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We study the hidden-charm pentaquark states udscc̄ with spins 1=2, 3=2, and 5=2 within the QCD sum-
rule approach. First, we construct the currents for the particular configuration of pentaquark states that
consist of the flavor singlet three-quark cluster uds of spins 1=2 and 3=2 and the two-quark cluster c̄c of
spin 1, where both clusters are in a color-octet state. From the QCD sum rules obtained by the operator
product expansion up to dimension-10 condensates, the extracted masses for the pentaquark states uds-c̄c
are about 4.6 GeV (5.6 GeV) for spin 1=2�, about 5.1 GeV (6.0 GeV) for spin 3=2�, about 6.1 GeV
(5.9 GeV) for spin 5=2�, where the masses of the positive parity states are given in parentheses.
Additionally, based on the flavor singlet pentaquark states, it is also shown that other pentaquark states of
clusters like udc-c̄s and usc-c̄d lead to masses similar to the uds-c̄c case within error bars. Furthermore, in
order to see whether any of the states, observed by the LHCb Collaboration, could be understood as the
pentaquark of two clusters in the color-octet state, we study the pentaquark formed by the two clusters
udc-c̄u, where the three-quark cluster is assumed to have the same flavor structure as the above uds cluster.
We come to the conclusion that if the observed pentaquark will be found to have spin 1=2 and negative
parity, then it could be described as a state of two color-octet clusters.

DOI: 10.1103/PhysRevD.101.014002

I. INTRODUCTION

Since the observation of the two exotic hidden-charm
pentaquark Pþ

c states of the quark content uudcc̄ with the
spins 3=2 and 5=2 through the decay Λ0

b → J=ψK−p by
LHCb collaboration [1], many studies on these states and
other expected hidden-charm pentaquark states have been
performed. Note that recently the LHCb collaboration has
observed a three peak structure [2,3] using an updated
analysis. There is an intriguing possibility [4,5] that
pentaquark states could be observed on Electron-Ion
Collider China (EicC). The pentaquark states, including
the above hidden-charm pentaquark states, have been
theoretically studied using quark models [6–8], diquark
models and triquark-diquark models [9–18], hadronic
molecular states [19–23], the coupled-channel unitary
approach [24–26], the contact-range effective field theory
[27], and the hadroquarkonia model [28]. For a review on
the hidden-charm multiquark states, see [29]. Among the

expected hidden-charm pentaquark states, it is very in-
triguing to analyze the pentaquark state of the quark content
udscc̄ since Λ0

b could also decay into J=ψK−p via J=ψΛ�

and such pentaquark state could be observed through the
decay Ξ−

b → J=ψΛK− [7].
Most of the models and approaches to the pentaquark

states in the references discussed above rely on an assu-
mption that a pentaquark state under consideration has
certain structure in color, spin, and flavor. Considering
the interpolating current to a pentaquark state for analysis
within the QCD sum rules (SRs), the clustering in the color,
flavor and spin space is inevitable due to the absence of the
invariant rank-5 tensors for the color, flavor and spin
subspaces. For example for SUð3Þc, the largest rank of
invariant tensor is 3, therefore considering two-quarks and
three-quarks cluster would be one of the natural possibilities
in constructing the interpolating for a pentaquark state.
Recently, the hidden-charm pentaquark state of the quark
content udscc̄ with the flavor singlet structure in SUFð3Þ
(the flavor singlet hidden-charm pentaquark) was consid-
ered in [8]within quarksmodels. Specially, the flavor singlet
hidden-charmpentaquarkwas analyzed as the bound state of
a three-quark and two-quark parts both in color octets, and
the stable result was got for the total spin 1=2 in [8].
In this paper, we study first the flavor singlet hidden-

charm pentaquark states of udscc̄ with the spins 1=2, 3=2,
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and 5=2 using QCD SRs. We assume that these states
consist of two colored clusters as discussed in [8,30,31]
within quark models. So, we consider them as states
consisting of the three-quark cluster uds and the two-quark
cluster c̄c. Additionally, we assume that all quarks are in an
S-wave, the colors of both clusters are color octets, and the
two-quark cluster has spin 1 since it has been shown in [8]
that such clusters of uds and c̄c yielded the most stable
result. To check this assumption, we consider the penta-
quark states containing a scalar two-quark cluster and find
that such states lead to higher masses than those obtained
from pentaquarks with a two-quark cluster of spin 1. Then,
we also examine other possible pentaquark states contain-
ing the two clusters udc-c̄s and usc-c̄d by extending the
results of the flavor singlet uds and c̄c case. Furthermore,
the pentaquark states of the two color-octet clusters udc-c̄u
are studied to see if any of the states observed by LHCb
could be understood in terms of pentaquark state with
color-octet substructure and flavor-singlet flavor three-
quark part udc. Let us point out that the method of
QCD SR relies on the local current for studying the
spectroscopy of hadrons. In this work, therefore, we
construct only the local currents for pentaquark in the
configuration space with all quarks located at the same
point. The particular configuration and clustering reflect the
properties only in flavor, color and spin subspaces.
This paper is organized as follows. Using the above

assumptions, we construct in Sec. II the interpolating
currents for the hidden-charm pentaquark states with spins
1=2, 3=2, and 5=2 in the form of a product of the currents
for these two clusters as

J5q ¼ Jm3qJ
m
2q

with the color index m. We perform the operator product
expansion (OPE) for the correlators with the interpolating
currents in Sec. III and present the system of the employed
QCD sum rules in Sec. IV. Furthermore, since the relativ-
istic interpolating currents for the fermions can be coupled
to the two states with opposite parities when the QCD sum
rules are constructed, we discuss how to extract the
contribution to a state with definite parity from the system
of the QCD sum rules in Sec. IV. Finally, a comprehensive
discussion of the results is given in Sec. V.

II. INTERPOLATING CURRENTS

First, we consider the wave function of the flavor singlet
uds cluster for constructing the three-quark interpolating
current Jm3q. Then, we extend our current to the case of three
arbitrary flavors. We will take the flavor structure of the
interpolating current Jm3q from the flavor singlet wave
function in the flavor SUð3Þ space as

Jflavor ∼ ðud − duÞsþ ðsu − usÞdþ ðds − sdÞu: ð1Þ

We study both cases of an uds cluster: one with spin 1=2
and one with spin 3=2 for a total spin 1=2, 3=2, and 5=2 of
the pentaquark states. To this end, we adopt the QCD SR
method applied to the analysis of the baryon octet [32].
Therefore, we construct the current with the first two
quarks contributing spin 0 to the total spin of the three-
quark cluster with spin 1=2. On the other hand, in the
current for the three-quark cluster with spin 3=2, the first
two quarks give spin 1 to the total spin.
With these ingredients and Ioffe’s current [32,33] with

the definite chiralities which are well known to form a good
basis, we consider the following structure of the spin part
of the interpolating current of the three-quark cluster with
spin 1=2

JAspin ¼ 4ðuTRCΓAdRÞΓ2sL − ðR ↔ LÞ
¼ ðuTCfγ5;ΓAgdÞΓ2s − ðuTCfγ5;ΓAgγ5dÞΓ2γ5s;

ð2Þ

where the superscript A means that the current is anti-
symmetric under the exchange of the spinor indexes of the
first two quarks. The first term in Eq. (1) is considered as an
example, and then the rest is included in the final stage.
From the above expression, ΓA must satisfy the following
conditions in order to have no zero current

fγ5;ΓAg ≠ 0; ðCΓAÞT ¼ −CΓA;

where T means the transposition. These conditions limit the
choices of ΓA to ΓA ¼ 1, γ5. For a uds cluster of spin 3=2,
we consider

JSspin ¼ 2ðuTRCΓSdLÞΓ2γ5sþ ðR ↔ LÞ
¼ ðuTC½ΓS; γ5�γ5dÞΓ2γ5s ð3Þ

where the superscript S denotes that the current is sym-
metric under the exchange of the spinor indexes of the first
two quarks. Similarly to the case of the above current for
the spin 1=2 case, ΓS must satisfy the following conditions

½γ5;ΓS� ≠ 0; ðCΓSÞT ¼ CΓS:

in order to have a nonzero current. Therefore, the only
choice is ΓS ¼ γμ.
Before constructing the full current, we study the

currents in color subspace. Using the adjoint representation
of color SUð3Þ, the color-octet structure of the current can
be constructed as

JS=Acolor ¼ ϵacωtmωb uadbsc;

where m is a color index. Other choices for color tensors
lead to zero currents or to the same full currents due to the
symmetries in the spin and flavor subspaces.
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To generalize the uds case, considered above, to other
flavors of three-quark clusters, we distinguish the quarks in
the three-quark cluster by (q1; q2; q3). Combining the
currents constructed in the flavor, spin and color subspaces,
we get the interpolating currents for the considered struc-
ture of pentaquark states in the form of

JAl ðΓ2;Γ3Þ ¼ TA
l;mðΓ2ÞqT1q2q3ðq̄5tmΓ3q4Þ;

JSμ;lðΓ2;Γ3Þ ¼ TS
μ;l;mðΓ2ÞqT1q2q3ðq̄5tmΓ3q4Þ: ð4Þ

Here, the quark fields in the three-quark cluster carry flavor
fi, color ci, and spin li indices as qi ¼ qficili to be
contracted with the tensor which becomes

TA
l;mðΓ2Þ ¼ ðCl1l2ðΓ2Þll3 − ðCγ5Þl1l2ðγ5Γ2Þll3Þ

× ϵf1f2f3ϵc1c3ct
m
cc2 ;

TS
μ;l;mðΓ2Þ ¼ ðCγμÞl1l2ðΓ2Þll3ϵf1f2f3ϵc1c3ctmcc2 :

