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The phase diagram of the two-dimensional Nambu–Jona-Lasinio model with isospin is explored in the
large Nc limit with semiclassical methods. We consider finite temperature and include chemical potentials
for all conserved charges. In the chiral limit, a full analytical solution is presented, expressed in terms of
known results for the single-flavor Gross-Neveu and Nambu–Jona-Lasinio models. A novel crystalline
structure appears and is shown explicitly to be thermodynamically more stable than the homogeneous
phase at zero temperature. If we include a bare fermion mass, the problem reduces again to solved problems
in one-flavor models provided that either the fermionic or the isospin chemical potentials vanish. In the
general case, a stability analysis is used to construct the perturbative phase boundary between
homogeneous and inhomogeneous phases. This is sufficient to get a good overview of the complete
phase diagram. Missing nonperturbative phase boundaries requiring a full numerical Hartree-Fock
calculation will be presented in future work.
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I. INTRODUCTION

The two most widely studied versions of the Gross-
Neveu (GN) model in 1þ 1 dimensions are the original
one [1] with Lagrangian

LGN ¼ ψ̄ði∂ −m0Þψ þ g2

2
ðψ̄ψÞ2 ð1Þ

and the chiral GN or 1þ 1 dimensional Nambu–Jona-
Lasinio (NJL) model [2],

LNJL ¼ ψ̄ði∂ −m0Þψ þ g2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð2Þ

In the massless limit (m0 ¼ 0), LGN has a discrete Zð2ÞL ×
Zð2ÞR chiral symmetry, promoted to a continuous Uð1ÞL ×
Uð1ÞR chiral symmetry in LNJL. The Dirac fermions come
in Nc “colors” (a name for flavor in this context), and such
models are typically solved in the large Nc limit [3] with
semiclassical methods. Our focus here will be on equilib-
rium thermodynamics and the phase diagrams. The latter
have been established some time ago for both the massless
[4,5] and the massive [6,7] variants of models (1) and (2).
The biggest surprise was probably the emergence of
inhomogeneous phases. While this had been overlooked

at first [8,9], it could have been anticipated on the basis of
the Peierls instability [10], ubiquitous in one-dimensional
condensed matter systems.
The most popular NJL model in 3þ 1 dimensions, an

effective field theory for strong interaction physics, has
isospin in addition to color [11]. The corresponding
Lagrangian reads

LisoNJL ¼ ψ̄ði∂ −m0Þψ þ G2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2� ð3Þ

and features SUð2ÞL × SUð2ÞR chiral symmetry form0 ¼ 0.
Isospin is obviously of great importance for phenomeno-
logical applications, but this variant has received less
attention in 1þ 1 dimensions. Interest has grown only
recently. In spite of several investigations addressing the
thermodynamics of the model, the understanding of the
phase diagram is still incomplete. To date we have mostly
information about the chiral limit. Using an (unbiased) finite
mode approach, Heinz et al. [12] find numerically that the
phase diagram of the massless isoNJL model in the (μ, T)-
plane is identical to that of the GN model. An explanation
of this remarkable coincidence and a sketch of a possible
phase diagram including an isospin chemical potential was
outlined in Ref. [13], but without detailed calculations. The
Moscow group [14,15] has presented several variational
calculations of the phase diagram including isospin and
chiral imbalance, both with homogeneous and inhomo-
geneous mean fields. They emphasize the phenomenon of
charged pion condensation and a certain duality. These
results are complementary to those of Ref. [12], but have
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not yet led to a definite picture of the phase diagram. The
phase diagram of the massive isoNJL model has also been
addressed within several variational calculations in recent
years [16–18].
Evidently, the isoNJL model is the most complicated one

of the GN family (1)–(3). Due to the possible presence of
up to three distinct chemical potentials and a bare mass,
mapping out the full phase diagram is quite a challenge.
Nevertheless we believe that the toolbox developed in the
past for solving models (1) and (2) should contain every-
thing necessary for determining the complete phase dia-
gram of the isoNJL model as well, using a combination of
numerical and analytical methods. It is the purpose of this
paper to fill the gap in our understanding of the phase
structure of GN type models by constructing this missing
phase diagram.
Throughout this paper, we shall frequently have to refer

to one of the three GN type models. For the sake of
simplicity, we call model (1) GN model, model (2) NJL
model and model (3) isoNJL model (NJL model with
isospin). Since we always work in 1þ 1 dimensions, we
refrain from using subscripts referring to the number of
dimensions as, e.g., in NJL2 model.
This paper is organized as follows. Sections II and III

deal with the chiral limit of the isoNJL model, whereas
Sec. IV addresses the massive model. More specifically, in
Sec. II we identify special cases where the phase diagram of
the isoNJL model can be rigorously reduced to that of the
GN or the NJL model. Section III presents the full phase
diagram in the chiral limit, derived analytically. A novel
kind of crystal phase is identified and illustrated. Section IV
is dedicated to the massive isoNJL model. As in Sec. II, the
phase boundaries can be inferred from those of the massive
GN and NJL models in certain cases. We then construct the
perturbative phase boundary separating the crystal from the
homogeneous phase for a wide range of chemical potentials
and bare masses. In the concluding section, Sec. V, we
summarize our findings and point out areas where further
numerical work is needed.

