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We obtain a relativistically covariant wave equation for neutrinos in dense matter and electromagnetic
field, which describes both flavor oscillations and neutrino spin rotation. Using this equation we construct a
quasiclassical theory of these phenomena. We obtain the probabilities of arbitrary spin-flavor transitions
assuming the external conditions to be constant. We demonstrate that the resonance behavior of the
transition probabilities is possible only when the neutrino flavor states cannot be described as super-
positions of the mass eigenstates. We discover that a resonance, which is similar to the Mikheev–Smirnov–
Wolfenstein resonance, takes place for neutrinos in magnetic field due to the transition magnetic moments.
This resonance gives an opportunity to determine, whether neutrinos are Dirac or Majorana particles.
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I. INTRODUCTION

The phenomenological theory of neutrino oscillations in
vacuum is based on the pioneer works by B. Pontecorvo
(see [1]). The study of the influence of external conditions
is the next important step toward understanding the nature
of neutrino. The first significant result in this field was
obtained by Wolfenstein [2]. In his paper the neutrino
interaction with the medium was described as a collective
effect. Such interaction is associated with the forward
elastic scattering of neutrinos by the fermions of the
medium. It is described by an effective potential, which
modifies the dispersion law. On the base of this approach
the Mikheev–Smirnov–Wolfenstein (MSW) effect [3] was
discovered.
However, to describe the neutrino evolution it is also

important to take into account the electromagnetic proper-
ties of neutrinos. Being a massive neutral particle, a Dirac
neutrino is characterized by an anomalous magnetic
moment. In addition to the diagonal anomalous magnetic
moments [4] neutrinos are characterized by the so-called
transition (nondiagonal) moments [5] (see also [6] and
references therein), which affect the mixing of different
neutrino mass eigenstates.
One of the reasons for neutrino spin rotation is the direct

interaction of neutrino magnetic moment with external field

[4]. This effect was widely discussed in the 1980s (see, e.g.,
[7,8]). In particular, the possible impact of the neutrino spin
rotation on the solar neutrino problem was considered.
Another reason for the spin rotation is the interaction of

neutrino with matter [9] (a review of the original papers can
be found in [10]). Spin precession takes place even in the
case when the matter is at rest and not polarized. If the
background medium moves relative to the laboratory
reference frame or if it is polarized by some external
electromagnetic field, then the neutrino helicity can also
change. This effect takes place, since there is a preferred
direction different from the direction of the neutrino
momentum in these cases.
The motion and the polarization of the background

medium were for a long time known to influence the
neutrino propagation. The motion of the medium was
considered, e.g., in [11]. In [12–14] the concept of the
induced magnetic moment of the neutrino was used to
describe the background polarization. The value of the
induced magnetic moment should be calculated for a
particular medium (e.g., in [15] it was calculated for the
medium composed of electrons only). However, it was not
until [9] that the external medium was for the first time
considered as a factor, which results in an actual spin
precession of the neutrino. As the discovery of the spin
rotation in the medium was rather unexpected, for a time
the researchers did not pay attention to this effect (see, e.g.,
[16]). Only recently the astrophysical applications of the
neutrino spin rotation were studied [17–23]. Although the
importance of such effect for the neutrino physics is
obvious, its interpretation remains ambiguous [24].
Since the character of the neutrino interaction with

electromagnetic field depends on the neutrino flavor, there
are correlations between the spin rotation and the flavor
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oscillations. In the framework of the phenomenological
theory these correlations were not studied in a mathemati-
cally rigorous way.
In all the important issues neutrino should be considered

as a relativistic particle. Hence, a consistent quantum
description of the spin rotation may be achieved only with
the use of a relativistically covariant equation generalizing
the Dirac equation. The interaction of the mass eigenstates
with the electromagnetic field is described by the Dirac–
Pauli equation, and the interaction with the medium is
described by a phenomenological equation, which was
obtained in [25,26]. Thus, to describe the neutrino evolu-
tion taking into account both the flavor oscillations and the
spin rotation, we also need an explicitly covariant equation
for the neutrino wave function.
The paper is organized as follows. In Sec. II we derive

the equation for neutrino evolution in dense medium
following [27], and generalize it taking into account the
direct interaction of neutrino with the electromagnetic field
due to its anomalous moments, including neutrino tran-
sition magnetic and electric moments. In Sec. III we obtain
a quasiclassical approximation of this equation and get its
solution as a matrix exponential. Using these solutions, we
derive a general formula for the probabilities of spin-flavor
transitions in the case of constant external conditions. In
Sec. IV we study two special cases, for which explicit
solutions are available. Such solutions exist when the
neutrino propagates in electromagnetic field or in moving
unpolarized matter. All the results of this section are
obtained in the two-flavor model. In Sec. V we discuss
the main characteristics of the neutrino behavior in the cases
considered in the previous section. In Sec. VI we summarize
the main results of the paper. In Sec. VII we discuss some
phenomenological consequences of the results obtained.

II. WAVE EQUATION

The equation, which describes the spin rotation of the
neutrino mass eigenstates [25,26], takes into account only
the neutrino interaction with the medium via neutral
currents. Hence, it cannot describe the influence of the
medium on the flavor oscillations, a major contribution to
which is made by the charged currents. Unfortunately, it is
impossible to construct a direct generalization of this
equation to describe flavor transitions using the phenom-
enological approach, because the operator, which trans-
forms the mass eigenstates of neutrino to the flavor states, is
not unitary, when it is defined by the mixing matrix only
(see, e.g., [28]).
To obtain a relativistically covariant equation describing

both the neutrino flavor oscillations and its spin rotation,
we use a modification of the Standard Model [29,30],
where all the fermions with equal electroweak quantum
numbers are combined in SUð3Þ-multiplets. That is, each of
such multiplets consists of a set of three Dirac fermions. In
the framework of this approach, wave functions ΨðiÞðxÞ

describe the fermion multiplet (i) as a whole. These wave
functions are 12-component objects and satisfy the modi-
fied Dirac equation

ðiγμ∂μI −MðiÞÞΨðiÞðxÞ ¼ 0: ð2:1Þ

In this equation I is the 3 × 3 identity matrix, MðiÞ is a
Hermitian mass matrix of the fermion multiplet, which can
be represented as follows

MðiÞ ¼
X3
l¼1

mðiÞ
l PðiÞ

l ; ð2:2Þ

where the eigenvalues mðiÞ
l of the mass matrix can be

identified with the masses of the multiplet components, and

the matrices PðiÞ
l are orthogonal projectors on the subspaces

with these masses. In Eq. (2.1) the product of the Dirac
matrices and the matrices MðiÞ, I is defined as the tensor
product. The transformation properties of the solutions of
Eq. (2.1) are described in detail in [30].
The procedure of quantization in this model is well

defined. So, we can obtain the Dyson decomposition,
which enables one to construct the perturbation theory in
the interaction picture. As a consequence, we can use the
standard diagram technique not only in the tree approxi-
mation, but also for the computations of higher-order
processes including the radiative corrections. Hence, we
can write the equation, which is analogous to the Dirac–
Schwinger equation of quantum electrodynamics (see,
e.g., [31]).
Here we consider the neutrino propagation in matter

composed of electrons, protons, and neutrons (e, p, n).
That is, we assume that the density of the neutrino flux is
small enough to neglect the effect of neutrino collective
oscillations, which were studied, e.g., in [32,33]. Following
[27], we obtain the equation describing the neutrino
interaction with matter. This interaction, associated with
forward elastic scattering of neutrinos by the background
fermions, in the framework of quantum field theory may be
taken into account if we insert the neutrino mass operator in
the modified Dirac equation. In the lowest order of the
perturbation theory the analog of the Dirac–Schwinger
equation for the neutrino multiplet takes the form

ðiγμ∂μI −MðνÞÞΨðxÞ þ i
g2

8

Z
d4yγμð1þ γ5ÞSðeÞðx; yjgÞ

× γνð1þ γ5ÞDW
νμðy − xÞΨðyÞ

− i
g2

8cos2θW
I
X

i¼e;p;n

Z
d4yγμð1þ γ5ÞDZ

μνðx − yÞ

× TrfγνðTðiÞ − 2QðiÞsin2θW þ TðiÞγ5ÞSðiÞðy; yjgÞgΨðxÞ
¼ 0: ð2:3Þ
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Here g is the weak interaction constant, θW is the Weinberg
angle, TðiÞ is the weak isospin projection of the background
fermion (i), QðiÞ is the electric charge of the background
fermion in the units of the positron charge e. The Green
functions of freeW and Z bosons are denoted asDW

