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We study the hidden-charm pentaquark states udscc with spins 1/2,3/2, and 5/2 within the QCD sum-
rule approach. First, we construct the currents for the particular configuration of pentaquark states that
consist of the flavor singlet three-quark cluster uds of spins 1/2 and 3/2 and the two-quark cluster cc of
spin 1, where both clusters are in a color-octet state. From the QCD sum rules obtained by the operator
product expansion up to dimension-10 condensates, the extracted masses for the pentaquark states uds-cc
are about 4.6 GeV (5.6 GeV) for spin 1/2%, about 5.1 GeV (6.0 GeV) for spin 3/2*, about 6.1 GeV
(5.9 GeV) for spin 5/2*%, where the masses of the positive parity states are given in parentheses.
Additionally, based on the flavor singlet pentaquark states, it is also shown that other pentaquark states of
clusters like udc-cs and usc-cd lead to masses similar to the uds-cc case within error bars. Furthermore, in
order to see whether any of the states, observed by the LHCb Collaboration, could be understood as the
pentaquark of two clusters in the color-octet state, we study the pentaquark formed by the two clusters
udc-cu, where the three-quark cluster is assumed to have the same flavor structure as the above uds cluster.
We come to the conclusion that if the observed pentaquark will be found to have spin 1/2 and negative

parity, then it could be described as a state of two color-octet clusters.

DOI: 10.1103/PhysRevD.101.014002

I. INTRODUCTION

Since the observation of the two exotic hidden-charm
pentaquark P states of the quark content uudcc with the
spins 3/2 and 5/2 through the decay A) — J/wK~p by
LHCb collaboration [1], many studies on these states and
other expected hidden-charm pentaquark states have been
performed. Note that recently the LHCb collaboration has
observed a three peak structure [2,3] using an updated
analysis. There is an intriguing possibility [4,5] that
pentaquark states could be observed on Electron-lon
Collider China (EicC). The pentaquark states, including
the above hidden-charm pentaquark states, have been
theoretically studied using quark models [6-8], diquark
models and triquark-diquark models [9-18], hadronic
molecular states [19-23], the coupled-channel unitary
approach [24-26], the contact-range effective field theory
[27], and the hadroquarkonia model [28]. For a review on
the hidden-charm multiquark states, see [29]. Among the
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expected hidden-charm pentaquark states, it is very in-
triguing to analyze the pentaquark state of the quark content
udscc since AY could also decay into J/wK~p via J/wA*
and such pentaquark state could be observed through the
decay Z;, — J/wAK™ [7].

Most of the models and approaches to the pentaquark
states in the references discussed above rely on an assu-
mption that a pentaquark state under consideration has
certain structure in color, spin, and flavor. Considering
the interpolating current to a pentaquark state for analysis
within the QCD sum rules (SRs), the clustering in the color,
flavor and spin space is inevitable due to the absence of the
invariant rank-5 tensors for the color, flavor and spin
subspaces. For example for SU(3),, the largest rank of
invariant tensor is 3, therefore considering two-quarks and
three-quarks cluster would be one of the natural possibilities
in constructing the interpolating for a pentaquark state.
Recently, the hidden-charm pentaquark state of the quark
content udscc with the flavor singlet structure in SU(3)
(the flavor singlet hidden-charm pentaquark) was consid-
ered in [8] within quarks models. Specially, the flavor singlet
hidden-charm pentaquark was analyzed as the bound state of
a three-quark and two-quark parts both in color octets, and
the stable result was got for the total spin 1/2 in [8].

In this paper, we study first the flavor singlet hidden-
charm pentaquark states of udscc with the spins 1/2, 3/2,
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and 5/2 using QCD SRs. We assume that these states
consist of two colored clusters as discussed in [8,30,31]
within quark models. So, we consider them as states
consisting of the three-quark cluster uds and the two-quark
cluster cc. Additionally, we assume that all quarks are in an
S-wave, the colors of both clusters are color octets, and the
two-quark cluster has spin 1 since it has been shown in [§]
that such clusters of uds and cc yielded the most stable
result. To check this assumption, we consider the penta-
quark states containing a scalar two-quark cluster and find
that such states lead to higher masses than those obtained
from pentaquarks with a two-quark cluster of spin 1. Then,
we also examine other possible pentaquark states contain-
ing the two clusters udc-cs and usc-cd by extending the
results of the flavor singlet uds and ¢c case. Furthermore,
the pentaquark states of the two color-octet clusters udc-cu
are studied to see if any of the states observed by LHCb
could be understood in terms of pentaquark state with
color-octet substructure and flavor-singlet flavor three-
quark part udc. Let us point out that the method of
QCD SR relies on the local current for studying the
spectroscopy of hadrons. In this work, therefore, we
construct only the local currents for pentaquark in the
configuration space with all quarks located at the same
point. The particular configuration and clustering reflect the
properties only in flavor, color and spin subspaces.

This paper is organized as follows. Using the above
assumptions, we construct in Sec. II the interpolating
currents for the hidden-charm pentaquark states with spins
1/2,3/2, and 5/2 in the form of a product of the currents
for these two clusters as

Jsq = I3, 05,

with the color index m. We perform the operator product
expansion (OPE) for the correlators with the interpolating
currents in Sec. III and present the system of the employed
QCD sum rules in Sec. I'V. Furthermore, since the relativ-
istic interpolating currents for the fermions can be coupled
to the two states with opposite parities when the QCD sum
rules are constructed, we discuss how to extract the
contribution to a state with definite parity from the system
of the QCD sum rules in Sec. IV. Finally, a comprehensive
discussion of the results is given in Sec. V.

II. INTERPOLATING CURRENTS

First, we consider the wave function of the flavor singlet
uds cluster for constructing the three-quark interpolating
current J5,. Then, we extend our current to the case of three

arbitrary flavors. We will take the flavor structure of the
interpolating current J3, from the flavor singlet wave

function in the flavor SU(3) space as

Jiavor ~ (ud — du))s + (su — us)d + (ds — sd)u. (1)

We study both cases of an uds cluster: one with spin 1/2
and one with spin 3/2 for a total spin 1/2, 3/2, and 5/2 of
the pentaquark states. To this end, we adopt the QCD SR
method applied to the analysis of the baryon octet [32].
Therefore, we construct the current with the first two
quarks contributing spin O to the total spin of the three-
quark cluster with spin 1/2. On the other hand, in the
current for the three-quark cluster with spin 3/2, the first
two quarks give spin 1 to the total spin.

With these ingredients and loffe’s current [32,33] with
the definite chiralities which are well known to form a good
basis, we consider the following structure of the spin part
of the interpolating current of the three-quark cluster with
spin 1/2
JA

spin

= 4(”1€CFAdR)F2sL -(R< L)
= (”TC{st Cp}d)lss — (”TC{}’SvFA}st)Fz}%S»
(2)

where the superscript A means that the current is anti-
symmetric under the exchange of the spinor indexes of the
first two quarks. The first term in Eq. (1) is considered as an
example, and then the rest is included in the final stage.
From the above expression, I', must satisfy the following
conditions in order to have no zero current
{rs.Ta} #0, (CTA)" = —CT 4,

where T means the transposition. These conditions limit the
choices of 'y to 'y = 1, y5. For a uds cluster of spin 3/2,
we consider

JS

spin

= 2(upClsd,)Tyss + (R < L)
= (MTC[FS’ 75}75d)F2755 (3)

where the superscript S denotes that the current is sym-

metric under the exchange of the spinor indexes of the first

two quarks. Similarly to the case of the above current for

the spin 1/2 case, I's must satisfy the following conditions
[rs.Ts] # 0, (CTs)" = CTs.

in order to have a nonzero current. Therefore, the only

choice is I's = 7,,.