II. CHIRAL LIMIT—REDUCTION OF THE isoNJL
MODEL TO GN AND NJL MODELS

The massless isoNJL model has the standard U(1) vector
symmetry (conservation of fermion number) as well as

SUð2ÞL × SUð2ÞR chiral symmetry (conservation of iso-
spin and axial isospin charges). Consequently we shall be
interested in the phase diagram of the isoNJL model with
three different chemical potentials. Its Lagrangian reads

L ¼ ψ̄i∂ψ þ G2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2� þ μψ†ψ þ νψ†τ3ψ

þ ν5ψ
†τ3γ5ψ : ð4Þ

In the large Nc limit, the thermal Hartree-Fock (HF)
approximation is adequate. It can be formulated concisely
as single particle Dirac-HF equation

ð−iγ5∂xþ γ0Sþ iγ1τaPa−μ−ντ3−ν5γ5τ3Þψ ¼ωψ ð5Þ

supplemented by the self-consistency conditions for scalar
and pseudoscalar mean fields,

S ¼ −G2hψ̄ψi;
Pa ¼ −G2hψ̄iγ5τaψi: ð6Þ

The brackets denote either thermal averages (T ≠ 0) or
ground state averages (T ¼ 0). Once the HF problem is
solved, one can compute the grand canonical potential and
all thermodynamic observables by standard methods.
We choose the following representation of the Dirac

matrices,

γ0 ¼ σ1; γ1 ¼ iσ2; γ5 ¼ γ0γ1 ¼ −σ3; ð7Þ

and denote 4-component spinors/isospinors as

0
BBB@

Ψ1;1

Ψ1;2

Ψ2;1

Ψ2;2

1
CCCA ¼

0
BBB@

ΨL;↑

ΨL;↓

ΨR;↑

ΨR;↓

1
CCCA: ð8Þ

Thus the two indices on the components Ψi;j label chirality
(L, R) and the 3rd component of isospin (up,down),
respectively. The (grand canonical) HF Hamiltonian in
this representation assumes the form

H ¼

0
BBB@

i∂x − μ − νþ ν5 0 D� C�

0 i∂x − μþ ν − ν5 −C D

D −C� −i∂x − μ − ν − ν5 0

C D� 0 −i∂x − μþ νþ ν5

1
CCCA ð9Þ

with two complex potentials defined as

D ¼ S − iP3; C ¼ P2 − iP1: ð10Þ
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Using Eqs. (6) and (10), the self-consistency conditions
become

D ¼ −2NcG2
X

ðΨ�
1;1Ψ2;1 þ Ψ�

2;2Ψ1;2Þnocc;
C ¼ −2NcG2

X
ðΨ�

1;1Ψ2;2 − Ψ�
2;1Ψ1;2Þnocc; ð11Þ

with the occupation numbers

nocc ¼
1

eβω þ 1
; β ¼ 1

T
for T ≠ 0;

nocc ¼ θð−ωÞ for T ¼ 0: ð12Þ
As pointed out and discussed extensively by the Moscow
group [14,15], the Hamiltonian (9) exhibits an interesting
duality. We may phrase it in the following way: Consider a
particular element of the original, global SUð2Þ × SUð2Þ
chiral symmetry group of the isoNJL model,

Udual ¼ iτ3PL þ iτ1PR; PR;L ¼ 1� γ5
2

: ð13Þ

It interchanges D and C, as well as ν and −ν5,

UdualHðD; C; μ; ν; ν5ÞU†
dual ¼ HðC;D; μ;−ν5;−νÞ: ð14Þ

In the absence of isospin chemical potentials, this would
be physically irrelevant, simply amounting to a different
choice of the vacuum on the SU(2) manifold. In the
presence of isospin chemical potentials, it may indeed be
relevant since the global SUð2Þ × SUð2Þ symmetry is
broken down explicitly to Uð1Þ × Uð1Þ.
There are two obvious cases where H assumes a block

diagonal form: C ¼ 0 (only “scalar” and “neutral pion”
condensates D), and D ¼ 0 (only “charged pion” conden-
sates C). We shall stick to these special cases throughout
this paper and see how far we can get. For homogeneous
condensates, Khunjua et al. [15] have verified numerically
that all extrema of the effective potential belong to this class
of solutions. For inhomogeneous condensates, this still
remains to be checked. Moreover, we only consider the
neutral condensate case (C ¼ 0). Below we argue that this
is general enough for our purpose. Upon setting C ¼ 0, the
HF equation decouples into two HF equations of the one-
flavor NJL model, one for each isospin component,�
i∂x − μ − νþ ν5 D�

D −i∂x − μ − ν − ν5

��Ψ1;1

Ψ2;1

�

¼ ω

�Ψ1;1

Ψ2;1

�
;

�
i∂x − μþ ν − ν5 D

D� −i∂x − μþ νþ ν5

��Ψ1;2

Ψ2;2

�

¼ ω

�Ψ1;2

Ψ2;2

�
: ð15Þ

Equations (15) belong to NJL models with different
chemical and axial chemical potentials, but complex con-
jugate mean fields. This prevents us in general from using
the known solution of the NJL model to solve the isoNJL
model. The formal reason why the problem does not really
separate are the self-consistency conditions, different in the
one- and two-flavor cases. If the two NJL models of (15)
would be really independent, the first line would corre-
spond to the one-flavor theory with chemical potential
μþ ν, axial chemical potential ν5, mean field D and be
supplemented by the self-consistency condition

D ¼ −2Ncg2
X

ðΨ�
1;1Ψ2;1Þnocc: ð16Þ

The 2nd line of (15) would correspond to the same model
but with chemical potential μ − ν, axial chemical potential
−ν5, mean field D� and self-consistency condition

D� ¼ −2Ncg2
X

ðΨ�
1;2Ψ2;2Þnocc: ð17Þ

Conditions (16) and (17) are in general incompatible, since
different chemical potentials would require mean fields not
related by complex conjugation. Anyway, neither condition
(16) nor condition (17) holds here. We rather have to make
sure that the isoNJL self-consistency conditions (11) for the
special case C ¼ 0 are satisfied, i.e.,

D ¼ −2NcG2
X

ðΨ�
1;1Ψ2;1 þ Ψ�

2;2Ψ1;2Þnocc;
0 ¼ −2NcG2

X
ðΨ�

1;1Ψ2;2 − Ψ�
2;1Ψ1;2Þnocc: ð18Þ

Thus one cannot solve the isoNJL model simply with the
solution of the NJL model in general. There are two
important special cases though where one gets away with
the knowledge of the one-flavor model: keeping only the
fermion chemical potential μ, or keeping only isospin and
chiral isospin chemical potentials ν; ν5. We shall return to
the general case in the next section.
Case I: ν ¼ ν5 ¼ 0, μ ≠ 0
Here we are dealing with hot and dense isospin-

symmetric matter. Equation (15) reduces to

�
i∂x − μ D�

D −i∂x − μ

��Ψ1;1

Ψ2;1

�
¼ ω

�Ψ1;1

Ψ2;1

�
;