μνðx − yÞ
and DZ

μνðx − yÞ respectively, and SðiÞðx; yjgÞ are the Green
functions of the fermion multiplets in the real-time for-
malism [34] (see also [35,36] and references therein) taking
into account the external conditions g, i.e., the temperature
and the chemical potential of the system.
For relatively low neutrino energies, when Eν≪M2

W=EF≲
M2

W=Tf, EF ≲ Tf ≪ MW , where EF, Tf are the Fermi
energy and the temperature of the background fermions
(see, e.g., [37]), we can use the Fermi approximation. Then

DW
μνðx−yÞ≈ gμν

M2
W
δðx−yÞ; DZ

μνðx−yÞ≈ gμν
M2

Z
δðx−yÞ

ð2:4Þ

and Eq. (2.3) takes the form

ðiγμ∂μI−MðνÞÞΨðxÞþ i
GFffiffiffi
2

p fγμð1þ γ5ÞSðeÞðx;xjgÞγμð1þ γ5Þ

− γμð1þ γ5ÞI
X

i¼e;p;n

TrfγμðTðiÞ−2QðiÞsin2θW

þTðiÞγ5ÞSðiÞðx;xjgÞggΨðxÞ¼ 0; ð2:5Þ

where GF is the Fermi constant.
The imaginary parts of the Green functions after the

summation over the quantum numbers of the background
fermions are reduced to the density matrices, that is
SðiÞðx; xjgÞ ⇒ −iϱðiÞðx; xjgÞ. The structure of the density
matrix for spin 1=2 fermions is well known from the
general considerations [38]. Since now it is necessary to
consider the constituent parts of the medium as the
components of the multiplets, for the corresponding density
matrices we have

ϱðiÞðx;xjgÞ¼
X

l¼1;2;3

PðiÞ
l

nðiÞl
4p0ðiÞ

l

ðγαpαðiÞ
l þmðiÞ

l Þð1− γ5γαs
αðiÞ
l Þ;

ð2:6Þ

where mðiÞ
l are the masses of the multiplet components, nðiÞl

are the number densities of the multiplet components, and

pαðiÞ
l , sαðiÞl are the averaged 4-momentum and 4-polarization

of the multiplet components, respectively.
Equation (2.5) may be presented in a more clear form, if

we introduce effective potentials, which are associated with

the currents jαðiÞl and polarizations λαðiÞl of the background
fermions of type (i)

jαðiÞl ¼ nðiÞl
pαðiÞ
l

p0ðiÞ
l

¼ fn̄ðiÞl v0ðiÞl ; n̄ðiÞl vðiÞl g; ð2:7Þ

λαðiÞl ¼nðiÞl
sαðiÞl

p0ðiÞ
l

¼
�
n̄ðiÞl ðζðiÞl vðiÞl Þ;n̄ðiÞl

�
ζðiÞl þvðiÞl ðζðiÞl vðiÞl Þ

1þv0ðiÞl

��
:

ð2:8Þ

In these formulas n̄ðiÞl and ζðiÞl ð0 ≤ jζðiÞl j2 ≤ 1Þ are the
number densities and the average value of the polarization
vector of the background fermions in the reference frame in
which the average momentum of fermions (i) is equal to
zero. The 4-velocity of this reference frame is denoted as

vαðiÞl ¼ fv0ðiÞl ; vðiÞl g. The currents jαðiÞl and polarizations

λαðiÞl of the background fermions characterize the medium
as a whole. We introduce effective potentials fαðeÞ and
fαðNÞ, which generalize the potential used in [2], as follows.
The potential

fαðeÞ ¼
ffiffiffi
2

p
GFðjαðeÞ − λαðeÞÞ ð2:9Þ

determines the neutrino interaction with electrons via the
charged currents, while the potential

fαðNÞ ¼
ffiffiffi
2

p
GF

X
i¼e;p;n

ðjαðiÞðTðiÞ − 2QðiÞsin2θWÞ − λαðiÞTðiÞÞ

ð2:10Þ

determines the neutrino interaction with all fermions of the
medium via the neutral currents.
Thus, the neutrino evolution equation may be written in

the form
�
iγμ∂μI −M −

1

2
γαfðeÞα ð1þ γ5ÞPðeÞ

−
1

2
γαfαðNÞð1þ γ5ÞI

�
ΨðxÞ ¼ 0; ð2:11Þ

where PðeÞ is the projector on the state of neutrino with the
electron flavor, and M≡MðνÞ. Equation (2.11) describes
both flavor oscillations and neutrino spin rotation in dense
matter. This equation generalizes the equation, used in
[25,26] to describe the neutrino spin precession.
Since this equation is obtained by reducing the mass

operator of neutrino, the range of energies for which it is
applicable is limited from above only. That is, Eq. (2.11) is
valid for neutrinos of arbitrary low energies, including the
relic ones.
Consider the structure of Eq. (2.11). As already men-

tioned, the wave function ΨðxÞ is a 12-component object.
It is convenient to introduce a block structure of this
object, that is to define the object as a set of three Dirac
bispinors ψ iðxÞ
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ΨðxÞ ¼

0
B@

ψ1ðxÞ
ψ2ðxÞ
ψ3ðxÞ

1
CA: ð2:12Þ

Meanwhile, the γ-matrices in the evolution equation act on
the components of the Dirac bispinors, and the matricesM,
PðeÞ permute the bispinors ψ iðxÞ in ΨðxÞ.
Similarly to the γ-matrices in the ordinary Dirac equa-

tion, the matrices M and PðeÞ acting on the vectors in the
flavor space, may be written in different representations,
related by unitary transformations. We will use the term
“the mass representation” for the representation, where the
mass matrix is diagonal, i.e., the mass matrix takes the form

Mmass ¼

0
B@

m1 0 0

0 m2 0

0 0 m3

1
CA: ð2:13Þ

We use the term “the flavor representation” for the
representation, where the projectors on the flavor states
are diagonal. That is, the projectors on the flavor states take
the form

PðeÞ
fl ¼

0
B@

1 0 0

0 0 0

0 0 0

1
CA; PðμÞ

fl ¼

0
B@

0 0 0

0 1 0

0 0 0

1
CA;

PðτÞ
fl ¼

0
B@

0 0 0

0 0 0

0 0 1

1
CA: ð2:14Þ

The mass matrices and the projectors in the defined above
representations are connected by the Pontecorvo–Maki–
Nakagawa–Sakata mixing matrix U (see [39])

PðlÞ
mass ¼ U†PðlÞ

flU; Mfl ¼ UMmassU†: ð2:15Þ

Every solution of Eq. (2.11) corresponds to some
neutrino state. We define the mass eigenstates of the
neutrino as the states described by the wave functions
Ψ0

iðxÞ (i ¼ 1, 2, 3), which take the following form in the
mass representation at any space-time point

Ψ0
1ðxÞ ¼

0
B@

ψ 0
1ðxÞ
0

0

1
CA; Ψ0

2ðxÞ ¼

0
B@

0

ψ 0
2ðxÞ
0

1
CA;

Ψ0
3ðxÞ ¼

0
B@

0

0

ψ 0
3ðxÞ

1
CA: ð2:16Þ

We define the states of neutrino with a particular flavor at a
definite space-time point as the states described by the

wave functions ΨiðxÞ (i ¼ 1, 2, 3), which take the follow-
ing form in the flavor representation at a given point

Ψ1ðxÞ ¼

0
B@

ψ1ðxÞ
0

0

1
CA; Ψ2ðxÞ ¼

0
B@

0

ψ2ðxÞ
0

1
CA;

Ψ3ðxÞ ¼

0
B@

0

0

ψ3ðxÞ

1
CA: ð2:17Þ

It should be emphasized that if the potential fαðeÞ [see
Eq. (2.9)] is not equal to zero, the mass matrix does not
commute with the operator of Eq. (2.11). Therefore, in
contrast to the vacuum case, for the neutrino interacting
with the medium via the charged currents the mass states
cannot be properly defined. In other words, the solutions of
Eq. (2.11) cannot take the form (2.16) at all the space-time
points, and so the mass states do not exist.
A further generalization of neutrino evolution equa-

tion (2.11) can be constructed by taking into account the
interaction of neutrino with electromagnetic field. As
already mentioned, being a massive particle, a Dirac
neutrino is characterized by its anomalous magnetic
moment. Due to the effect of mixing, neutrinos are created
and detected in flavor states, which are different from the
mass eigenstates.However, themagneticmoments for flavor
neutrinos, i.e., for neutrinos with indefinite mass, are not
properly defined. Thus, it is more convenient to define the
magnetic moments for the mass eigenstates of neutrinos.
Then, in addition to the diagonal magnetic moments μðiÞ,
there are transitionmagnetic and electricmomentsμðijÞ, εðijÞ,
which are nondiagonal elements of the matrices of magnetic
and electric moments in the mass representation. The values
of these moments were obtained in [5] (see also [6]) in the
framework of the StandardModel. In the lowest order of the
expansion in the powers of the ratio M2

l =M
2
W the magnetic

and the electric moments take the form

μðiÞ ¼ miμ0;