These definitions reflect our choice for ΓA ¼ γ5 and
ΓS ¼ γμ. We denote the flavor configuration by
q1q2q3-q̄5q4, where qi is the flavor of the ith quark qi.
In this work, as mentioned in the Introduction, we consider
four cases for a given flavor configuration: uds-c̄c, udc-c̄s,
usc-c̄d, and udc-c̄u. Quarks fields are contracted with the
antisymmetric tensor of flavor indices that corresponds to
the flavor singlet configuration. Note that the free index l
denotes the spinor component of the current and will be
omitted in the following discussion.
We mention here again that the spinor structure of the

three-quark cluster in the full current Eq. (4) is chosen to
have the particular structure of qRqRqL − qLqLqR for the
antisymmetric case, Eq. (2), and qRqLqþ qLqRq for
the symmetric case Eq. (3).
The matrix Γ2, which can be considered as a factor of the

current due to the following properties

JS=Al ðΓ2;Γ3Þ ¼ ðΓ2ÞlkJS=Ak ð1;Γ3Þ;

will be chosen according to the P-parity and the spin of the
interpolating current under consideration. As for Γ3,
following the analysis of [8], where the two-quark cluster
with spin 1 in the uds-c̄c system yielded the most stable
result, we will take Γ3 ¼ γν for most pentaquark states
considered in this work. An alternative option for Γ3 ¼ 1
will also be considered.
To discuss the symmetry properties of the constructed

three-quark currents in the color-spin subspace, we con-
sider the six-dimensional fundamental representation
of the SUð6Þ group [34,35] composed of the tensor product
of the color SUð3Þcolor and the spin SUð2Þspin subgroups.
Representing a quark by its dimension (3,2) where the first
(second) corresponds to the dimension of SUð3Þcolor
(SUð2Þspin) subgroup, we have

ð3; 2Þ ⊗ ð3; 2Þ ⊗ ð3; 2Þ ¼ ð8; 2Þ ⊕ ð8; 4Þ ⊕ � � � ;

where only two irreducible representations are shown. The
first term on the right-hand side has spin 1=2 and belongs to
the fully symmetric 56-plet representation, while the
second term has spin 3=2 and belongs to the mixed
symmetric 76-plet of the full SUð6Þ group. The color-spin
part of the constructed current JA, Eq. (4), represents (8,2)
states studied in [8]. The current JS corresponds to (8,2)
and (8,4), depending on the choice of Γ2.
In this section, we have constructed the general form for

the pentaquark currents J8 ∼ qqq-q̄q with two color-octet
compounds. The suggested currents are unique and cannot
be presented by the sum of any other currents considered
previously. Nevertheless, omitting the flavor structure,
we have related this type of current with another types
of currents that represent following configurations in
color subspace: diquark-diquark-antiquark clustering J3̄ ∼
qq-qq-q̄ with an anti-triplet color substructure suggested in
[14–16], and a molecule form J1 ∼ qqq-q̄q with color-
singlet parts, see [23]. We conclude, that for any current of
color-octet type J8, one can find two specific (in spin and
isospin) currents of color-singlet type J1 and color-anti-
triplet type J3̄ such that J8 ¼ J1 þ J3̄. For more details see
the Appendix C, where we show how to construct these
specific currents in spin space.

III. OPE FOR 1=2, 3=2, 5=2-STATES

The correlator Πs
ðμÞðνÞðq2Þ for the QCD sum-rule analysis

of a pentaquark state is defined by

Πs
ðμÞðνÞðq2Þ ¼ i

Z
d4xeiq·xh0jTJðμÞðxÞJ̄ðνÞð0Þj0i ð5Þ

with the interpolating current JðμÞ for the considered
pentaquark state of spin s. The subscript (μ) stands for
the possible Lorentz indices of currents for the s ¼
3=2; 5=2 states. Since the current JðμÞ can couple to the
states with a spin lower than s, the phenomenological part
of the SRs contains contributions from the lower spin states
as well. Extracting the contribution from the state with spin
s only, the correlator can be written as

Πs
ðμÞðνÞðq2Þ ¼ ðq̂Πs

1ðq2Þ þ Πs
2ðq2ÞÞSsðμÞðνÞ þ � � � ; ð6Þ

where q̂ ¼ γ · q and � � � means the terms corresponding to
the omitted contributions from states with spin s and also
lower spins. Therefore, to construct SRs for the state of spin
s, one needs to extractΠs

1;2 from the correlator. The ways of
extracting Πs

1;2 for s ¼ 3=2; 5=2 are summarized in
Appendixes A and B. Then, QCD SRs for the state of
the spin s will be constructed by applying the dispersion
relation [36] to the two scalar functions Πs

1;2 in Eq. (6)
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Πs
i ðq2Þ ¼

Z
∞

sth

dt
ρsi ðtÞ
t − q2

: ð7Þ

Here the spectral densities ρsi ðtÞ are defined in the physical
t region by

ρsi ðtÞ ¼
1

π
ImΠs

i ðtÞ ð8Þ

with i ¼ 1, 2.
In the next subsections A, B, C, we present the

relativistic interpolating currents for each state of spin
1=2, 3=2, and 5=2 states with proper choices of Γ1, Γ2, and
Γ3. Then, in subsection D, we show how to calculate the
spectral densities ρsi ðtÞ within the OPE for the QCD sum
rules for each state.

A. JP = 1=2�-states

We consider four types of the current for the spin 1=2
case:

J1 ¼ JAðγ5γμ; γμÞ; J2 ¼ JSμðγ5; γμÞ;
J3 ¼ JAðγ5; 1Þ; J4 ¼ JSμðγ5γμ; 1Þ; ð9Þ

where the upper index denotes the type of the current. The
main results for the spin 1=2 case are obtained using the
current J1, while currents J2, J3, J4 are also studied as an
alternative option. The interpolating current J1 with the
quantum numbers 1=2þ can be related to the spin-3=2
current as follows

J1 ¼ JAðγ5γμ; γμÞ ¼ −γμJ1μ:

The choice of Γ2 ¼ γ5γμ insures that the spin-3=2 current
Jμ is projected by Γ2 only on the 1=2-spin component so
that h0jγμJμj3=2�i ∼ γμuμ ¼ 0 thanks to the subsidiary
condition for the 3=2 spinor uμ [see Eqs. (11) and (12)].
Since the relativistic interpolating current is considered, as
discussed in [37,38], the current can couple to the state of
negative parity as well. Denoting two such states by j1=2þi
and j1=2−i, the current couples to the states through the
following relations

h0jJj1=2þi ¼ f1
2
þu; h0jJj1=2−i ¼ f1

2
−γ5u;X

s

uðq; sÞūðq; sÞ ¼ q̂þm ð10Þ

with the spinor u. The structure of the correlator becomes

Π1=2ðq2Þ ¼ q̂Π1=2
1 ðq2Þ þ Π1=2

2 ðq2Þ

and then S1=2ðμÞðνÞ ¼ 1 because there is no Lorentz index in the

current. The two spectral densities can be obtained as

ρ1=21 ðsÞ ¼ 1

4πs
Trðq̂ImΠ1=2ðsÞÞ;

ρ1=22 ðsÞ ¼ 1

4π
TrðImΠ1=2ðsÞÞ:

B. 3=2�-states

For spin 3=2 states, we study two types of the current

J1μ ¼ JAðγ5; γμÞ; J2μ ¼ JSμðγ5; 1Þ: ð11Þ

The main results will be obtained by using the current J1μ
that has the quantum numbers 3=2−. As in the spin-1=2
case, the interpolating current couples to the states of both
parities through the relations with the corresponding
spinors uμ [13,22]

h0jJμj3=2þi ¼ f3
2
þγ5uμ; h0jJμj3=2−i ¼ f3

2
−uμ;X

s

uμðq; sÞūνðq; sÞ ¼ ðq̂þmÞTμν; ð12Þ

where the tensor Tμν is

Tμν ¼ −gμν þ
1

3
γμγν þ

2qμqν
3q2

−
qμγν − qνγμ

3
ffiffiffiffiffi
q2

p :

Note that γ5 in the first relation in Eq. (12) appears because
the current has an intrinsic negative parity. The correlator
has the structure

Π3=2
μν ðq2Þ ¼ ðq̂Π3=2

1 ðq2Þ þ Π3=2
2 ðq2ÞÞð−gμνÞ þ � � � :

Since it is known that the pure contributions from the
S ¼ 3=2 state to the correlator can be defined by the terms
proportional to S3=2ðμÞðνÞ ¼ −gμν [13,22,39], we show only

the relevant terms here. The other terms that contribute to
the correlator are given in Appendix A together with the
derivation of the exact form for the projectors P3=2;i

μν . As in
Appendix A, the two spectral densities can be obtained as

ρ3=21 ðsÞ ¼ 1

π
Tr½ImΠ3=2

μν ðsÞP3=2;1
μν �;

ρ3=22 ðsÞ ¼ −
1

π
Tr½ImΠ3=2

μν ðsÞP3=2;2
μν �: ð13Þ

More explicit forms are presented in Eq. (A2). Here, we
point out that an extra factor -1 is introduced in ρ3=22 for the
construction of the SRs in one single form for all spin cases.
This factor is related to the intrinsic negative parity of the
current, see Eq. (12).
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C. 5=2�-states

The only type of current studied here is

J1μν ¼ JSμðγ5; γνÞ þ ðμ ↔ νÞ; ð14Þ
with the choice Γ2 ¼ γ5 corresponding to the quantum
numbers 5=2þ. This current couples to the states of both
parities through the relations [13,22]:

h0jJμνj5=2þi ¼ f5
2
þuμν; h0jJμνj5=2−i ¼ f5

2
−γ5uμν;X

s

uμνðq; sÞūαβðq; sÞ ¼ ðq̂þmÞTμν;αβ;

Tμν;αβ ≡ g̃μαg̃νβ þ g̃μβg̃να
2

−
g̃μνg̃αβ
5

−
2

5
tfμνg;fαβg;

tμν;αβ ¼
�
γμγα −

qμγα − qαγμffiffiffiffiffi
q2

p −
qμqα
q2

�
g̃νβ; ð15Þ

where symmetrization of the two indices in the curly
brackets in the tensor t is imposed by tfμνg ¼ tμν þ tνμ.
The corresponding correlator has a rather complicated
structure as one can see from [13]. We calculate those
terms known to contribute to the correlator only from the
spin-5=2 state [13,22] as

Π5=2
μν;αβðq2Þ ¼ ðq̂Π5=2

1 þ Π5=2
2 Þ ðgμαgνβ þ gμβgναÞ

2
þ � � � :

Therefore, S5=2ðμÞðνÞ ¼ ðgμαgνβ þ gμβgναÞ=2 and we calculate

the two spectral densities (i ¼ 1, 2) through

ρ5=2i ðsÞ ¼ 1

π
TrðImΠ5=2

μν;αβðq2ÞP5=2;i
μν;αβÞ; ð16Þ

where the projectors P5=2;i
μν;αβ are constructed in Appendix B,

see Eq. (B2).