�
i∂x − μ D

D� −i∂x − μ

��Ψ1;2

Ψ2;2

�
¼ ω

�Ψ1;2

Ψ2;2

�
: ð19Þ

Since now the chemical potentials are the same, the mean
fields must also agree: D ¼ D� ¼ S. Hence the two
equations reduce to identical equations for the GN model
with discrete chiral symmetry at chemical potential μ.
There we know the answer. Depending on the location
in the (μ, T)-plane, SGN is 0 (symmetric phase), constant
(homogeneous phase) or has the form of a kink crystal (see
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Fig. 1 below). Denoting the GN spinor components by ψ1;2,
the one-flavor self-consistency condition reads

SGN ¼ −Ncg2
X

ðψ�
1ψ2 þ ψ�

2ψ1Þnocc: ð20Þ

Note that this is only the real part of the NJL self-
consistency condition. From this we can construct an exact
solution of the isoNJL model. Let us choose the following
spinors in the two decoupled isospin channels,0
BBB@

Ψ1;1

Ψ1;2

Ψ2;1

Ψ2;2

1
CCCA

↑

¼

0
BBB@

ψ1

0

ψ2

0

1
CCCA;

0
BBB@

Ψ1;1

Ψ1;2

Ψ2;1

Ψ2;2

1
CCCA

↓

¼

0
BBB@

0

ψ1

0

ψ2

1
CCCA: ð21Þ

Equations (19) are satisfied by construction. The first
isoNJL self-consistency condition (18) becomes

D ¼ −2NcG2
X

ðψ�
1ψ2 þ ψ�

2ψ1Þnocc ð22Þ

where the two terms on the right-hand side arise from
isospin up and isospin down contributions, respectively.
This matches the single flavor GN model (20), provided we
identify 2NcG2 with Ncg2. But this is precisely what the
gap equation tells us if we use the same ultraviolet (UV)
cutoff Λ=2 in the isoNJL and GN models. We remind the
reader of the following vacuum gap equations (using units
where m ¼ 1)

π

Ncg2
¼ ln Λ ðGN or NJLÞ;

π

2NcG2
¼ ln Λ ðisoNJLÞ: ð23Þ

The difference between the cases with and without isospin
reflects the fact that the total number of flavors has
increased by a factor of 2. The 2nd line of the isoNJL
self-consistency condition (18) is trivially satisfied for the

spinors (21). Hence the isoNJL model at finite μ, T can be
solved using the known solution of the GN model,

DisoNJLðμ; ν ¼ 0; ν5 ¼ 0; TÞ ¼ SGNðμ; TÞ: ð24Þ
This fully confirms and explains the numerical findings of
Heinz et al. [12]. The thermodynamic potentials are then
related as follows,

Veffðμ; ν ¼ ν5 ¼ 0; TÞ
2Nc

����
isoNJL

¼ Veffðμ; TÞ
Nc

����
GN

: ð25Þ

Case II: μ ¼ 0, ν ≠ 0, ν5 ≠ 0
This is the case of finite isospin density with vanishing

fermion density. In quantum chromodynamics with
Nc ¼ 3, one would associate a pion condensate with such
a phase. Here, due to the large Nc limit, we prefer to think
of a system with the same density of up quarks and down
antiquarks (or vice versa). Equation (15) reduces to�

i∂x − νþ ν5 D�

D −i∂x − ν − ν5

��Ψ1;1

Ψ2;1

�
¼ ω

�Ψ1;1

Ψ2;1

�
;

�
i∂x þ ν − ν5 D

D� −i∂x þ νþ ν5

��Ψ1;2

Ψ2;2

�
¼ ω

�Ψ1;2

Ψ2;2

�
:

ð26Þ

The first line is the HF equation of the single flavor NJL
model with chemical potential ν and axial chemical
potential ν5. Its solution is known as chiral spiral (spinor
components ψ1;2, ΔNJL ¼ S − iP),

ΔNJL ¼ mðTÞe2iνx ¼ −2Ncg2
X

ψ�
1ψ2nocc: ð27Þ

Here mðTÞ is the thermal mass of the fermions at μ ¼ 0,
vanishing for T ≥ Tcrit. The chiral isospin chemical poten-
tial ν5 does not show up in the mean field but in some
observables, as it induces an asymmetric UV cutoff [19].
The second line of (26) is the corresponding solution with
complex conjugate mean field, opposite chemical poten-
tials (−ν;−ν5) and spinor components ϕ1;2,

Δ�
NJL ¼ mðTÞe−2iνx ¼ −2Ncg2

X
ϕ�
1ϕ2nocc ð28Þ

or, equivalently,

ΔNJL ¼ mðTÞe2iνx ¼ −2Ncg2
X

ϕ�
2ϕ1nocc: ð29Þ

Choosing the isospin up and down spinors

0
BBB@

Ψ1;1

Ψ1;2

Ψ2;1

Ψ2;2

1
CCCA

↑

¼

0
BBB@

ψ1

0

ψ2

0

1
CCCA;

0
BBB@

Ψ1;1

Ψ1;2

Ψ2;1

Ψ2;2

1
CCCA

↓

¼

0
BBB@

0

ϕ1

0

ϕ2

1
CCCA ð30Þ

0.2

0.4

0.6

0.5
1

1.5
2

0.5
1

1.5
2

FIG. 1. Phase diagram of the massless isoNJL model in the
(μ, T) and (ν, T) planes, coinciding with phase diagrams of the
one-flavor GN and NJL models, respectively. In the latter case,
μ has to be replaced by ν.
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as solutions of the isoNJL HF equation (26), the self-
consistency condition for the isoNJL model reads [see first
line of Eq. (18)]