μðijÞ ¼ −
mi þmj

2

μ0
2

X
l¼e;μ;τ

U�
liUlj

M2
l

M2
W
;

εðijÞ ¼ i
mi −mj

2

μ0
2

X
l¼e;μ;τ

U�
liUlj

M2
l

M2
W
; ð2:18Þ

whereMl (l ¼ e, μ, τ) are the masses of the charged leptons,
MW is the mass of the W-boson, and μ0 is defined by the
relation

μ0 ¼
3eGF

8
ffiffiffi
2

p
π2

: ð2:19Þ

Therefore, to generalize Eq. (2.11) to the case of neutrino
interacting with electromagnetic field, we add terms
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describing the direct interaction of neutrino with the field
due to the anomalous magnetic moments and the transition
magnetic and electric moments similarly to the Dirac–Pauli
equation

�
iγμ∂μI−M−

1

2
γαfðeÞα ð1þ γ5ÞPðeÞ−

1

2
γαfαðNÞð1þ γ5ÞI

−
i
2
μ0FμνσμνM−

i
2
FμνσμνMh−

i
2
⋆FμνσμνMah

�
ΨðxÞ¼ 0:

ð2:20Þ

Here Fμν is the electromagnetic field tensor, ⋆Fμν ¼
− 1

2
eμνρλFρλ is the dual electromagnetic field tensor. The

interaction with μðijÞ, εðijÞ is taken into account by intro-
ducing the Hermitian matrices of transition moments Mh
andMah. In the mass representation these matrices take the
form

Mh ¼
1

2

0
BB@

0 ðm1 þm2Þk12 ðm1 þm3Þk13
ðm2 þm1Þk21 0 ðm2 þm3Þk23
ðm3 þm1Þk31 ðm3 þm2Þk32 0

1
CCA;

ð2:21Þ

Mah¼− i
2

0
BB@

0 ðm1−m2Þk12 ðm1−m3Þk13
ðm2−m1Þk21 0 ðm2−m3Þk23
ðm3−m1Þk31 ðm3−m2Þk32 0

1
CCA;

ð2:22Þ

where

kij ¼ − μ0
2

X
l¼e;μ;τ

U�
liUlj

M2
l

M2
W
: ð2:23Þ

The matrices Mh, Mah in the flavor representation may be
obtained with the use of the mixing matrix U.
Thus, Eq. (2.20) describes neutrino propagation in

matter composed of electrons, protons and neutrons in
the presence of electromagnetic field. It takes into account
both the modification of the flavor oscillations and the spin
rotation phenomenon due to the forward elastic scattering
by the background fermions and to the interaction with the
electromagnetic field. Equation (2.20) provides an oppor-
tunity to study the correlations between these phenomena
in a mathematically rigorous way.
Equation (2.20) was derived for the case when the

external conditions are changing rather slowly. When the
characteristics of the medium and the electromagnetic field
are changing rapidly, one should use the approach
described in [40] (see also [41]). However, the matrix
structure of the equation remains the same.

Note, that even for the solution with the constant external
condition there is an important application. If we know the
exact solutions of a wave equation, then we are able to
calculate the probabilities of different processes of neutrino
production using the technique, analogous to the Furry
picture in quantum electrodynamics.

III. QUASICLASSICAL APPROXIMATION

Using Eq. (2.20) we can study the behavior of neutrinos
of arbitrary low energies including the relic neutrinos.
However, all the main experimental results in neutrino
physics were obtained in the energy range m2

l =E
2
ν ≪ 1,

when the phenomenological approach is also valid.
In this case we can use the quasiclassical approximation

to describe the neutrino evolution. Since for the ultra-
relativistic particles de Broglie wavelength is small, we can
interpret xμ not as the coordinates of the event space, but as
the coordinates of the neutrino. If we consider the neutrino
multiplet moving with a constant 4-velocity uμ (u2 ¼ 1),
then we can make the substitution xμ ¼ τuμ. It means that
the neutrino evolution is characterized by its proper time τ
only. The proper time is related to the path length L as
follows

τ ¼ L=juj: ð3:1Þ

By analogy with the quasiclassical spin wave functions
[42], we introduce quasiclassical spin-flavor wave func-
tions ΨðτÞ, which describe spin-flavor coherent neutrino
states. The corresponding evolution equation follows from
Eq. (2.20), if we make the substitution

γμ∂μ ⇒ γμ
� ∂τ
∂xμ

�
d
dτ

¼ γμuμ
d
dτ

: ð3:2Þ

It should be noted that substitution (3.2) is possible only
when uμ ¼ const. Since the quasiclassical spin-flavor wave
functions are required to satisfy the condition γμuμΨðτÞ¼
ΨðτÞ, the evolution equation takes the form

�
iI
d
dτ

− F
�
ΨðτÞ ¼ 0; ð3:3Þ

where

F ¼Mþ1

2
ðfðeÞuÞPðeÞ þ1

2
ðfðNÞuÞIþ1

2
RePðeÞγ5γσsðeÞσ γμuμ

þ1

2
RNIγ5γσs

ðNÞ
σ γμuμ−μ0Mγ5γμ⋆Fμνuν−Mhγ

5γμ⋆Fμνuν

þMahγ
5γμFμνuν: ð3:4Þ

In Eq. (3.4) we use the following notations
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RðfÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfuÞ2 − f2

q
; sμðfÞ ¼ uμðfuÞ − fμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfuÞ2 − f2
p ; ð3:5Þ

Re ¼ RðfðeÞÞ; RN ¼ RðfðNÞÞ;
sμðeÞ ¼ sμðfðeÞÞ; sμðNÞ ¼ sμðfðNÞÞ: ð3:6Þ

In this paper we restrict ourselves to considering external
conditions, which do not vary with the space-time point, as
it is the first order approximation of a realistic background.
It means, we assume that the effective potentials and the
electromagnetic field tensor are constant

Fμν ¼ const; jμf ¼ const; λμf ¼ const: ð3:7Þ

For reasons presented in [41], in this case it is necessary to
impose additional constraints on the external conditions.
The strengths of the electric and magnetic fields and the
averaged current and polarization of the medium should
obey a self-consistent system of equations. This system of
equations consists of the Maxwell equations, the Lorentz
equation

_jμf ¼ ef
mf

Fμ
νjνf; ð3:8Þ

and the Bargman–Michel–Telegdi quasiclassical spin evo-
lution equation [43]

_λμf ¼
�
ef
mf

Fμ
ν þ 2μfðgμα − vμfv

α
fÞFαν

�
λνf: ð3:9Þ

In these equations the dot denotes differentiation with
respect to the proper time.
From Eqs. (3.8) and (3.9) we find the sufficient condition

for currents and polarizations to remain constant

Fμνj
μ
f ¼ 0; Fμνλ

μ
f ¼ 0: ð3:10Þ

Then for the effective potentials defined by Eq. (2.9),
(2.10), the following relations must be satisfied

FμνfνðNÞ ¼ 0; FμνfνðeÞ ¼ 0: ð3:11Þ

The necessary and sufficient condition for a tensor to have a
zero eigenvalue is its second invariant to be equal to zero.
Therefore, we consider only the fields, which satisfy the
condition

Fμν
⋆Fμν ¼ 0: ð3:12Þ

Obviously, condition (3.12) is satisfied for the magnetic
field, which is the most interesting model for astrophysical
applications. In this particular case relations (3.10) imply
that both the velocity of the medium components v and the

3-dimensional vector of polarization ζ are parallel to the
vector of magnetic induction.
If the fields and the effective potentials do not depend on

the coordinates of the event space, then it is possible to
write the solution of Eq. (2.20) using the resolvent UðτÞ

