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In this paper we discuss a formulation of extended phase space thermodynamics of black holes in anti–de
Sitter (AdS) spacetimes from the contact geometry point of view. Thermodynamics of black holes can be
understood within the framework of contact geometry as flows of vector fields generated by Hamiltonian
functions on equilibrium submanifolds in the extended phase space that naturally incorporates the structure
of a contact manifold. Deformations induced by the contact vector fields are used to construct various maps
among thermodynamic quantities. Thermodynamic variables and equations of state of Schwarzschild black
holes are mapped to that of Reissner-Nordström black holes in AdS, with charge as the deformation
parameter. In addition, the equations of state of general black holes in AdS are shown to emerge from the
high-temperature ideal gas limit equations via suitable deformations induced by contact vector fields. The
Hamilton-Jacobi formalism analogous to mechanics is set up, and the corresponding characteristic curves
of contact vector fields are explicitly obtained to model thermodynamic processes of black holes. Extension
to thermodynamic cycles in this framework is also discussed.
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I. INTRODUCTION

Formulation of the precise laws of black hole mechanics,
in analogy with the laws of thermodynamics long ago [1],
has paved the way for exciting proposals in general
relativity [2–6]. For black holes in anti–de Sitter (AdS)
spacetimes in particular, there has been a lot of activity, as
they show interesting phase transitions, such as the
Hawking-Page transition [7] and novel thermodynamic
structure due to the presence of a cosmological constant
[8–10]. The Hawking-Page phase transition between the
unstable small black hole to stable large black hole phase
is understood as a confinement-deconfinement phase
transition in the dual conformal field theory via
AdS=CFT correspondence [11–14]. AdS=CFT correspon-
dence remains one of the most important developments in
the last few decades in our efforts to unravel the connection
between gravity and gauge theories in general. Phase
transitions of black holes provide a rich arena to explore
these connections.
More recently, with the revival of the proposal of treating

the cosmological constant Λ as being dynamical and as

pressure, the first law of black hole mechanics has been
modified by including new PdV work terms leading to
exciting developments [15–31]. With the presence of these
pressure and volume terms, the enthalpy H of the black
hole takes center stage, as opposed to internal energy U in
traditional treatments (where Λ is a fixed parameter). Thus,
the study of black holes in this novel approach where Λ is
treated as a thermodynamic variable is considered to be an
extended thermodynamic phase space approach, and the
holographic constructions in this setting go by the name of
black hole chemistry. Black holes and their thermodynam-
ics in this extended phase space have seen tremendous
activity in recent times (see [31] for a review). Most
importantly, the presence of new PdV terms in the first
law of black holes allows for obtaining a suitable equation
of state for each black hole with a study of PV critical
behavior, in analogy with standard thermodynamics [28].
The objective of this paper is to set up a framework for
understanding black holes and their thermodynamics from
a geometric point of view. The application of geometric
methods to understand thermodynamics systems has been
an interesting area of research with various approaches
[32–44]. Analysis of the thermodynamic geometry of black
holes using Weinhold and Ruppeiner metrics [45,46] and
scalar curvatures is well known to have wide-ranging
applications to ideal gas, van der Waals fluids, quantum
gases, Ising models, etc., [47–53], including using the
Gibbs approach to black hole thermodynamics [54]. More
recently, within the framework of extended black hole
thermodynamics, these ideas have uncovered intriguing
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information about the underlying microscopic structure and
phase transitions of black holes in AdS [55–57]. In this
paper, we focus our attention on the contact structure rather
than the metric structure of the extended thermodynamic
phase space and uncover novel connections between
various black holes in AdS.
Contact geometry [58,59] has not received much atten-

tion in physics literature until recent years. This geometric
setting is widely used to study thermodynamics [38,40,41],
mechanical systems with Rayleigh dissipation [60,61], as
well as statistical mechanics [62]. Contact geometry is the
odd-dimensional counterpart of the more familiar symplec-
tic geometry [63]. The reason that symplectic geometry
receives much greater attention in physics is because it
forms the natural geometric embedding for conservative
Hamiltonian dynamics which is often the starting point for
the quantized theories. In contact geometry, the dynamics is
described on an odd-dimensional smooth manifold
endowed with a specific structure in contrast to the
symplectic case where the dynamics is described on an
even-dimensional symplectic manifold. The resulting
dynamics in the contact scenario generalizes that of the
symplectic case, and one obtains a set of contact Hamilton
equations. In the mechanical case, these equations describe
a dissipative system. Contact geometry forms a very natural
setting for reversible thermodynamics. To see this, recall
that in thermodynamics there are pairs of variables such as
T and S which may be regarded as conjugate variables.
Such pairs appear in this framework as coordinates in a
thermodynamic phase space. However, one should note an
important difference with classical mechanics: In mechan-
ics, the phase space is always even dimensional, whereas in
the thermodynamic case, the phase space turns out to be
odd dimensional, which can be seen from the expression

dU − TdSþ PdV ¼ 0:

It is clear that U has no conjugate variable, and hence, the
thermodynamic phase space in this case is five dimensional
with local coordinates fP; V; T; S; Ug. Furthermore, in the
case of black holes in extended phase space, enthalpy takes
center stage, and we work with the following relation:

dH − TdS − VdP ¼ 0:

The thermodynamic phase space assumes the structure of a
contact manifold. In the equilibrium thermodynamics
scenario, a particular thermodynamic system is restricted
to an equilibrium submanifold in the thermodynamic phase
space. Such a submanifold can be described by the equation
of state of the system. If fðV; T;…:Þ ¼ 0 is an equation of
state for the system, then expressing it in terms of
derivatives of the thermodynamic potential V ¼ ∂H=∂P
and T ¼ ∂H=∂S we get

fð∂H=∂P; ∂H=∂S;…:Þ ¼ 0:

This is known as the partial differential equation (PDE) of
state [64] or a Hamilton-Jacobi equation [65]. Here the
thermodynamic potential assumes the role of Hamilton’s
principal function.

A. Motivation and results

The primary motivation of this paper is to formally
develop a contact geometry formalism for discussing
thermodynamics of black holes, in particular, in AdS.
Although geometric formulations of black hole thermody-
namics have been explored before, as mentioned above,
these studies are incomplete due to the lack of usual
pressure P and volume V terms in the first law. Within
the novel extended phase space thermodynamics and in the
presence of traditional PdV terms in black hole thermo-
dynamics, the equations of state can be written in the form
one is used to in standard thermodynamics. One of the
motivations of this paper is to explore the possibility of
representing various thermodynamic processes of black
holes in the framework of contact Hamiltonian geometry. It
is well known that Hamiltonian methods combined with
canonical transformations of phase space variables is a
powerful combination, helpful in solving nontrivial prob-
lems in mechanics, which are otherwise unsolvable. Thus,
it is expected that a mechanical/geometrical approach to
thermodynamics would be helpful in giving deeper insights
into the phase space of thermodynamics variables and
possibly provide novel relations among the systems them-
selves. Indeed, starting from the Schwarzschild black hole
with relatively simple thermodynamic behavior, we derive
the thermodynamics of charged black holes in AdS as
deformations induced by suitable contact vector fields in
the thermodynamic phase space. We describe the high-
temperature “ideal gas” limit of black holes in the contact
framework and then provide a map to describe other black
holes in AdS with nontrivial thermodynamic behavior.
Finally, we describe the generation of thermodynamic
processes for black holes in the high-temperature limit
and extend this to discuss the Carnot cycle.
The organization of the paper is as follows. Section II is

mostly introductory, where we collect the background
required for the rest of this paper on contact geometry
(in Sec. II A) and extended thermodynamics of black holes
in AdS (in Sec. II C). In Sec. II A, we give a very brief
outline of contact Hamiltonian systems and describe how
they form a natural setting for reversible thermodynamics.
We review the ideal gas and see how to achieve the van der
Waals gas by considering deformations of the ideal gas by
suitable contact vector fields. We then recall that a natural
antisymmetric bracket structure between thermodynamic
functions exists in the thermodynamic phase space.
Section II C contains recent results on the thermodynamics
of black holes in AdS in the extended phase space
approach, where the cosmological constant is treated
as dynamical variable, leading to new pressure and
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volume terms in the first law of black hole mechanics.
Sections III and IV contain our main results and are devoted
to studying the contact geometry approach to black hole
thermodynamics. We describe the Schwarzschild black
hole in the contact geometry setting and then deform it
to achieve charged black holes in AdS. We then consider
the “high-temperature limit” ideal gas behavior of black
holes and map it to Schwarzschild as well as charged AdS
black holes, including the Banados-Teitelboim-Zanelli
(BTZ) black hole in three dimensions. In Sec. IV, we
present the Hamilton-Jacobi equation for studying thermo-
dynamics of black holes of arbitrary spacetime dimensions
in the extended phase space and obtain characteristic curves
representing various thermodynamic processes. This setup
can be used to discuss the thermodynamic cycles in phase
space, which form the natural setting to obtain a Carnot
cycle. We end with remarks in Sec. V.