Before constructing the full current, we study the
currents in color subspace. Using the adjoint representation
of color SU(3), the color-octet structure of the current can
be constructed as

S/A m
Jcolor = €acolyp uudhsw

where m is a color index. Other choices for color tensors
lead to zero currents or to the same full currents due to the
symmetries in the spin and flavor subspaces.
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To generalize the uds case, considered above, to other
flavors of three-quark clusters, we distinguish the quarks in
the three-quark cluster by (g, ¢, ¢3). Combining the
currents constructed in the flavor, spin and color subspaces,
we get the interpolating currents for the considered struc-
ture of pentaquark states in the form of

M. T3) = T, (02)q] 42g5(Gs1"T3q4).
JEJ(Fz,F:;) = Tﬁ,z,m(Fz)Q{‘Iz%(C_IsthﬂM)- (4)

Here, the quark fields in the three-quark cluster carry flavor
fi» color ¢;, and spin [; indices as q; = gy, to be
contracted with the tensor which becomes

T7,,(T2) = (Cp,1,(T2) g, = (Crs)y,1, (vsTa)i,)

x €f1f2f3601C3Ct2nC2’

S _
T/d,l,m (rz) - (C}/ﬂ)lllz (Fz)[l3€f1fzf3€C1C3Ct21Cz *

These definitions reflect our choice for I'y =ys and

I's =y,. We denote the flavor configuration by

q9'¢*¢>-3°q*, where ¢' is the flavor of the ith quark g;.

In this work, as mentioned in the Introduction, we consider
four cases for a given flavor configuration: uds-cc, udc-cs,
usc-cd, and udc-cu. Quarks fields are contracted with the
antisymmetric tensor of flavor indices that corresponds to
the flavor singlet configuration. Note that the free index /
denotes the spinor component of the current and will be
omitted in the following discussion.

We mention here again that the spinor structure of the
three-quark cluster in the full current Eq. (4) is chosen to
have the particular structure of qrqrq; — q1.q1.qr for the
antisymmetric case, Eq. (2), and qrqrq + qrqrq for
the symmetric case Eq. (3).

The matrix I',, which can be considered as a factor of the
current due to the following properties

JzS/A(Fz’D) = (rz)iji/A(LlB),

will be chosen according to the P-parity and the spin of the
interpolating current under consideration. As for I3,
following the analysis of [8], where the two-quark cluster
with spin 1 in the uds-cc system yielded the most stable
result, we will take I'; =y, for most pentaquark states
considered in this work. An alternative option for I'; =1
will also be considered.

To discuss the symmetry properties of the constructed
three-quark currents in the color-spin subspace, we con-
sider the six-dimensional fundamental representation
of the SU(6) group [34,35] composed of the tensor product
of the color SU(3),, and the spin SU(2),;, subgroups.
Representing a quark by its dimension (3,2) where the first
(second) corresponds to the dimension of SU(3)
(SU(2),,,) subgroup, we have

color

color

spin

(3.2)®(3.2) ®(3.2) =(8.2) D (8.4) ® - -

where only two irreducible representations are shown. The
first term on the right-hand side has spin 1/2 and belongs to
the fully symmetric 56-plet representation, while the
second term has spin 3/2 and belongs to the mixed
symmetric 76-plet of the full SU(6) group. The color-spin
part of the constructed current JA, Eq. (4), represents (8,2)
states studied in [8]. The current J® corresponds to (8,2)
and (8,4), depending on the choice of I',.

In this section, we have constructed the general form for
the pentaquark currents Jg ~ gqq-gq with two color-octet
compounds. The suggested currents are unique and cannot
be presented by the sum of any other currents considered
previously. Nevertheless, omitting the flavor structure,
we have related this type of current with another types
of currents that represent following configurations in
color subspace: diquark-diquark-antiquark clustering J3 ~
qq-qq-g with an anti-triplet color substructure suggested in
[14-16], and a molecule form J; ~ gqq-qq with color-
singlet parts, see [23]. We conclude, that for any current of
color-octet type Jg, one can find two specific (in spin and
isospin) currents of color-singlet type J; and color-anti-
triplet type J3 such that Jg = J; + J5. For more details see
the Appendix C, where we show how to construct these
specific currents in spin space.

III. OPE FOR 1/2, 3/2, 5/2-STATES

The correlator IT, . . (¢*) for the QCD sum-rule analysis
(1))
of a pentaquark state is defined by

M0 (@) = [ e 01114 (14, 010} (5)

with the interpolating current J(,) for the considered
pentaquark state of spin s. The subscript (u) stands for
the possible Lorentz indices of currents for the s =
3/2,5/2 states. Since the current J(,) can couple to the
states with a spin lower than s, the phenomenological part
of the SRs contains contributions from the lower spin states
as well. Extracting the contribution from the state with spin
s only, the correlator can be written as

Lo (€)= @ (@) + T(¢%)S}, )+ (6)

where § =y - ¢ and - - - means the terms corresponding to
the omitted contributions from states with spin s and also
lower spins. Therefore, to construct SRs for the state of spin
s, one needs to extract I , from the correlator. The ways of
extracting II}, for s=3/2,5/2 are summarized in
Appendixes A and B. Then, QCD SRs for the state of
the spin s will be constructed by applying the dispersion
relation [36] to the two scalar functions IIj , in Eq. (6)
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i) - [T aM ™

I—q

Here the spectral densities p} () are defined in the physical
t region by

pi(r) = Ity (1) 0

with i =1, 2.

In the next subsections A, B, C, we present the
relativistic interpolating currents for each state of spin
1/2,3/2, and 5/2 states with proper choices of I';, I',, and
I';. Then, in subsection D, we show how to calculate the
spectral densities p?! () within the OPE for the QCD sum
rules for each state.

A. JP =1/2*%-states

We consider four types of the current for the spin 1/2
case:

T2 = Ta(rs. 7).,
J4 = J/E(}/Sy;u 1)’ (9)

TV =T2rsvu 1)
T3 =JA(ys. 1),

where the upper index denotes the type of the current. The
main results for the spin 1/2 case are obtained using the
current J', while currents J2, J3, J* are also studied as an
alternative option. The interpolating current J!' with the
quantum numbers 1/2" can be related to the spin-3/2
current as follows

IV =TArs1, 1) = =7ud )

The choice of I', = ysy, insures that the spin-3/2 current
J,, is projected by I';, only on the 1/2-spin component so
that (O[y,J,|3/2%) ~y,u, =0 thanks to the subsidiary
condition for the 3/2 spinor u, [see Eqgs. (11) and (12)].
Since the relativistic interpolating current is considered, as
discussed in [37,38], the current can couple to the state of
negative parity as well. Denoting two such states by |1/2)
and |1/27), the current couples to the states through the
following relations

O11/2%) = frou. (OW]1/27) = fyysu,
> ulg.$)alg,s) =g +m (10)
with the spinor u. The structure of the correlator becomes
Hl/z(q2> _ ?]Hi/Z(qz) _,_Héﬂ(qz)

and then S(I; )2 W = 1 because there is no Lorentz index in the
current. The two spectral densities can be obtained as

1
p1?(s) = —Tr(gImIT'/2(s)),
Axs

1
py*(s) = L Tr(ImIT/2(s)).

B. 3/2*-states

For spin 3/2 states, we study two types of the current

Tu =T rs.va). Ti=Talrs. ). (11)
The main results will be obtained by using the current J}l
that has the quantum numbers 3/2~. As in the spin-1/2
case, the interpolating current couples to the states of both
parities through the relations with the corresponding
spinors u, [13,22]

(019,13/2%) = fayrsuy.  (OW,13/27) = fiu,,
> (4. 9),(q,8) = (@ +m)T,, (12)

s

where the tensor 7', is

1 29,9, 4ur0— 94
Tm/ = G + g},ﬂyl/ + 3q2 - 3\/? .

