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We study the return amplitude, which is the overlap between the initial state and the time-evolved state,
in the Sachdev-Ye-Kitaev (SYK) model. Initial states are taken to be product states in a spin basis. We
numerically study the return amplitude by exactly diagonalizing the Hamiltonian. We also derive the
analytic expression for the return amplitude in random matrix theory. The SYK results agree with the
random matrix expectation. We also study the time evolution under the different Hamiltonian that is
originally proposed to describe the traversable wormholes in projected black holes in the context of
holography. The time evolution now depends on the choice of initial product states. The results are again
explained by random matrix theory. In the symplectic ensemble cases, we observe an interesting pattern of
the return amplitude in which they show the second dip, ramp, and plateaulike behavior.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) model [1,2] is an inter-
esting model. This model is solvable at large N [3,4] but is
maximally chaotic [2,5], shows random matrix behaviors
[6,7], and shares the same sector with two-dimensional
dilaton gravity [8–11].
We study the time dependence of pure states in the SYK

model. Here, we consider a special class of pure states that
were first considered in Refs. [12,13] and studied further in
Refs. [14–16]. They are simultaneous eigenstates of spin
operators that are constructed from Majorana fermions.
One interesting physical interpretation of these states is that
they are states after projection measurements of maximally
entangled states by these spin operators [12,17]. In this
context, we can interpret our setup as time evolution after
projection measurements. We expect that the time evolution
starts flipping these spins under the SYK Hamiltonian, and
we get more general superpositions of these product states.
In this paper, we consider the return amplitude, which is
the square of the fidelity and used in the similar setup in
conformal field theory [18,19]. We can also consider the
time evolution under deformed Hamiltonians after the
measurements. Here, we consider a deformation proposed
by Ref. [12]. They are interpreted as a traversable wormhole

protocol to see the insides of black holes [12,20]. This
deformed Hamiltonian can also be seen as a deformation of
an integrable Hamiltonian with degenerate spectrum by the
chaotic SYK Hamiltonian.

II. SYK MODEL

In the SYK model, we consider even N Majorana
fermions ψ i that are obeyed by the anticommutation
relation fψ i;ψ jg ¼ δij. The Hamiltonian of the SYK
model with q body interactions is given by

HSYK ¼ i
q
2

X
a1<a2<���<aq

Ja1���aqψa1 � � �ψaq : ð1Þ

Here, Ja1���aq are random couplings with mean hJa1���aqiJ¼0

and variance hJ2a1���aqiJ ¼ J2ðq−1Þ!
Nq−1 . The q ¼ 4 model is the

original SYK model that we mainly focus on in this paper.
This system has two important symmetries [6,21]. The first
one is the antiunitary symmetry T . This symmetry satisfies
T ψaT −1 ¼ ψa. The SYK Hamiltonian (1) is invariant
under T when q ¼ 0ðmod 4Þ. The other important sym-
metry is the modulo 2 fermion number operator ð−1ÞF with
ðð−1ÞFÞ2 ¼ 1. These symmetries can have global anoma-
lies depending on N (mod 8) [21]. These anomalies are the
origin to realize all of Gaussian unitary (GUE), orthogonal
(GOE), and symplectic (GSE) ensembles in the SYKmodel
[6]. Here, we summarize the results [6,22] in Table I.
Now, we consider the return amplitude. The return

amplitude is
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gpðtÞ ¼ jhψ0je−iHtjψ0ij2: ð2Þ

Here, jψ0i is a initial state, and H is the Hamiltonian of the
system. This definition is also applicable to any quantum
systems. We take the square of jhψ0je−iHtjψ0ij, which is
different from the definition in Refs. [18,19]. Our choice
makes the relation to the so-called spectral form factor
clear, which is studied extensively in the field of quantum
chaos and also recently in holography [7,23–26].