D. OPE of correlators

In the previous subsections, we constructed various
currents for spin 1=2, 3=2, and 5=2 pentaquark states.
We specify the current by its three properties: (i) the spin of
the pentaquark (1=2, 3=2, 5=2), (ii) the flavor clustering
(uds-c̄c, udc-c̄s, usc-c̄d, udc-c̄u) of the current, (iii) the
type of the current. For spin-1=2, we have introduced four
options (type-1,2,3,4), for spin 3=2—two (type-1,2), for
spin 5=2—only one current type-1. The following consid-
erations of this subsection and the next section are based on
the general definition of the correlator, Eq. (5), and are
relevant to any current considered in the previous
subsections.
In order to calculate the two functions Πs

1 and Πs
2 in

Eq. (6) within the OPE for each current, we use the quark
propagators for both the light quarks (u, d, s quarks) and
the heavy quark (c quark) in the configuration space with
dimension d ¼ 4 − 2ϵ to control ultraviolet divergences.

The heavy quark propagator in the configuration space is
given by the α-representation. Our technique for the OPE
calculation is similar in some aspects to that discussed in
[40]. We treat u, d quarks as massless quarks and include
the linear effect of the strange quark mass ms in the OPE.
With the hypothesis of the vacuum dominance (HVD)
factorization, we perform the OPE up to the dimension-10
vacuum condensates so that

ρsi ðtÞ ¼
1

π
ImΠs

i ðtÞ ¼
X10
D¼0

ρsi;DðtÞ; ð17Þ

where ρsi;D is the contribution to the OPE from the
dimension-D condensate for each case. The various vac-
uum condensates included in the OPE are listed in Table I

(a) (b) (c)

(d) (e) (f)

(g) (h)

FIG. 1. Generic diagrams of the OPE terms for the correlators
with the currents of the pentaquark states. Diagram (a) is the
perturbative contribution at the leading order (LO). The figures
(b)-(h) are diagrams for the nonperturbative contributions. We use
here nonlocal condensate notation [41–46] for the graphical
representation of the various contributions originating from the
standard (local) condensates. Some of the nonperturbative dia-
grams contribute to few terms of the operator OPE, as it is
specified in Table I.

TABLE I. In the first row of the table, we list the vacuum
condensates of the various operators that give a contribution to
the OPE for the studied correlators. The second row provides the
dimension of the operators. The dimension-7 condensate
hGGihq̄Gqi isn’t included in our study due to the smallness
of the gluon-condensate terms. The third row denotes the
correspondence of the operators to the diagrammatic representa-
tions in Fig. 1. Note that here we denote contributions from both
light and s quarks condensates by hq̄qin.
Term LO hq̄qi hGGi hq̄Gqi hq̄qi2 hq̄qihq̄Gqi hq̄qi3 hq̄Gqi2
D 0 3 4 5 6 8 9 10
Diagrams a d b, c d, e f f, g h f
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with reference to the corresponding diagrams shown in
Fig. 1. Note, that the condensates in Table I are related to u,
d, and s quarks. It is found that the gluon-condensate
contribution is tiny in comparison with the quark-
condensate contribution. Therefore, we don’t include the
contributions from the three-gluon condensate and the
dimension-7 condensate hGGihq̄Gqi to the OPE. For
the same reason, other contributions from the condensates
to the OPE, which are given by the product of the gluon
condensate and the quark condensate after the HVD
factorization, are also not included. The calculated OPE
contributions to the spectral density, Eq. (17), are given in
the form of an integral with the integrand ρsiDðt; α; βÞ

ρsiDðtÞ ¼
Z

αþ

α−

dα
Z

βþ

β−

dβ ρsiDðt; α; βÞ; ð18Þ

where the integration boundaries are α� ¼ ð1�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

c=t
p

Þ=2, βþ ¼ 1 − α and β− ¼ m2
cα=ðtα −m2

cÞ.
A two-dimensional integration corresponds to a two

heavy-quark propagator given in the form of the
α-representation. Although we consider three cases of
flavor configurations (uds-c̄c, udc-c̄s, usc-c̄d), the
integrands ρsi;kðs; α; βÞ are given in Appendix D,
Eqs. (D1)–(D3) only for the uds-cc̄ configuration.

IV. SYSTEM OF QCD SRS AND
NUMERICAL ANALYSIS

We construct the QCD SRs for the state with spin s using
the scalar functions Πs

1 and Πs
2 in the correlators Eq. (6). As

discussed in the previous section, since the relativistic
interpolating current can couple to the two states with
opposite parities, the physical parameters, masses and the
decay constants for the two states are coupled together in
the QCD SRs. First, we present the system of the QCD SRs
in the coupled forms and discuss how to decouple the
system of the QCD SRs for each state of definite parity by
using a proper combination of Πs

1 and Πs
2. In this section,

we omit for simplicity the index s in all formulas as far as
the involved expressions are valid for any considered
spin s.
In the framework of QCD SR [36], the Borel trans-

formation B̂

B̂Q2→M2 ½ΠðQ2Þ� ¼ lim
n→∞

ð−Q2Þn
ΓðnÞ

�
dn

dQ2nΠðQ2Þ
�
Q2¼nM2

;

is applied to both sides of Eq. (7). This transformation helps
to reduce the SR uncertainties by suppressing the contri-
butions from the excited resonances in the continuum and
also higher-order OPE terms.
For the phenomenological part of the SR, we apply the

phenomenological spectral densities, which are called by
ρphi ðtÞ and appear on the right-hand side in Eq. (7). For all

considered states, we assume that these spectral densities
can be decomposed into contributions from the resonances
of the considered states and the contribution from the
continuum starting from the threshold s0 appealing to the
quark-hadron duality hypothesis

ρph1 ðtÞ ¼ f2þδðt −m2þÞ þ f2−δðt −m2
−Þ

þ Θðt − s0ÞρOPE1 ðtÞ;
ρph2 ðtÞ ¼ f2þmþδðt −m2þÞ − f2−m−δðt −m2

−Þ
þ Θðt − s0ÞρOPE2 ðtÞ;

where the threshold s0 is chosen to be the same for both
parities and for both densities (ρph1 and ρph2 ). The OPE
spectral densities ρOPEi ðtÞ ¼ ρsi ðtÞ are defined by Eq. (17).
The decay constants f� and masses m� are given in
Eqs. (10), (12), (15). Then, the resonance contributions
to the phenomenological part of the SR are defined as
follows

RðresÞ
1;k ðM2Þ ¼ f2þm2kþ e−m

2
þ=M

2 þ f2−m2k
− e−m

2
−=M2

;

RðresÞ
2;k ðM2Þ ¼ f2þm

2kþ1
þ e−m

2
þ=M

2 − f2−m2kþ1
− e−m

2
−=M2

;

where we apply the Borel transformation to Eq. (7), as
already discussed. Combining the full OPE results with the
contribution from the continuum, we evaluate the theoreti-
cal part of the QCD SRs

RðSRÞ
i;k ðM2; s0Þ ¼

Z
s0

sth

dt ρiðtÞtke−t=M2

;

where the k-times derivatives with respect to −1=M2 are
taken after the Borel transformation. Finally, for each state
of spin s ¼ 1=2, 3=2, 5=2, we obtain the following system
of QCD SRs in the coupled form:

RðresÞ
1;k ðM2Þ ¼ RðSRÞ

1;k ðM2; s0Þ;
RðresÞ

2;k ðM2Þ ¼ RðSRÞ
2;k ðM2; s0Þ: ð19Þ

where k ∈ Zþ ⋃ f0g.

A. Decoupled QCD SRs

This subsection is devoted to decoupling the SRs in
Eqs. (19) into two QCD SR equations for each state of
definite parity. It seems that there are four different ways to
deal with this kind of coupled QCD SRs systems used in
the pentaquark QCD SR studies. First, assuming that most
of the contributions come from the lowest lying resonance
of the considered parity, the contributions from the reso-
nance of the opposite parity can be ignored and only the
second equation in Eq. (19) has been considered. This
approach has been applied to many studies on the states of
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S ¼ 1=2 and to pentaquark states [16,29,47]. In a second
way, used in [22], one resolves the systems (19) by taking
into account the states of both parities without decoupling
the system. The third way is to get the decoupled QCD SRs
by using the old-fashioned correlator [38,48]. Here, we use
a method that is similar to the fourth way [13], in which the
system of SRs, see, Eq. (19), is decoupled into two QCD
SRs for each state of definite parity.
To decouple the SRs given by Eqs. (19), we expand the

region of validity for k to k ∈ fn=2jn ∈ Zg. This analytical
continuation allows us to consider the following linear
combination of Eqs. (19)

RðSRÞ
�;k ¼ 1

2
ðRðSRÞ

1;k �RðSRÞ
2;k−1=2Þ;

RðresÞ
�;k ¼ 1

2
ðRðresÞ

1;k �RðresÞ
2;k−1=2Þ:

As a result we can rewrite the SRs, given by Eq. (19), in
decoupled form to read

RðresÞ
�;k ðM2Þ ¼ RðSRÞ

�;k ðM2; s0Þ; ð20Þ

with

RðresÞ
�;k ðM2Þ ¼ f2�e

−m2
�=M

2

m2k
� ;

RðSRÞ
�;k ðM2; s0Þ ¼

Z
s�

sth

dtρOPE� ðtÞtke−t=M2

:

where the reparametrized spectral densities ρOPE� are related
to ρOPE1;2 [calculated by the OPE in Eq. (8)] as

ρOPE� ðtÞ ¼ 1

2

�
ρOPE1 ðtÞ � ρOPE2 ðtÞffiffi

t
p

�
:

The decoupled QCD SRs, Eq. (20), can be written in
explicit form

f2�e
−m2

�=M
2

m2k
� ¼

Z
s�

sth

dtρ�ðtÞtke−t=M2

: ð21Þ

B. Numerical analysis

In this subsection, we extract the masses and the
decay constants from the constructed QCD SRs. The first
step is to define the Borel window M2 ∈ ½M2

−;M2þ� by the
conditions

RðSRÞ
2;9;0ðM2

−;∞Þ
RðSRÞ

2;0 ðM2
−;∞Þ

<
1

10
; M2þ ¼ M2

− þ ΔM2:

The low boundaryM2
− of the Borel window insures that the

dimension-9 condensate hq̄qi3 contributes less than 10% to

the total value of the correlator. Here we use the following
notation for the OPE contribution of dimension D

RðSRÞ
i;D;kðM2; s0Þ ¼

Z
s0

sth

dt ρiDðtÞtke−t=M2

:

Theupper boundaryM2þ is determinedby the above condition
by setting ΔM2 ¼ 1 GeV2. We do not follow the common
practice todefine theupperboundaryM2þ by thecondition that
the resonance contribution gives at least 10% to the total value
of the correlator, riðs0Þ > 1=10, for i ¼ 1, 2, where

riðs0Þ ¼
RðSRÞ

i;0 ðM2þ; s0Þ
RðSRÞ

i;0 ðM2þ;∞Þ
:

The values of this ratio are given in Tables II–IV for the
considered SRs. Note that most of the SRs yield values of this
ratio above 1=10. Having an equal size of the Borel window
ΔM2 for all SRs allows us to compare the SR stability
criteria for different SRs without violating the condition
riðs0Þ > 1=10. To control this condition we introduce the
collective value

rðs0Þ ¼ minðr1ðs0Þ; r2ðs0ÞÞ;
that can be found in the last column of Tables II–IV.
The values of the masses and the decay constants can be

extracted from the decoupled QCD SRs, Eq. (21), through
averaging in the Borel window M2 ∈ ½M2

−;M2þ�

m�ðs0Þ ¼
1

nþ 1

Xn
j¼0

m�ðs0;M2
jÞ;

f2�ðs0Þ ¼
1

nþ 1

Xn
j¼0

em
2
�=M

2
jRðSRÞ

�;0 ðM2
j ; s0Þ; ð22Þ

where n ¼ 8, M2
j ¼ M2

− þ ðM2þ −M2
−Þj=n and

m2Δk
� ðs0;M2Þ ¼ RðSRÞ

�;kþΔkðM2; s0Þ
RðSRÞ

�;k ðM2; s0Þ
: ð23Þ

We present our result for the case ðk;ΔkÞ ¼ ð1=2; 1=2Þ. We
have also checked two extra choices: ð0; 1=2Þ and ð1=2; 1Þ
for ðk;ΔkÞ to confirm the small dependence of our results
on k and Δk. Similar decoupled QCD SRs have been
considered in [13] with ðk;ΔkÞ ¼ ð1=2; 1Þ. Borel param-
eter dependencies of the masses m�ðs0;M2Þ for the
uds − c̄c case are shown in Fig. 2 for the best-fit threshold
value s0 ¼ s̃0. Additionally, the bands around the central
value show the dependence of the masses on the threshold
s0 varied in the interval s0 ∈ ½smin

0 ; smax
0 �.

To find the best values of the five parameters f�,m�, s0,
we demand the minimization of the Borel parameter
dependence of the original coupled SRs, Eqs. (19) i.e.,
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δki ðs0Þ ¼ max
M2∈½M2

−;M2
þ�

RðresÞ
i;k ðM2Þ −RðSRÞ

i;k ðM2; s0Þ
RðresÞ

i;k ðM2Þ
· 100%

with masses and decay constants in RðresÞ fixed by
Eqs. (22). The minimization of the Borel parameter
dependence of the original coupled SRs instead of the
decoupled SRs helps avoiding possible uncertainties
related to the analytical continuation of the SRs. Finally,
we combine the four criteria in one to get

δðs0Þ ¼ maxðδk1ðs0Þ; δkþΔk
1 ðs0Þ; δk−

1
2

2 ðs0Þ; δkþΔk−1
2

2 ðs0ÞÞ:

We use this combined criterion to define the best-fit value
for the threshold s̃0 and the threshold interval s0 ∈
½smin

0 ; smax
0 �, where subject to the condition

δðs0Þ < δðs̃0Þ þ 1:

The values of the threshold s̃0 and the interval boundaries
smin
0 and smax

0 can be found in Tables II–IV for all

TABLE III. QCD SR results for the masses m� and the decay constants f� given for a pentaquark of both parities with spin 1=2, 3=2
(first column) and for a udc-c̄s flavor-clustering. The second column denotes the type of the current and the spin of the c̄s-part given in
the parentheses. The types of the currents are defined in Eqs. (9) and (11). See the caption of Table II for more details.

Spin Type m−ðs̃0Þ, GeV mþðs̃0Þ, GeV 103f−ðs̃0Þ, GeV6 103fþðs̃0Þ, GeV6 (smin
0 , smax

0 ) s̃0 (M2
−, M2þ) δðs̃0Þ, % rðs̃0Þ

1=2 1(1) 4.4þ0.7
−0.3 � 0.0 5.1þ1.0

−0.0 � 0.1 1.8þ4.0
−0.7 � 0.0 1.3þ3.9

−0.2 � 0.0 (22.0, 34.7) 25.1 (4.5, 5.5) 3.8 0.05

1=2 2(1) 4.4þ0.9
−0.3 � 0.0 5.1þ1.0

−0.0 � 0.1 1.8þ5.6
−0.7 � 0.0 1.3þ5.4

−0.2 � 0.0 (22.0, 36.6) 25.1 (4.6, 5.6) 4.2 0.04

1=2 3(0) 5.9þ0.9
−0.0 � 0.2 5.1þ0.6

−0.2 � 0.0 1.4þ2.8
−0.1 � 0.0 1.6þ2.7

−0.5 � 0.0 (29.6, 43.1) 32.7 (4.9, 5.9) 4.0 0.1

1=2 4(0) 5.9þ0.9
−0.0 � 0.2 5.1þ0.6

−0.2 � 0.0 4.2þ8.3
−0.3 � 0.1 4.7þ8.1

−1.5 � 0.1 (29.6, 43.1) 32.7 (4.9, 5.9) 4.0 0.1

3=2 1(1) 4.9þ0.5
−0.2 � 0.1 5.7þ0.6

−0.0 � 0.2 1.9þ2.5
−0.6 � 0.0 1.9þ2.6

−0.2 � 0.0 (27.3, 38.6) 30.2 (4.5, 5.5) 4.7 0.13

3=2 2(0) 6.2þ0.1
−0.4 � 0.0 6.6þ0.2

−0.1 � 0.0 6.0þ0.9
−3.1 � 0.0 4.9þ1.0

−2.7 � 0.0 (38.8, 50.0) 47.8 (4.9, 5.9) 0.8 0.4

TABLE IV. QCD SR results for the masses m� and the decay constants f� given for a ðudcÞ-ðc̄uÞ pentaquark of both parities with
spin 1=2, 3=2, 5=2 (first column) with type 1 current for each case (second column). See the caption of Table II for more details.

Spin Type m−ðs̃0Þ, GeV mþðs̃0Þ, GeV 103f−ðs̃0Þ,GeV6 103fþðs̃0Þ,GeV6 (smin
0 ,smax

0 ) s̃0 (M2
−, M2þ) δðs̃0Þ ,% rðs̃0Þ

1=2 1 4.4þ0.4
−0.2 � 0.0 5.1þ0.4

−0.0 � 0.1 1.6þ1.5
−0.5 � 0.0 1.4þ1.5

−0.2 � 0.0 (22.6, 29.9) 24.7 (3.8, 4.8) 4.1 0.1

3=2 1 4.8þ0.2
−0.1 � 0.1 5.7þ0.3

−0.0 � 0.3 1.8þ0.8
−0.4 � 0.1 2.2þ0.8

−0.0 � 0.1 (28.2, 34.7) 30.4 (3.4, 4.4) 6.7 0.3

5=2 1 6.0þ0.2
−0.4 � 0.1 5.9þ0.1

−0.3 � 0.0 6.9þ2.6
−3.9 � 0.1 11.6þ2.7

−4.7 � 0.1 (37.6, 50.0) 45.3 (3.8, 4.8) 1.7 0.6

TABLE II. QCD SR results for masses m� and decay constants f� given for a pentaquark with both parities with spin 1=2, 3=2, 5=2
(first column) for three cases of flavor-clustering (second column). For all cases considered in this table, we apply the type-1 currents
defined in Eqs. (9), (11), (14). Central values of masses (2nd and 3rd columns) and decay constants (4th and 5th columns) given at the
best-fit threshold (s̃0) (see column 8th). The first error bars from the third to the sixth column represent the variation with respect to the
threshold value in the interval (smin

0 , smax
0 ) given in the 7th column. The second error bars in the columns from the third to the sixth

represent the variation in the Borel window (M2
−,M2þ) (see 9th column). The criteria values δðs̃0Þ are given for each state in percentages

in the 10th column. Additionally, the last column represents the criteria of the resonance contribution r1ðs̃0Þ.
Spin Flavor m−ðs̃0Þ, GeV mþðs̃0Þ, GeV 103f−ðs̃0Þ, GeV6 103fþðs̃0Þ, GeV6 (smin