II. CONTACT GEOMETRY AND EXTENDED
THERMODYNAMICS OF BLACK HOLES

A. Contact geometry

We shall now briefly digress on the basic aspects of
contact geometry, and hence, see how it forms the natural
embedding for reversible thermodynamics. In contact
geometry, the central concept is that of a contact manifold
(M; η), where M is a smooth manifold of odd dimension
(2nþ 1), and η is a contact 1-form that satisfies the
following condition of complete nonintegrability:

η ∧ ðdηÞn ≠ 0; ð2:1Þ

where “∧” is the exterior product and ðdηÞn ¼ dη ∧ dη ∧
……: ∧ dη (n times). In this context, η ∧ ðdηÞn can be
identified as a standard volume form on M. The fact that
(M; η) satisfies the complete nonintegrability condition
[Eq. (2.1)] equivalently implies that one can write a
Whitney sum decomposition of TM in terms of the regular
distributions kerðηÞ and kerðdηÞ; i.e., one can write
TM ¼ kerðηÞ ⊕ kerðdηÞ.
Associated with η there is a global vector field ξ known

as the Reeb vector field determined uniquely by the
following conditions:

ηðξÞ ¼ 1; dηðξ; :Þ ¼ 0: ð2:2Þ

The Reeb vector field dictates a natural splitting of the
tangent bundle of M given by

TM ¼ Lξ ⊕ D; ð2:3Þ

where Lξ is a vertical subspace generated by ξ, and D is a
horizontal distribution induced by the contact form

D ¼ kerðηÞ: ð2:4Þ

If (M; η) is a contact manifold and Φ∶ M → M is a
diffeomorphism, then Φ is called a contact diffeomorphism
if it follows that

Φ�η ¼ fη; ð2:5Þ

where f ∈ C∞ðMÞ is some nonvanishing smooth function,
and Φ� is the pullback induced by Φ. The contact form is
unique up to a scalar factor. Therefore, η and fη where f is
some nonzero scalar function are equivalent in the sense
that they lead to the same horizontal distribution [Eq. (2.4)].
It is always possible to find a set of local (Darboux)

coordinates ðs; qi; piÞ in the neighborhood of any point on
M where i ¼ 1; 2;…; n. In these coordinates,

η ¼ ds − pidqi: ð2:6Þ

It can be shown that the following noncoordinate basis [66]
is naturally adapted to the splitting of TM [Eq. (2.3)]:

fξ; P̂i; Q̂ig ¼
� ∂
∂s ;

∂
∂pi

; pi
∂
∂s −

∂
∂qi

�
: ð2:7Þ

One can explicitly check that the operators fξ; P̂i; Q̂ig obey
the following commutation relations:

½P̂i; Q̂j� ¼ δijξ; ½ξ; P̂i� ¼ 0; ½ξ; Q̂i� ¼ 0: ð2:8Þ

This is the very well-known algebra of the nth Heisenberg
group known as the Heisenberg algebra. We now define the
dynamics on the contact manifold. For every differentiable
function h∶ M → R, there exists a so-called contact vector
field Xh generated by h and defined by the following
relations:

iXh
η ¼ −h; iXh

dη ¼ dh − ξðhÞη: ð2:9Þ

The generic contact vector field Xh in the Darboux
coordinates takes the form

Xh ¼
�
pi

∂h
∂pi

−h

� ∂
∂s−

�
pi
∂h
∂sþ

∂h
∂qi

� ∂
∂pi

þ
� ∂h
∂pi

� ∂
∂qi :
ð2:10Þ

This means that the flow of Xh is given as

_s ¼ pi
∂h
∂pi

− h; _qi ¼ ∂h
∂pi

; _pi ¼ −pi
∂h
∂s −

∂h
∂qi :
ð2:11Þ

These equations resemble the conservative Hamilton equa-
tions. Given a contact manifold (M; η) and a differentiable
function h∶ M → R, the triple ðM; η; hÞ shall be called a
contact Hamiltonian system where h is the contact
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Hamiltonian function. For the usual mechanical case in one
dimension, one can take h ¼ Hðq; pÞ þ αs, where

Hðq; pÞ ¼ p2

2m
þ VðqÞ ð2:12Þ

and α being some constant. In that case, the contact
Hamilton equations for _q and _p give the usual mechanical
equations with Rayleigh dissipation, while the first equation
gives

_s ¼ p _q − h; ð2:13Þ

whichmeans in the casewhere s does not appear inh, it is the
Hamilton’s principal function. The contact Hamiltonian h is
not conserved along the flow of Xh. It is straightforward to
see from Eq. (2.10) that

XhðhÞ ¼ _h ¼ −h
∂h
∂s : ð2:14Þ

On contact manifolds, one can define a special class of
submanifolds of maximal dimension whose tangent spaces
are contained in the kernel of the contact form η at any point.
More informally, they are solutions to the equation η ¼ 0.
Let L ⊂ M be a submanifold of a contact manifold

(M; η) and Φ∶ L → M be an inclusion map. If L is a
maximal-dimensional integral submanifold such that
Φ�η ¼ 0, then L is called a Legendre submanifold. It can
be shown [63] that the maximal dimension is n, and locally
the general form of such a submanifold L is given by

pi ¼
∂F
∂qi ; qj ¼−

∂F
∂pj

; s¼F−pj
∂F
∂pj

; ð2:15Þ

where I ∪ J is a disjoint partition of the set of indices
f1; 2;…:; ng; i ∈ I; j ∈ J, and F ¼ Fðqi; pjÞ is a function
of n variables known as the generator of Legendre sub-
manifold L. This implies that not all n-dimensional sub-
manifolds of M are Legendre submanifolds: Coordinates
on a Legendre submanifold cannot include a conjugate pair.
We remark that the Hamiltonian dynamics on a contact

manifold is such that a Legendre submanifold L is invariant
to the flow of Xh if and only if the contact Hamiltonian
function h vanishes on L [38]. This means that if Xh is the
contact vector field generated by h, such that hjL ¼ 0where
L is a particular Legendre submanifold, and then, if the
flow of Xh enters L, it stays on L. This follows from the fact
that _h ¼ 0 whenever h ¼ 0, and hence, Xh is tangent to the
level surface for which h ¼ 0. In other words, a contact
vector field Xh is tangent to a Legendre submanifold L if
and only if L ⊂ h−1ð0Þ.