D ¼ −2NcG2
X

ðψ�
1ψ2 þ ϕ�

2ϕ1Þnocc: ð31Þ

This matches again the single-flavor self-consistency rela-
tions (27)–(29) for g2 ¼ 2G2. The 2nd line in (18) is again
trivially fulfilled. Hence we have found a HF solution of the
isoNJL model in the case μ ¼ 0 in terms of solutions of
the NJL model. The phase diagram in the (ν, T) plane is
the same as the NJL phase diagram in the (μ, T) plane and
also shown in Fig. 1. For the thermodynamic potential, we
obtain

Veffðμ ¼ 0; ν; ν5; TÞ
2Nc

����
isoNJL

¼ Veffðμ ¼ ν; μ5 ¼ ν5; TÞ
Nc

����
NJL

¼ Veffðμ ¼ 0; TÞ
Nc

����
GN

−
ν2 þ ν25
2π

:

ð32Þ

The last line is taken over from Ref. [19] where the NJL
model with chiral imbalance has been discussed.
Summarizing cases I and II, we learn that depending on

the choice of chemical potentials, the isoNJL model can
mimic two well-known phase diagrams: those of the GN
and the NJL model, prime examples of phase diagrams
with inhomogeneous phases. The coincidence with the GN
model in the (μ, T)-plane was already discovered numeri-
cally in Ref. [12]. In view of our goal to construct the full
phase diagrams of the (massless and massive) isoNJL
models in the whole parameter space (temperature, chemi-
cal potentials), these analytical findings on the boundary
give very useful constraints. Figure 1 summarizes what we
have learned so far about the phase diagram of the massless
isoNJL model.
Up to this point, we have tacitly assumed that C ¼ 0. By

applying the duality transformation (13), we can swap D
with C and ν with −ν5. In the first special case (ν ¼ 0,
ν5 ¼ 0), this gives nothing new, although the mean field
looks quite different. This is due to the fact that, in the case
of spontaneous symmetry breaking, picking a particular
point on the vacuum manifold cannot have any observable
consequences. The choice C ¼ 0 is singled out if one
approaches the chiral limit from the massive theory side
(m0 → 0), so that we would rather stick to it. In the second
special case (μ ¼ 0), the value of the thermodynamic
potential also does not change [it is symmetric under
ν ↔ −ν5, see (32)]. However the ν-axis in Fig. 1 would
become the ν5 axis, and the breakdown of translational
invariance would have to be attributed to ν5 rather than ν.
We believe that this reflects the freedom of choosing
different isospin frames for left- and right-handed fermions
in the isoNJL model. No such ambiguity exists in the

one-flavor NJL model where only μ can induce crystal-
lization, not μ5. If we invoke again the limit m0 → 0 to
define the chiral limit, the choice C ¼ 0 and Fig. 1 with the
ν axis as shown are singled out.

III. CHIRAL LIMIT—FULL PHASE DIAGRAM
OF THE isoNJL MODEL

In the preceding section we have considered special
cases where one or two of the chemical potentials (μ, ν, ν5)
vanish. Then the isoNJL model problem could be reduced
exactly to the simpler one-flavor NJL and GN models. This
is no longer the case once we switch on all three chemical
potentials. Nevertheless, the experience from the simpler
models can guide us to an exact HF solution. At μ ¼ 0, we
can generate the isospin chemical potentials ν and ν5 by a
(local) chiral transformation by means of the axial anomaly,
see [13,19]. Since this is an UVeffect, the same trick can be
used at μ ≠ 0 and finite temperature. We therefore start
from the case ν ¼ ν5 ¼ 0where the HF equation reads (see
special case I above)

ð−iγ5∂x þ γ0SGN − μÞΨ ¼ ωΨ: ð33Þ
At this level, there is no isospin dependence. The self-
consistent HF potential SGN is real and may be 0, a
dynamical mass or a periodic function of x, depending
on where one is in the (μ, T)-plane (see Fig. 1). Let us apply
the unitary transformation

Ψ ¼ UΦ; U ¼ e−ixðν5þνγ5Þτ3 : ð34Þ
The HF equation goes over into

ð−iγ5∂x þ U†γ0USGN − μ − i½U†γ5∂xU�ÞΦ ¼ ωΦ: ð35Þ
Upon plugging in U from (34), we find

ð−iγ5∂x þ γ0Sþ iγ1τ3P3 − μ − ντ3 − ν5τ3γ5ÞΦ ¼ ωΦ

ð36Þ
with

S ¼ SGN cos 2νx; P3 ¼ −SGN sin 2νx;

D ¼ S − iP3 ¼ SGNe2iνx: ð37Þ
The self-consistency condition for the GN spinor Ψ,
Eq. (33), goes over into that of the isoNJL spinor Φ,
Eq. (35), in this process. Thus we get almost “for free” an
exact HF solution of the isoNJL model with all three
chemical potentials different from zero. The resulting mean
field D, Eq. (37), can be fairly complicated, depending on
the parameters, and is different from those of the one-flavor
GN or NJL models. Although Φ solves the HF equations
for two standard NJL models, it does not satisfy the self-
consistency conditions of the two separate models, as one
can easily check. This is in contrast to what happened in the
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special cases ν ¼ ν5 ¼ 0 or μ ¼ 0 above. Therefore sol-
ution (37) is genuine for the isoNJL model, even though the
building blocks are borrowed from the one-flavor cases.
Assuming that there is no better HF solution (where both