III. RETURN AMPLITUDE IN RANDOM
MATRICES AND IN THE SYK MODEL

Because we expect that the late time behavior of the
SYK model is governed by random matrices [7], it is good
to study first the return amplitude in random matrix
theory. Now, we want to compute hjhψ0je−iHtjψ0ij2iGUE ¼R
dHe−

L
2
TrH2 jhψ0je−iHtjψ0ij2, where dH is the Haar mea-

sure on the space of L × L Hermitian matrices. We can
compute this in random matrix theory using the Haar
integrals. The results are

hjhψ0je−iHtjψ0ij2iGUE ¼ 1

LðLþ 1Þ ðhgðtÞiGUE þ LÞ; ð3Þ

where gðtÞ ¼ ZðtÞZðtÞ� with ZðtÞ ¼ Trðe−iHtÞ. This gðtÞ is
the spectral form factor, which diagnoses the energy-level
correlations in chaotic systems. We also find that this
relation also holds in the GSE by replacing the average with
hiGSE, using the Haar integral [27,28]. This formula that
relates the spectral form factor to the return amplitude in
random matrices in the GUE and GSE is our first main
result on the random matrices side.1 We put the derivation
of this formula in Appendix B. In the GOE, the return
amplitude depends on the initial state jψ0i. Equation (3)
means that the return amplitude is given essentially by the
constant L shift of the spectral form factor. When t ¼ 0,
the spectral form factor is simply given by the square of the
dimension of the Hilbert space gð0Þ ¼ L2. Under the time
evolution, hgðtÞiGUE decreases and hits the minimal value.
These regimes are called the slope and the dip [7]. Then,
hgðtÞiGUE increases linearly. This linear growth is called
the ramp [7], and this reflects the long-range eigenvalue
correlations in chaotic systems. Finally, hgðtÞiGUE saturate

the late time value hgð∞ÞiGUE ¼ L in sufficiently late time.
This is called the plateau [7]. The plateau value generically
coincides with the infinite time average,

lim
T→∞

1

T

Z
T

0

dt
X
m;n

e−iðEm−EnÞt ¼
X
E

NE; ð4Þ

where NE is the degeneracy of each energy level E.
This plateau value is much smaller than the initial value
gð0Þ ¼ L2 but still bigger than Oð1Þ. The relation (3)
between the return amplitude gpðtÞ and the spectral form
factor gðtÞ says that the return amplitude also shows the
slope, the dip, the ramp, and the plateau. The plateau value
for the return amplitude is given by hgpðtÞiGUE ¼
2=ðLþ 1Þ, which is also much smaller than the initial
value gpð0Þ ¼ 1.
The spectral form factor has a finite temperature gener-

alization gðt; βÞ ¼ Trðe−βH−iHtÞTrðe−βHþiHtÞ. For a finite
temperature analog of the return amplitude, we consider

gpðt; βÞ ¼ jhψ0je−βH−iHtjψ0ij2: ð5Þ

We can think of this as the return amplitude with the initial

state e−
β
2
Hjψ0i. As is the case with the finite temperature

spectral form factor [7], when we take the ensemble

average, the annealed disorder hjhψ0je−βH−iHtjψ0ij2iE
hjhψ0je−βH jψ0ij2iE is not equal

to the quenched disorder hjhψ0je−βH−iHtjψ0ij2
jhψ0je−βH jψ0ij2 iE, where hiE is an

ensemble average. In this paper, we consider the annealed
disorder in which the analytic treatment becomes easy
[7,30]. Another motivation to take the annealed version is
its similarity with the unnormalized cylinder amplitude in
quantum field theories [18,19]. The ensemble average of
the finite temperature return amplitude (5) in random
matrix theory becomes

hjhψ0je−βH−iHtjψ0ij2iGUE
¼ 1

LðLþ 1Þ ðhgðt; βÞiGUE þ hgð0; 2βÞiGUEÞ: ð6Þ

This formula that relates the finite temperature spectral
form factor to the finite temperature return amplitude in
random matrices in the GUE is our second main result in
randommatrices side. We call the right-hand side of (3) and
(6) the shifted spectral form factor.
Now, we consider the return amplitude in the SYK

model. The states we consider are defined as follows. First,
there are N=2 spin operators in the SYK model defined by
Sk ¼ −2iψ2k−1ψ2k. These satisfy S2k ¼ 1, and eigenvalues
of Sk are given by sk ¼ �1. The pure states jBsi we
consider are defined as common eigenstates of these spin
operators:

SkjBsi ¼ skjBsi; for k ¼ 1;…; N=2: ð7Þ

TABLE I. Symmetry property in the SYK model.