Note that y5 in the first relation in Eq. (12) appears because
the current has an intrinsic negative parity. The correlator
has the structure

17 (¢%) = (a1 (¢%) + 11 (¢%)) (=g) + -+

Since it is known that the pure contributions from the
S = 3/2 state to the correlator can be defined by the terms
proportional to S?}{ )2@) = =g [13,22,39], we show only
the relevant terms here. The other terms that contribute to
the correlator are given in Appendix A together with the
derivation of the exact form for the projectors P%z'i. As in
Appendix A, the two spectral densities can be obtained as

1
p12(s) = TelImITL ()P,

1
py*(s) = = T(ImIL ()P (13)

More explicit forms are presented in Eq. (A2). Here, we

point out that an extra factor -1 is introduced in pg/ ? for the
construction of the SRs in one single form for all spin cases.
This factor is related to the intrinsic negative parity of the
current, see Eq. (12).
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C. 5/2%-states

The only type of current studied here is

Jlﬁy:]l%(ys’yy)ﬁ—(l,[(—)l/), (14)

with the choice I'; = y5 corresponding to the quantum
numbers 5/2". This current couples to the states of both
parities through the relations [13,22]:

<0|J/w‘5/2+> :f§+u;wv <O|J/w|5/2_> :f%—YSM;w’
Zuuv(qv S)ua/}(q’ S) = (& + m)Tm/,a[)”
T g/mguﬂ =+ gﬂﬂgva g/wgaﬁ 2
uv,af = 2 5 5 t{ll’/} {ap}>
4uYa — 4alu qﬂQa) ~
) vap — \ Yula — - 9ups 15
Hv-aff ( H \/? q2 p (15)

where symmetrization of the two indices in the curly
brackets in the tensor 7 is imposed by 7y, =1, + 1,
The corresponding correlator has a rather complicated
structure as one can see from [13]. We calculate those

terms known to contribute to the correlator only from the
spin-5/2 state [13,22] as

(Gua9vp + 9up9ua)
2

2 () =

5/2 5/2
uv,af (qH/ +H/ )

4.
5/2

Therefore, S(; o) = (9ua9up + Gupua)/2 and we calculate

the two spectral densities (i = 1, 2) through

5/2 1 5/2 521
pi”(s) = —Tr(ImILZ (") Pry). (16)

5/2.i

where the projectors P ww.ap

see Eq. (B2).

are constructed in Appendix B,

D. OPE of correlators

In the previous subsections, we constructed various
currents for spin 1/2, 3/2, and 5/2 pentaquark states.
We specify the current by its three properties: (i) the spin of
the pentaquark (1/2, 3/2, 5/2), (ii) the flavor clustering
(uds-cc, udc-cs, usc-cd, udc-cu) of the current, (iii) the
type of the current. For spin-1/2, we have introduced four
options (type-1,2,3,4), for spin 3/2—two (type-1,2), for
spin 5/2—only one current type-1. The following consid-
erations of this subsection and the next section are based on
the general definition of the correlator, Eq. (5), and are
relevant to any current considered in the previous
subsections.

In order to calculate the two functions II} and ITj in
Eq. (6) within the OPE for each current, we use the quark
propagators for both the light quarks (#, d, s quarks) and
the heavy quark (¢ quark) in the configuration space with
dimension d =4 — 2¢ to control ultraviolet divergences.

TABLE 1. In the first row of the table, we list the vacuum
condensates of the various operators that give a contribution to
the OPE for the studied correlators. The second row provides the
dimension of the operators. The dimension-7 condensate
(GG){gGq) isn’t included in our study due to the smallness
of the gluon-condensate terms. The third row denotes the
correspondence of the operators to the diagrammatic representa-
tions in Fig. 1. Note that here we denote contributions from both
light and s quarks condensates by (gq)".

Term  LO (gq) (GG) (3Gq) (qq)* (49)(aGa) (aq)* (4Gq)*
D 0 3 4 5 6 8 9 10
Diagrams a d b,c d,e f f, g h f

The heavy quark propagator in the configuration space is
given by the a-representation. Our technique for the OPE
calculation is similar in some aspects to that discussed in
[40]. We treat u, d quarks as massless quarks and include
the linear effect of the strange quark mass m, in the OPE.
With the hypothesis of the vacuum dominance (HVD)
factorization, we perform the OPE up to the dimension-10
vacuum condensates so that

pi() = ImITi(1)

Zp’D (17)

where pjp is the contribution to the OPE from the
dimension-D condensate for each case. The various vac-
uum condensates included in the OPE are listed in Table I

Cem et
&,

FIG. 1. Generic diagrams of the OPE terms for the correlators
with the currents of the pentaquark states. Diagram (a) is the
perturbative contribution at the leading order (LO). The figures
(b)-(h) are diagrams for the nonperturbative contributions. We use
here nonlocal condensate notation [41-46] for the graphical
representation of the various contributions originating from the
standard (local) condensates. Some of the nonperturbative dia-
grams contribute to few terms of the operator OPE, as it is
specified in Table 1.
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with reference to the corresponding diagrams shown in
Fig. 1. Note, that the condensates in Table I are related to u,
d, and s quarks. It is found that the gluon-condensate
contribution is tiny in comparison with the quark-
condensate contribution. Therefore, we don’t include the
contributions from the three-gluon condensate and the
dimension-7 condensate (GG)(gGgq) to the OPE. For
the same reason, other contributions from the condensates
to the OPE, which are given by the product of the gluon
condensate and the quark condensate after the HVD
factorization, are also not included. The calculated OPE
contributions to the spectral density, Eq. (17), are given in
the form of an integral with the integrand p$, (7, a. )

ay Py
pipll) = / da /ﬁ dppptap).  (18)

where the integration boundaries are ay = (1+
V1=4m?/t)/2, B, =1 —a and f_ = m2a/(ta — m?2).

A two-dimensional integration corresponds to a two
heavy-quark propagator given in the form of the
a-representation. Although we consider three cases of
flavor configurations (uds-cc, udc-cs, usc-cd), the
integrands p?,(s,a,p) are given in Appendix D,
Egs. (D1)—(D3) only for the uds-c¢ configuration.

IV. SYSTEM OF QCD SRS AND
NUMERICAL ANALYSIS

We construct the QCD SRs for the state with spin s using
the scalar functions I1] and ITj in the correlators Eq. (6). As
discussed in the previous section, since the relativistic
interpolating current can couple to the two states with
opposite parities, the physical parameters, masses and the
decay constants for the two states are coupled together in
the QCD SRs. First, we present the system of the QCD SRs
in the coupled forms and discuss how to decouple the
system of the QCD SRs for each state of definite parity by
using a proper combination of Il and IT5. In this section,
we omit for simplicity the index s in all formulas as far as
the involved expressions are valid for any considered
spin s.

In the framework of QCD SR [36], the Borel trans-
formation B

R o (_Q2)n d" 5
BQ2—>M2 [H(Q )] - nll_)fglo F(l’l) |:dQ2n H(Q ):| szan’
is applied to both sides of Eq. (7). This transformation helps
to reduce the SR uncertainties by suppressing the contri-
butions from the excited resonances in the continuum and
also higher-order OPE terms.

For the phenomenological part of the SR, we apply the
phenomenological spectral densities, which are called by

pfh(t) and appear on the right-hand side in Eq. (7). For all

considered states, we assume that these spectral densities
can be decomposed into contributions from the resonances
of the considered states and the contribution from the
continuum starting from the threshold s, appealing to the
quark-hadron duality hypothesis

P(1) = f28(1 = m2) + f25(1 — m?)
+ (1 = 50)p07E(1),
PR (1) = fom 5t = m%) = f2m_8(1 = m?)

+O(1 = 50)p3" (1),

where the threshold s, is chosen to be the same for both
parities and for both densities (™" and p8"). The OPE
spectral densities pOFE(7) = pi(t) are defined by Eq. (17).
The decay constants f, and masses m. are given in
Egs. (10), (12), (15). Then, the resonance contributions
to the phenomenological part of the SR are defined as
follows

2

RYZ (M) = frmikem M f2 ke,

(res) a2 2 2k+1 ,—m2 /M2 2 2k+1,—m>/M?
RYY (M) = fom2t 1 e /ME 2 2kt o /o2

where we apply the Borel transformation to Eq. (7), as
already discussed. Combining the full OPE results with the
contribution from the continuum, we evaluate the theoreti-
cal part of the QCD SRs

REiR>(M2’SO) = /‘0 dtpi(t)tke_I/Mz,

h

where the k-times derivatives with respect to —1/M? are
taken after the Borel transformation. Finally, for each state
of spin s = 1/2, 3/2, 5/2, we obtain the following system
of QCD SRs in the coupled form:

RIS (M2) = REY (M2 50),
RED (M) = RS (M2 19
2.k ( ) 2.k ( ,So)- ( )

where k € Z, | {0}.