ΨðτÞ ¼ 1ffiffiffiffiffiffiffi
2u0

p UðτÞΨ0; ð3:13Þ

where the constant 12-component object Ψ0 has the form

Ψ0¼
1

2
ð1−γ5γμsμ0Þðγμuμþ1Þðψ0⊗ejÞ; Ψ̄0Ψ0¼2: ð3:14Þ

Here ψ0 is a constant bispinor, ej is an arbitrary unit vector
in the three-dimensional vector space over the field of
complex numbers, and sμ0 is a 4-vector of neutrino
polarization such that ðus0Þ ¼ 0.
The resolvent in this case takes the form

UðτÞ ¼ e−iFτ; ð3:15Þ

where the matrix F is defined by Eq. (3.4).
Unfortunately, even if conditions (3.10) are satisfied, it is

not possible to find an analytical solution of Eq. (2.20) in
the general case, because the problem of calculating the
eigenvectors of the matrices in (2.20) results in an algebraic
equation of degree no less then six. The matrix structure of
Eq. (3.4) indicates that even when the effective potentials
are independent of the coordinates of the event space in
general case the spin and the flavor degrees of freedom
cannot be separated. In other words, there are no integrals
of motion which characterize neutrino flavor states and
neutrino polarization states separately. In general case the
neutrino propagates in more complicated spin-flavor states.
However, we can calculate the probabilities to detect a
neutrino in a state with a definite flavor and a definite
projection of the spin on a certain direction. Moreover, a
neutrino can be in a mass eigenstate only when there is no
interaction with matter via the charged currents and the
transition moments are not taken into account. This case is
discussed in detail in [41]. Obviously, we can come to the
same conclusions, if we describe the neutrino using
quantum equation (2.20).
As was already mentioned, the model of constant fields

is the first approximation of a realistic background. It is a
rather good approximation, since vector and axial currents
for fermions propagating in the constant fields, which
satisfy (3.12), in the quasiclassical approximation coincide
with those obtained in the quantum description (for more
details see [44]). If the external conditions vary slowly, the
adiabatic approximation, based on quasiclassical solutions
in the constant fields, gives good results. In [45,46] an
analytical method is developed to describe neutrino propa-
gation in matter in the case, when the dependence of the
density on the distance can be considered as several narrow
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segments, where it changes steeply, separated by wide
sloping segments (cliff and valley approximation). This
method can also be generalized to the case of interaction
with electromagnetic field, if needed. In other cases to
consider a realistic environment, one should search for
numerical solutions of the quantum equation (2.20). Note,
that in this case the quasiclassical approximation is not
valid in general case.
While calculating the transitions probabilities from one

state of the neutrino to another, it is convenient to use
quasiclassical spin-flavor density matrices introduced sim-
ilarly to the quasiclassical spin density matrices (see [42])

ραðτÞ ¼
1

4u0
UðτÞðγμuμ þ 1Þð1 − γ5γμs

μ
0ÞPðαÞ

0 ŪðτÞ

¼ 1

2u0
UðτÞðγμuμ þ 1ÞPðαÞ

0 ŪðτÞ: ð3:16Þ

In this formula sμ0 defines the initial polarization state of the

neutrino, and the projector PðαÞ
0 defines its initial flavor

state. Thus, PðαÞ
0 is a projector on the initial spin-flavor state

of the neutrino. Note, that since in our case the states of the
neutrino multiplet are pure states, all the results may be
obtained with the help of the wave functions, and using
density matrices is convenient though not necessary. The
transition probability from the state α to the state β in the
time τ is determined by the following relation

Wα→β ¼ TrfραðτÞρ†βðτ ¼ 0Þg: ð3:17Þ

As it was already mentioned, it is not possible to write an
explicit analytical expression for the matrix exponential
(3.15) in the general case. Therefore, we have to use
numerical methods to calculate the transition probability.
The most effective way to perform such calculations is
based on Backer–Campbell–Hausdorff formula. Using this
formula, we can write the expression for the transition
probability as follows

Wα→β ¼
1

2u0
Trfe−iτFPðαÞ

0 eiτFPðβÞ
0 ðγμuμ þ 1Þγ0g

¼ 1

2u0
X∞
n¼0

ð−iτÞn
n!

TrfDnP
ðβÞ
0 ðγμuμ þ 1Þγ0g; ð3:18Þ

where

D0 ¼PðαÞ
0 ; D1 ¼ ½F ;PðαÞ

0 �; D2 ¼ ½F ; ½F ;PðαÞ
0 ��…

ð3:19Þ

Taking into account the relation between the proper time
and the neutrino path length (3.1), we conclude that the
actual expansion parameter in formula (3.18) is the ratio of
the distance between the source and the detector to the
flavor oscillation length in vacuum L=Losc, since in

the ultrarelativistic limit the value L̃ ¼ 2πjuj=ðm2 −m1Þ
is the standard oscillation length of the phenomenological
theory Losc ¼ 4πEν=ðm2

2 −m2
1Þ expressed through another

set of quantum numbers.
Expression (3.18) converges rapidly, since it is a series of

exponential type. So, it is convenient to use (3.18) for
calculating the transition probabilities. This approach
provides the opportunity to avoid problems arising in
direct calculations of the transition probabilities based on
numerical solutions of Eq. (3.3), since we can avoid
working with rapidly oscillating functions. When calculat-
ing expressions (3.19), it is convenient to decompose the
flavor projectors using the generators of the SUð3Þ group,
represented as the Gell-Mann matrices, and to use some
effective parametrization for the mixing matrix (see,
e.g., [47]).

IV. EXACT SOLUTIONS

Formula (3.18) can be used to calculate the values of the
probabilities in a general case. However, for some models it
is possible to represent the matrix exponential in an explicit
form. The study of such models is important for under-
standing some qualitative properties of neutrino evolution
in external conditions.
In particular, the exact solutions may be obtained in two

physically interesting cases. First, an explicit solution of
Eq. (3.3) exists when neutrino propagates in unpolarized
homogeneous moving medium. Second, an explicit sol-
ution exists, when neutrino interacts with electromagnetic
field, if we neglect the transition electric moments. The
existence of the spin integrals of motion makes it possible
to find the solutions in these cases. We consider the two-
flavor model, in which the probabilities of the transitions
take a more simple form than in the realistic three-
flavor model.
In the two-flavor model the mass matrix M, the matrices

of the transition momentsMh;Mah and the projector on the
electron flavor state PðeÞ are 2 × 2 matrices and may be
expressed in terms of the Pauli matrices. The corresponding
wave function ΨðτÞ is an 8-component object. In the mass
representation

M ¼ 1

2
ðσ0ðm1 þm2Þ − σ3ðm2 −m1ÞÞ;

PðeÞ ¼ 1

2
ðσ0 þ σ1 sin 2θ þ σ3 cos 2θÞ; ð4:1Þ

Mh¼
1

2
ðm1þm2Þμ1σ1; Mah ¼

1

2
ðm1−m2Þε1σ2; ð4:2Þ

where σi, i ¼ 1, 2, 3 are the Pauli matrices, σ0 is the identity
2 × 2 matrix, θ is the vacuum mixing angle. The value
μ1=μ0 is very small, since it is determined by the ratio of the
masses of leptons and the W-boson squared [see (2.23)].
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To convert the operators, including the resolvent UðτÞ,
from the mass representation to the flavor representation,
one should use the transformation

UðτÞ ¼ UU0ðτÞU†; ð4:3Þ

whereU0ðτÞ is the resolvent in the mass representation, and
UðτÞ is the resolvent in the flavor representation. The
Pontecorvo–Maki–Nakagawa-Sakata mixing matrix U in
the two-flavor model is as follows

U ¼
�

cos θ sin θ

− sin θ cos θ

�
: ð4:4Þ

Let us consider the neutrino behavior in the constant
homogeneous electromagnetic field. In this case, if we
neglect the transition electric moments, for the matrix (3.4)
in the mass representation we have

F →
1

2
fðσ0ðm1 þm2Þ − σ3ðm2 −m1ÞÞð1 − μ0γ

5γμ ⋆FμνuνÞ
− σ1ðm1 þm2Þμ1γ5γμ ⋆Fμνuνg: ð4:5Þ

The spin integral of motion, which defines the projection of
the spin on the direction of the magnetic field in the
neutrino rest frame, takes the form