0 , smax
0 ) s̃0 (M2

−, M2þ) δðs̃0Þ, % rðs̃0Þ
1=2 uds-c̄c 4.4þ0.7

−0.3 � 0.0 5.1þ1.0
−0.0 � 0.1 1.8þ4.0

−0.7 � 0.0 1.3þ3.9
−0.2 � 0.0 (22.0, 34.7) 25.1 (4.5, 5.5) 3.8 0.05

1=2 udc-c̄s 4.5þ0.3
−0.2 � 0.1 5.3þ0.3

−0.0 � 0.2 2.0þ1.4
−0.5 � 0.1 2.0þ1.4

−0.1 � 0.0 (24.0, 30.6) 26.1 (3.7, 4.7) 5.0 0.13

1=2 usc-c̄d 4.6þ0.3
−0.2 � 0.1 5.3þ0.3

−0.0 � 0.2 2.1þ1.6
−0.6 � 0.1 2.1þ1.6

−0.2 � 0.1 (24.3, 31.2) 26.5 (3.7, 4.7) 5.1 0.14

3=2 uds-c̄c 4.9þ0.5
−0.2 � 0.1 5.7þ0.6

−0.0 � 0.2 1.9þ2.5
−0.6 � 0.0 1.9þ2.6

−0.2 � 0.0 (27.3, 38.6) 30.2 (4.5, 5.5) 4.7 0.13

3=2 udc-c̄s 4.8þ0.2
−0.1 � 0.1 5.8þ0.2

−0.0 � 0.3 1.9þ0.8
−0.4 � 0.1 2.6þ0.8

−0.0 � 0.1 (28.7, 34.9) 30.8 (3.4, 4.4) 7.4 0.32

3=2 usc-c̄d 4.9þ0.2
−0.1 � 0.1 5.8þ0.2

−0.0 � 0.3 2.1þ0.8
−0.4 � 0.1 3.0þ0.9

−0.0 � 0.1 (29.5, 36.1) 31.8 (3.4, 4.4) 8.2 0.36

5=2 uds-c̄c 6.2þ0.1
−0.3 � 0.1 6.0þ0.1

−0.3 � 0.0 12.1þ3.8
−6.4 � 0.1 15.6þ3.3

−6.1 � 0.1 (39.2, 50.0) 46.3 (4.5, 5.5) 1.2 0.51

5=2 udc-c̄s 6.0þ0.1
−0.4 � 0.1 5.9þ0.1

−0.3 � 0.0 7.2þ2.5
−4.1 � 0.1 12.2þ2.6

−4.9 � 0.1 (37.6, 50.0) 45.5 (3.7, 4.7) 1.7 0.64

5=2 usc-c̄d 6.3þ0.0
−0.3 � 0.1 6.0þ0.0

−0.3 � 0.1 9.9þ0.0
−5.3 � 0.1 15.1þ0.0

−5.9 � 0.2 (40.6, 50.0) 50.0 (3.8, 4.8) 2.1 0.75
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considered states. From these values we obtain the masses
m�ðs̃0Þ and the decay constant f�ðs̃0Þ at s̃0 given in
Table II together with their variations in the threshold
interval and the variations in the Borel window.
The central value m̄ of the mass and the uncertainty Δsm

related to the threshold are defined by

m̄� ¼ 1

2
ðmax

s0
m�ðs0Þ þmin

s0
m�ðs0ÞÞ

Δsm� ¼ 1

2
ðmax

s0
m�ðs0Þ −min

s0
m�ðs0ÞÞ;

where max (min) gives the maximum (minimum) value
of the function m�ðs0Þ in the threshold interval s0 ∈
½smin

0 ; smax
0 �. The error bars related to the Borel parameter

variation in the Borel window interval M2 ∈ ½M2
−;M2þ� is

calculated by

ΔMm� ¼ 1

2
ðmax

M2
m�ðs̃0;M2Þ −max

M2
m�ðs̃0;M2ÞÞ:

Final results for the mass are given in Fig. 3 and Table V by
the central value mass m̄ and the total uncertainty Δm

m� ¼ m̄� þ Δm�; ð24Þ

where the total uncertainty is the sum of the above
uncertainties

Δm� ¼ Δsm� þ ΔMm� ð25Þ

that includes only uncertainties stemming from the SR
analysis and do not include the uncertainties of the
condensates.
The following numerical values of the vacuum conden-

sates and masses have been used for the numerical analysis

hðαS=πÞG2i ¼ 0.012 GeV3; hq̄qi ¼ ð−0.25Þ3 GeV3;

hq̄Gqi ¼ hq̄Gμνσμνqi ¼ m2
0hq̄qi; m2

0 ¼ 0.8 GeV2;

mq ¼ 0; ms ¼ 0.1 GeV; mc ¼ 1.23 GeV;

hs̄si ¼ fshq̄qi; hs̄Gsi ¼ fshq̄Gqi; fs ¼ 0.8:

The lowest threshold value is taken to be sth ¼ 6.5 GeV2,
see Eq. (7).

FIG. 3. QCD SRs results for masses of pentaquarks with spins
1=2, 3=2, 5=2 for the even parity (red color error bars) and for the
odd parity (blue color error bars) are given for three types of
flavor clustering: uds-c̄c (diamonds), udc-c̄s (squares), usc-c̄d
(triangles). Central value and width of error bars are given in
Eqs. (24) and (25). The result of our calculations are depicted by
filled diamond for uds-c̄c, by filled square for udc-c̄s, by filled
triangle for usc-c̄d. The results of other theoretical predictions for
udscc̄ pentaquark are denoted by open square for the color-
magnetic interaction based study [6], open diamond for the
framework of the coupled channel unitary approach with the local
hidden gauge formalism [24–26], open triangle for the quark
model result [8].

TABLE V. Final QCD SR results for udscc̄ pentaquark masses
for both parities with spin 1=2, 3=2, 5=2. Values are given
according Eq. (24). For more details see Table II.

Flavor 1=2− 1=2þ 3=2− 3=2þ 5=2− 5=2þ

uds-c̄c 4.6(5) 5.6(6) 5.1(4) 6.0(5) 6.1(3) 5.9(2)
udc-c̄s 4.5(3) 5.4(4) 4.8(2) 5.9(4) 5.8(3) 5.8(2)
usc-c̄d 4.6(3) 5.4(4) 5.0(2) 5.9(4) 6.2(2) 5.8(2)

FIG. 2. Borel parameter dependence of the massmsðs0;M2Þ for a uds-c̄c flavor clustering, given by Eq. (23), referring to spin s ¼ 1=2
(left panel), spin s ¼ 3=2 (central panel), spin s ¼ 5=2 (right panel) for negative parity (blue solid line and blue band limited by dashed
blue lines) and positive parity (red dotted line and red band limited by dot-dashed red lines). The central lines of the bands denote the
dependence for the best fit threshold s0 ¼ s̃0. The bands show the dependence of the masses on the threshold s0 varied in the threshold
interval s0 ∈ ½smin

0 ; smax
0 �. Vertical dotted black lines present the Borel windows (M2

−, M2þ).
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The QCD SR technique described above has been
applied using various pentaquark currents. First, we studied
the type-1 current for the three flavor configuration
(uds-c̄c, udc-c̄s, usc-c̄d), see the results in Table II.
Second, in Table III, we obtained results for some alter-
native currents to estimate their relevance. Finally, we used
our method to study the udc-c̄u flavor configuration, in
order to see whether Pþ

c ð4312Þ, Pþ
c ð4440Þ, and Pþ

c ð4457Þ,
observed by the LHCb Collaboration, can be understood as
a pentaquark of two clusters in a color-octet state. The
detailed results given in Table IV will be discussed in the
next section.

V. DISCUSSION AND SUMMARY

In this section, we discuss the results obtained in the
previous sections on the basis of the constructed QCD SRs
for pentaquark states. We have constructed the currents for
udscc̄ pentaquarks of spin-1=2, 3=2, 5=2 that have two
clusters of a color-octet. The first cluster consists of three
quarks q1q2q3 which has the same flavor structure as the
flavor singlet state of uds, while the second cluster consists
of quark-antiquark c̄q4. There are four options for flavor
clustering q1q2q3-c̄q4 (uds-c̄c, udc-c̄s, usc-c̄d, dsc-c̄u).
The results for dsc-c̄u and usc-c̄d are identical in our
approach and, therefore, we present here only results for the
dsc-c̄u configuration. The main predictions for penta-
quarks are presented for the type-1 current, that has a
spin-1 c̄q4 part. In Sec. III, in addition to these main
currents, we have also introduced the alternative currents
for spin-1=2 states and spin-3=2 states, see Eqs. (9) and
(11). Particularly, we are interested in the alternative
currents with a spin-0 quark-antiquark cluster: type-3
and type-4 for a spin-1=2 current and type-2 for a spin-
3=2 current. In Table III, we presented the results for these
alternative currents of a udc-c̄s configuration with a spin-0
c̄s-cluster in comparison with the main currents that have a
spin-1 c̄s-cluster. One can see that these types of currents
lead to larger masses compared to those for the spin-1 cases
for both spin-1=2 and spin-3=2 pentaquarks. We have also
checked that a similar conclusion is valid for other flavor
configurations. This observation agrees with [8], where it
has been shown that the two-quark cluster with spin 1 in
uds-c̄c system yield the most stable result. In Table III, we
have also considered the alternative current for a spin 1=2
state containing a spin-1 c̄s-cluster (type-2 for spin-1=2
current) and found that this current gives the same result.
Therefore, the main results in our paper are given for the
hidden pentaquark states with a spin-1 quark-antiquark
cluster.
Using type-1 currents, we have considered three types of

flavor clustering (uds-c̄c, udc-c̄s, usc-c̄d) and found that
they have similar masses and decay constants, see Table II.
Therefore, we expect that these configurations have equal
chances to be observed. The consideration of a possible
mixing between these configurations is outside the scope of

this work. Another observation is that the larger spin states
give larger masses.
Our results are presented in comparison with other

theoretical predictions [6,8,26] for udsc̄c pentaquark in
Fig. 3. The masses from the effective Lagrangian frame-
work [26] for the uds-c̄c flavor configuration with a color-
singlet substructures, depicted by open diamond, are lower
for the spin 3=2 case and comparable consistently well with
our predictions for the spin 1=2 case referring to a
pentaquark state with a color-octet substructure. The quark
model prediction for uds-c̄c [8], noted by open triangle in
Fig. 3, is in very good agreement with our result for
a spin-1=2 pentaquark, while the prediction for spin-3=2
case is different. Note that apart of result [8], we compare
our predictions with the results for the configurations that
are different from the configurations considered in our
work. Therefore, the comparisons are given only for the
reference.
In order to see whether any of the pentaquarks observed

by the LHCb Collaboration could be understood as a
pentaquark composed of two clusters in the color-octet
state, we study the pentaquark with the assumption that it is
formed by the two clusters udc-c̄u, where the three-quark
cluster has a flavor-singlet structure. Therefore, we do not
have alternative to udc-c̄u flavor clustering as opposite to
the udsc̄c pentaquark. QCD SR results for the masses m�
and decay constants f� for such a pentaquark are presented
in Table IV for spin 1=2, 3=2, 5=2 and both parities. To
make a point, we present the lightest state masses from this
table in Fig. 4 together with the states recently observed by
the LHCb Collaboration. As shown in this figure, the
obtained mass for a spin-1=2 udc-c̄u pentaquark, is in
agreement with the experimental value. Since the flavor
content and the mass of the pentaquarks observed by LHCb
are known only, we conclude that if the observed state has
spin 1=2 and negative parity, it could be described as a state
with two color-octet clusters.