D and C would have to be nonzero), we can now construct
the phase diagram of the isoNJL model in the chiral limit
rather trivially, starting from Fig. 1. Due to the factorization
of the mean field, the 2nd order phase boundaries sepa-
rating the symmetric, homogeneous and crystal phases
of the GN model are just transported parallel in the
ν-direction, giving rise to the sheets of 2nd order phase
transitions in (μ, ν, T)-space shown in Fig. 2. In region I,
the mean field vanishes and chiral symmetry is restored.
In region II, D has the form of the usual chiral spiral with
fixed (temperature dependent) radius. In region III, it is
given by the product of the (finite temperature) GN kink
crystal potential and the NJL factor e2iνx. This represents a
chiral spiral whose radius is modulated by the kink crystal
shape, whereas its pitch depends only on the isospin
chemical potential. Just like the axial chemical potential
μ5 in the one-flavor NJL model [19], the axial isospin
chemical potential ν5 does not manifest itself at all in the
phase diagram, although some observables will depend on
it. The thermodynamic potential of the isoNJL model is
closely related to that of the GN model,

Veffðμ; ν; ν5; TÞ
2Nc

����
isoNJL

¼ Veffðμ; TÞ
Nc

����
GN

−
ν2 þ ν25
2π

: ð38Þ

The isospin density and the axial isospin density are
spatially constant and temperature independent,

ρ3 ¼ hψ†τ3ψi ¼ 2Nc

�
ν

π

�
;

ρ3;5 ¼ hψ†τ3γ5ψi ¼ 2Nc

�
ν5
π

�
: ð39Þ

This is a well-known consequence of chiral symmetry and
the axial anomaly. The fermion density on the other hand is
periodic in x and identical to that of the GN model (up to an
overall factor 2Nc instead of Nc).
The simple dependence of the thermodynamic potential

on ν, ν5 has an important implication for the duality
transformation discussed above, see Eqs. (13), (14). Since
expression (38) is invariant under exchange of ν and −ν5,
exchanging D and C is equivalent to choosing a different
vacuumpoint on thevacuummanifold and has no observable
consequences. Hence the question of whether there is a
charged pion condensate is irrelevant here from the physics
point of view.
The solution presented above is an exact, analytical HF

solution for the most general chemical potentials and
temperature with novel crystalline mean fields as compared
to single-flavor cases. What is still missing is a comparison
of the thermodynamic potential with other HF solutions
discussed in the literature. We already know that the present
solution is the most stable one in the cases ν ¼ ν5 ¼ 0 (GN
model) or μ ¼ 0 (NJL model). Here we should like to
compare the thermodynamic potential to the homogeneous
solution studied in Ref. [15] if all three chemical potentials
are different form zero. For the sake of simplicity we
restrict ourselves to T ¼ 0where essentially everything can
be done analytically.
Let us first illustrate the mean field in the crystal phase at

T ¼ 0 for a few cases. Using the explicit form of SGN in
terms of Jacobi elliptic functions [20], the inhomogeneous
HF potential of the isoNJL model is

Dðμ; ν; ν5; xÞ ¼ κ
snðξ; κÞcnðξ; κÞ

dnðξ; κÞ e2iνx; ξ ¼ x
κ
: ð40Þ

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0

0.2

0.4

0.6

FIG. 2. Full phase diagram of the massless isoNJL model. (I)
Chirally restored phase, (II) chiral spiral with constant radius,
(III) chiral spiral with periodically modulated radius. There is no
dependence on ν5.
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FIG. 3. Example of order parameter in region III of Fig. 2. The
radius of the chiral spiral is modulated by the kink-antikink
crystal shape, see Eq. (37). Parameters: μ ¼ 0.637, ν ¼ 1.5,
T ¼ 0.
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As pointed out above, it is independent of ν5, whereas the
μ dependence is implicit in the following relation between
the chemical potential μ and the elliptic modulus κ,

μ ¼ 2EðκÞ
πκ

: ð41Þ

The spatial periods of the GN and NJL factors in D are

LGN ¼ 2κKðκÞ; LNJL ¼ π

ν
: ð42Þ

For generic parameters μ, ν, these periods are incommen-
surate and the isoNJL mean field is not periodic. The best
way of illustrating it is then the one shown in Fig. 3. The fat
line represents the space curve of the mean field, traced
out on the surface arising from rotating the kink-antikink
crystal shape around the x axis. If one chooses the two
periods to be commensurate, one can generate chiral spirals
with Lissajous character, see Fig. 4 where we compare two
such curves with the standard NJL chiral spiral. These
examples should be sufficient to illustrate that the crystal
structure of the isoNJL model is much richer than the one
of the single-flavor NJL model. In the incommensurate
case, the plots analogous to Fig. 4 look rather chaotic and
are not very illuminating.
In the GN model, the relationship between the grand

canonical potential at T ¼ 0 and the chemical potential has
been given in Sec. 4.3 of Ref. [5],

Veffðμ; T ¼ 0Þ
Nc

����
GN

¼ θðμ − μcritÞ
�
1

2π
−

1

2πκ2

�
;

μcrit ¼
2

π
: ð43Þ

The elliptic modulus κ and the chemical potential μ are
related by Eq. (41). The vacuum energy density has been

subtracted as usual, so that the effective potential vanishes
for μ ≤ μcrit. The critical chemical potential μcrit corre-
sponds to κ ¼ 1 (low density limit) and agrees with the
baryon mass in the GN model [21] divided by Nc (vacuum
fermion mass ¼ 1). This result together with (38) gives the
following simple expression for the effective potential of
the isoNJL model at T ¼ 0

Veffðμ; ν; ν5; T ¼ 0Þ
2Nc

����
isoNJL

¼ θðμ − μcritÞ
�
1

2π
−

1

2πκ2

�

−
ν2 þ ν25
2π

: ð44Þ

We can now compare our solution with the homogeneous
one in the whole (μ; ν; ν5)-space. To this end we have
repeated the calculation with constant mean fieldD (C ¼ 0)
for the isoNJL model [15]. The result for the effective
potential at T ¼ 0 can be cast into the form