A. Decoupled QCD SRs

This subsection is devoted to decoupling the SRs in
Egs. (19) into two QCD SR equations for each state of
definite parity. It seems that there are four different ways to
deal with this kind of coupled QCD SRs systems used in
the pentaquark QCD SR studies. First, assuming that most
of the contributions come from the lowest lying resonance
of the considered parity, the contributions from the reso-
nance of the opposite parity can be ignored and only the
second equation in Eq. (19) has been considered. This
approach has been applied to many studies on the states of
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S = 1/2 and to pentaquark states [16,29,47]. In a second
way, used in [22], one resolves the systems (19) by taking
into account the states of both parities without decoupling
the system. The third way is to get the decoupled QCD SRs
by using the old-fashioned correlator [38,48]. Here, we use
a method that is similar to the fourth way [13], in which the
system of SRs, see, Eq. (19), is decoupled into two QCD
SRs for each state of definite parity.

To decouple the SRs given by Egs. (19), we expand the
region of validity fork to k € {n/2|n € Z}. This analytical
continuation allows us to consider the following linear
combination of Egs. (19)

sR) 1, (sr SR
Rg:,k ) (RLk) * Rg,k—)l/Z)’
1
R(f/i) - B (Rﬁs) * Rgr,is—)l/ﬁ

As a result we can rewrite the SRs, given by Eq. (19), in
decoupled form to read

R (M2) = REY (M2, 50), (20)
with
RUES) (ar2) — 2 p=md /M2 2k
ix (M?) = frem™ /M mE,

SR S _
S

Sth

where the reparametrized spectral densities pQFF are related

to pP5F [calculated by the OPE in Eq. (8)] as

OPE
2750 = 3 (o750 £ 20,

The decoupled QCD SRs, Eq. (20), can be written in
explicit form

fremiM mit = / CdipL (ke (21)

Sth

B. Numerical analysis

In this subsection, we extract the masses and the
decay constants from the constructed QCD SRs. The first
step is to define the Borel window M2 € [M2, M2 ] by the
conditions

SR
Ré,9.())(M%v o) 1

—e—— < — M2 = M?* + AM>.
SR ’ + -
quo)(M%,oo) 10

The low boundary M2 of the Borel window insures that the
dimension-9 condensate (¢)* contributes less than 10% to

the total value of the correlator. Here we use the following
notation for the OPE contribution of dimension D

s,
RSO0 = [ dipp(oyte
St

th

The upper boundary M? is determined by the above condition
by setting AM? = 1 GeV?>. We do not follow the common
practice to define the upper boundary M2 by the condition that
the resonance contribution gives at least 10% to the total value
of the correlator, r;(so) > 1/10, for i = 1, 2, where

Rz(‘.SoR) (Mi, So)

ri\Sog) = .
= RS0 )

The values of this ratio are given in Tables II-IV for the
considered SRs. Note that most of the SRs yield values of this
ratio above 1/10. Having an equal size of the Borel window
AM? for all SRs allows us to compare the SR stability
criteria for different SRs without violating the condition
ri(so) > 1/10. To control this condition we introduce the
collective value

r(so) = min(r,(s9), 72(s0)),

that can be found in the last column of Tables II-IV.

The values of the masses and the decay constants can be
extracted from the decoupled QCD SRs, Eq. (21), through
averaging in the Borel window M? € [M%, M2 ]

1 n
m(so) = P > ma(so. M3),
=0

- m? 2 SR
ST MREY (M2, 50),  (22)
j=0

fi(s0) =

where n = 8, M7 = MZ + (M3 — M2)j/n and

SR
REL ak(M?50)

2Ak 2
mi~*(sg, M*) = SR
RS (M2, 50)

(23)

We present our result for the case (k, Ak) = (1/2,1/2). We
have also checked two extra choices: (0,1/2) and (1/2, 1)
for (k, Ak) to confirm the small dependence of our results
on k and Ak. Similar decoupled QCD SRs have been
considered in [13] with (k, Ak) = (1/2,1). Borel param-
eter dependencies of the masses m(sy, M?) for the
uds — cc case are shown in Fig. 2 for the best-fit threshold
value sy = 5y. Additionally, the bands around the central
value show the dependence of the masses on the threshold
so varied in the interval sy € [sg", sg¥].

To find the best values of the five parameters f., m, s,
we demand the minimization of the Borel parameter
dependence of the original coupled SRs, Egs. (19) i.e.,
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TABLEII. QCD SR results for masses m and decay constants f given for a pentaquark with both parities with spin 1/2, 3/2,5/2
(first column) for three cases of flavor-clustering (second column). For all cases considered in this table, we apply the type-1 currents
defined in Egs. (9), (11), (14). Central values of masses (2nd and 3rd columns) and decay constants (4th and 5th columns) given at the
best-fit threshold (5() (see column 8th). The first error bars from the third to the sixth column represent the variation with respect to the
threshold value in the interval (s{)“i“, 5¢**) given in the 7th column. The second error bars in the columns from the third to the sixth
represent the variation in the Borel window (M2, M2 ) (see 9th column). The criteria values 8(3) are given for each state in percentages

in the 10th column. Additionally, the last column represents the criteria of the resonance contribution 7 (5).

Spin  Flavor m_(3y), GeV m, (5y), GeV 103f_(3,), GeV® 103f.(3,), GeV® (s, sy 3, (M2, M%) 8(3), % r(3o)
1/2 uds-cc 4497400 5.1°09+01  1.8550£00 13539 +£00 (220,347) 251 (45,55 38 005
1/2 ude-cs 45193 +0.1 53793402  2.0553+0.1 2051 £00 (24.0,30.6) 26.1 (3.7,47) 50 0.3
1/2 usc-ed 46793401 53702+02  21550+0.1 2158401 (243,312) 265 (37,47 51 0.14
3/2 uds-cc 49703 +0.1 5770+02 19752 £00 1.97294£0.0 (27.3,386) 302 (45,55 47 013
3/2 udc-ts 48707+0.1 5802403 1957 +0.1 26708 £0.1  (28.7,34.9) 308 (34,44) 74 032
3/2 usc-ed 49707 +0.1 58702403 2157 +0.1 3.0509 £0.1  (29.5,36.1) 31.8 (34,44) 82 036
5/2 uds-tc 62703 +0.1 60703 £0.0 121727401 156707 +£0.1  (39.2,50.0) 463 (4555 12 051
5/2 udc-es 60751 £0.1 59701 +0.0 72425 +0.1 122728 +£0.1  (37.6,50.0) 455 (3.7, 4.7) 1.7 0.64
5/2 usc-ed 63799401 60799+0.1 99799 +0.1 151700 +02 (40.6,50.0) 500 (3.8,48) 21 075
TABLE III.  QCD SR results for the masses m,. and the decay constants f given for a pentaquark of both parities with spin 1/2, 3/2

(first column) and for a udc-¢s flavor-clustering. The second column denotes the type of the current and the spin of the ¢s-part given in
the parentheses. The types of the currents are defined in Eqs. (9) and (11). See the caption of Table II for more details.