S ¼ −γ5γμ ⋆Fμνuν=N; N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uμ⋆Fμα⋆Fανuν

q
: ð4:6Þ

Therefore, the resolvent is given by the relation

U0ðτÞ ¼
X
ζ¼�1

e−iτTζ=2ðcos ðτZζ=2Þ

− iðX0
ζσ1 − Y 0

ζσ3Þ sin ðτZζ=2ÞÞΛζ ð4:7Þ

where

Y 0
ζ ¼

1

Zζ
ððm2 −m1Þð1 − ζμ0NÞÞ;

X0
ζ ¼

1

Zζ
ð−ζμ1Nðm2 þm1ÞÞ;

Zζ ¼ fððm2 −m1Þð1 − ζμ0NÞÞ2 þ ððm2 þm1Þμ1NÞ2g1=2;
Tζ ¼ ðm2 þm1Þð1 − ζμ0NÞ: ð4:8Þ

The spin projector has the form

Λζ ¼
1

2
ð1 − ζSÞ; ½γμuμ;Λζ� ¼ 0; ζ ¼ �1: ð4:9Þ

The resolvent in the flavor representation may be
obtained using transformation (4.3)

UðτÞ ¼
X
ζ¼�1

e−iτTζ=2ðcos ðτZζ=2Þ

− iðXζσ1 − Yζσ3Þ sin ðτZζ=2ÞÞΛζ; ð4:10Þ

where

Yζ ¼
1

Zζ
ððm2 −m1Þð1 − ζμ0NÞ cos 2θ

þ ζμ1Nðm2 þm1Þ sin 2θÞ;

Xζ ¼
1

Zζ
ððm2 −m1Þð1 − ζμ0NÞ sin 2θ

− ζμ1Nðm2 þm1Þ cos 2θÞ: ð4:11Þ
If we introduce the notations

X0
ζ ¼ sin 2θmζ ; Y 0

ζ ¼ cos 2θmζ ; ð4:12Þ

then

Xζ¼ sin2θζ¼ sin2ðθmζ þθÞ; Yζ¼ cos2θζ¼ cos2ðθmζ þθÞ:
ð4:13Þ

That is, θζ is an effective mixing angle, which arises when
neutrino propagates in electromagnetic field. It is an analog
of the famous effective mixing angle in matter [2].
It should be noted that if we do not take into account the

transition moments, then θmζ ¼ 0. As already mentioned,
only in this case we can consider a flavor state of the
neutrino as a superposition of the mass eigenstates.
Now we calculate the probabilities of the spin-flavor

transitions between different states of the neutrino. For this
purpose it is convenient to use the resolvent in the flavor
representation, which is given by the relation (4.7). We
consider the transitions between the states with definite
flavor. In the flavor representation the projectors on such
states take the form

PðαÞ
0 ¼ 1

2
ð1þξ0σ3Þ; PðβÞ

0 ¼ 1

2
ð1þ ξ00σ3Þ; ξ0;ξ00¼�1:

ð4:14Þ

To obtain the projectors on the initial and final state with
electron flavor one should choose ξ0, ξ00 ¼ 1, otherwise ξ0,
ξ00 ¼ −1. We also assume that in these states neutrino has a
definite helicity, i.e.,

sðαÞμ0 ¼ ζ0s
μ
sp; sðβÞμ0 ¼ ζ00s

μ
sp;

sμsp ¼ fjuj; u0u=jujg; ζ0; ζ00 ¼ �1; ð4:15Þ

where the values ζ0, ζ00 ¼ 1 correspond to the right-
handed neutrino in the initial and final state, and ζ0, ζ00 ¼
−1 correspond to the left-handed neutrino. Using for-
mula (3.17), we obtain
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Wα→β ¼
1þ ξ0ξ

0
0

2

1þ ζ0ζ
0
0

2
W1 þ

1þ ξ0ξ
0
0

2

1 − ζ0ζ
0
0

2
W2 þ

1 − ξ0ξ
0
0

2

1þ ζ0ζ
0
0

2
W3 þ

1 − ξ0ξ
0
0

2

1 − ζ0ζ
0
0

2
W4; ð4:16Þ

where

W1¼
1

2

�
1

2
ð1−ζ0ðs̄sspÞÞ2ð1−S2þ1X

2
þ1Þþ

1

2
ð1þζ0ðs̄sspÞÞ2ð1−S2−1X

2
−1Þþð1−ðs̄sspÞ2ÞðCþ1C−1þSþ1S−1Yþ1Y−1ÞcosðωτÞ

þξ0ð1−ðs̄sspÞ2ÞðS−1Y−1Cþ1−C−1Sþ1Yþ1ÞsinðωτÞ
�
;

W2¼
1

2

�
1

2
ð1−ðs̄sspÞ2Þð2−S2þ1X

2
þ1−S2−1X

2
−1Þ−ð1−ðs̄sspÞ2ÞðCþ1C−1þSþ1S−1Yþ1Y−1ÞcosðωτÞ

−ξ0ð1−ðs̄sspÞ2ÞðS−1Y−1Cþ1−C−1Sþ1Yþ1ÞsinðωτÞ
�
;

W3¼
1

2

�
1

2
ð1−ζ0ðs̄sspÞÞ2S2þ1X

2
þ1þ

1

2
ð1þζ0ðs̄sspÞÞ2S2−1X2

−1þð1−ðs̄sspÞ2ÞSþ1S−1Xþ1X−1cosðωτÞ
�
;

W4¼
1

2

�
1

2
ð1−ðs̄sspÞ2ÞðS2þ1X

2
þ1þS2−1X

2
−1Þ−ð1−ðs̄sspÞ2ÞSþ1S−1Xþ1X−1cosðωτÞ

�
: ð4:17Þ

Here

C�1 ¼ cosðτZ�1=2Þ; S�1 ¼ sinðτZ�1=2Þ; ω ¼ μ0ðm2 þm1ÞN; s̄μ ¼ −⋆Fμνuν=N: ð4:18Þ

The transition probabilities determined by Eq. (4.17) depend on six frequencies. It is quite expected that the probabilities
W1 andW3 depend on the initial neutrino polarization ζ0. What is more interesting, the probabilitiesW1 andW2 also depend
on the initial neutrino flavor ξ0.
If we neglect the transition moment in (4.17) (i.e., set μ1 ¼ 0), and also assume ðs̄sspÞ ¼ 0, i.e., consider neutrino

moving orthogonally to the magnetic field in the laboratory reference frame, then the expressions for the transition
probabilities W0

i are

W0
1 ¼

1

4
ð2 − ðS02þ1 þ S02−1Þsin22θ þ 2ðC0

þ1C
0
−1 þ S0þ1S

0
−1cos

22θÞ cosðωτÞ þ 2ξ0ðS0−1C0
þ1 − C0

−1S
0
þ1Þ cos 2θ sinðωτÞÞ;

W0
2 ¼

1

4
ð2 − ðS02þ1 þ S02−1Þsin22θ − 2ðC0

þ1C
0
−1 þ S0þ1S

0
−1cos

22θÞ cosðωτÞ − 2ξ0ðS0−1C0
þ1 − C0

−1S
0
þ1Þ cos 2θ sinðωτÞÞ;

W0
3 ¼

1

4
ðS02þ1 þ S02−1 þ 2S0þ1S

0
−1 cosðωτÞÞsin22θ;

W0
4 ¼

1

4
ðS02þ1 þ S02−1 − 2S0þ1S

0
−1 cosðωτÞÞsin22θ; ð4:19Þ

where

C0
�1 ¼ cosðτZ0

�1=2Þ; S0�1 ¼ sinðτZ0
�1=2Þ;

Z0
ζ ¼ ðm2 −m1Þð1 − ζμ0NÞ: ð4:20Þ

If we consider the neutrino with initial electron flavor
(ξ0 ¼ 1), then the formulas (4.19) coincide with those
obtained in [48,49]. As was demonstrated in [48], the
probabilities in this case still depend on six frequencies.
However, the dependence on the initial polarization state ζ0
vanishes.
The values of the transition moments determined by the