1. Reversible thermodynamics

We now show how contact Hamiltonian mechanics
naturally describes classical thermodynamics. We define

the thermodynamic phase space to be a contact manifold
(M; η). In terms of the Darboux coordinates, the contact
1-form can be expressed as

η ¼ ds − pSdqS − pVdqV; ð2:16Þ

where S, V carry their usual meaning in thermodynamics.
Recall that for a reversible thermodynamic process,

dU − TdSþ PdV ¼ 0: ð2:17Þ

Now that all thermodynamic systems at equilibrium satisfy
Eq. (2.17), we then immediately identify them as Legendre
submanifolds1 of the contact thermodynamic phase space.
This means that from Eq. (2.16) with qS ¼ S; qV ¼ V,
we get

s¼UðS;VÞ; pS¼
∂U
∂S ¼T; pV ¼

∂U
∂V ¼−P: ð2:18Þ

Here the generator of the Legendre submanifold is the
internal energy U ¼ UðS; VÞ. Referring to Eq. (2.16), it is
clear that we could have chosen a different representation
of the system where some other thermodynamic potential
would have the role of the generating function for the
Legendre submanifold. For example, a more relevant
potential in the context of black hole thermodynamics
(to be discussed in Sec. II C) is the enthalpy H ¼ HðS; PÞ.
Expressing Eq. (2.17) in terms of the enthalpy

dH − TdS − VdP ¼ 0 ð2:19Þ

and with qS ¼ S; qV ¼ P, one immediately obtains

s¼HðS;PÞ; pS ¼
∂H
∂S ¼T; pV ¼

∂H
∂P ¼V: ð2:20Þ

These thermodynamic systems can be interpreted geomet-
rically [38,41] as the triplet ðM; η; LÞ, where L is the
Legendre submanifold corresponding to that parti-
cular system in the thermodynamic phase space (M; η).
A contact vector field Xh generated by a contact
Hamiltonian h can be considered as a generator of a
thermodynamic process on a Legendre submanifold L if
the Hamiltonian function vanishes on the appropriate
submanifold, i.e., hjL ¼ 0. The flow of such a vector field
is tangent to the equilibrium submanifold and the flow stays
on L. Therefore, a thermodynamic system undergoing a
particular transformation is interpreted as the quadruple
ðM; η; h; LÞ where h ¼ 0 on L. For discussions on
thermodynamic processes for black holes in Sec. IVA,
we recall two important examples below.

1We interchangeably use the terms Legendre submanifolds and
equilibrium submanifolds.
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2. The classical ideal gas

The relevant thermodynamic variables for describing the
ideal gas are given as fU; T; S; P; V; μ; Ng in a seven-
dimensional thermodynamic phase space. The following
relation

dU − TdSþ PdV − μdN ¼ 0 ð2:21Þ

is identified with the vanishing of a contact form defining
an equilibrium submanifold. Therefore, the conjugate
variable pairs are ðq1; p1Þ → ðS; TÞ, ðq2; p2Þ → ðV;−PÞ,
ðq3; p3Þ → ðμ; NÞ with s ¼ U. The internal energy U is the
generating function for the appropriate Legendre submani-
fold, which may be expressed as

UðS; VÞ ¼ U0 exp½S=CNR�V−1=CN1þ1=C; ð2:22Þ

whereC is the specific heat at constant volume, andU0 > 0
is an appropriate constant. We can easily recover the ideal
gas equation PV ¼ NRT from Eq. (2.22) by taking
first derivatives. Consider the contact Hamiltonian h ¼
TS − RNT þ μN −U. Then, the contact Hamiltonian vec-
tor field [Eq. (2.10)] takes the form

Xh ¼ −U
∂
∂U þ ðRN − SÞ ∂

∂S − P
∂
∂P − N

∂
∂N − RT

∂
∂μ :
ð2:23Þ

This implies an isochoric isothermal transformation since
_T ¼ _V ¼ 0, while other thermodynamic variables evolve:

_U ¼ −U; _S ¼ NR − S; _P ¼ −P;
_N ¼ −N; _μ ¼ −RT: ð2:24Þ

Therefore, the evolution of the thermodynamic variables is

UðτÞ ¼U0e−τ; SðτÞ ¼ ðRN0τ−S0Þeτ;
PðτÞ ¼P0e−τ; NðτÞ ¼N0e−τ; μðτÞ ¼ μ0−RT0τ;

ð2:25Þ

where τ ∈ R. One should note that for the ideal gas
PV ¼ NRT, and hence, h ¼ TS − PV þ μN −U ¼ 0.
Therefore, the Legendre submanifold L representing the
gas is invariant under the flow of Xh; i.e., Xh is tangent to L.
The vector field Xh [Eq. (2.23)] therefore represents an
isochoric isothermal transformation. It is straightforward to
check that the evolution equations [Eqs. (2.25)] satisfy the
ideal gas equation of state and the equipartition theo-
rem U ¼ 3NKBT=2.

3. The van der Waals gas

In the previous example, Xh was tangent to the Legendre
submanifold L representing the system and hence could be

regarded as the generator of the thermodynamic process.
However, there can be cases where the contact Hamiltonian
vector field is not tangent to the Legendre submanifold; i.e.,
the Legendre submanifold is not invariant. Then Xh cannot
be treated as a generator of a thermodynamic process but
rather as a generator of a family of thermodynamic systems
[42]. We now consider the transformations that map
the ideal gas into a real gas. First consider h1 ¼ a=V
where a > 0. The contact Hamiltonian vector field is
therefore Xh1 ¼−ða=VÞ∂=∂U− ða=V2Þ∂=∂P. Thus, inter-
nal energy and pressure are the only two nonconserved
thermodynamic variables which evolve as

U ¼ U0 −
a
V0

τ1; P ¼ P0 −
a
V2
0

τ1; τ1 ∈ R: ð2:26Þ

One concludes that Xh1 maps the ideal gas into an
interacting gas of point particles. Second, consider h2 ¼
−bP where b > 0. Then, the contact Hamiltonian vector
field becomes Xh2 ¼ b∂=∂V. This means that except for
the volume that evolves linearly, all other thermodynamic
variables are constant. The volume evolves as

V ¼ V0 þ bτ2; τ2 ∈ R: ð2:27Þ

Therefore, one may say that Xh2 maps the ideal gas into a
noninteracting gas with finite molecular volume. The van
der Waals gas can be obtained if we consider the two
transformations Xh2 and Xh1 successively. In this case, the
equation of state takes the form

�
Pþ a

V2
τ1

�
ðV − bτ2Þ ¼ NRT: ð2:28Þ

This is a two-parameter equation of state induced by the
action of Xh2 followed by Xh1. There is in addition a
deformation induced in U by the vector field Xh1 .
Therefore, in terms of the ideal gas internal energy
U0 ¼ 3NkBT=2, we have the internal energy of the van
der Waals gas to be

U ¼ 3NkBT0

2
−

a
V0

τ1: ð2:29Þ

This is in fact the equipartition theorem for the van der
Waals gases, which is generated as a deformation on the
ideal gas. The deforming vector field can thus be viewed as
a generator of a family of thermodynamic systems, i.e., a
family of Legendre submanifolds. As a matter of fact, the
transformations Xh1 and Xh2 do not commute, which can be
checked from their nonvanishing commutator bracket.
Therefore, the transformation Xh1 followed by Xh2 shall
lead to a different equation of state which would altogether
differ from that of Xh1þh2 (see [42] for details on these
examples, although their conventions are slightly different
from ours).
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B. Lagrange brackets

A contact manifold (M; η) has naturally associated with
it a Jacobi structure [67,68] which can be defined
by a bilinear map f:; :g∶ C∞ðMÞ × C∞ðMÞ → C∞ðMÞ
known as a Jacobi bracket that is antisymmetric and as a
consequence obeys the Jacobi identity. The Jacobi bracket
generically is of the form

fh1; h2g ¼ Λðdh1; dh2Þ þ h1Eðh2Þ − h2Eðh1Þ; ð2:30Þ

where E is a vector field, and Λ is a two-contravariant
bivector field on M such that the following relations
hold:

½Λ;Λ� ¼ 2E ∧ Λ; ½Λ; E� ¼ 0; ð2:31Þ

where [:; :] is the Schouten-Nijenhuis bracket [69]. In the
contact geometry case, E is identified with the Reeb vector
field ξ, and then putting Λðdh1; dh2Þ ¼ dηðXh1 ; Xh2Þ we
get from Eq. (2.30) a Jacobi bracket, which in local
coordinates is expressed as

fh1; h2g ¼ h1
∂h2
∂s −

∂h1
∂s h2 þ pi

�∂h1
∂s

∂h2
∂pi

−
∂h1
∂pi

∂h2
∂s

�

þ ∂h1
∂qi

∂h2
∂pi

−
∂h1
∂pi

∂h2
∂qi : ð2:32Þ

This bracket is known as the Lagrange bracket [65,70]. It
does not satisfy the Leibniz rule, and is hence not a Leibniz
bracket. As a consequence, the Lagrange bracket of
constant with an arbitrary function may not vanish:

f1; Fg ¼ ξðFÞ: ð2:33Þ

This allows one to define Lagrange bracket relations
between pairs of thermodynamic variables qS ¼ S,
qV ¼ P, pS ¼ T, pV ¼ V for s ¼ HðS; PÞ:

fS; Tg ¼ 1; fP; Vg ¼ 1: ð2:34Þ

Lagrange brackets provide a nice starting point for discus-
sing quantum thermodynamics and thermodynamic uncer-
tainty relations [70].