Veffðμ; ν; ν5; T ¼ 0Þ
2Nc

����
hom

¼ min
m

�
F ðm; μ − νÞ þ F ðm; ν − μÞ þ F ðm; μþ νÞ

þF ðm;−μ − νÞ þ 1

4π
−
m2

4π
ð1 − ln m2Þ − ν25

2π

�
ð45Þ

where

m ¼ jDj;

F ðm; yÞ ¼ θðy −mÞ 1

4π

"
m2 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 −m2

p
þ y

m

�

− y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 −m2

q #
: ð46Þ
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FIG. 4. Examples of order parameter for the case of commensurate spatial periods of SGN and e2iνx factors. The first plot is the standard
chiral spiral, the other two plots show additional possibilities with Lissajous character due to isospin imbalance. Parameters from left to
right: (i) μ < μcrit, ν ¼ 0.306, (ii) μ ¼ 0.637, ν ¼ 0.306, (iii) μ ¼ 0.637, ν ¼ 0.038. The ratio of the NJL period to the GN period,
Eq. (42), is 1=2 in (ii) and 4 in (iii).
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This is actually more complicated than (44). For constant C
(D ¼ 0), one gets the same expression except that now
m ¼ jCj whereas ν and ν5 are interchanged. As indicated in
Eq. (45), the right-hand side still has to be minimized with
respect to m, the physical fermion mass in matter. If the
results for neutral and charged pion condensates are
different, one has to pick the lower one. This gives rise
to a fairly complicated phase diagram, with regions of
charged and neutral condensates as well as chirally restored
ones separated by first order phase transitions [15]. The
origin of these complications are the step functions in (46)
which govern when a certain branch of eigenvalues of H
crosses zero. We then compare the value in the minimum
with our prediction (44) in the relevant region of (μ; ν; ν5)-
space (we looked at 0 < μ; ν; ν5 < 2).
We find that the inhomogeneous solution is favored

everywhere over the homogeneous one, at T ¼ 0. The only
region in (μ; ν; ν5)-space where the two calculations
coincide is on the strip ν ¼ 0; μ < μcrit, any ν5, where
the new solution is also homogeneous. Since our result
depends only on ν2 þ ν25 as far as the isospin chemical
potentials are concerned, there is no need to invoke duality.
It makes no difference whether we work with neutral or
charged condensates.
This comparison also gives a clue why the inhomo-

geneous potential is favored. In the GN model, the kink
crystal potential is such that there is always a gap at the
Fermi surface (Peierls instability). The unitary transforma-
tions applied later on to induce ν; ν5 do not change this
feature, moving the gapped fermion spectra rigidly up or
down while keeping the occupation of each level fixed. By
contrast, the homogeneous calculation does not generate a
gap at the Fermi surface, except in the vacuum.
The question still remains whether we are allowed to

assume that either D or C vanish. At ν ¼ ν5 ¼ 0 (isospin
symmetric matter), a better solution with nonvanishing C
and D can be ruled out thanks to the unbiased numerical
investigation of Heinz et al. [12]. But what about isospin
asymmetric systems? Here we can only be certain that no
better homogeneous solution exists, as shown by Khunjua
et al. [15]. We believe that a better inhomogeneous HF
solution with nonzero neutral and charged condensates is
also unlikely. To this end, it is instructive to look at the
chirally restored phase. The grand canonical potential
density in the symmetric phase is, using (44), (45),

Veffðμ; ν; ν5; T ¼ 0Þ
2Nc

����
m¼0

¼ 1

4π
−
μ2 þ ν2 þ ν25

2π
ð47Þ

The constant term comes from the subtraction of the
interacting vacuum energy density and would be absent
in the free, massless theory. This shows that the dependence
of our full calculation on ν; ν5 can hardly be improved,
being the same as in the free, massless Fermi gas. It is
difficult to imagine that the interacting theory could require

even less energy than the minimal amount dictated by
kinematics and the Pauli principle, as realized in a free,
massless Fermi gas.

IV. MASSIVE ISONJL MODEL—PERTURBATIVE
PHASE BOUNDARY SHEET

We now add a bare mass term to the Lagrangian (4),

L ¼ ψ̄ði∂ −m0Þψ þG2

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�

þ μψ†ψ þ νψ†τ3ψ : ð48Þ

The mass term breaks chiral symmetry explicitly and gives
rise to a unique vacuum with S ¼ m;Pa ¼ 0. Since the
axial isospin charge is no longer conserved, we should not
introduce an axial isospin chemical potential ν5 here. The
gap equation (23) is replaced by (using units where m ¼ 1
in the vacuum)

π

2NcG2
¼ γ þ ln Λ; γ ¼ πm0

2NcG2
¼ m0 ln Λ: ð49Þ

With the identification 2G2 ¼ g2, the “confinement param-
eter” γ is the same as in the single-flavor model. In case I of
Sec. II (μ ≠ 0; ν ¼ ν5 ¼ 0), all the arguments leading to the
GN model go through literally. We only need to replace
SGN by SGN −m0 and D by D −m0 in the self-consistency
relations (20) and (22), respectively. This implies that the
phase diagram of the massive isoNJL model at finite (μ, T)
is the same as that of the massive GN model [6]. Unlike in
the chiral limit, there is as yet no independent confirmation
of this result. In the second special case (μ ¼ 0, ν ≠ 0), the
arguments in favor of the NJL phase diagram can be
repeated once again, except that the axial chemical poten-
tial should be omitted. Hence the phase diagram in (ν, γ, T)-
space of the massive isoNJL model should be identical to
the phase diagram in (μ, γ, T)-space of the massive one-
flavor NJL model [7]. Based on the results of the earlier
studies of massive GN and NJL models, we may then
replace Fig. 1 in the chiral limit by Fig. 5 for the massive
isoNJL model, without any additional effort. However, it is
not obvious what replaces Fig. 2 in the massive case. Since
chiral symmetry is explicitly broken, the trick with the local
unitary transformation used above is not available anymore.
We have to resort to other methods to construct the full
phase diagram in the bulk of (μ, ν, T)-space.
Before continuing, it is worthwhile to recall the character