Standard Model are very small. However, the interaction

with the transition moments leads to an interesting effect.
The denominators of the functions Yζ ¼ cos 2θζ and
Xζ ¼ sin 2θζ, which determine the effective mixing angle,
are resonant. As is well known, if the external conditions
(in our case, the magnetic induction) vary rather slowly, it
can lead to the resonance, which is analogous to the MSW
resonance. Note that this is a completely new effect, which
was not mentioned in the literature before. The resonance
condition cos 2θζ ¼ 0 reduces to the relation μ0N ¼ 1, if
we neglect the terms proportional to the ratio μ1=μ0.
Let us consider the neutrino propagation in dense

unpolarized matter, composed of components moving with
the same velocities. In this case the potentials describing the
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interaction with the medium via charged and neutral
currents are proportional

fμðNÞ ¼ afμ; fμðeÞ ¼ fμ: ð4:21Þ

The coefficient a is determined by the properties of the
background fermions

a ¼
X

i¼e;p;n

nðiÞ
nðeÞ

ðTðiÞ − 2QðiÞsin2θWÞ: ð4:22Þ

In the two-flavor model matrix (3.4) in the mass
representation takes the form

F →
1

2
fσ0ðm1þm2Þ−σ3ðm2−m1ÞþððfuÞþRγ5γσsσγμuμÞ

× ½ðσ0þσ1 sin2θþσ3cos2θÞ=2þaσ0�g: ð4:23Þ

Here we use the following notations [see (3.5)]

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfuÞ2 − f2

q
; sμ ¼ uμðfuÞ − fμffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðfuÞ2 − f2
p :

The spin integral of motion has the form

S̃ ¼ γ5γσsσ: ð4:24Þ
If the medium is at rest, the operator S̃ coincides with the
helicity operator. The resolvent is written as follows

Ũ0ðτÞ ¼ 1

2

X
ζ¼�1

exp

�
−
i
2
τ

�
ðm2 þm1Þ þ ððfuÞ − ζRÞ

�
aþ 1

2

���

× ðcosðτZ̃ζ=2Þ − i sinðτZ̃ζ=2ÞðX̃0
ζσ1 − Ỹ 0

ζσ3ÞÞð1 − ζγ5γμsμÞ; ð4:25Þ

where

Ỹ 0
ζ ¼

1

Zζ
ððm2 −m1Þ − ððfuÞ − ζRÞ cos 2θ=2Þ;

X̃0
ζ ¼

1

Zζ
ðððfuÞ − ζRÞ sin 2θ=2Þ;

Z̃ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðððfuÞ − ζRÞ=2 − ðm2 −m1Þ cos 2θÞ2 þ ððm2 −m1Þ sin 2θÞ2

q
: ð4:26Þ

The resolvent in the flavor representation may be obtained from the resolvent in the mass representation using
transformation (4.3)

ŨðτÞ¼ 1

2

X
ζ¼�1

exp

�
−
i
2
τ

�
ðm2þm1ÞþððfuÞ−ζRÞ

�
aþ1

2

���
ðcosðτZ̃ζ=2Þ− i sinðτZ̃ζ=2ÞðX̃ζσ1− Ỹζσ3ÞÞð1−ζγ5γμsμÞ;

ð4:27Þ

where

Ỹζ ¼
1

Zζ
ððm2 −m1Þ cos 2θ − ððfuÞ − ζRÞ=2Þ;

X̃ζ ¼
1

Zζ
ððm2 −m1Þ sin 2θÞ: ð4:28Þ

If we introduce the notations

X̃0
ζ ¼ sin 2θ̃mζ ; Ỹ 0

ζ ¼ cos 2θ̃mζ ; ð4:29Þ

then

X̃ζ ¼ sin 2θ̃ζ ¼ sin 2ðθ̃mζ þ θÞ;
Ỹζ ¼ cos 2θ̃ζ ¼ cos 2ðθ̃mζ þ θÞ: ð4:30Þ

The calculation of the transitions probabilities between
the spin-flavor states in this case is quite similar to the
calculation for the neutrino in electromagnetic field. Since
the structure of the resolvents (4.10) and (4.27) is identical,
the expression for the transition probabilities between the
states with definite flavor (4.14) and definite helicity (4.15),
may be obtained from (4.16), (4.17), if we make the
substitution

Xζ → X̃ζ; Yζ → Ỹζ; Zζ → Z̃ζ;

ω → ω̃ ¼ Rð1=2þ aÞ; s̄μ → sμ: ð4:31Þ
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Thus, the expressions for the transition probabilities
coincide with those obtained in [50]. Obviously, in this
case the probabilities are also characterized by six frequen-
cies and depend on the initial flavor and polarization state
of the neutrino.
Obviously, the denominators of the functions Ỹζ

and X̃ζ, which determine the effective mixing angle in

matter Ỹζ ¼ cos 2θ̃ζ, X̃ζ ¼ sin 2θ̃ζ, are resonant, too.
For the matter at rest this results in the MSW resonance
[3]. If the medium is at rest, then for the left-handed
neutrinos θ̃ζ¼−1 coincides with the effective mixing angle
in matter

cos 2θ̃eff ≈
ðm2

2 −m2
1Þ cos 2θ − 2Eνf0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Eνf0 − ðm2
2 −m2

1Þ cos 2θÞ2 þ ððm2
2 −m2

1Þ sin 2θÞ2
p ;

sin 2θ̃eff ≈
ðm2

2 −m2
1Þ sin 2θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Eνf0 − ðm2
2 −m2

1Þ cos 2θÞ2 þ ððm2
2 −m2

1Þ sin 2θÞ2
p ; ð4:32Þ

since in the ultrarelativistic limit juj=ðm2 −m1Þ coincides
with 2Eν=ðm2

2 −m2
1Þ.

Note that for neutrino propagating in matter, as well as
for the neutrino interacting with electromagnetic field,
formula (4.17) may be used not only to calculate the
probabilities of the transitions between the states with
definite helicity, but also to calculate the transition prob-
abilities between the states with arbitrary polarization. For
this purpose it is enough to replace sμsp in Eq. (4.17) with
the desired polarization vector sμ0. In this case the proba-
bilities may behave in a different way. As already men-
tioned, the neutrino helicity does not change if the neutrino
moves in matter at rest or along the direction of the
electromagnetic field. However, if we choose the initial
neutrino polarization different from the longitudinal one,
even in these cases spin-flip transitions may take place.

V. SPIN ROTATION

Equation (4.17) gives the transition probabilities for both
neutrino in dense moving matter and in the electromagnetic
field. Hence, in these cases the behavior of probabilities is
characterized by a number of common properties.
Therefore, in this section we use the same notations for
the variables X�1, Y�1, Z�1, ω, sμ in these cases.
As was already mentioned both in the case of electro-

magnetic field and in the case of moving medium the
probabilities depend on the initial flavor and polarization
state of the neutrino, and are characterized by six non-
multiple frequencies. The frequencies Zþ1 and Z−1 charac-
terize flavor oscillations of neutrinos with different polariza-
tion. Four combinational frequencies ω� ðZþ1 � Z−1Þ=2
arise due to correlations between flavor transitions and
neutrino spin rotation. The dependence of the spin-flavor
transition probabilities on the distance between the source
and the detector has the character of a composite beat.
Due to the properties mentioned, even in the two-flavor

model a detailed analysis of the results is rather compli-
cated. Therefore, for clarity, we consider only the spin-flip

probabilityW24 ¼ W2 þW4. For neutrinos with initial left-
handed polarization the probability W24 actually deter-
mines the decrease of the total number of neutrinos of all
flavors registered experimentally. Because of the correla-
tions with the flavor transitions, this probability is defined
by the expression

W24 ¼
1

2
AðA1ð1 − cosω1τÞ þ A2ð1 − cosω2τÞ

þ A3ð1 − cosω3τÞ þ A4ð1 − cosω4τÞÞ; ð5:1Þ

where the total amplitude of the spin-flip transitions is as
follows

A ¼ 1 − ðssspÞ2: ð5:2Þ

The probability W24 is characterized by four frequencies

ω1 ¼ ωþ Zþ1 þ Z−1

2
; ω2 ¼ ωþ Zþ1 − Z−1

2
;

ω3 ¼ ω −
Zþ1 − Z−1

2
; ω4 ¼ ω −

Zþ1 þ Z−1

2
; ð5:3Þ

and the coefficients corresponding to the oscillating terms
are defined by the formulas

A1 ¼
1

4
ð1 − Yþ1Y−1 − Xþ1X−1 þ ξ0ðYþ1 − Y−1ÞÞ;

A2 ¼
1

4
ð1þ Yþ1Y−1 þ Xþ1X−1 þ ξ0ðYþ1 þ Y−1ÞÞ;

A3 ¼
1

4
ð1þ Yþ1Y−1 þ Xþ1X−1 − ξ0ðYþ1 þ Y−1ÞÞ;