C. Black hole thermodynamics in extended phase space

We now summarize recent developments in thermody-
namics of black holes in the novel extended phase space
approach, where the cosmological constant is considered to
be dynamical, giving pressure P. Let us start from the
Bekenstein-Hawking formula for entropy of black holes
given as [1–6]

SBH ¼ A
4
: ð2:35Þ

Including the quantum mechanical considerations,
Hawking proved that black holes do emit thermal radiation
(Hawking radiation) at temperature2

TH ¼ κ

2π
: ð2:36Þ

The thermodynamic quantities, Hawking temperature TH
and black hole entropy SBH, suggest that the relationship
between the laws of black holes and laws of thermo-
dynamics is much more than an analogy. This becomes
evident when the first law of thermodynamics for semi-
classical black holes is written as

dM ¼ TdSþΦdQ; ð2:37Þ

where mass M is identified with internal energy U of the
black hole. It is notable that there is no PdV term in the
first law [Eq. (2.37)], which is a familiar term in ordinary
thermodynamics. This issue is resolved in the extended
thermodynamic description of black holes, where the cos-
mological constant is considered dynamical [10,15–21].
Pressure is defined as

P ¼ −Λ=8π; ð2:38Þ
whereΛ is the dynamical cosmological constant. This is now
incorporated into several works [22–31]. An important
justification for this new term came from the work of
Kastor et al. [22], who showed using scaling arguments that
the Smarr [71] relations necessitate such a term. In anti–de
Sitter spacetime, the mass of a black hole is more appropri-
ately interpreted as enthalpy H rather than traditional iden-
tification as internal energy U [22]:

M ¼ HðS; PÞ ¼ UðS; VÞ þ PV: ð2:39Þ

With the presence of pressure and thermodynamic volume
above, the first law of black hole thermodynamics takes the
standard form,

dU ¼ TdSþΦdQ − PdV; ð2:40Þ

which can be obtained from the Legendre transform of

dM ¼ dH ¼ TdSþΦdQþ VdP; ð2:41Þ

where Q is the electric charge3 of the black hole, Φ is the
electric potential, and all other symbols having their usual
meaning in thermodynamics. Equations such as (2.41)
involving pressure and volume terms were discussed before
in different contexts [10,18–21].

2We use geometrical units where G ¼ c ¼ ℏ ¼ kB ¼ 1.
3We shall work in the fixedQ ensemble and hence put dQ ¼ 0

in subsequent discussions.
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To understand the concept of thermodynamic volume V,
it is useful to work it out for a sample case of a nonrotating
(static) black hole in four dimensions, namely, the
Schwarzschild black hole in AdS. The corresponding line
element is

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2 ð2:42Þ

with

fðrÞ ¼ 1 −
2m
r

þ r2

l2
; ð2:43Þ

where Λ ¼ −3=l2 and dΩ2 ¼ dθ2 þ sin2 θdϕ2. The loca-
tion of horizons rþ, can be found from the zeros of the lapse
function fðrÞ. The known relations are

S ¼ πr2þ; m ¼ rþ
2

�
1þ r2þ

l2

�
; ð2:44Þ

where the Arnowitt-Deser-Misner mass is M ¼ m.
Together with the new expression for pressure in
Eq. (2.38), the enthalpy HðS; PÞ can now be obtained
from Eq. (2.44) to be [22]

HðS; PÞ ¼ M ¼ m ¼ 1

2

�
S
π

�1
2

�
1þ 8SP

3

�
: ð2:45Þ

The temperature and volume can also be obtained using
standard thermodynamic relations as [23,26,27]

T¼
�∂H
∂S

�
P
¼T¼1

4

�
1

πS

�1
2ð1þ8PSÞ¼ð1þ3r2þ

l2 Þ
4πrþ

; ð2:46Þ

V ¼
�∂H
∂P

�
S
¼ V ¼ 4

3

S
3
2ffiffiffi
π

p ¼ 4πr3þ
3

: ð2:47Þ

It can be checked that the above equations for temperature
and volume are the same as the ones in standard black hole
thermodynamic treatments. In particular, volume V turns
out to be similar to the putative geometric volume and is not
independent of entropy.4 The relevant thermodynamic
variables satisfy the Smarr relation

ðd − 3ÞM ¼ ðd − 2ÞTSþ ðd − 3ÞQΦ − 2PV; ð2:48Þ

where d is the number of spacetime dimensions. As we will
see in later sections, in the contact geometry framework,
S and V may be treated as independent to start with. The
above analysis becomes more interesting for charged black

holes in AdS, as this system gets mapped exactly to the
day-to-day van der Waals fluid system in usual thermo-
dynamics [8,9,28]. The enthalpy in terms of the thermo-
dynamic volume V and pressure P for charged black holes
is known to be [23,26,27]

HðS;PÞ¼M¼m¼ 1

6
ffiffiffi
π

p S−
1
2ð8PS2þ3Sþ3πQ2Þ: ð2:49Þ

The temperature of the black hole is

T ¼ 1

4
ffiffiffi
π

p S−3=2ð8PS2 þ S − πQ2Þ: ð2:50Þ

These quantities given above satisfy the first law of black
hole thermodynamics in extended phase space (including
P and V). Motivated by this, in a remarkable work,
Kubiznak and Mann studied the full P − v critical behav-
ior of charged black holes in AdS in a fixed charge
ensemble in the (P; T) plane [28] starting from an equation
of state:

P ¼ T
v
−

1

2πv2
þ 2Q2

πv4
: ð2:51Þ

Here,

v ¼ 2rþ ¼ 2

�
3V
4π

�
1=3

ð2:52Þ

is the specific volume5 considered to be associated with
the van der Waals fluid (rather than the thermodynamic
volume V). Notably, the behavior is similar to the van der
Waals gas in ordinary thermodynamics with exact map-
ping of critical exponents as well [28]. The equilibrium
condition η ¼ dH − TdS − VdP −ΦdQ ¼ 0 can be iden-
tified with a contact structure vanishing on an equilibrium
subspace. It should be remarked that Eqs. (2.48) and
(2.41) are related by a scaling argument. The specific
volume v is related to the horizon radius rþ as

4rþ ¼ ðd − 2Þv: ð2:53Þ

It is clear that the conjugate pairs of variables are V and P,
T and S, and Φ and Q. Hence, the following Lagrange
bracket relations between these pairs hold:

fS; Tg ¼ 1; fP;Vg ¼ 1; fQ;Φg ¼ 1: ð2:54Þ4However, this is just a coincidence, specifically valid for static
black holes. In general, for example, for rotating black holes,
entropy S and volume V are not straightforwardly related to each
other [23,26,27]. 5We set the Planck length, lP ¼ 1.
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III. CONTACT GEOMETRY
DESCRIPTION OF BLACK HOLES

A. Contact vector fields and associated
flows for black holes

We now describe the thermodynamics of black holes in
the AdS spacetime in the contact geometry framework. In
particular, we show that one can construct a Hamiltonian
description of flows in the thermodynamic phase space that
are consistent with the thermodynamic equations of state.
Starting from the Schwarzschild black hole with zero
electric charge, we see that the equation of state of charged
black holes containing the charge term can be obtained by
considering suitable deformations induced by contact
Hamiltonian vector fields. Hence, we shall describe the
ideal gas limit of black holes and deform it to obtain the
thermodynamic equations of some of the AdS black holes.

