysis may affect the outcome, should make this
method preferable.
In the large mass region, the signal is quite smooth and ν

changes monotonically from the second-order to the first-
order value. However, approaching and entering the first-
order region, the minimal aspect ratio Ns=Nτ needed to
extract ν increases significantly from 2 to 6 compared
to studies at μ ¼ 0. This has been remarked already in
previous studies [13,26]. Presumably this is due to the fact
that in the Roberge-Weiss plane we are dealing with the
more complex three-state coexistence and its coalescence
in a tricritical point.
The same behavior is expected also in the small-mass

first-order region, where simulations with an aspect ratio
larger than 4 are too costly. Therefore, in Fig. 6, the mass
region m̂u;d ≤ 0.007 has been marked with a gray

background to stress that larger volumes are required to
polish the result. However, we have reasons to believe that
the tricritical point is already located. It is always possible
to compare the critical exponent ν extracted using only part
of the available volumes, while leaving the smallest or
largest out of the analysis. In this way finite size effects
are made visible by checking whether ν drifts toward first-
order or second-order values upon inclusion of larger
volumes. This is shown for m̂u;d ¼ 0.006 in Fig. 6 where
a clear decrease in ν is visible adding Ns ¼ 30 and
removing Ns ¼ 12 in the analysis. Another aspect that
made us confident to be entering the first-order region for
m̂u;d ≲ 0.007 is the typical “B4 bump” behavior discussed
in detail in Ref. [26]. At m̂u;d ¼ 0.007 the kurtosis of the
order parameter starts to overshoot the value 3 for β ≲ βc,
which is due to the coexistence of three states and thus
clearly signals entering the first-order region.
A few points in Fig. 6 were accepted to be obtained from

two spatial volumes only. For the two smallest quark
masses which were simulated, it was clear from the
crossing point of the kurtosis on Ns ∈ f12; 18; 24g that
Ns ¼ 12 was too far away from the thermodynamic limit.
On the other hand, to add a larger spatial extent would have
been very costly without the guarantee to be sufficient
for a conclusive statement. About m̂u;d ¼ 0.75, instead, we
considered the outcome of the analysis with Ns ∈ f36; 42g
satisfactory, since the kurtosis of the order parameter
reaches values larger than 3.5 for β ≲ βc and the bump

FIG. 6. Critical exponent ν as function of the bare quark mass m̂u;d obtained with two different methods. The quantitative collapse plot
points have been slightly horizontally shifted to avoid superposition (refer to Tables IVand V for the data). At m̂u;d ¼ 0.006 the outcome
of the data analysis without the largest spatial value (shaded points) has been included to guide the discussion in the text. For each mass,
a badge containing the aspect ratios Ns=Nτ used in the analysis has been drawn. The horizontal colored lines are the critical values of ν
for some universality classes. The mass axis has been broken and two different scales have been used in order to improve readability.
Points in the grey-background region have to be taken with a pinch of salt, since it is reasonable to believe that finite size effects are for
them dominant.
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shrinks and get larger increasing Ns, behavior typical of the
first-order region.
After these considerations, our estimates of the tricritical

bare quark masses are

m̂tric
light ¼ 0.007þ0.002

−0.003

m̂tric
heavy ¼ 0.55ð10Þ; ð19Þ

where the conservative choice of having an asymmetric
error in the chiral region is to stress that further inves-
tigation would be needed in the chiral limit to polish the
measurement.
In order to asses how much the results are affected by

cutoff effects, we measured both the lattice spacing a and
the pion mass mπ for all simulated bare quark masses,
by running T ¼ μi ¼ 0 simulations at the βc found in the
Roberge-Weiss plane. The outcome is reported in Table II.
Having fixed the scale, it is possible to express Eq. (19) in
terms of pion masses in physical units,

mtric
π;light ¼ 328þ44

−81 MeV

mtric
π;heavy ¼ 2813þ235

−261 MeV: ð20Þ

Our results in physical units are given in Fig. 7, where the
critical exponent ν obtained with our new analysis strategy
is plotted as a function ofmπ . It is important to stress that in
the large-mass region the lattices used are still too coarse to

correctly resolve the pion and we have amπ > 1, implying
sizeable cut-off effects on this value.
We now compare with the previous results obtained on

Nτ ¼ 4 lattices [13]. However, there, only the tricritical
bare quark masses and a rough estimate of mtric

π;light were
reported. We therefore improve the determination of the
latter, by performing additional scale setting simulations,
whose outcome can be found in Table II. In particular,
we measured mπ and a for three values of the quark bare
mass, corresponding to the light tricritical point quoted in
Ref. [13] (the central value and at one standard deviation
apart from it). The value of β has been chosen using a
polynomial interpolation of the βc obtained by the authors
at the simulated masses. Taking as error on the tricritical
pion mass the difference between its value andmπ resulting
from the neighboring bare masses, we obtain

mtric;Nτ¼4
π;light ¼ 473þ29

−28 MeV: ð21Þ

We thus conclude that, in the light region, a shift of
around 44% is found when moving from a Nτ ¼ 4 to a
finer Nτ ¼ 6 lattice. In the heavy mass region, only a rough
comparison is possible, since no pion mass is reported in
Ref. [13] and in any case on Nτ ¼ 4 the pion is resolved
even less. However, it is possible to compare the dimen-
sionless ratio m̂u;d=T at the tricritical point,

FIG. 7. Critical exponent ν as function of the pion mass mπ . This plot is similar to that in Fig. 6, but the values of the critical exponent
are only those obtained with the strategy described in Sec. IV. The regions with light-red background denote the position of the tricritical
masses within one standard deviation.
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mtric;Nτ¼4
π;heavy

T
¼ 2.9ð3Þ

mtric;Nτ¼6
π;heavy

T
¼ 3.3ð6Þ; ð22Þ

which turn out to be compatible.