A4 ¼
1

4
ð1 − Yþ1Y−1 − Xþ1X−1 − ξ0ðYþ1 − Y−1ÞÞ;

A1 þ A2 þ A3 þ A4 ¼ 1: ð5:4Þ

Though the structure of the formulas for the transition
probabilities for neutrino interacting with dense medium
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and with electromagnetic field is similar, these formulas
have different physical meaning. When neutrino propagates
in dense matter, the spin-flip probability is limited above by
the total amplitude of the spin-flip transitions

A ¼ ðv20 − 1Þsin2ϑ
ðv0u0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 − 1

p
cosϑÞ2 − 1

; ð5:5Þ

which depends on the 4-velocities of the medium vμ and the
neutrino uμ. In (5.5) ϑ is the angle between the neutrino
velocity and themedium velocity in the laboratory reference
frame, u0 and v0 are the Lorentz factors of the neutrino and
the medium. Note that the total amplitude does not depend
on the number density of the components of the medium.
If the neutrino velocity is greater than the medium

velocity, then the total amplitude reaches its maximum
value when

cosϑmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v20 − 1

p
=v0ffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 − 1
p

=u0
; ð5:6Þ

that is when cosϑmax is equal to the ratio of the medium
velocity to the neutrino velocity. The value of the total
amplitude of the spin-flip transitions is equal to

Amax ¼
v20 − 1

u20 − 1
: ð5:7Þ

If the neutrino velocity is less than the medium velocity,
then the total amplitude of the spin-flip transitions reaches
its maximum value when

cosϑmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u20 − 1

p
=u0ffiffiffiffiffiffiffiffiffiffiffiffiffi

v20 − 1
p

=v0
; ð5:8Þ

that is when cosϑmax is equal to the ratio of the neutrino
velocity to the medium velocity. The value of the total
amplitude of the spin-flip transitions is equal to unity

Amax ¼ 1: ð5:9Þ

For the medium at rest the helicity does not change, since in
this case v0 ¼ 1 and the total amplitude of the spin-flip
transitions is equal to zero (see (5.5).
Equation (5.7) implies that if the medium velocity is much

less then the neutrino velocity, the probability for neutrino to
change its helicity is strongly suppressed. In the medium
moving with approximately the same velocity as the neu-
trino, such probability may reach its maximum value, when
the velocities of the neutrino and the medium are almost
codirected [see (5.6)–(5.9)]. The dependence of the total
amplitudeA on the angle ϑ between the directions of motion
of the neutrino and the medium is demonstrated in Fig. 1.
When neutrino propagates in magnetic field, the total

amplitude is given by the expression

A ¼ u20sin
2ϑM

u20 − juj2cos2ϑM
; ð5:10Þ

where ϑM is the angle between the direction of neutrino
propagation and the magnetic field. That is, the total
amplitude depends on the neutrino velocity and the direction
of themagnetic-field vector, but does not depend on thevalue
of the magnetic induction. The total amplitude (5.10) is
different from unity onlywhen ϑM ≈ 0 or ϑM ≈ π. Moreover,
the angular region, where this difference is essential, con-
tracts when the Lorentz factor of the neutrino u0 increases.
The dependence of the total amplitudeA on the angle ϑM is
demonstrated in Fig. 2.
Since the transition moment which is equal to

μ1ðm1 þm2Þ=2 is small, far away from the resonance
determined by condition μ0N ¼ 1 the following approxi-
mate equalities hold

Yζ ≈ cos 2θ; Xζ ≈ sin 2θ: ð5:11Þ
Thereby the coefficients corresponding to the oscillating
terms are as follows

A1 ≈ 0; A2 ≈
1

2
ð1þ ξ0 cos 2θÞ;

A3 ≈
1

2
ð1 − ξ0 cos 2θÞ; A4 ≈ 0: ð5:12Þ

That is, the beats are effectively characterized by two
frequencies ω2 and ω3.
When the resonance condition μ0N ¼ 1 is satisfied, then

Yþ1 ≈ sin 2θ; Xþ1 ≈ − cos 2θ;

Y−1 ≈ cos 2θ; X−1 ≈ sin 2θ: ð5:13Þ

FIG. 1. The total amplitude in matter. The dot line corresponds to
u0 ¼ 15, v0 ¼ 50, the solid line corresponds to u0 ¼ 50, v0 ¼ 15.
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For the corresponding oscillating terms we have

A1 ≈
1

4
ð1þ ξ0ðsin 2θ − cos 2θÞÞ;

A2 ≈
1

4
ð1þ ξ0ðsin 2θ þ cos 2θÞÞ;

A3 ≈
1

4
ð1 − ξ0ðsin 2θ þ cos 2θÞÞ;

A4 ≈
1

4
ð1 − ξ0ðsin 2θ − cos 2θÞÞ: ð5:14Þ

All these coefficients are nonvanishing. However, in the
resonance case only two frequencies are sufficiently differ-
ent from each other. Therefore, in this case the beats are
also effectively characterized by two frequencies only.
To illustrate the main properties of the spin evolution in

matter, we study neutrino propagation in medium com-
posed of electrons only. In this case a ¼ −1=2þ 2 sin2 θW.
The dependence of the spin-flip probability on the distance
between the source and the detector L in Figs. 3–12 is given
as a function of dimensionless parameter L=Losc, where
Losc is the flavor oscillation length in vacuum. The
behavior of the spin-flip probability depends on the
dimensionless parameter

k ¼
ffiffiffi
2

p
GFnðeÞ

jm2 −m1j
; ð5:15Þ

where nðeÞ is the electron number density in the laboratory
reference frame. The figures are plotted for sin2 θ ¼ 0.297
(this corresponds to θ12 [39]).

Figures 3 and 4 are given for the case when matter
velocity is greater then the neutrino velocity. Here we
choose the angle between the neutrino and the matter
velocity corresponding to the maximum value of the total
amplitude of the spin-flip probability for the chosen values
of the Lorentz factors of neutrino and the medium [see
(5.8), (5.9)]. For the chosen values of the velocities
cosϑmax ≈ 0.998. Parameter k, which characterizes the

FIG. 3. Spin-flip probability in matter for ξ0 ¼ 1, u0 ¼ 15,
v0 ¼ 50, k ¼ 10, cos ϑ ¼ cos ϑmax.

FIG. 2. The total amplitude in electromagnetic field. The dot
line corresponds to u0 ¼ 10, the solid line corresponds to
u0 ¼ 100.

FIG. 4. Spin-flip probability in matter for ξ0 ¼ −1, u0 ¼ 15,
v0 ¼ 50, k ¼ 10, cos ϑ ¼ cos ϑmax.
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medium density, is chosen to be 10. As can be seen from
the figures, the character of the spin oscillations depends
significantly on the initial neutrino flavor ξ0. When the
medium density is greater, the dependence on the initial
flavor ξ0 becomes more significant.

While Figs. 3 and 4 are plotted for the angle such that
cosϑmax ≈ 0.998, in Figs. 5 and 6 the total spin-flip
transition probability is plotted for cosϑ ¼ 0.95, i.e., for
a greater value of the angle between the neutrino and the
medium velocities. In this case the maximum value of the
spin-flip transition probability is much less then unity, and
the characteristic frequencies are much greater, then those
for cos ϑ ¼ cosϑmax.
Figures 7 and 8 correspond to the case, when neutrino

moves faster then the medium. Though these figures are
plotted for cos ϑmax, the total amplitude of the spin
oscillations is much less then for the cases discussed above.
A specific feature of neutrino propagation in magnetic

field is the fact that both for the resonance case μ0N ≈ 1 and
far from the resonance only two frequencies are essential.
Similarly to neutrino propagation in dense matter, the spin-
flip probability in electromagnetic field depends on the
initial neutrino flavor. However, in this case the dependence
is less evident. Figures 9, 10 correspond to the value
μ0N ¼ 0.03, which describes the neutrino behavior far
from the resonance. Figures 9–12 are given for the neutrino
propagation orthogonally to the direction of magnetic field.
In this case the parameter N and the magnetic induction B
are connected by the relation N ¼ jBju0. The spin-flip
transition probability for neutrino in magnetic field depends
on the parameter km ¼ ðm1 þm2Þ=ðm2 −m1Þ. This param-
eter is not measured experimentally nowadays. Here we
choose the value of this parameter km ¼ 20.
Though the character of the dependence of the proba-

bility in Figs. 9, 10 (far from resonance) and in Figs. 11, 12

FIG. 5. Spin-flip probability in matter for ξ0 ¼ 1, u0 ¼ 15,
v0 ¼ 50, k ¼ 10, cos ϑ ¼ 0.95.