of the critical lines drawn in Fig. 5 and taken from
Refs. [6,7]. These lines separate the homogeneous from
the inhomogeneous phases. The curves from both single-
flavor models (GN and NJL) exhibit a tricritical point,
dividing them into a “horizontal” and a “vertical” section
(the latter connects the tricritical point with the T ¼ 0 axis).
Along the “horizontal” phase boundaries, a second order
phase transition occurs where the mean field vanishes in a
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continuous fashion. Hence these phase boundaries can be
determined using perturbation theory in the mean field. By
contrast, the “vertical” phase boundaries are nonperturba-
tive. In the case of the GN model [(μ, T)-plane in Fig. 5],
they are characterized by the instability of the homo-
geneous system toward formation of a single baryon.
The phase transition is 2nd order but nonperturbative. In
the case of the NJL model [(ν, T)-plane in Fig. 5], the phase

transition is discontinuous and of first order, i.e., there are
two competing local minima of the same depth in the
effective potential along the phase boundary. In order to
complete the phase diagram in the whole (μ, ν, T)-space,
we shall assume that this division into perturbative and
nonperturbative phase boundaries makes sense everywhere.
In the present section, we determine the “horizontal,”
perturbative phase boundary sheet of the isoNJL model,
using a simple stability analysis.
Since the problem at hand is closely related to one-flavor

NJL models for each isospin component, we can take over
some technicalities from the study of the massive NJL
model [7]. Let us briefly recall the approach used there.
Starting point was the HF Hamiltonian divided up into

H ¼ H0 þ V ð50Þ

where

H0 ¼ −γ5i∂x þ γ0m;

V ¼ γ02S1 cosð2qxÞ − iγ12P1 sinð2qxÞ: ð51Þ

The wave number q where the instability occurs was
denoted by kf in Ref. [7]. For arguments why this ansatz
is general enough to find the exact phase boundary, we refer
to that paper. The change in the grand canonical potential
due to V was determined in 2nd order almost degenerate
perturbation theory (ADPT) with the result

δΨNJLðμ; T; S1; P1; qÞ ¼
E2
qS21 þ q2P2

1

π

Z̶
∞

0

dp
1

Eðp2 − q2Þ
�

1

eβðE−μÞ þ 1
þ 1

eβðEþμÞ þ 1

�

þ 2qS1P1

π

Z̶
∞

0

dp
1

p2 − q2

�
1

eβðE−μÞ þ 1
−

1

eβðEþμÞ þ 1

�

þ S21 þ P2
1

π

γ

m
−
E2
qS21 þ q2P2

1

2πqEq
ln

�
Eq − q

Eq þ q

�
ð52Þ

where

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

q
; Eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q2

q
: ð53Þ

The only remnant of ADPT in this expression is the
principal value prescription for integrating through the
singularity at p ¼ q. Requiring that the grand potential be
stationary with respect to m; S1; P1; q then leads to the
conditions

detM ¼ 0; ∂q detM ¼ 0 ð54Þ

with M the “Hessian” matrix

M ¼
� ∂2

S1
ðδΨÞ ∂S1∂P1

ðδΨÞ
∂P1

∂S1ðδΨÞ ∂2
P1
ðδΨÞ

�
ð55Þ

The massm appearing in this expression is the mass which
minimizes the homogeneous grand canonical potential at
the same temperature and chemical potential. It is now
straightforward to adapt this computation to the massive
isoNJL model. All we have to do is replace δΨNJL by

δΨisoNJLðμ; ν; T; S1; P1; qÞ ¼
1

2
½δΨNJLðμþ ν; T; S1; P1; qÞ

þ δΨNJLðμ− ν; T; S1;−P1; qÞ�
ð56Þ
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FIG. 5. Phase diagram of the massive isoNJL model in the
(μ, T) and (ν, T) planes, generalizing Fig. 1 of the massless
model. The curves in the ν ¼ 0 plane can be taken over from the
massive GN model, the curves in the μ ¼ 0 plane from the
massive NJL model. Only curves with γ ¼ 0.1, 0.3, 0.5, 1.0 (from
top to bottom) are shown.
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The chemical potentials μ� ν and the fact that the sign of
P1 had to be reversed in the isospin down contribution can
be read off from Eq. (15), remembering that ν5 ¼ 0 in the
massive model.
In order to locate the perturbative phase boundary, we

work at a fixed γ and scan the (μ, ν)-plane on a regular grid.
At each grid point, we vary the temperature until the
determinant and its derivative vanish simultaneously, see
Eq. (54). We have first tested our procedure in the chiral
limit where the answer is already known (Fig. 2). In this
limit, the perturbative sheet actually consists of two distinct
parts separated by a tricritical line. The part at μ < μcrit
separates the symmetric phase from a standard chiral spiral
crystal (constant radius), whereas the part at μ > μcrit
separates the symmetric phase from the novel chiral spiral
crystal (periodically modulated radius). We find that the
perturbative calculation maps out both parts accurately. As
a matter of fact, by looking at the plot of detðMÞ versus q
on the phase boundary, one gets additional information
about the character of the instability. This is shown in
Fig. 6. At μ < μcrit, we see only one critical wave number,
q ¼ ν. At μ > μcrit two critical wave numbers appear
simultaneously, q ¼ μþ ν and q ¼ jμ − νj. This is due
to the factorization of Δ into a chiral spiral factor and a
soliton crystal profile, the latter also reducing to a plane
wave at the phase boundary. At μ ¼ μcrit, we find that the
2nd derivative of the determinant vanishes as well.
We have performed such perturbative calculations of the