Spin Type m_(3,), GeV m,(5y), GeV 103f_(5,), GeVS 103f, (3,), GeV® (sfin, sia) 30 (M2, M%) 8(5)), % r(3)
12 1(1) 44%07+£00 51500+01  1.8532+00 1353 £00  (22.0,347) 251 (45,55 38  0.05
12 2(1) 44597400 5.1750+01  1.8535¢+0.0 13555 £0.0  (22.0,36.6) 251 (46,5.6) 42 004
1/2 3(0) 59799 +02 5.1708+£00 14728 +£0.0 L6727 +£00  (29.6,43.1) 327 (49,59 40 0.1
1/2 40) 59100 +£02 5.1508+00 42783 +o0.1 474401 (296,43.1) 327 (49,59) 40 01
3/2 1) 49193 +£0.1 575 9086+£02 1.97224+0.0 19555 +0.0  (273,38.6) 302 (45,55 47 013
3/2 2000 62504 +£00 6.607+£00  6.097£0.0 49t10400 (388,50.0) 478 (49,59) 08 04

TABLE IV. QCD SR results for the masses m.. and the decay constants f. given for a (udc)-(¢u) pentaquark of both parities with
spin 1/2, 3/2, 5/2 (first column) with type 1 current for each case (second column). See the caption of Table II for more details.

Spin  Type m_(50), GeV m(3), GeV 103f_(5,),GeV® 10°f., (5,),GeVS  (sgihsg™) 3o (M2, M%) 5(3).% r(5o)

/21 44504 +00 51505+01  1.67)3+£00 14503 £0.0 (22.6,29.9) 247 (3.8,48) 4.1 0.1
3/2 1 48507 +01 57505 +03 18705 +o0.1 22008 +£0.1  (282,34.7) 304 (34,44) 6.7 0.3
5/2 1 60707+£01 59701+£00 69778 +0.1 11.6777 £0.1  (37.6,50.0) 453 (3.8,48) L7 0.6
(res) ra 12 (SR) (3 12 k-1 k4 Ak—L
§(so) = max Rix (M7) =Ry (M~ 50) oo 8(so) = max(8}(so). 8" (s0).6, *(50).8, ~ *(0))-
Tl R0

We use this combined criterion to define the best-fit value
for the threshold s, and the threshold interval s, €

. . min _gmax] “ywhere subject to the condition
with masses and decay constants in R fixed by 56 55 )

Egs. (22). The minimization of the Borel parameter
dependence of the original coupled SRs instead of the
decoupled SRs helps avoiding possible uncertainties

related to the analytical continuation of the SRs. Finally,  The values of the threshold 5, and the interval boundaries
we combine the four criteria in one to get smin and sM can be found in Tables II-IV for all

8(so) < 8(5) + 1.
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7.0"‘{2")1/2\‘{ 7'0".’.~ 70'm5/2 i
6.5f ™ o 6.5F 6.5} O T
6.0 6.0f 6.0t
55 .-.-E, 1 5.5} r
5.0F--="""" "; ! 5.0t >-0p i
45— I ] 45t 4.5} :
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: . : ' 45
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U
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FIG.2. Borel parameter dependence of the mass m,(sq, M?) for a uds-cc flavor clustering, given by Eq. (23), referring to spin s = 1/2
(left panel), spin s = 3/2 (central panel), spin s = 5/2 (right panel) for negative parity (blue solid line and blue band limited by dashed
blue lines) and positive parity (red dotted line and red band limited by dot-dashed red lines). The central lines of the bands denote the
dependence for the best fit threshold sy = 5. The bands show the dependence of the masses on the threshold s varied in the threshold
interval s, € [somi“, s(')“a"]. Vertical dotted black lines present the Borel windows (M2, Mi).

considered states. From these values we obtain the masses
m4(3y) and the decay constant f.(3,) at 5, given in
Table II together with their variations in the threshold
interval and the variations in the Borel window.

The central value /1 of the mass and the uncertainty A m
related to the threshold are defined by

my = (ms?x my(sg) + myzn m(sg))

Agmy =

N = N =

(ms?x m.(so) — m:}n m(so)),

where max (min) gives the maximum (minimum) value
of the function m.(sy) in the threshold interval s, €

[sqin_ smax] The error bars related to the Borel parameter

44 uds-tc 0 Wuet.al. 2017 |15,
mE uydc-cs A lrieet. al. 2017 |{"
6 5; AA usc-cd ¢ Shen et. al. 2019 :6 s

T
S Y

7'05 m, GeV

E o o 3
4.5 E A DOO A E4.5
4.0 : 1 1 1 1 1 1 : 4.0
/2= 1/2* 3/27  3/2* 5/2= 5/2*
FIG. 3. QCD SRs results for masses of pentaquarks with spins

1/2,3/2,5/2 for the even parity (red color error bars) and for the
odd parity (blue color error bars) are given for three types of
flavor clustering: uds-cc (diamonds), udc-cs (squares), usc-cd
(triangles). Central value and width of error bars are given in
Egs. (24) and (25). The result of our calculations are depicted by
filled diamond for uds-cc, by filled square for udc-cs, by filled
triangle for usc-cd. The results of other theoretical predictions for
udscc pentaquark are denoted by open square for the color-
magnetic interaction based study [6], open diamond for the
framework of the coupled channel unitary approach with the local
hidden gauge formalism [24-26], open triangle for the quark
model result [8].

variation in the Borel window interval M? € [M%, M?%] is
calculated by

1
AMmi = —(maX mi(SO,MZ) — max mi(io,Mz)).
20 m? M

Final results for the mass are given in Fig. 3 and Table V by
the central value mass 7 and the total uncertainty Am

my = ﬁ’li + Ami, (24)

where the total uncertainty is the sum of the above
uncertainties

Ami = Asmi + AMmi (25)

that includes only uncertainties stemming from the SR
analysis and do not include the uncertainties of the
condensates.

The following numerical values of the vacuum conden-
sates and masses have been used for the numerical analysis

{(as/m)G?) = 0.012 GeV?, (Ggq) = (-0.25)* GeV?,
m} = 0.8 GeV?,
m, = 1.23 GeV,

(sGs) = fs(aGq). fs=08.

<Z]GQ> = <qG/w6/wq> = m%(éq),
my = 0, mg; = 0.1 GeV,

(55) = f.(aq),

The lowest threshold value is taken to be s, = 6.5 GeV?,
see Eq. (7).

TABLE V. Final QCD SR results for udscc pentaquark masses
for both parities with spin 1/2, 3/2, 5/2. Values are given
according Eq. (24). For more details see Table II.

Flavor  1/2- 1/2* 3/2= 3/2% 5/2= 5/2%
uds-tc 4.6(5) 5.6(6) 5.14) 605) 6.13) 59Q2)
ude-cs  453) S54@4) 482) 59(4) 583) 5.8Q2)
usc-ed  4.6(3)  54(4) 502) 594) 62(2) 5.802)
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The QCD SR technique described above has been
applied using various pentaquark currents. First, we studied
the type-1 current for the three flavor configuration
(uds-cc, udc-cs, usc-cd), see the results in Table II.
Second, in Table III, we obtained results for some alter-
native currents to estimate their relevance. Finally, we used
our method to study the udc-cu flavor configuration, in
order to see whether P/ (4312), P} (4440), and P/ (4457),
observed by the LHCb Collaboration, can be understood as
a pentaquark of two clusters in a color-octet state. The
detailed results given in Table IV will be discussed in the
next section.

V. DISCUSSION AND SUMMARY

In this section, we discuss the results obtained in the
previous sections on the basis of the constructed QCD SRs
for pentaquark states. We have constructed the currents for
udscc pentaquarks of spin-1/2, 3/2, 5/2 that have two
clusters of a color-octet. The first cluster consists of three
quarks ¢'q>q> which has the same flavor structure as the
flavor singlet state of uds, while the second cluster consists
of quark-antiquark ¢g*. There are four options for flavor
clustering ¢'¢*>q*-¢q* (uds-cc, udc-cs, usc-ed, dsc-cu).
The results for dsc-cu and usc-¢d are identical in our
approach and, therefore, we present here only results for the
dsc-cu configuration. The main predictions for penta-
quarks are presented for the type-1 current, that has a
spin-1 ¢g* part. In Sec. III, in addition to these main
currents, we have also introduced the alternative currents
for spin-1/2 states and spin-3/2 states, see Egs. (9) and
(11). Particularly, we are interested in the alternative
currents with a spin-0 quark-antiquark cluster: type-3
and type-4 for a spin-1/2 current and type-2 for a spin-
3/2 current. In Table III, we presented the results for these
alternative currents of a udc-¢s configuration with a spin-0
¢s-cluster in comparison with the main currents that have a
spin-1 ¢s-cluster. One can see that these types of currents
lead to larger masses compared to those for the spin-1 cases
for both spin-1/2 and spin-3/2 pentaquarks. We have also
checked that a similar conclusion is valid for other flavor
configurations. This observation agrees with [8], where it
has been shown that the two-quark cluster with spin 1 in
uds-cc system yield the most stable result. In Table III, we
have also considered the alternative current for a spin 1/2
state containing a spin-1 ¢s-cluster (type-2 for spin-1/2
current) and found that this current gives the same result.
Therefore, the main results in our paper are given for the
hidden pentaquark states with a spin-1 quark-antiquark
cluster.