VI. DISCUSSION AND CONCLUSIONS

Since we are still far from being able to perform a
continuum extrapolation, it is instructive to compare with
other discretizations. The results obtained in Ref. [26]
with Wilson fermions on Nτ ¼ 6 lattices, i.e., with similar
lattice spacing, appear to have considerably larger cut-off
effects. For example, comparing amtric

π;heavy ¼ 2.2302ð2Þ
from Ref. [26] with our amtric

π;heavy ¼ 1.7260ð3Þ, the pion-
resolution problem is milder in the present study. It is also
interesting to compare the position of the tricritical points
in physical units,

mtric;Wilson
π;light ¼ 669þ95

−81 MeV

mtric;Staggered
π;light ¼ 328þ44

−81 MeV ð23Þ

and

mtric;Wilson
π;heavy ¼ 3659þ589

−619 MeV

mtric;Staggered
π;heavy ¼ 2813þ235

−261 MeV: ð24Þ

The large differences between discretizations again imply
being far from the continuum limit, where results from all
discretizations have to merge. The observed trend is
consistent with the findings of simulations with improved
staggered actions, where the tricritical points can only be
bounded to be at much smaller masses, as indicated in

Figure 8, as well as with the analogous findings at zero
chemical potential (see discussion in the Introduction). In
particular the comparison across discretizations implies
enormous cutoff effects in the critical masses, which could
end up being over ∼100% of an eventual continuum limit.
We remark that cutoff effects in the critical temperatures are
much milder. At present, there is no theoretical explanation
as to why the discretization effects on critical quark masses
in the Columbia plot are so strong.
In conclusion, we have determined the shift of the

tricritical points in the Roberge-Weiss plane of unimproved
staggered fermions by changing from Nτ ¼ 4 to Nτ ¼ 6
lattices. The aspect ratios and statistics required to extract
the correct order of the phase transition are found to be
larger in the Roberge-Weiss plane than at μ ¼ 0. We find
the cut-off effect on the tricritical masses to be smaller
but qualitatively the same as that observed with Wilson
fermions, and consistent with results for both discretiza-
tions at zero chemical potential. This implies in particular,
that the entire chiral critical surface depicted in Fig. 1 is
shifted significantly toward smaller (and possibly zero)
light quark masses, as the lattice spacing decreases, which
is also consistent with results from improved staggered
actions. Unfortunately, our study also implies that much
finer lattices at inevitably smaller quark masses are neces-
sary, before one can hope the results of the light tricritical
mass to stabilize in a continuum limit.
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APPENDIX: SIMULATION DETAILS

It is known that different powers of the same observable
have different integrated autocorrelation times τINT, which
can be estimated using the Wolff algorithm [31]. This is
important to be taken into account when it comes to
measure standardized cumulants, like the kurtosis of a
given observable. Binning, i.e., substituting a block of data
with its average, allows to obtain uncorrelated data from the
correlated ones. This is true if the size of a block is at least
twice τINT, though. It is then possible to understand how
many independent measurement of the quantity of interest

are available in a Monte Carlo simulation, just by dividing
the number of the trajectories produced by 2τINT. Clearly, the
larger this number is the more accurate the result will be.
However, simulations in full QCD are costly and a com-
promise is needed. We always had at least 100 independent
events for B4ðLImÞ in the merged chain obtained by putting
together the four independent Markov chain that we pro-
duced for each β value. A detailed overview of the collected
statistics is presented in Table III.
Tables IVand V contain, instead, the detailed outcome of

our analysis, whose data were plotted in Fig. 6.

TABLE III. Overview of the statistics accumulated in all the simulations (red entries are preliminary). Since the
resolution in β is not the same at different m̂u;d, the number of simulated β has been reported per each range. The accumulated
statistics per β varies because of the criterion adopted to stop to increase the statistics on the 4 chains. Therefore we reported here
the total number of trajectories produced per given Ns. For each Ns, the number of simulated β, the average integrated
autocorrelation time and the smallest number of independent events per chain of B4ðLImÞ can be found in the brackets next to
the total statistics. Observe that τ̄INT and neventsmin are not connected. The former is an average among all the different chains
run at one fixed spatial lattice extent, while the latter is the effective length of the shorter chain for that given Ns. The number
of independent events is obtained as ratio between the number of produced trajectories and the bin size, which is
roughly 2τINT.
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TABLE IV. Result of the quantitative collapse analysis. The critical temperature βc and the critical exponent ν have been found
minimizingQðβ̄c; ν̄Þ as defined in Eq. (17) for several decreasing values ofΔx. βextrc and νextr are the outcome of a linear extrapolation for
Δx → 0. Note that the reweighting resolution in β used to add new points between simulated ones varied between 0.004 and 0.0002 and
it has been chosen in order to have around 20 values of the kurtosis to be later interpolated.
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