phase boundary for the massive isoNJL model at γ ¼
0.1…0.9 in steps of 0.1. By way of example, Fig. 7 shows
how the horizontal critical curves of the GN model (at
ν ¼ 0) are connected to those of the NJL model (at μ ¼ 0)
by a smooth phase boundary sheet. As expected from the
GN and NJL models, no perturbative phase boundary could
be found in a region close to the origin, below the crystal
phases of the two models. There must be a homogeneous
region extending down to the T ¼ 0 plane, presumably
separated from the crystal phase by a first order transition.
This part of the phase diagram cannot be captured by a
perturbative stability analysis but would require a full
numerical HF calculation. Unfortunately, plots of detðMÞ

are not as simple as in the chiral limit, Fig. 6, so thatwe do not
get any clue as to the crystal structure below the sheet, or the
position of a possible tricritical line.
In order to illustrate the dependence of the phase diagram

on the parameter γ, we show all of our results in Fig. 8.
In all cases considered, we find that the novel perturbative
phase boundary sheet in the bulk of (μ, ν, T) space
interpolates smoothly between the known GN and NJL
results on the boundaries. With increasing bare fermion
mass, the critical temperature where the crystal phase ends
decreases. Onewould expect that the inhomogeneous phase
survives at T ¼ 0 and sufficiently large chemical potentials.
The main qualitative difference between massless and
massive isoNJL models is the “wound” around the origin
where a homogeneous island is expected. Judging from the
GN and NJL models, there should be a nonperturbative,
“vertical” phase boundary connecting the perturbative sheet
with the T ¼ 0 plane. To determine it would require a full
numerical HF calculation as described in Ref. [7] for the
massive NJL model.
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FIG. 7. Perturbative phase boundary between crystal phase and
massive Fermi gas in the massive isoNJL model. The result
shown was obtained at γ ¼ 0.1, corresponding to the uppermost
curves in Fig. 5.
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FIG. 6. Examples of plots of detðMÞ right on the phase boundary sheet, as they are found in the massless isoNJL model. From left to
right: (i) Boundary between phases I and II in Fig. 2, μ ¼ 0.3, ν ¼ 1, (ii) Tricritical line where phases I; II; III meet, μ ¼ 0.608, ν ¼ 1,
(iii) boundary between phases I and III, μ ¼ 2, ν ¼ 1.
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FIG. 8. Perturbative phase boundary sheets of massive isoNJL model for γ ¼ 0…0.9 in steps of 0.1. Note the systematic slight
enhancement along the diagonal of the (μ, ν) plane. A homogeneous region down to T ¼ 0 is expected in the hole visible near the origin.
The nonperturbative phase boundary delimiting this hole is not yet known, except on the μ ¼ 0 and ν ¼ 0 planes.
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The only other conspicuous feature of the perturbative
phase boundaries is a slight but systematic enhancement in
the direction of the diagonal μ ¼ ν. We have no explanation
for this phenomenon, so that we have to await the results of
the complete HF calculation inside the crystal phase which
is underway.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the phase diagram of the
isoNJL model in 1þ 1 dimensions. In the chiral limit, we
have arrived at the full phase diagram as a function of
temperature and all three chemical potentials corresponding
to fermion density, iospin density and chiral isospin
density, using only analytical tools. This would not have
been possible without prior analytical knowledge of the
phase diagrams of the one-flavor GN and NJL models. The
chiral isospin chemical potential does not show up at all in
the phase diagram and the 3-dimensional (μ, ν, T)-space is
sufficient to exhibit the phase structure. In the (μ, T)-plane,
we recover the GN phase diagram, as noticed previously by
others using numerical computations. In the (ν, T)-plane,
the phase diagram is identical to that of the NJL model in
the (μ, T)-plane. The interesting question is then how the
system interpolates in the bulk of (μ, ν, T)-space between
these two well-known, qualitatively different crystal
phases. The answer is a factorization of the order parameter
into those of the GN and the NJL model. The resulting
phase diagram can be generated by a parallel transport of
the GN phase diagram in the direction of the ν axis. In spite
of this simple construction for which the chiral anomaly is
instrumental, the order parameter can look quite compli-
cated. It would have been difficult to understand it using
only numerical methods.
The basic assumption behind these results is that one can

set the charged condensate (C ¼ P2 − iP1) equal to zero.
We have given heuristic arguments and empirical evidence
that this is reasonable, at least in the chiral limit. The most
convincing argument in our opinion is the fact that at zero

temperature we can make sure that there is always a gap at
the Fermi surface, in accordance with the Peierls instability
in condensed matter physics. This cannot be achieved with
homogeneous phases only. Nevertheless one should try to
rule out a more complicated order parameter with non-
vanishing neutral and charged condensates in a more
rigorous fashion in future work.
Turning to the massive isoNJL model, we first pointed

out that in the (μ, T) and (ν, T)-planes, the phase diagram is
again identical to that of the massive GN and massive NJL
models, respectively. These phase diagrams in turn are
known analytically (GN) or at least numerically (NJL) in
great detail. Both of these simpler models feature a
perturbative 2nd order phase boundary separating the
crystal from the homogeneous phase beyond the tricritical
point. This type of phase boundary can be determined in a
rather straightforward way by a stability analysis without
the need to do a full, self-consistent HF calculation. This
has incited us to construct the perturbative phase boundary
sheet for the isoNJL model in the bulk of (μ, ν, T)-space as
well. We have constructed smooth surfaces interpolating
between the corresponding curves of the GN and NJL
model which already give a fairly complete impression of
what the full phase diagram will look like. The only region
which cannot be understood in this manner is the (homo-
geneous) “hole” around μ ¼ 0, ν ¼ 0 characteristic for the
massive theory. Moreover, there could well be further phase
boundaries inside the inhomogeneous region separating
different types of crystal, as is already the case in the chiral
limit. In order to answer these questions, a complete HF
calculation with a nontrivial numerical effort is unavoid-
able. Such calculations are underway, and the results will
be presented elsewhere. We also intend to relax the
assumption that either the charged or the neutral condensate
vanishes. While this has been crucial for the present
analytical and (perturbative) numerical work, we have to
admit that the arguments in its favor are somewhat weaker
in the massive theory than in the chiral limit.
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