Using type-1 currents, we have considered three types of
flavor clustering (uds-cc, udc-cs, usc-cd) and found that
they have similar masses and decay constants, see Table II.
Therefore, we expect that these configurations have equal
chances to be observed. The consideration of a possible
mixing between these configurations is outside the scope of

this work. Another observation is that the larger spin states
give larger masses.

Our results are presented in comparison with other
theoretical predictions [6,8,26] for udscc pentaquark in
Fig. 3. The masses from the effective Lagrangian frame-
work [26] for the uds-cc flavor configuration with a color-
singlet substructures, depicted by open diamond, are lower
for the spin 3 /2 case and comparable consistently well with
our predictions for the spin 1/2 case referring to a
pentaquark state with a color-octet substructure. The quark
model prediction for uds-cc [8], noted by open triangle in
Fig. 3, is in very good agreement with our result for
a spin-1/2 pentaquark, while the prediction for spin-3/2
case is different. Note that apart of result [8], we compare
our predictions with the results for the configurations that
are different from the configurations considered in our
work. Therefore, the comparisons are given only for the
reference.

In order to see whether any of the pentaquarks observed
by the LHCb Collaboration could be understood as a
pentaquark composed of two clusters in the color-octet
state, we study the pentaquark with the assumption that it is
formed by the two clusters udc-cu, where the three-quark
cluster has a flavor-singlet structure. Therefore, we do not
have alternative to udc-cu flavor clustering as opposite to
the udscc pentaquark. QCD SR results for the masses m .
and decay constants f, for such a pentaquark are presented
in Table IV for spin 1/2, 3/2, 5/2 and both parities. To
make a point, we present the lightest state masses from this
table in Fig. 4 together with the states recently observed by
the LHCb Collaboration. As shown in this figure, the
obtained mass for a spin-1/2 wudc-cu pentaquark, is in
agreement with the experimental value. Since the flavor
content and the mass of the pentaquarks observed by LHCb
are known only, we conclude that if the observed state has
spin 1/2 and negative parity, it could be described as a state
with two color-octet clusters.

m, GeV j
5.0F 1s.0
a8l las
46l 1a.6

[ ]
4.4f 1a.4
A I P.(4312) |
42t 1a.2

1/2° 3/2°

FIG. 4. The masses of a recently observed by LHCD [2] states
are shown by the dashed lines in comparison to our QCD SR
estimations (blue error bars) for the lightest states with a color-
octet substructure. For more details see Table IV.
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It had been shown [49,50] that the correlator for a
pentaquark state could include the two-hadron-reducible
contributions, which are given by convolution of baryon
and meson correlators that is not related to pentaquark. This
problem of QCD SRs has been addressed in the series of
work [50-52] for tetraquark QCD SRs, where authors
expect that similar problem could affects also SR for
pentaquarks. As it has been shown for pentaquark consid-
ered in [53,54], the direct subtraction of a problematic two-
hadron contributions from the correlator leads to incorrect
results. To avoid this problem, the authors of [53] utilized
soft-kaon theorem and demonstrated that these type of
problematic terms contribute less than 10% of the sum
rules. We propose that the type of pentaquark currents
constructed in this work is a solution for this problem of
pentaquark SRs, due to the fact that such currents cannot be
factorized to the product of meson and baryon currents, see
the relevant discussion in Appendix C.

To summarize, we have estimated the masses of the
various hidden-charm pentaquarks with color-octet sub-
structure and with JP€ = 1/2%,3/2%,5/2% in the frame-
work of QCD SRs. We have constructed the currents for a
particular configuration of pentaquark states, which con-
sists of a three-quark cluster with the same flavor structure
as the flavor singlet combination uds, and, additionally, of
a quark-antiquark cluster, where both clusters are in a color-
octet state. In our work, three possible types of flavor-
clustering of the currents has been considered. To obtain
QCD sum rules, the operator product expansion for the
correlators with the constructed interpolating currents has
been performed up to the level of dimension-10 conden-
sates. From the constructed QCD SRs the masses and decay
constants of the pentaquark states have been extracted.
Numerical values are given in detail in Table II, and are
briefly summarized in Table V.
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APPENDIX A: PROJECTORS FOR
3/2-SPIN CORRELATOR

We follow the common practice to extract the g, -term of
the 3/2 correlator and consider only the largest spin
contribution. Here, we formalize this extraction by intro-
ducing the appropriate projectors. The general form of the
tensor can be written in the following way

5 10

P.(q%) = Z(Clif? + co)thy = Z Citlw. (Al

i=1 =1
where we consider only P-even terms. The relation between
two forms is given by 7 =+, P =g, C,; = cy,
Cyi_1 =cy; with i =1,---5. The linearly independent
set t{w of all possible structures is defined as follows

; 9.4
tljlb = (_gﬂw 7/471/’2—; 2 Au¥v = Q¥ ulv + q"yﬂ) ’
J

A linear combination of tensors 7,, can be used to construct
the projectors as

3/2k _ ag—131
P =M 1,
where the matrix M}, reads
_ (7l 7k
Mkl = Tr(tlwtﬂy).

Then we can extract the coefficients C; from the expansion
expressed by Eq. (Al)

3/2,k
Ck = Tr(Pm/(qz)Pﬂl// )

The inverse of the matrix M is given by

245°M~!
s 0 - 0 2¢ O O s O O
0 s 0 —=s> 0 25> s 0 0 O
- 0 -5 0 0 0O 0 s 0 O
0 -2 0 —s2 0 0 0 0 0
2 0 O O 12¢ O O O O =25

"o 22 0 0 0 42 0 025 0 |
0 s 0 s 0 0O -2 0 0 0
s 0 s 0 0 0O 0 0 O 0
O 0 0 O 0 2s 0 -1 0
o 0 O O -2s 0 O0 0 O s

where s = ¢>. Using the projectors P%z’l and Pi,/,z’z, the

densities, Eq. (13), can recast in the form
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p?/z( ) = 24—1Tr [ImH3/2( )q (9”” + iy - 2%:26#)]
g TrmIEL () (@7 — ),

Py (s) = 2_42 [Imng/ (s) (9"” iy - Zfquﬂ
=5 TAMILE ()3 ("7 — 7). (A2)

APPENDIX B: PROJECTORS FOR 5/2-SPIN
CORRELATOR

To extract the terms of the largest spin state from the
correlator, the projector method is applied. Similarly to
Eq. (A1), the general form of the correlator can be written
as follows

P ;w,a/i

ZCt’

where the relation between the two forms is given by
7= t,’w o =41, 5 Cop = e Gy = ¢y with
i=1,---14. We consider only P-even terms which are
symmetn'c with respect to pv and aff. The linearly inde-

pendent set t;"w.a, of all possible structures is defined as

Z(Cltq + ch ﬂl’ ap (Bl)

/wa

& & g agvﬂ g;u/gaﬂ g;m}/vyﬂ quqﬁ
S S ( K ’ ’ ’g ’
4 4 g g

qa‘]ﬂ qﬂ‘]v yaqﬂ 7/4%/
g;u/4 2 vgaﬁ’4 2 7g/w 2 7904/3 2 vg/mqyyﬂ’

Qﬂql/ qaqﬂ QﬂQa quDQaQ/X
GuadpY v 2 5 Yadp 2 > Yuldvs— 5 V¥ ps 4 ’
q q i

where the operator 3‘,,,,
S wlw =ty + 1, Linear combination of these tensors
can be used as the projectors

symmetrizes the tensor as

(B2)

to extract the coefficients C; of the expansion, Eq. (B1)
notably,

5/2,
Cj = Tr(PMV’aﬂPm//aﬂ])

with the matrix

Mkl - Tr( v, aﬂ v, aﬂ)

We provide only the first two rows of the inverse matrix,
which define the projectors P>/%! and P3/>? applied to
extract the spin-5/2 spectral densities, Eq. (16):

M7!1204% = (2,0,-2,0,1,0,-2,0,2,0,2,0,0,0,0,

0,-1,0,1,0,2,0,-2,1,0,4,0),.
M;5120g% =(0,24%,0,-24%,0,4°,0,-2¢%,0,24°,0,24°,
0,0,0,0,-1,0,1,0,2,0,-2,0,0,
- ¢%,0,44%),.