1. Schwarzschild black holes in AdS

As discussed in the last subsection, the enthalpy and
temperature of the Schwarzschild black hole with zero
electric charge (Q ¼ 0) are

HðS; PÞ ¼ 1

6
ffiffiffiffiffiffi
πS

p ð8PS2 þ 3SÞ;

T ¼ 1

4
ffiffiffi
π

p S−3=2ð8PS2 þ SÞ: ð3:1Þ

The thermodynamic equation of state can be easily calcu-
lated by taking first derivatives of the enthalpy. In terms of
the specific volume v, one obtains the equation of state:

P ¼ T
v
−

1

2πv2
; ð3:2Þ

where in d ¼ 4, we have v ¼ 2rþ. We consider a contact
Hamiltonian function h ¼ 2ðTS − PVÞ −H. Then, the
generic contact Hamiltonian vector field Xh takes the form

Xh ¼ H
∂
∂H − T

∂
∂T þ 3V

∂
∂V þ 2S

∂
∂S − 2P

∂
∂P ; ð3:3Þ

so that the flow of Xh is given by

_H¼H; _T¼−T; _V¼3V; _S¼2S; _P¼−2P: ð3:4Þ

In particular, ðP;V; TÞ of the black hole evolve as

PðτÞ¼P0e−2τ; VðτÞ¼V0e3τ; TðτÞ¼T0e−τ; ð3:5Þ

where τ ∈ R. In d ¼ 4, one may write for the specific
volume: vðτÞ ¼ v0eτ with v0 ¼ 2ð3V=4πÞ1=3. Then, it can
be easily verified that these flow equations satisfy the
equation of state [Eq. (3.2)] for the Schwarzschild
black hole.

From the Smarr relation [Eq. (2.48)] in the d ¼ 4 case,
we find that h ¼ 2ðTS − PVÞ −H ¼ 0, and therefore, the
Legendre submanifold representing the black hole is
invariant to the flow of Xh. In other words, the contact
vector field Xh is tangent to the corresponding Legendre
submanifold. The enthalpy [Eq. (3.1)] and the Hamiltonian
h ¼ 2ðTS − PVÞ −H completely define the thermody-
namics of a Schwarzschild black hole within the setting
of contact geometry.

2. BTZ black holes in AdS

The BTZ black hole is a negative cosmological constant
black hole in d ¼ 3 spacetime dimensions [72,73]. It shares
similar thermodynamic properties with other black holes
such as those in the AdS. The BTZ black hole entropy is
described analogous to the d ¼ 4 case with the surface area
replaced by the black hole circumference. Similarly, the
thermodynamic volume V scales with the specific volume v
as v ∼

ffiffiffiffi
V

p
as opposed to v ∼ V1=3 for the four-dimensional

black holes. We now describe Hamiltonian flows in the
thermodynamic phase space for the BTZ black hole.
Consider a contact Hamiltonian function h ¼ TS − 2PV.
Then, the contact Hamiltonian vector field Xh takes the
form

Xh ¼ T
∂
∂T þ 2V

∂
∂V þ S

∂
∂S − 2P

∂
∂P ; ð3:6Þ

so that the flow of Xh is given by

_T ¼ −T; _V ¼ 2V; _S ¼ S; _P ¼ −2P: ð3:7Þ

In particular, the evolution of the ðP;V; TÞ variables is
obtained from Eqs. (3.7):

TðτÞ¼T0e−τ; VðτÞ¼V0e2τ; PðτÞ¼P0e−2τ; τ∈R:

ð3:8Þ

Since specific volume goes as v ∼
ffiffiffiffi
V

p
, we may as well

write vðτÞ ¼ v0eτ. Then, one can easily check that the
flows satisfy the well-known equation of state for the
charged BTZ black hole:

P ¼ T
v
þ Q2

2πv2
; ð3:9Þ

where in the fixed charge ensemble Q ¼ Q0.
From the Smarr relation [Eq. (2.48)] in d ¼ 3, we see

that h ¼ TS − 2PV ¼ 0, and hence, the Legendre subma-
nifold representing the BTZ black hole is invariant to the
flow of Xh [Eq. (3.6)]. Therefore, the contact Hamiltonian
we considered describes the thermodynamics of the black
hole in the thermodynamics phase space. We should remark
that this Hamiltonian description for the BTZ black hole
is even valid for black holes with zero electric charge,
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i.e., Q ¼ 0. In that case, the equation of state mimics the
ideal gas equation.

B. Mapping: Schwarzschild to
charged black holes in AdS

We now consider deformations of the equation of state
[Eq. (3.2)] of the Schwarzschild black hole that give us
corresponding relations for charged AdS black holes. It is
important to note that analogous to the case of van der
Waals gas (Sec. II A 2), such deformations are induced by a
contact vector field Xh generated by some function h. The
generic vector field Xh is no longer tangent to the Legendre
submanifold representing the Schwarzschild black hole,
and hence, the submanifold is not invariant to the flow of
Xh. In this case, we can no longer consider Xh to be the
generator of the thermodynamic process but rather as the
generator of a family of one-parameter thermodynamic
systems or Legendre submanifolds. Consider, for instance,
the contact Hamiltonian function

h ¼ −CV−1=3; C > 0; ð3:10Þ
where C is an arbitrary constant independent of V. Then, it
can be checked that under the flow of the corresponding
contact vector field, V and T do not evolve and P evolves as

_P ¼ C
3
V−4=3: ð3:11Þ

In d ¼ 4, the specific volume is v ¼ 2ð3V=4πÞ1=3, thus,
giving us the deformation in pressure as

P ¼ P0 þ
16Cτ
3v4

�
3

4π

�
4=3

; τ ∈ R: ð3:12Þ

Since V and T do not evolve under the flow of Xh, we may
as well write v ¼ v0 and T ¼ T0. Then, we get the
deformed equations of state from Eq. (3.2):

�
Pþ 1

2πv2
−
16Cτ
3v4

�
3

4π

�
4=3

�
v ¼ T: ð3:13Þ

We now note that the arbitrary constant C is actually the
charge Q of the black hole. In particular, if we choose

C ¼ 3Q2

8π

�
4π

3

�
4=3

; ð3:14Þ

we exactly reproduce the equation of state for charged
black holes in AdS:

P ¼ T
v
−

1

2πv2
þ 2Q2

πv4
τ; τ ∈ R: ð3:15Þ

Wehaveactuallyobtainedaone-parameter familyof charged
black holes. As discussed in Sec. II C, for the case of static

black holes under consideration, entropy and volume are not
independent and related to each other in d ¼ 4 as

V ¼ 4

3
ffiffiffi
π

p S
3
2: ð3:16Þ

Thus, an equivalent contact Hamiltonian following from
Eq. (3.10) is

h ¼ −C
�

4

3
ffiffiffi
π

p
�1

3

S−1=2; C > 0: ð3:17Þ

Here,S andPdonot vary, but the deformationof temperature
T and enthalpy H can be obtained to be

H ¼ H0 þ C

�
3

ffiffiffi
π

p
4

�
1=3

S−1=2τ;

T ¼ T0 −
C
2

�
3

ffiffiffi
π

p
4

�
1=3

S−3=2τ; ð3:18Þ

where τ ∈ R andT0,H0 are the undeformed quantities listed
in Eq. (3.1). Using the value of C obtained earlier, from
Eq. (3.14), we see that T and H derived in Eq. (3.18) are
exactly the ones corresponding to Reissner-Nordström
charged black holes in AdS given in Eqs. (2.49) and
(2.50), respectively. Therefore, the contact Hamiltonian in
Eq. (3.10) maps a Schwarzschild black hole to a family
of charged black holes in AdS for this particular choice ofC.
We should remark, however, that thismethod is not restricted
tod ¼ 4dimensions.One can, in principle,work in higher or
even lower dimensions and perform similar deformations to
obtain thermodynamic relations and equations of state of
more complicated black hole systems.An appropriate defor-
mation parameter of course needs to be chosen in the contact
Hamiltonian, which in the present case involved charge Q.

C. Deformations of ideal gas equations

In the high-temperature limit, black holes admit a
thermodynamic behavior similar to that of an ideal gas
[74]. In d dimensions, the high-temperature equation of
state of a black hole is given by

PV1=d−1 ¼ d − 2

4

�
ωd−2

ðd − 1Þ
�

1=ðd−1Þ
T; ð3:19Þ

where ωd−2 is given by

ωd−2 ¼
2πðd−1Þ=2

Γððd − 1Þ=2Þ : ð3:20Þ

In terms of the specific volume v in d dimensions, the
equation of state can be shown to take the following simple
form:

Pv ¼ T: ð3:21Þ
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By introducing suitable contact vector fields in the thermo-
dynamic phase space, we shall map this high-temperature
limit to Schwarzschild and charged AdS black holes by
deforming Eq. (3.19) in d ¼ 4. Hence, we perform a similar
deformation of the d ¼ 3 ideal gas limit which corresponds
to the BTZ black hole and map it to charged BTZ
black holes.