FIG. 4. The masses of a recently observed by LHCb [2] states
are shown by the dashed lines in comparison to our QCD SR
estimations (blue error bars) for the lightest states with a color-
octet substructure. For more details see Table IV.
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It had been shown [49,50] that the correlator for a
pentaquark state could include the two-hadron-reducible
contributions, which are given by convolution of baryon
and meson correlators that is not related to pentaquark. This
problem of QCD SRs has been addressed in the series of
work [50–52] for tetraquark QCD SRs, where authors
expect that similar problem could affects also SR for
pentaquarks. As it has been shown for pentaquark consid-
ered in [53,54], the direct subtraction of a problematic two-
hadron contributions from the correlator leads to incorrect
results. To avoid this problem, the authors of [53] utilized
soft-kaon theorem and demonstrated that these type of
problematic terms contribute less than 10% of the sum
rules. We propose that the type of pentaquark currents
constructed in this work is a solution for this problem of
pentaquark SRs, due to the fact that such currents cannot be
factorized to the product of meson and baryon currents, see
the relevant discussion in Appendix C.
To summarize, we have estimated the masses of the

various hidden-charm pentaquarks with color-octet sub-
structure and with JPC ¼ 1=2�; 3=2�; 5=2� in the frame-
work of QCD SRs. We have constructed the currents for a
particular configuration of pentaquark states, which con-
sists of a three-quark cluster with the same flavor structure
as the flavor singlet combination uds, and, additionally, of
a quark-antiquark cluster, where both clusters are in a color-
octet state. In our work, three possible types of flavor-
clustering of the currents has been considered. To obtain
QCD sum rules, the operator product expansion for the
correlators with the constructed interpolating currents has
been performed up to the level of dimension-10 conden-
sates. From the constructed QCD SRs the masses and decay
constants of the pentaquark states have been extracted.
Numerical values are given in detail in Table II, and are
briefly summarized in Table V.
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APPENDIX A: PROJECTORS FOR
3=2-SPIN CORRELATOR

We follow the common practice to extract the gμν-term of
the 3=2 correlator and consider only the largest spin
contribution. Here, we formalize this extraction by intro-
ducing the appropriate projectors. The general form of the
tensor can be written in the following way

Pμνðq2Þ ¼
X5
i¼1

ðc1iq̂þ c2iÞtiμν ¼
X10
j¼1

Cjt̃
j
μν; ðA1Þ

where we consider only P-even terms. The relation between
two forms is given by t̃2i ¼ ti, t̃2i−1 ¼ q̂ti, C2i ¼ c2i,
C2i−1 ¼ c1i with i ¼ 1; � � � 5. The linearly independent
set tjμν of all possible structures is defined as follows

tjμν ¼
�
−gμν; γμγν;

qμqν
q2

; qμγν − qνγμ; qμγν þ qνγμ

�
j
:

A linear combination of tensors t̃μν can be used to construct
the projectors as

P3=2;k
μν ¼ M−1

kl t̃
l
μν;

where the matrix Mkl reads

Mkl ¼ Trðt̃lμνt̃kμνÞ:

Then we can extract the coefficients Cj from the expansion
expressed by Eq. (A1)

Ck ¼ TrðPμνðq2ÞP3=2;k
μν Þ:

The inverse of the matrix M is given by

24s2M−1

¼

0
BBBBBBBBBBBBBBBBBB@

s 0 −s 0 2s 0 0 s 0 0

0 s2 0 −s2 0 2s2 s 0 0 0

−s 0 −s 0 0 0 0 s 0 0

0 −s2 0 −s2 0 0 s 0 0 0

2s 0 0 0 12s 0 0 0 0 −2s
0 2s2 0 0 0 4s2 0 0 2s 0

0 s 0 s 0 0 −2 0 0 0

s 0 s 0 0 0 0 0 0 0

0 0 0 0 0 2s 0 0 −1 0

0 0 0 0 −2s 0 0 0 0 s

1
CCCCCCCCCCCCCCCCCCA

;

where s ¼ q2. Using the projectors P3=2;1
μν and P3=2;2

μν , the
densities, Eq. (13), can recast in the form
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ρ3=21 ðsÞ ¼ −1
24πs

Tr

�
ImΠ3=2

μν ðsÞq̂
�
gμν þ γμγν −

2qμqν

q2

��

þ 1

24πs
TrðImΠ3=2

μν ðsÞðqμγν − qνγμÞÞ;

ρ3=22 ðsÞ ¼ −1
24π

Tr

�
ImΠ3=2

μν ðsÞ
�
gμν þ γμγν −

2qμqν

q2

��

−
1

24πs
TrðImΠ3=2

μν ðsÞq̂ðqμγν − qνγμÞÞ: ðA2Þ

APPENDIX B: PROJECTORS FOR 5=2-SPIN
CORRELATOR

To extract the terms of the largest spin state from the
correlator, the projector method is applied. Similarly to
Eq. (A1), the general form of the correlator can be written
as follows

Pμν;αβðq2Þ ¼
X14
i¼1

ðc1iq̂þ c2iÞtiμν;αβ ¼
X28
j¼1

Cjt̃j; ðB1Þ

where the relation between the two forms is given by
t̃2i ¼ tiμν;αβ, t̃2i−1 ¼ q̂tiμν;αβ, C2i ¼ c2i, C2i−1 ¼ c1i with
i ¼ 1; � � � 14. We consider only P-even terms which are
symmetric with respect to μν and αβ. The linearly inde-
pendent set tiμν;αβ of all possible structures is defined as

tiμν;αβ ¼ ŜμνŜαβ

�
gμαgνβ
4

;
gμνgαβ
4

;
gμαγνγβ

4
;gμα

qνqβ
q2

;

gμν
qαqβ
4q2

;gαβ
qμqν
4q2

;gμν
γαqβ
2

;gαβ
γμqν
2

;gμαqνγβ;

gμαqβγν;
qμqν
2q2

γαqβ;
qαqβ
2q2

γμqν;
qμqα
q2

γνγβ;
qμqνqαqβ

q4

�
i
;

where the operator Ŝμν symmetrizes the tensor as
Ŝμνtμν ¼ tμν þ tνμ. Linear combination of these tensors
can be used as the projectors

P5=2;k
μν;αβ ¼ M−1

kl t̃
l ðB2Þ

to extract the coefficients Cj of the expansion, Eq. (B1)
notably,

Cj ¼ TrðPμν;αβP
5=2;j
μναβ Þ

with the matrix

Mkl ¼ Trðt̃lμν;αβ t̃kμν;αβÞ:

We provide only the first two rows of the inverse matrix,
which define the projectors P5=2;1 and P5=2;2 applied to
extract the spin-5=2 spectral densities, Eq. (16):

M−1
1l 120q

2 ¼ ð2; 0;−2; 0; 1; 0;−2; 0; 2; 0; 2; 0; 0; 0; 0;
0; 0;−1; 0; 1; 0; 2; 0;−2;−1; 0; 4; 0Þl;

M−1
2l 120q

2 ¼ð0; 2q2; 0;−2q2; 0; q2; 0;−2q2; 0; 2q2; 0; 2q2;
0; 0; 0; 0;−1; 0; 1; 0; 2; 0;−2; 0; 0;

− q2; 0; 4q2Þl:

Other rows of the inverse matrix are not used in our work
but could be obtained from the above equations.

APPENDIX C: CURRENTS IN COLOR SUBSPACE

Here, we consider the relation of the pentaquarks with
different configurations: diquark-diquark-antiquark cluster-
ing J3̄ ∼ qq-qq-q̄ with an anti-triplet color substructure
suggested in [14–16], a molecule form J1 ∼ qqq-q̄q with
color-singlet parts, see [23], and the combination J8 ∼
qqq-q̄q with color-octet compounds studied here. First, we
consider only the color part of these currents

Jc8 ≡ ðϵa1a2a0tma0a3q1q2q3Þ · ðq̄5tma5a4q4Þ;
Jc1 ≡ 3ðϵa1a2a4q1q2q4Þ · ðq̄5δa5a3q3Þ;
Jc
3̄
≡ 6ðϵia1a2q1q2Þ · ðϵja1a2q3q4Þ · q̄5ϵija5 :

Using a Fiertz identity, one can get the relation

Jc8 ¼ Jc1 þ Jc
3̄
;

where the quark fields carry flavor fi, color ci and spin li
indices as qi ¼ qficili . Then, multiplying this relation with
the same spinor tensor

Tl1l2l3l4l5l ¼ ðΓ1Þl1l2ðΓ2Þll3ðΓ3Þl5l4 ; ðC1Þ

one can obtain a relation between the full currents

J8 ¼ J1 þ J3̄;

where Jt ¼ Jct Tl1l2l3l4l5l. The tensor has been introduced in
such a way so that the definition for J8 agrees with Sec. II:

J8 ¼ ϵa1a2a0t
m
a0a3ðq1Γ1q2ÞðΓ2q3Þlðq̄5tmΓ3q4Þ:

After performing a Fiertz transformation in the currents, we
get:

J1 ¼ 3
X5
N¼1

ϵa1a2a4ðq1Γ1q2ÞðΓN
2 q4Þlq̄5ΓN

3 q3;

J3̄ ¼ 6
X5
N¼1

ϵia1a2ðq1Γ1q2Þϵja1a2ðq3Γ̃N
3 q4Þϵija5ðΓ̃N

2 q4Þl;

where the modified matrices Γ̃N
i and ΓN

i are defined in
terms of the Fiertz identity
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δijδkl ¼
X5
N¼1

ΔN
ilΔN

kj;

where ΔN ¼ ð1=2; γ5=2; γρ=2; iγ5γρ=2; iσρ;γ=
ffiffiffi
8

p ÞN . Then,
the definition for the modified matrices Γ̃N

i and ΓN
i take the

form

ΓN
i ¼ ΓiΔN; Γ̃N

2 ¼ −Γ2ΔNC; Γ̃N
2 ¼ ðΔNÞTCΓ3:

Therefore, currents with color-octet parts J8, color-singlet
parts J1, and color-antitriplet parts J3̄ are linearly depen-
dent. Including the flavor symmetry into consideration will
cause the break of the clustering of J1 and J3̄. In other
words, for J8 current with the same factorization in color,
spin, and flavor, the factorization of the currents J1 and J3̄
in flavor space is differ from the factorization in spin space.
That could protect the current J8 from being presented as a
product of meson and baryon currents. According to our
knowledge, the currents of type J1 and J3̄ with different

clustering in flavor and spin have not been considered in the
literature. Therefore, we would like to point out that the
currents suggested in our work cannot be a linear combi-
nation of any other currents considered previously, e.g., in
[14–16,23].