Other rows of the inverse matrix are not used in our work
but could be obtained from the above equations.

APPENDIX C: CURRENTS IN COLOR SUBSPACE

Here, we consider the relation of the pentaquarks with
different configurations: diquark-diquark-antiquark cluster-
ing J3 ~ qq-qq-g with an anti-triplet color substructure
suggested in [14-16], a molecule form J; ~ gqq-gq with
color-singlet parts, see [23], and the combination Jg ~
qqq-qq with color-octet compounds studied here. First, we
consider only the color part of these currents

‘]§ = (ealazagtgo03QIQZQ3) : (951215114‘14)’
](1: = 3(€a1a2a4qIQZq4) : (6_15505a3q3)’
IS = 6(€i0,0,9192) * (€ja,0,9394) * T5Eijas-

Using a Fiertz identity, one can get the relation
Jg=Ji+J5,

where the quark fields carry flavor f;, color ¢; and spin /;
indices as g; = qy,,;,- Then, multiplying this relation with
the same spinor tensor

= (1—‘1)1112 (FZ)IZ3 (F3)15,4,

one can obtain a relation between the full currents

Ty 000,051 (C1)
Jg = Jl + J§9

where J; = JiT} 1,1,1,1- The tensor has been introduced in
such a way so that the definition for Jg agrees with Sec. II:

Js = €q,aya0tanas (17162) (T2953)1(G51"T3q4).

After performing a Fiertz transformation in the currents, we
get:

5
3 Z €a,ay0, (01 T162) (T 44),35T% g3,
N=

| |
W

zalao qIFIQZ ja1a2<q3r3 q4) ljll5(r2 q4)
N=1

ul
H

where the modified matrices TY and T’V are defined in
terms of the Fiertz identity
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8ijOk = Z ANA%’

where AN = (1/2,y5/2.7,/2.iysv,/2.ic,,/\/8)y. Then,
the definition for the modified matrices I'Y and 'V take the
form
'V =T,AV, Y =-1,AVNc, 1Y = (AN)TCTs.
Therefore, currents with color-octet parts Jg, color-singlet
parts J;, and color-antitriplet parts J5 are linearly depen-
dent. Including the flavor symmetry into consideration will
cause the break of the clustering of J; and J3. In other
words, for Jg current with the same factorization in color,
spin, and flavor, the factorization of the currents J, and J3
in flavor space is differ from the factorization in spin space.
That could protect the current Jg from being presented as a
product of meson and baryon currents. According to our
knowledge, the currents of type J; and J3 with different
|

clustering in flavor and spin have not been considered in the
literature. Therefore, we would like to point out that the
currents suggested in our work cannot be a linear combi-
nation of any other currents considered previously, e.g., in
[14-16,23].

APPENDIX D: SPECTRAL DENSITIES

Here we collect the analytical results for the spectral
densities pfli(t, a, ), where s denotes spin, D—the dimen-

Here, we present only the result for the uds-cc flavor
configuration. We use notations, L = taff — m2(a + f3),
y=1—a—-p, and py = (f, + p_)/2. The latter notation
has been introduced to combine various terms under a two
dimensional integral, Eq. (18), so that

/ﬂﬁ* dps(p—py) = 1

pls(toa.p) = (LY (Sym? +8L))/(152%*f*21%),  pyfg(t.a. B) = —(r*L*m (10ym? + 3L))/ (5a*a’p*21332),
s (t.a. f) = (yL*(qq) (3f, — 2)m,(3ym? + 4L))/ (z°a?(?2°3?),
ps(t.a. f) = (yL*(qq)(f, +2)(4ym? + L))/ (2%’ f°2132),
pri(ta ) = ({(ay/m)GG)yL(yLm2(=32a%y + 3> (1282 + TPy + 47%) + 6By + 4%y (3y — 88)) — 87 (& + [ )m!
+ 3apL*(16ap + Tay + 2py)))/ (z%a*p*21532),
pyi(t,a, ) = —({(a,/n)GG)Lmy(6yLm>(—8a%y + a>(30p> + 215y + 16y%)
+ 6af?y — 867y (B — 2y)) — 64y*(a® + 7 )m
+ 3apL*(10ap + 28ay + 8By + v?)))/ (zba*p*21633),
s (t.a. f) = =(L(qGq)m,(ym? + L)(=8ap + Tay + 2py + 16apf,))/ (3n°a?f?212),
s (t.a. p) = (SyL*(aGa)(a - B)(f, +2))/ (n°a*p*21332),
ple(t.a.B) = (L(Gq)*(2f, + 1)(ym? + L))/ (n*ap253?).
pale (t.a. ) = (L{aq)*m2(f, — 6)m,)/ (z*ap2*3?) — ((2q)*8(B = po) (f, — 6)m(m? + (a — Dar)?)/(z*(a = 1)a2°3?),
pls(t.a.B) = ((aGa)(aq)(2f, + 1)(m2(~4ap + Tay + 26y) + L(Ta + 2)))/ (z*ap2°3?)

+ ((@Ga)(qq)d(B — Po)(2f s +
s (t.a. ) = ((aGq){aq)s(8
—4(a(72a - 67) +2))))/(z*
plo(ta ) =0,  plo(ta.p)=
pio(ta. ) = —((a = DalgGq)*s(8 — o) (2f, +
Pyt ) = ((a = 1)algGa)>s(p — po)m,)/(x*27).

1) (mz 4 (a = 1)ar))/ (2*2°3?),

= fo)my(mz(5(2a = 1)f, — 4(5a +2)) + (a = ar((2a(14a = 9) = 5)f,
(@ — 1)a2103?) —
~((a=1)algq)’t5(p - po)f,)/ (32°2%),
1))/(37%2%),

((@Gq)(aq)(Ta+ 2p)mim,)/(x*ap273?),

014002-13
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3/2

P (t.a.p) = (PPLY(5(5 = 2y)ym? + (13y + 4)L))/ (52°a* p*21332),

o (. B) = —(7Lmy(5(5 = 2p)ym? + (11y + 3)L))/ (5z°a* f*2143%),

pi3(t.a. f) = (yL*(@q)(3fs — 2)m,(3(5 = 2p)ym2 + (97 + 2)L))/ (n°c?(?2103%),

ps(ta.B) = (rL*(@q)(f, +2)(4(5 = 2p)ym? + (97 + 2)L))/ (a0’ 21237,

pVi(ta.B) = —({(a,/m)GG)yL(6yLm2 (8’ (y(Ty +4) — 186%) + a?(=72(2B + 3)f* + (B — T2)1* + 42py)