1. Mapping: Ideal gas to Schwarzschild black holes

To map the ideal gas case to the Schwarzschild black
hole, we take

h ¼ −CV1=3; C > 0 ð3:22Þ

as the deforming contact Hamiltonian, where C is a
constant independent of volume. It is not hard to show
that T and V are conserved along the flow of Xh. The
deformation of pressure is calculated to be

_P ¼ −
CV−2=3

3
: ð3:23Þ

The deformation in pressure expressed in terms of the
specific volume v in d ¼ 4 is therefore given by

P ¼ P0 −
Cτ
3v2

�
6

π

�
2=3

; τ ∈ R; ð3:24Þ

where τ is some real parameter as before. The ideal gas
equation written in terms of the specific volume then takes
the following form under this deformation:

�
Pþ Cτ

3v2

�
6

π

�
2=3

�
v ¼ T: ð3:25Þ

For the choice of C,

C ¼ 3

2π

�
π

6

�
2=3

; ð3:26Þ

we get the equation of state

P ¼ T
v
−

τ

2πv2
; τ ∈ R: ð3:27Þ

We have thus mapped the high-temperature equation of
state to a one-parameter family of Schwarzschild
black holes.

2. Mapping: Ideal gas to charged black holes

We now map the ideal gas equation to the equation of
state of charged black holes in AdS. For that, we consider
the contact Hamiltonian of the form

h ¼ −CV1=3 −DV−1=3; C;D > 0 ð3:28Þ

withconstantsCandD.ThedynamicsofpressurePunder the
flow of the corresponding contact vector field is given by

_P ¼ −
1

3
ðCV−2=3 −DV−4=3Þ: ð3:29Þ

In terms of the specific volume v in d ¼ 4:

P ¼ P0 −
1

3
ðCV−2=3 −DV−4=3Þτ; τ ∈ R: ð3:30Þ

We choose C and D to be

C ¼ 3

2π

�
π

6

�
2=3

; D ¼ 6Q2

π

�
π

6

�
4=3

: ð3:31Þ

It is not difficult to show thatT andV are conservedalong this
flow so that from the ideal gas equation we arrive at the
deformed equation of state:

P ¼ T
v
−

τ

2πv2
þ 2Q2

πv4
τ; τ ∈ R: ð3:32Þ

Therefore, theXh consideredin thissectionmapstheidealgas
system equation to a one-parameter family of charged black
holes in the AdS.

3. Mapping: Ideal gas to charged BTZ black holes

We shall now map the ideal gas limit in d ¼ 3 to the
charged BTZ black hole. Now consider a contact
Hamiltonian of the form

h ¼ C lnðVÞ; C > 0; ð3:33Þ

where C is a constant independent of volume. In this case
too, it is easy to show that T and V are conserved while P
evolves along the flow of Xh as

_P ¼ C
V

ð3:34Þ

so that

P ¼ P0 þ
C
V
τ; τ ∈ R: ð3:35Þ

Referring to the ideal gas equation, we get the one-
parameter deformed equations of state

P ¼ T
v
þ Q2

2πv2
τ; τ ∈ R ð3:36Þ

if we identify C with6 Q2. These are deformed equations of
state corresponding to charged BTZ black holes. Therefore,

6One needs to fix some constant factors in C to get the exact
result.
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we have mapped the ideal gas limit in d ¼ 3 corresponding
to an uncharged BTZ black hole to a one-parameter family
of charged BTZ black holes.

IV. HAMILTON-JACOBI EQUATIONS AND
CHARACTERISTIC CURVES

Thus far in this paper, we presented a contact geometry
framework for studying the thermodynamics of black holes
in AdS and related systems, owing to the odd dimension-
ality of the thermodynamic phase space. Thermodynamic
processes can be understood from the mechanics point of
view as being trajectories on equilibrium surfaces in a given
contact manifold, which defines the dynamical system.
Such surfaces are the Legendre submanifolds that take a
role analogous to Lagrangian submanifolds or simply
configuration spaces in classical mechanics. Therefore,
as it is done in classical mechanics, one may as well study
the dynamics only in terms of the configuration space
variables, i.e., set up a thermodynamic Hamilton-Jacobi
theory. From the mechanics point of view, Hamilton-Jacobi
equations combined with canonical transformations (which
correspond to Legendre transformations in the contact
geometry setup) form a powerful combination to solve
mechanical problems. It is thus interesting to set up
Hamilton-Jacobi (HJ) equations for thermodynamics lead-
ing to further formal developments, including setting the
stage for studying quantum aspects of thermodynamics
[70]. Preliminary investigations for setting up HJ equations
were already performed in [65]. Here, the equilibrium
surfaces following from the equations-of-state ideal gas and
van der Waals gases were used to set up a HJ equation. In
particular, attempts were made in [65] to obtain similar
equations for the black holes in AdS. Also, the HJ equation
could be integrated into simple situations, with the inte-
gration constant being the cosmological constant. We
extend the results in [65] to set up HJ equation for black
holes in AdS, as appropriate pressure and volume terms are
now available in the extended thermodynamic setup.
Let us consider the case of Reissner-Nordström black

holes in AdS in arbitrary dimension, with the equation of
state written as [23]

P¼d−2
16π

�
4πT

�
ωd−2

Vðd−1Þ
�

1=ðd−1Þ
−ðd−3Þ

�
ωd−2

Vðd−1Þ
�

2=ðd−1Þ

þðd−3ÞQ2

�
ωd−2

Vðd−1Þ
�

2ðd−2Þ=ðd−1Þ�
: ð4:1Þ

Here, ωd−2 is given by Eq. (3.20). Now, using the relations
between extensive and intensive quantities

T ¼ ∂H
∂S ; V ¼ ∂H

∂P ð4:2Þ

in the equation of state, in Eq. (4.1) one ends up with the
following HJ equation:

P ¼ d − 2

16π

�
4π

�∂H
∂S

��
ωd−2

ðd − 1Þ
� 1

ðd−1Þ
�∂H
∂P

�
− 1
ðd−1Þ

− ðd − 3Þ
�

ωd−2

ðd − 1Þ
� 2

ðd−1Þ
�∂H
∂P

�
− 2
ðd−1Þ

þ ðd − 3ÞQ2

�
ωd−2

ðd − 1Þ
�2ðd−2Þ

ðd−1Þ
�∂H
∂P

�2ðd−2Þ
ðd−1Þ

�
: ð4:3Þ

Enthalpy H ¼ HðS; PÞ of the black hole is the solution of
the above HJ equation (4.3). To show that the setup works,
we first invoke the high-temperature limit, where the
equations of state of black holes are known to reduce to
ideal gas equations in general [74]. Thus, we consider
equations of state of the form

PV1=γ ¼ cT; ð4:4Þ

where

c ¼ d − 2

4

�
ωd−2

ðd − 1Þ
�

1=ðd−1Þ
; γ ¼ d − 1 ð4:5Þ

are constants which depend on the dimensionality of the
black hole under consideration. The relation in Eq. (4.4) is,
in fact, the ideal gas limit of Eq. (4.1), giving the familiar
isothermal curves in the P–v plane, where v ∼ V1=γ . As the
temperature is lowered, the black hole undergoes wide-
ranging changes in its phase structure, such as van der
Waals and reentrant phase transitions akin to usual fluids,
which have been explored extensively in the literature [31].
The corresponding HJ equation can be seen to be

P

�∂H
∂P

�
1=γ

¼ c

�∂H
∂S

�
: ð4:6Þ

This PDE can be integrated by separation of variables
giving the d-dimensional enthalpy as

H ¼ αS
γ

γ−1P; ð4:7Þ

with α given by

α ¼
�

4

d − 1

�d−1
d−2
�
d − 1

ωd−2

�
1=ðd−2Þ

: ð4:8Þ

The temperature and volume follow from earlier relations
in Eq. (4.2) to be

T ¼ γ

γ − 1
αS

1
γ−1P;

V ¼ αS
γ

γ−1: ð4:9Þ

The above analysis works in any dimension. For instance,
for the case of a BTZ black hole in three dimensions, it is
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known that the equation of state is exactly PV1=γ ¼
ffiffi
π

p
4
T,

with γ ¼ 2, ω1 ¼ 2π. It can be checked that thermody-
namic relations in Eqs. (4.7) and (4.9) match the existing
results in this case [23]. For more general cases away from
the ideal gas limit, it is in general difficult to integrate the
HJ equation completely. Consider, for instance, the HJ
equation for Schwarzschild black hole (Q ¼ 0) in d ¼ 4, as
seen from Eq. (4.3) to be

∂H
∂S ¼ 2P

�
3

4π

∂H
∂P

�
1=3

þ 1

4π

�
3

4π

∂H
∂P

�
−1=3

: ð4:10Þ

Although, the PDE is not readily integrable, the enthalpy in
Eq. (2.45) can be seen to be a solution of the above
HJ equation. The validity of HJ equations for black hole
thermodynamics reduces the framework to n-dimensional
configuration spaces which are generated by the thermo-
dynamic potential, which in this case is the enthalpy rather
than the (2nþ 1)-dimensional thermodynamic phase
space. As we see now in the following subsection,
characteristic curves can be used to model various thermo-
dynamic processes of black holes.