APPENDIX D: SPECTRAL DENSITIES

Here we collect the analytical results for the spectral
densities ρsD;iðt; α; βÞ, where s denotes spin,D—the dimen-
sion of OPE term, i—the part of the correlator (i ¼ 1, 2).
Here, we present only the result for the uds-c̄c flavor
configuration. We use notations, L ¼ tαβ −m2

cðαþ βÞ,
γ ¼ 1 − α − β, and β0 ¼ ðβþ þ β−Þ=2. The latter notation
has been introduced to combine various terms under a two
dimensional integral, Eq. (18), so that

Z
βþ

β−

dβ δðβ − β0Þ ¼ 1:

ρ1=21;0 ðt; α; βÞ ¼ ðγ3L4ð5γm2
c þ 8LÞÞ=ð15π8α4β4214Þ; ρ1=22;0 ðt; α; βÞ ¼ −ðγ2L4msð10γm2

c þ 3LÞÞ=ð5π8α4β421332Þ;
ρ1=21;3 ðt; α; βÞ ¼ ðγL2hq̄qið3fs − 2Þmsð3γm2

c þ 4LÞÞ=ðπ6α2β22932Þ;
ρ1=22;3 ðt; α; βÞ ¼ ðγL3hq̄qiðfs þ 2Þð4γm2

c þ LÞÞ=ðπ6α3β321032Þ;
ρ1=21;4 ðt; α; βÞ ¼ ðhðαs=πÞGGiγLðγLm2

cð−32α3γ þ 3α2ð12β2 þ 7βγ þ 4γ2Þ þ 6αβ2γ þ 4β2γð3γ − 8βÞÞ − 8γ3ðα3 þ β3Þm4
c

þ 3αβL2ð16αβ þ 7αγ þ 2βγÞÞÞ=ðπ6α4β421532Þ;
ρ1=22;4 ðt; α; βÞ ¼ −ðhðαs=πÞGGiLmsð6γLm2

cð−8α3γ þ α2ð30β2 þ 21βγ þ 16γ2Þ
þ 6αβ2γ − 8β2γðβ − 2γÞÞ − 64γ3ðα3 þ β3Þm4

c

þ 3αβL2ð10αβ þ 28αγ þ 8βγ þ γ2ÞÞÞ=ðπ6α4β421633Þ;
ρ1=21;5 ðt; α; βÞ ¼ −ðLhq̄Gqimsðγm2

c þ LÞð−8αβ þ 7αγ þ 2βγ þ 16αβfsÞÞ=ð3π6α2β2212Þ;
ρ1=22;5 ðt; α; βÞ ¼ ð5γL3hq̄Gqiðα − βÞðfs þ 2ÞÞ=ðπ6α3β321332Þ;
ρ1=21;6 ðt; α; βÞ ¼ ðLhq̄qi2ð2fs þ 1Þðγm2

c þ LÞÞ=ðπ4αβ2532Þ;
ρ1=22;6 ðt; α; βÞ ¼ ðLhq̄qi2m2

cðfs − 6ÞmsÞ=ðπ4αβ2432Þ − ðhq̄qi2δðβ − β0Þðfs − 6Þmsðm2
c þ ðα − 1ÞαtÞ2Þ=ðπ4ðα − 1Þα2632Þ;

ρ1=21;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qið2fs þ 1Þðm2
cð−4αβ þ 7αγ þ 2βγÞ þ Lð7αþ 2βÞÞÞ=ðπ4αβ2932Þ

þ ðhq̄Gqihq̄qiδðβ − β0Þð2fs þ 1Þðm2
c þ ðα − 1ÞαtÞÞ=ðπ42632Þ;

ρ1=22;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qiδðβ − β0Þmsðm2
cð5ð2α − 1Þfs − 4ð5αþ 2ÞÞ þ ðα − 1Þαtðð2αð14α − 9Þ − 5Þfs

− 4ðαð72α − 67Þ þ 2ÞÞÞÞ=ðπ4ðα − 1Þα21032Þ − ðhq̄Gqihq̄qið7αþ 2βÞm2
cmsÞ=ðπ4αβ2732Þ;

ρ1=21;9 ðt; α; βÞ ¼ 0; ρ1=22;9 ðt; α; βÞ ¼ −ððα − 1Þαhq̄qi3tδðβ − β0ÞfsÞ=ð3π222Þ;
ρ1=21;10ðt; α; βÞ ¼ −ððα − 1Þαhq̄Gqi2δðβ − β0Þð2fs þ 1ÞÞ=ð3π428Þ;
ρ1=22;10ðt; α; βÞ ¼ ððα − 1Þαhq̄Gqi2δðβ − β0ÞmsÞ=ðπ427Þ; ðD1Þ

HIDDEN-CHARM PENTAQUARKS WITH COLOR-OCTET … PHYS. REV. D 101, 014002 (2020)

014002-13



ρ3=21;0 ðt; α; βÞ ¼ ðγ3L4ð5ð5 − 2γÞγm2
c þ ð13γ þ 4ÞLÞÞ=ð5π8α4β421532Þ;

ρ3=22;0 ðt; α; βÞ ¼ −ðγ2L4msð5ð5 − 2γÞγm2
c þ ð11γ þ 3ÞLÞÞ=ð5π8α4β421433Þ;

ρ3=21;3 ðt; α; βÞ ¼ ðγL2hq̄qið3fs − 2Þmsð3ð5 − 2γÞγm2
c þ ð9γ þ 2ÞLÞÞ=ðπ6α2β221033Þ;

ρ3=22;3 ðt; α; βÞ ¼ ðγL3hq̄qiðfs þ 2Þð4ð5 − 2γÞγm2
c þ ð9γ þ 2ÞLÞÞ=ðπ6α3β321233Þ;

ρ3=21;4 ðt; α; βÞ ¼ −ðhðαs=πÞGGiγLð6γLm2
cð8α3ðγð7γ þ 4Þ − 18β2Þ þ α2ð−72ð2β þ 3Þβ2 þ ðβ − 72Þγ2 þ 42βγÞ

þ αβ2γðγ þ 12Þ þ 8β2γð7βγ þ 4β − 9γÞÞ þ 96ðγ − 1Þγ3ð2γ − 5Þm4
cððγ − 1Þ2 − 3αβÞ

þ αβL2ðγð72β þ γð9γ − 20ÞÞ − 36αð36βγ þ 8β − 7γÞÞÞÞ=ðπ6α4β421834Þ;
ρ3=22;4 ðt; α; βÞ ¼ ðhðαs=πÞGGiLmsð6γLm2

cðα3ð−90β2 þ 42βγ þ 8γð5γ þ 3ÞÞ þ 3α2ð−15ð2β þ 3Þβ2 þ 12ðβ − 2Þγ2
þ ð18β þ 7ÞβγÞ þ αβ2γð12β þ 11γ þ 6Þ þ 8β2γðβð5γ þ 3Þ − 9γÞÞ − 24ðγ − 1Þγ3ð8α3 þ α2ð7β þ 12Þ
þ 2αðβ − 6Þβ þ 4β2ð2β þ 3ÞÞm4

c þ αβL2ð−90αβð7γ þ 1Þ þ 42αð7γ þ 2Þγ þ 12βð7γ þ 2Þγ
þ ð7γ − 15Þγ2ÞÞÞ=ðπ6α4β421735Þ;

ρ3=21;5 ðt; α; βÞ ¼ ðLhq̄Gqimsðγm2
cð8αβð5 − 2γÞ þ 7αγ þ 2βγ þ 16αβð2γ − 5ÞfsÞ þ Lð4αβð7γ þ 1Þ þ 7αγ þ 2βγ

− 8αβð7γ þ 1ÞfsÞÞÞ=ðπ6α2β221332Þ;
ρ3=22;5 ðt; α; βÞ ¼ −ð5γLhq̄Gqiðα − βÞðfs þ 2Þðγð4γ þ 3ÞLm2

c − 8ðγ − 1Þγ2m4
c þ ð7γ þ 2ÞL2ÞÞ=ðπ6α3β321534Þ;

ρ3=21;6 ðt; α; βÞ ¼ ðLhq̄qi2ð2fs þ 1Þð2ð5 − 2γÞγm2
c þ 7γLþ LÞÞ=ðπ4αβ2733Þ;

ρ3=22;6 ðt; α; βÞ ¼ ðLhq̄qi2ðfs − 6Þmsðð10 − 4γÞm2
c þ 5LÞÞ=ðπ4αβ2733Þ

− ðhq̄qi2δðβ − β0Þðfs − 6Þmsðm2
c þ ðα − 1ÞαtÞ2Þ=ðπ4ðα − 1Þα2733Þ;