FIG. 6. Spin-flip probability in matter for ξ0 ¼ −1, u0 ¼ 15,
v0 ¼ 50, k ¼ 10, cos ϑ ¼ 0.95.

FIG. 7. Spin-flip probability in matter for ξ0 ¼ 1, u0 ¼ 50,
v0 ¼ 15, k ¼ 10, cos ϑ ¼ cos ϑmax.
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(resonance case) is similar, the typical scale of the spin-flip
oscillation in these cases is different.
To compare our results with those obtained in earlier

papers, where the spin-flip transitions were studied regard-
less of the flavor oscillations, in formulas (4.17) we proceed
to the limit

m1 ¼ m2 ¼ m: ð5:16Þ

Such assumption is rather unphysical, but it is interesting
from the mathematical point of view.
If neutrino propagates in dense matter and condition

(5.16) is satisfied, then the flavor transitions are absent,
which means W3 ¼ W4 ¼ 0. For the other probabilities
we have

FIG. 9. Spin-flip probability in magnetic field for ξ0 ¼ 1,
μ0N ¼ 0.03, km ¼ 20.

FIG. 8. Spin-flip probability in matter for ξ0 ¼ −1, u0 ¼ 50,
v0 ¼ 15, k ¼ 10, cos ϑ ¼ cos ϑmax.

FIG. 10. Spin-flip probability in magnetic field for ξ0 ¼ −1,
μ0N ¼ 0.03, km ¼ 20.

FIG. 11. Spin-flip probability in magnetic field for ξ0 ¼ 1,
μ0N ¼ 1, km ¼ 20.
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W1 ¼ cos2ðRτðaþ ð1þ ξ0Þ=2Þ=2Þ
þ ðssspÞ2sin2ðRτðaþ ð1þ ξ0Þ=2Þ=2Þ;

W2 ¼ ð1 − ðssspÞ2Þsin2ðRτðaþ ð1þ ξ0Þ=2Þ=2Þ: ð5:17Þ

That means, for neutrino with initial electron flavor both the
charged and the neutral currents contribute to the spin-flip
transitions. If the neutrino has another initial flavor, then
only neutral currents contribute to the spin-flip transitions.
In earlier papers the spin behavior was studied for neutrino
mass eigenstates. In these papers the charged current
interaction was actually taken into account using the
operator 1=2TrðPðeÞÞI instead of the projector PðeÞ.
When neutrino moves in magnetic field, we have

W1 ¼ð1− sin2ðμ1mNτÞcos22θÞðcos2ðμ0mNτÞ
þðs̄sspÞ2sin2ðμ0mNτÞÞ;

W2 ¼ð1− sin2ðμ1mNτÞcos22θÞð1− ðs̄sspÞ2Þsin2ðμ0mNτÞ;
W3 ¼ sin2ðμ1mNτÞcos22θðcos2ðμ0mNτÞ

þðs̄sspÞ2sin2ðμ0mNτÞÞ;
W4 ¼ sin2ðμ1mNτÞcos22θð1− ðs̄sspÞ2Þsin2ðμ0mNτÞ:

ð5:18Þ

The flavor oscillations in this case are still present, since
they are induced by the transition moments. However, the
frequency of such oscillations is extremely small. The
spin-flip probability does not depend on the initial

neutrino flavor and the spin oscillations are described by
the standard formula for rotation of magnetic dipole in
external field.

VI. SUMMARY

In conclusion we summarize the main results of the
paper. We obtain the equation for neutrino evolution taking
into account neutrino interaction with matter and with
external electromagnetic field. As this equation has no
purely spin or purely flavor integrals of motion, we
introduce the concept of spin-flavor states of the neutrino,
which are described by eigenvectors of a spin-flavor
integral of motion.
To describe the evolution of ultra-relativistic particles we

consider quasiclassical approximation of this equation. We
obtain the formal solution of this equation in the case, when
the external conditions do not depend on the coordinates of
the event space. Using Backer–Campbell–Hausdorff for-
mula, we develop the general method of calculating the
probabilities of the transitions between arbitrary neutrino
spin-flavor states.
Then we study neutrino propagation in moving dense

matter and in electromagnetic field taking into account the
transition magnetic moments, with the use of quasiclassical
evolution equation. We find the analytical solutions of the
evolution equation and demonstrate, that the expressions
for the spin-flavor transition probabilities depend on the
initial flavor and polarization state of the neutrino.
We predict resonance behaviour of neutrino in magnetic

field due to the transition moments, which was unknown
before. Both this resonance and the resonance for neutrino
in moving matter, which is a generalization of the famous
Mikheev–Smirnov–Wolfenstein resonance, are conse-
quences of the fact that in the general case the neutrino
states cannot be described as a superposition of the mass
eigenstates, when neutrino propagates in matter and
electromagnetic field.

VII. CONCLUSION

In the present paper we have studied neutrino flavor
oscillation and spin rotation in external fields. Our
approach is based on the modification of the Standard
Model put forward in papers [29,30], where neutrinos are
Dirac particles. Unfortunately, we cannot construct a
mathematically rigorous description of Majorana neutrinos
in the same way. However, from the phenomenological
point of view, it seems that to study Majorana neutrinos we
only need to change γμfμð1þ γ5Þ=2 to γμfμγ5 and assume
μ0 ¼ 0 in Eq. (2.20). In this case the formulas for spin-
flavor transition probabilities for neutrino in magnetic field
will indicate no MSW-like resonance behavior due to
transition magnetic moments, which is predicted in this
paper for Dirac neutrinos. Hence, the existence of the
predicted resonance can become a criterion, which allows

FIG. 12. Spin-flip probability in magnetic field for ξ0 ¼ −1,
μ0N ¼ 1, km ¼ 20.
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us to distinguish between the Dirac and Majorana neu-
trinos. For this reason here we make some estimates on the
magnetic induction and neutrino energies, for which the
resonance is expected.
For Dirac neutrino propagating in magnetic field the

resonance condition is μ0N ¼ 1. That is, if the neutrino
propagates orthogonally to the magnetic field, then the
resonance is reached when u0ðB=B0Þ ≈ 1.3 × 1013, where
B0 ≈ 4; 41 × 1013 gauss is the Schwinger magnetic field.
That is, B ≈ 5.8 × 1026ðmν=EνÞ gauss, where mν is the
average neutrino mass.
Let us consider a magnetar as an example. In a magnetar

the magnetic induction can reach the value of B ¼ 1016

gauss. Let the neutrino mass be mν ¼ 0.0333 eV. Then the
neutrino energy, which is required for the resonance to take
place, is Eν ≈ 1.9 GeV, which is a very high value.
Hence, a question arises whether the spin-flip effect can

be observed at all. For the chosen values of neutrino mass
and magnetic induction, the characteristic length of spin
oscillations is aboutL¼ π=ðμνBÞ≈1070 km,where accord-
ing to the StandardModel the diagonal magnetic moment of
the neutrino is μν¼μ0mν≈3×10−19ðmν=1 eVÞμB. That is
muchmore, than the typical dimensions ofmagnetars,which
is about Rmgt ≈ 20–30 km. Therefore, the spin oscillations
are rather unlikely to be observed for a magnetar. Note, that
the values ofmagnetic induction larger thanB ¼ 1016Gauss
are not observed nowadays for any astrophysical objects.

However, this effect can play a significant role in the
early Universe, since the values of the fields could be very
high. Due to the effect of moving matter on neutrino spin
rotation, the spin-flip phenomenon can also be observed for
neutrino propagating in galactic jets.
As is well known, there are models of New Physics,

which predict greater values of neutrino magnetic
moments. Note, that the present experimental limit on
the neutrino magnetic moment is μν < 2.9 × 10−11μB
[51,52]. For the chosen value of neutrino mass mν that
is about 9 orders of magnitude higher, than the Standard
Model theoretical prediction. To take into account such
New Physics we only need to choose greater values of
neutrino magnetic moments in the expressions for tran-
sition probabilities. Therefore, if the New Physics exists,
then near magnetars or even near some neutron stars the
spin-flip effect may be observed. In this case the absence of
the resonance discussed above will mean that neutrinos are
Majorana particles.
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