A. Characteristic curves and thermodynamic
processes for black holes

We now describe the construction of thermodynamic
processes and cycles for black holes in the contact
geometry framework. Different processes are described
by different contact Hamiltonians in the sense that a
Hamiltonian function h∶ M → R vanishing on an equi-
librium submanifold L is treated as the generator of a
particular thermodynamic process. The flow of the corre-
sponding contact Hamiltonian vector field shall be tangent
to the equilibrium submanifold and that the submanifold is
then invariant to the flow. Then, the integral curves of the
contact vector field shall describe a particular thermody-
namic transformation of the system and are alternatively
called the characteristic curves. In order to construct a
cyclic process, one considers patching different processes
together so as to describe the cycle. We shall first describe
the construction of a few thermodynamic processes by
suitable contact Hamiltonians. Hence, we shall discuss the
Carnot cycle for the black holes in this setting with the
study of thermodynamic processes in the ideal gas limit.
Let us see how thermodynamic processes are generated

by Hamiltonian functions for the simplest case of the high-
temperature limit of black holes, i.e., the ideal gas limit. As
a simple example to illustrate the method, we pick the
uncharged BTZ black hole that corresponds to the ideal gas
limit for d ¼ 3. However, the following discussion can be
extended to more general black hole systems. The thermo-
dynamic equation of state for a black hole is

P
ffiffiffiffi
V

p
¼

ffiffiffi
π

p
T

4
; ð4:11Þ

with enthalpy given by

H ¼ 4

π
S2P: ð4:12Þ

We now describe as examples, the isothermal and isobaric
processes for the BTZ black hole generated by contact
Hamiltonians.

1. Isothermal process

Consider the contact Hamiltonian of the form

h ¼ T
ffiffiffiffiffiffi
πV

p
=2 − 2PV: ð4:13Þ

It is immediately clear that

_T ¼ −
∂h
∂S ¼ 0: ð4:14Þ

Hence, the Hamiltonian describes an isothermal process for
the black hole. The corresponding flow of the pressure and
volume variables are

_P ¼ T
4

ffiffiffiffi
π

V

r
− 2P; _V ¼ 2V; ð4:15Þ

which means that the integral curves for ðP; V; TÞ are
given as

PðτÞ ¼P0e−τ; VðτÞ ¼ e2τ; TðτÞ ¼ T0; τ ∈R:

ð4:16Þ

Here, P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πT2

0=16V0

p
. The integral curves [Eq. (4.16)]

are seen to satisfy the thermodynamic equation of state of
the BTZ black hole. Since for the BTZ black hole
S ¼ ffiffiffiffiffiffi

πV
p

=2, it is easy to see that h ¼ 0
7 on the equilibrium

submanifold, which is therefore invariant to the flow of the
corresponding contact vector field. Therefore, h can be
interpreted as the generator of an isothermal transformation
for the BTZ black hole.

2. Isobaric process

For this, one considers the contact Hamiltonian to be of
the form

h ¼ TS − πT2=8P: ð4:17Þ

It is then clear that the thermodynamic flow equations are

_P ¼ 0; _V ¼ πT2

8P2
; _T ¼ −T; ð4:18Þ

7As a result of the Smarr relation.
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which means that the integral curves of the corresponding
contact vector field are

PðτÞ¼P0; VðτÞ¼V0e2τ; TðτÞ¼T0e−τ; τ∈ R:

ð4:19Þ

We have used V ¼ πT2=16P2 given by the equation of state
to obtain Eq. (4.19), and V0 is given by

ffiffiffiffiffiffi
V0

p ¼ ffiffiffi
π

p
T0=4P0.

It can be verified that the thermodynamic flows satisfy
the equation of state of the BTZ black hole. Also, since
from the equation of state for the BTZ black hole
4P

ffiffiffiffi
V

p ¼ ffiffiffi
π

p
T, this means that h ¼ 0 on the equilibrium

submanifold. Therefore, this contact Hamiltonian is a
generator of an isobaric transformation. These results
can be generalized to polytropic gases in arbitrary
dimensions.
One can construct similar contact Hamiltonians to

describe other thermodynamic processes (for example,
isochoric adiabatic transformations and isothermal trans-
formations) for the BTZ black holes. In principle, this
manner of generating different thermodynamic processes
using contact Hamiltonians on the thermodynamic phase
space still holds for other black holeswithmore complicated
equations of state. Such calculations are however not
straightforward to perform analytically. We shall now
describe thermodynamic cycles using the ideal gas (high-
temperature) limit of black holes in arbitrary dimensions.

B. Thermodynamic cycles for AdS black holes

Having described thermodynamic processes, we can now
describe thermodynamic cycles such as the Carnot cycle in
the black hole regime. Recall that a four-stroke cycle such as
a Carnot cycle is basically joining four reversible processes
together to form a cyclic process in the thermodynamic
phase space. This means that in our geometric framework
one requires four different contact Hamiltonians for the
generating transformations for each “leg” of the cycle,
which shall lead to the complete description of the cycle.
We describe the isothermal and adiabatic legs of a Carnot

cycle using the high-temperature limit of black holes as the
working substance, i.e., being described by the equation of
state PV1=ðd−1Þ ¼ cT with c being given by Eq. (4.5). The
corresponding Smarr relation is

ðd − 3ÞH ¼ ðd − 2ÞTS − 2PV: ð4:20Þ

With some simple manipulations using Eqs. (4.7), (4.9), and
(4.20), it is not difficult to show that in this case,

ðd − 2ÞTS − ðd − 1ÞPV ¼ 0: ð4:21Þ

This constraining relation among thermodynamic varia-
bles may be used to construct contact Hamiltonians for
generating thermodynamic processes for the Carnot cycle
(see Fig. 1 for indicator diagrams) as we shall now
show.

1. Isothermal process

To generate an isothermal transformation, we consider
the contact Hamiltonian function

h ¼ AdTV
d−2
d−1 − ðd − 1ÞPV; ð4:22Þ

where

Ad ¼
d − 2

4
ðd − 1Þd−2d−1ω

1
d−1
d−2

is a constant whose value depends on the number of
spacetime dimensions one works with. Now, it immediately
follows that

_T ¼ −
∂h
∂S ¼ 0: ð4:23Þ

It can be explicitly verified that the integral curves
corresponding to the evolution of the ðP; V; TÞ variables
satisfy the thermodynamic equation of state [Eq. (4.4)].
Moreover, a direct calculation shows that the contact

(a) (b)

FIG. 1. Indicator diagrams for a Carnot cycle in the case of black holes: (a) PV plane, (b) TS plane.
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Hamiltonian vanishes,8 i.e., h ¼ 0. Therefore the Legendre
submanifold representing the system is invariant to the flow
of Xh. Therefore, the contact Hamiltonian in Eq. (4.22) is
associated with an isothermal transformation in the high-
temperature limit of black holes. We shall now describe an
adiabatic transformation for the system.