ρ3=21;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qiδðβ − β0Þð2fs þ 1Þðm2
c þ ðα − 1ÞαtÞÞ=ðπ42833Þ − ðhq̄Gqihq̄qið2fs þ 1Þðm2

cðαβð20 − 8γÞ
þ 7αγ þ 2βγÞ þ Lðαð20β þ 7Þ þ 2βÞÞÞ=ðπ4αβ21033Þ;

ρ3=22;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qimsð4ð7αþ 2βÞðð5 − 2γÞm2
c þ 3LÞ − 5ðα − βÞfsðm2

c þ 3LÞÞÞ=ðπ4αβ21134Þ
þ ðhq̄Gqihq̄qiδðβ − β0Þmsðm2

cð20αþ ð5 − 10αÞfs þ 8Þ þ ðα − 1Þαtð4ð437 − 432αÞα
þ ð2αð84α − 89Þ þ 5Þfs þ 8ÞÞÞ=ðπ4ðα − 1Þα21134Þ;

ρ3=21;9 ðt; α; βÞ ¼ 0;

ρ3=22;9 ðt; α; βÞ ¼ −ððα − 1Þαhq̄qi3tδðβ − β0ÞfsÞ=ðπ22232Þ;
ρ3=21;10ðt; α; βÞ ¼ −ððα − 1Þαhq̄Gqi2δðβ − β0Þð2fs þ 1ÞÞ=ðπ42932Þ;
ρ3=22;10ðt; α; βÞ ¼ ððα − 1Þαhq̄Gqi2δðβ − β0ÞmsÞ=ðπ429Þ; ðD2Þ

ρ5=21;0 ðt; α; βÞ ¼ ðγ3L3ðγðð139 − 104γÞγ þ 45ÞLm2
c þ 8ðγ − 1Þγ2ð4γ − 9Þm4

c þ 2ð13γð3γ þ 1Þ þ 6ÞL2ÞÞ=ð3π8α4β421352Þ;
ρ5=22;0 ðt; α; βÞ ¼ ðγ2L3msð5γm2

cð8ðγ − 1Þγð4γ − 9Þm2
c þ ðð117 − 88γÞγ þ 36ÞLÞ

þ 2ð11γð13γ þ 4Þ þ 18ÞL2ÞÞ=ðπ8α4β42133252Þ;
ρ5=21;3 ðt; α; βÞ ¼ ðγLhq̄qimsð3γLm2

cð−40γ þ ðð95 − 72γÞγ þ 27Þfs þ 100Þ þ 12ðγ − 1Þγ2ð4γ − 9Þm4
cfs

þ 2L2ð90γ þ 9ðγð11γ þ 3Þ þ 1Þfs þ 20ÞÞÞ=ð5π6α2β22832Þ;
ρ5=22;3 ðt; α; βÞ ¼ ðγL2hq̄qiðfs þ 2Þð2γm2

cððγð72γ − 95Þ − 27ÞL − 6ðγ − 1Þγð4γ − 9Þm2
cÞ

− 9ðγð11γ þ 3Þ þ 1ÞL2ÞÞ=ð5π6α3β32833Þ;
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ρ5=21;4 ðt; α; βÞ ¼ ðhðαs=πÞGGiγð−3γL2m2
cð8α3ð180β2ð3 − 7γÞ þ 225βγ þ 4γð7γð9γ þ 5Þ þ 30ÞÞ þ α2ð−1440β3ð7γ − 3Þ

þ 100β2ð69 − 13γÞ þ βγðγð72γ þ 1495Þ þ 900Þ − 240γ2ð7γ þ 5ÞÞ þ αβ2γð1800β þ γð72γ þ 1495Þ
þ 900Þ þ 16β2γð2βð7γð9γ þ 5Þ þ 30Þ − 15γð7γ þ 5ÞÞÞ þ 12ðγ − 1Þγ2Lm4

cð32α3γð14γ þ 5Þ
þ α2ð140β2ð4γ − 9Þ þ βγð4γ þ 225Þ − 40ðγ − 5ÞγÞ þ αβγðβð4γ þ 225Þ − 200ðγ þ 1ÞÞ
þ 8β2γð56βγ þ 20β − 5γ þ 25ÞÞ þ 192ðγ − 1Þ2γ4ð4γ − 9Þm6

cððγ − 1Þ2 − 3αβÞ
þ 2αβL3ð30αðβð6γð77γ − 54Þ − 58Þ − 45γð3γ þ 1ÞÞ þ γðγð9ð20 − 11γÞγ þ 70Þ
− 1350βð3γ þ 1ÞÞÞÞÞ=ðπ6α4β42163352Þ;

ρ5=22;4 ðt; α; βÞ ¼ ðhðαs=πÞGGimsð6γm2
cð4ðγ − 1Þγm2

cð4ðγ − 1Þγ2ð4γ − 9Þm2
cððγ − 1Þ2 − 3αβÞ

þ Lð16α3γð5γ þ 2Þ þ α2ð21β2ð4γ − 9Þ þ βðγ − 10Þγ þ 10ð4 − 3γÞγÞ þ αβγððβ − 30Þγ þ 40ðβ − 1ÞÞ
þ 2β2γð8βð5γ þ 2Þ − 15γ þ 20ÞÞÞ þ L2ð4α3ð42β2ð7γ − 4Þ þ 15βγ − 2γð5γð7γ þ 4Þ þ 18ÞÞ
þ α2ð168β3ð7γ − 4Þ þ 15β2ð23γ − 70Þ þ 2βγðð33 − 7γÞγ þ 15Þ þ 60γ2ð5γ þ 4ÞÞ
− 2αβ2γð120β þ γð7γ þ 92Þ þ 60Þ − 4β2γðβð10γð7γ þ 4Þ þ 36Þ − 15γð5γ þ 4ÞÞÞÞ
þ αβL3ð588αβðγ − 1Þð9γ þ 1Þ þ 60αð7γ þ 2Þγ − 240βð7γ þ 2Þγ
þ 7ðð16 − 9γÞγ þ 6Þγ2ÞÞÞ=ð5π6α4β421534Þ;

ρ5=21;5 ðt; α; βÞ ¼ −ðhq̄Gqimsð24αβfsðγðð73 − 56γÞγ þ 18ÞLm2
c þ 2ðγ − 1Þγ2ð4γ − 9Þm4

c þ ð7γð9γ þ 2Þ þ 3ÞL2Þ
þ 5Lð2γð2γ − 5Þm2

cðαðγ − 44βÞ − 4βγÞ þ Lð44αβð7γ þ 1Þ − αγð7γ þ 2Þ
þ 4βγð7γ þ 2ÞÞÞÞÞ=ð5π6α2β221132Þ;

ρ5=22;5 ðt; α; βÞ ¼ ðLhq̄Gqiðfs þ 2ÞðγLm2
cð3γð4α2ð280β þ 11Þ þ αð4βð280β þ 97Þ þ 55Þ þ βð4β þ 5ÞÞ

− 56γ3ð11αþ βÞ þ 81γ2ð11αþ βÞ þ 1080αβÞ þ 4ðγ − 1Þγ2ð4γ − 9Þm4
cð60αβ þ 11αγ þ βγÞ

þ 2L2ðαð20βð7γð9γ þ 2Þ þ 3Þ þ 11γð7γð3γ þ 1Þ þ 3ÞÞ þ βγð7γð3γ þ 1Þ þ 3ÞÞÞÞ=ð5π6α3β321233Þ;
ρ5=21;6 ðt; α; βÞ ¼ −ðLhq̄qi2ð2fs þ 1Þð2ð5 − 2γÞγm2

c þ 7γLþ LÞÞ=ðπ4αβ2432Þ;
ρ5=22;6 ðt; α; βÞ ¼ ðhq̄qi2δðβ − β0Þðfs þ 5Þmsðm2

c þ ðα − 1ÞαtÞ2Þ=ð15π4ðα − 1Þα24Þ
− ðhq̄qi2msð2Lm2

cð−30γ þ ðð51 − 40γÞγ þ 9Þfs þ 75Þ
þ 4ðγ − 1Þγð4γ − 9Þm4

cfs þ 5L2ð2ð7γ þ 1Þfs þ 15ÞÞÞ=ð5π4αβ2432Þ;
ρ5=21;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qið2fs þ 1Þðð2γ − 5Þm2

cðαðγ − 22βÞ − 4βγÞ þ Lðαð110β − 5γ − 1Þ þ 4ð5βγ þ βÞÞÞÞ=ðπ4αβ2733Þ
− ð11hq̄Gqihq̄qiδðβ − β0Þð2fs þ 1Þðm2

c þ ðα − 1ÞαtÞÞ=ðπ42633Þ;
ρ5=22;8 ðt; α; βÞ ¼ ðhq̄Gqihq̄qimsðfsðm2

cð4α2ð228β þ 66γ þ 11Þ þ 2αβð456β þ 144γ þ 119Þ þ 55αðγ þ 1Þ
þ βð24βγ þ 4β þ 5γ þ 5ÞÞ þ 6Lðαð190β þ 55γ þ 11Þ þ 5βγ þ βÞÞ
þ 90ðγ − 1Þðð2γ − 5Þm2

c − 3LÞÞÞ=ð5π4αβ2833Þ − ðhq̄Gqihq̄qiδðβ − β0Þmsðm2
cðð38α2 − 48α − 1Þfs − 30Þ

þ ðα − 1Þαtð30ð48ðα − 1Þα − 1Þ þ ð10αð19α − 20Þ − 1ÞfsÞÞÞ=ð5π4ðα − 1Þα2832Þ;
ρ5=21;9 ðt; α; βÞ ¼ 0; ρ5=22;9 ðt; α; βÞ ¼ −ððα − 1Þαhq̄qi3tδðβ − β0ÞfsÞ=ð3π2Þ;
ρ5=21;10ðt; α; βÞ ¼ ððα − 1Þαhq̄Gqi2δðβ − β0Þð2fs þ 1ÞÞ=ð3π426Þ;
ρ5=22;10ðt; α; βÞ ¼ ð3ðα − 1Þαhq̄Gqi2δðβ − β0ÞmsÞ=ðπ427Þ: ðD3Þ
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