+ afy(y +12) + 8% (1Py + 48 — 97)) + 96(y — 1)r*(2r — 5)m¢((y — 1)* — 3ap)
+aBL2(y(728 + y(9 — 20)) — 36a(368y + 86 — 7y))))/ (xSa*p2133%),
Pyt f) = ({(a/7)GG) Ly (6yLm?(a® (=90% + 428y + 8y(Sy + 3)) + 3a>(=15(2 + 3)B* + 12(8 — 2)>
+ (188 +7)y) + af*y (125 + 11y + 6) 4+ 862 (B(5y +3) = 9)) — 24(y — 1)y*(8a° + &2(7f + 12)
+2a(f = 6)f + 45> (2 + 3))m? + apL> (~90ap(Ty + 1) + 42a(Ty + 2)y + 12B(7y +2)y
+ (T = 15)1%)))/ (S p2173%),
P35t a. ) = (L{GGq)m,(ym?(8aB(5 — 2y) + Tay + 2fy + 16ap(2y = 5)f,) + L(4ap(Ty + 1) + Tay + 2By
= 8af(Ty + 1)f,))/ (a0 ?21332),
Py (t.a. ) = =(SyL(aGq) (e — B)(f, +2)(r(4y + 3)Lm2 = 8(y — 1)y>mt + (Ty + 2)L2))/ (z°* f°21734),
Pl (t.a. ) = (L{gg)>(2f, + 1)(2(5 = 27)ym? + TyL + L))/ (z*ap2’3?),
pre(t.a. ) = (L{Gq)*(fs — 6)m,((10 — 4y)m? + 5L))/ (z*ap2’3?)
= ((29)*8(8 — Bo) (s — 6)m,(m? + (a = Dat)?)/ (*(a = 1)a273%),
s (t.a. p) = ((aGq)(@q)s(B — Bo) (2f + 1)(m? + (a = Dar))/ (x*253%) = ((§Gq)(qq) (2f, + 1) (m2(aB(20 — 8y)
+7Tay +2By) + L(a(208 +7) + 28)))/ (z*ap2'3?),
pas (t.a. ) = ((qGq)(gq)m(4(Ta + 2p)((5 = 27)m? + 3L) — 5(a — B)f,(m? + 3L)))/ (z*ap2!"3*)
+ ((gGq){qq)d(B — Po)ms(m%(20a + (5 — 10Q) fy + 8) + (a — 1)at(4(437 — 432a)a
+ (2a(84a — 89) + 5)f, + 8)))/ (z*(a — 1)a2!13%),

)
) = —((a = 1)algq)’t5( - po)f,)/ (x°2*3%),

B) = —((a = 1)a(gGq)*s(B — o) (2f + 1))/ (2*2°3?),

) = ((a = D)a(gGq)*s(p = Bo)ms)/ (z*2°), (D2)

v (t.a ) = (L3 (7((139 — 104y)y + 45)Lm? + 8(y — 1)y*(dy — 9)m¢ + 2(13y(3y + 1) + 6)L?))/ (3aba’ p*2135%),
3o (8, B) = (FPL3my(Sym2(8(y — V)y(4y — 9)m2 + (117 — 88y)y + 36)L)
+2(11y(13y +4) + 18)L2))/ (8 p*2133252),
V5 (t.a. ) = (yL(gq)m,(3yLm?(=40y + (95 = 72¢)y + 27)f, + 100) + 12(y — 1)y*(4y — 9)mif,
+2L%(90y + 9(y(11y + 3) + 1)f, +20)))/(52%a*$>2832),
s (t.a. f) = (yL2(@q)(f, +2)rm2((y(72y = 95) = 27)L — 6(y = 1)y (4y — 9)m?)
= 9(r(11y +3) +1)L?))/(52°a*°2°3%),
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ps(t e p) = ({(ay/m)GG)y(=3yL2m?(8c> (1805%(3 — Ty) + 225p + 4y(Ty(9y + 5) + 30)) + a*(— 14404 (7y — 3)
+ 1004%(69 — 13y) + By (r(72y + 1495) + 900) — 24072(7y +5)) + a7 (18005 + y(72y + 1495)
+900) + 1642y (28(7y(9y +5) + 30) — 15y (7y +5))) + 12(y — 1)y*Lm?(32a°y(14y +5)

+ a?(140%(4y = 9) + By(4y + 225) — 40(y — 5)7) + afy(B(4y + 225) = 200(y + 1))
+ 847(56fy + 208 — 5y +25)) 4+ 192(y = 1)*/*(4y = 9)md((y — 1)* = 3ap)

+ 2apL3 (30a(B(6y(TTy — 54) — 58) — 45y (3y + 1)) + 7(7(9(20 — 11y)y + 70)

= 13503y +1)))))/ (z°a*f*2103°5%),

it ) = (((a,/m)GG)m, (6ym2(4(y = V)ym2(4(y — D)y* (47 — 9)m2((y = 1) = 3ap)

+ L(16a7y (57 +2) + o*(215%(4y = 9) + By — 10)y + 10(4 = 3y)y) + apfy((# — 30)y +40(8 — 1))
+2B%7(8B(5y +2) — 157 +20))) + L2 (4a’ (423> (Ty — 4) + 158y — 2y (5y(Ty +4) + 18))
+ (16843 (Ty — 4) 4 156%(23y = 70) + 28y((33 = Ty)y + 15) + 60y2(57 + 4))
—2ap%y(1208 + y(7y + 92) + 60) — 452y (B(10y(Ty + 4) + 36) — 157(5y + 4))))
+ apL3(588apf(y — 1)(9y + 1) + 60a(Ty + 2)y — 2405(7Ty + 2)y
+7((16 = 9y)y +6)r*)))/ (5a°a**2193%),
pYs (ta. ) = —((aGq)m(24apf (y((73 = 567)y + 18)Lm? + 2(y — 1)y*(4y = 9)mé + (Ty(9y +2) + 3)L?)
+ SL(27(2y = 5)mZ(aly — 44p) — 4Py) + L(44ap(Ty + 1) — ay(Ty +2)
+ 46y (Ty +2)))))/ (5a°a??2'13%),

ps(t.a. ) = (L(GGq)(f, +2)(yLm?(3y (4> (2808 + 11) + a(4B(2808 + 97) + 55) + f(4p + 5))
=563 (11a+ B) + 81y*(11a + f) + 1080ap) + 4(y — 1)y*(4y — 9)m(60ap + 11ay + py)

+ 2L (a(208(Ty(9y +2) +3) + Ly(Ty(3y + 1) +3)) + Br(Tr(3y + 1) +3))))/ (52°3 F2123%),
pils (.o B) = =(L{a@)> (2 s + 1)(2(5 = 2p)ym? + TyL + L))/ (x*ap2*3?),

e (t.a. ) = ((29)*8(B — Bo) (f, + S)my(m? + (a— 1ar)?)/(157* (a — 1)a2*)

— ((gq)*m(2Lmg(=30y + ((51 — 40y)y +9)f, +75)
+4(y = Dy(dy —9)mif, + 5L (2(Ty + 1)f, + 15)))/(5*ap2*3?),

s (t.a.p) = ((3Ga)(aq) (2f s + 1)((2r — S)m2(aly — 228) — 4fy) + L(a(1108 — Sy — 1) + 4(5By + B))))/ (z*ap273%)
— (11{gGq)(qq)8(B — Po) (2f, + 1)(mE + (a = 1)ar))/(7*2°3°),

pe(t,a, B) = ((aGq)(Gg)my(f,(m?(4a?(2285 + 66y + 11) + 2af(456p + 144y + 119) + 55a(y + 1)

+ B(24By + 4B + 5y +5)) + 6L(a(1908 + 55y + 11) + 58y + fB))
+90(y = 1)((2y = 5)mZ = 3L)))/ (52*ap2°3*) = ({(§Gq)(qq)5(B — fo)m(mz((38a® — 48a — 1)f, — 30)
+ (a = 1ar(30(48(a — 1)a — 1) + (10a(19a — 20) — 1)f,)))/ (57*(a — 1)a283?),

Plstap) =0, pig(tap)=—((a—1)alaq)’ (s - po)f,)/ (),

Pt a ) = ((a=1)algGa)*s(B - o) (2f, + 1))/ (3729),

Pt a.p) = (3(a—1)a(@Gq)*s(8 — po)m,)/ (x*27). (D3)
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