2. Adiabatic process

We now consider constructing an adiabatic transforma-
tion for the high-temperature black hole. For this, we
consider the contact Hamiltonian

h ¼ ðd − 2Þc0PV1=ðd−1ÞS − ðd − 1ÞPV; ð4:24Þ
where c0 ¼ 1=cwith c given by Eq. (4.5). One immediately
obtains

_S ¼ ∂h
∂T ¼ 0: ð4:25Þ

Moreover, the flow of volume is given by

_V ¼ −
∂h
∂P ¼ ðd − 1ÞV − ðd − 2Þc0V1=ðd−1ÞS: ð4:26Þ

A straightforward calculation reveals that9 _V ¼ 0. Invoking
the ideal gas equation [Eq. (4.4)] into Eq. (4.24), it follows
that h ¼ 0, and hence, the Legendre submanifold repre-
senting the system is invariant to the flow of Xh. One can
verify by explicit calculation that the integral curves satisfy
the equation of state. Therefore, this contact Hamiltonian
[Eq. (4.24)] is associated with an adiabatic isochoric
transformation. This is natural to expect since for static
black holes, adiabats are the same as isochores [see
Fig. 1(a)]. For the d ¼ 3 case, we get an adiabatic isochoric
transformation for the BTZ black hole.
Working in this manner, one can develop a Hamiltonian

formalism for all four legs of the Carnot cycle. This setup
can be extended to describe arbitrary thermodynamic
cycles in the thermodynamic phase space. It is worth
noting that in the case of static black holes in AdS
considered here, even a rectangular cycle in the PV plane
can be chosen for a Carnot process without loss of
generality (see [30] for details). The geometric description
of cycles in the thermodynamic phase space for black holes
has not been explored yet in the literature to the best of our
knowledge.

V. REMARKS

In this paper, we studied the extended phase space
thermodynamics of black holes in AdS using the frame-
work of contact geometry. The contact equations, related
vector fields, and characteristic curves were obtained for
several systems, such as Schwarzschild, charged BTZ,
and Reissner-Nordström black holes in AdS spacetime,
reproducing the well-known thermodynamic relations.
Hamilton-Jacobi equations of mechanics were then set
up for these black holes, and their thermodynamic equa-
tions of state in the high-temperature limit were shown to
follow from the first order differential equations. Once the
results were known from the high-temperature limit, the
equations of state of black holes, in general, could be
obtained from the ideal gas limit via flows of contact vector
fields, giving a nice mechanism to generate equations of
state of black holes in AdS. Furthermore, we constructed
explicit maps of thermodynamic variables as well as the
equations of state of black holes in AdS through the
deformations introduced by well-motivated contact
Hamiltonians. We explicitly showed that the thermody-
namic relations, including the equations of state of
Reissner-Nordström black holes in four dimensions, can
be obtained from those of the Schwarzschild black hole by
choosing a contact Hamiltonian with charge as the defor-
mation parameter. The mapping is exact and holds in
arbitrary dimensions, as well as for more general black
holes. We also showed that the thermodynamic processes
of black holes in AdS can be modeled by characteristic
curves of a suitable choice of contact Hamiltonian. In this
way, isothermal and isobaric processes were explicitly
constructed, together with examples involving thermody-
namic cycles. The setup is quite general and holds for
general black holes in AdS. It would be nice to see whether
the maps of the equations of state and thermodynamic
quantities discussed here offer deeper insights into under-
standing further features, such as mapping of phase
transitions and critical exponents in various black hole
systems. This should provide an interesting application of
the formalism developed here.
The analysis in this paper is also valid for nonstatic, i.e.,

general charged, and rotating black holes in AdS. If the
black hole is rotating, one requires additional thermody-
namic variables: the angular momentum J and the angular
velocity Ω. This pair is conjugate to each other and satisfies
the Lagrange bracket relationship fJ;Ωg ¼ 1. The first law
of black hole thermodynamics for rotating charged black
holes (the Kerr-Newmann black holes) takes the form

dM ¼ dH ¼ TdSþ ΩdJ þΦdQþ VdP: ð5:1Þ

The corresponding Smarr relation is modified to

ðd − 3ÞM ¼ ðd − 2ÞTSþ ðd − 2ÞΩJ þ ðd − 3ÞQΦ − 2PV:

8This follows from the fact that in d dimensions the entropy
and volume of a static black hole are related as

S ¼ ω
1

d−1
d−2
4

½ðd − 1ÞV�d−2d−1:

In the d ¼ 3 case, all the calculations correspond to those for the
BTZ black holes previously described.

9This follows by substituting for c0 ¼ 1=c from Eq. (4.5) and
for S as a function of V.
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This may be used to construct contact Hamiltonian func-
tions for rotating black holes so that the contact flow
satisfies the well-known thermodynamic equations. For
example, consider a rotating black hole in d ¼ 4. For
simplicity, we assume that the electric charge is zero (Kerr
black hole), i.e., Q ¼ 0. We may use the Smarr relation for
the rotating case to construct a Hamiltonian function that
vanishes on the equilibrium submanifold. It is easy to see
that if we take h ¼ 2TS − 2PV þ 2ΩJ −H, then h ¼ 0,
and hence, the equilibrium submanifold is invariant to the
flow of the corresponding Xh. A short calculation reveals
that the evolution of the angular momentum is JðτÞ ¼ J0e2τ

with τ ∈ R. It is not hard to check that the well-known
equation of state (see, for instance, [29])

P ¼ T
v
−

1

2πv2
þ 48J2

πv6

is satisfied under the evolution of the thermodynamic
variables. It would be interesting to construct contact
Hamiltonians for this system and study the deformations
induced by it. In this case though, entropy and volume are
not independent, and it would be nice to obtain the
characteristic curves, as would be the case, to explore
more general black hole systems in theories with higher
derivative terms.
There are several other avenues to explore for future

work. There have been several developments in the study
of dissipative systems through the contact geometry
framework [61], including geometrical HJ equations, with
inputs from canonical transformations. As extensions of
the geometric framework studied in this paper, it is
interesting to investigate mechanical analogs for black
hole systems, such as through a Lagrangian and action
formulation. Some results on the Hamiltonian approach to
thermodynamic systems were obtained in [75,76], but the
analysis was through a different route of symplectic
geometry with additional degrees of freedom added by
hand and where the Lagrangian was a total derivative and
nondynamical. The cosmological constant in these scenar-
ios was shown to be an integration constant [76], which
was also observed in the earlier works [65] through the
Hamilton-Jacobi approach. In this paper though, we treated
the cosmological constant as a dynamical variable, result-
ing in a PdV term in the first law of black hole mechanics
and the existence of an equation of state. In this approach,
in the deformations induced by the contact Hamiltonian on
thermodynamic quantities of the black holes, it is the
charge of the black hole which is chosen as the constant
parameter, eventually leading to maps of various thermo-
dynamic quantities.

Let us also point out that, although in this work, we
restricted ourselves to providing a contact geometry frame-
work todescribeblackholes in theorieswith a dynamical and
negative cosmological constant, the formalism is very
general and readily applicable to situations where the
cosmological constant is negative (but nondynamical),
positive, or zero. The advantage of studying contact geom-
etry framework in the context of blackholes in theorieswith a
negative and dynamical cosmological constant is the avail-
ability of a nice equation of state [such as the one in
Eq. (2.51)], which allows for a complete analogy with van
der Waals’s system. Barring this analogy, the rest of the
computationsworked out in this paper can straightforwardly
begeneralized toother spacetimes.This isbecause, as longas
a first law [such as the one in Eq. (5.1)] is available, one can
always construct a contact Hamiltonian and study the flows
of the resulting vector field, irrespective of whether a PdV
term is present in Eq. (5.1) or not.10 It would thus be
interesting to generalize these results to study thermody-
namics of black holes in other spacetimes.
Another important issue that requires attention is the

uncertainty relations and quantum treatment of the thermo-
dynamic phase space of black holes. Such relations for
ordinary thermodynamics were studied, for example, in
[70,77], where uncertainty relations between a conjugate
pair of thermodynamic variables, such as pressure P and
volume V, were presented. Similar relations can be
proposed in the present case for black holes in AdS too,
where the Lagrange bracket structure was collected in
subsection (2.54). The Lagrange brackets are expected to
be important while discussing deformation quantization of
thermodynamic phase space for black holes, along the lines
of [70]. Another interesting topic to explore is the concept
of a heat engine, either in ordinary thermodynamics or in
the case of black holes [30]. With the knowledge of
thermodynamic processes studied in this paper from a
geometric point of view, it should be a nice exercise to
construct thermodynamic cycles for more realistic gases
and explore their properties.
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