Nðmod 8Þ T 2 T ð−1ÞF ¼ að−1ÞFT Statistics Degeneracy

N ¼ 0 þ1 a ¼ þ1 GOE 1
N ¼ 2 þ1 a ¼ −1 GUE 2
N ¼ 4 −1 a ¼ þ1 GSE 2
N ¼ 6 −1 a ¼ −1 GUE 2

1The return amplitude in the GOE is also studied in Ref. [29].
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This defines 2
N
2 states, one for each choice of the spins sk.

These states form a basis of the SYK Hilbert spaces. By
including the Euclidean evolution in the SYK Hamiltonian,
we can produce lower-energy states:

jBsðβÞi ¼ e−
β
2
HSYK jBsi: ð8Þ

The return amplitude for the SYK model is

gpðt; βÞ ¼ jhBsje−βHSYK−iHSYKtjBsij2: ð9Þ

Currently, we do not have any technique to analytically
compute (9) for finite N, and we numerically computed the
finite temperature return amplitude (9) in the SYK model.
The results are plotted in Fig. 1. Clearly, we observe the
slope, the dip, the ramp, and the plateau in the return
amplitude in the SYK model. The early time decay is
almost the same with the spectral form factor. In the largeN
limit, hBsje−βHSYK jBsi ¼ 2−

N
2Trðe−βHSYKÞ þOð1=Nq−1Þ for

any jBsi [12] in the leading of 1=N expansion. The early
time dependence is captured by the analytic continuation of
β → β þ it from the leading term in 1=N, and we expect the
match between them. On the other hand, in the ramp and
the plateau regions, we do not expect that because they are
nonperturbative effects in 1=N expansion [7,31]. The plot
shows that they take different values at late time. The late
time behavior is expected to be governed by random matrix
theory [7]. We also for the return amplitude. To confirm
this, we compare the return amplitude with the shifted
spectral form factor (6) in which the ensemble average
hgðt; βÞiGUE is replaced by the SYK coupling average
hgðt; βÞiJ. We also restrict the Hamiltonian to the fixed

ð−1ÞF charge sector in the shifted spectral form factor
because only that acts on the state jBsi. The plots agree very
well, and these results also support the random matrix
behavior in the late time in the SYK model.

IV. EVOLUTION AMPLITUDE IN RANDOM
MATRICES AND IN THE SYK MODEL

Equation (3) also means that the initial state jψ0i can
evolve to other states that are orthogonal to jψ0i. Let us
pick a state jψ1i that satisfies hψ1jψ0i ¼ 0. In the similar
way with the return amplitude, we can calculate the overlap
jhψ1je−iHtjψ0ij2. Here, we call this the evolution amplitude.
The evolution amplitude becomes

hjhψ1je−iHtjψ0ij2iGUE ¼ 1

L2 − 1

�
L −

hgðtÞiGUE
L

�
: ð10Þ

This expression for the evolution amplitude in terms of the
spectral form factor is our third main result in random
matrices side. We put the derivation of this formula in
Appendix B. The evolution amplitude increases under the
time evolution from 0, then slightly decreases, and finally
saturates the late time value 1=ðLþ 1Þ. Interestingly, this
late time value is not equal to the late time value of the
return amplitude gpð∞Þ ¼ 2=ðLþ 1Þ but half of that. On
the other hand, we get

R
dUjhψ jUjϕij2 ¼ 1=L for any

choice of jψi and jϕi for Haar random unitary U. This is
because the average with limT→∞

R
dHe−

L
2
TrH2

Fðe−iHtÞ is
not equivalent to the Haar random unitary averageR
dUFðUÞ for functions F on the space of L × L unitary

groups [31].
In the GUE case, the spectral form factor at infinite

temperature is given by [30]

hgðtÞiGUE ¼L2
J1ðtÞ2
t2

−L

�
1−

t
2L

�
θð2L− tÞþL; ð11Þ

where JαðtÞ is the Bessel function of the first kind and θðtÞ
is the Heaviside step function. Together with this expres-
sion of the spectral form factor and (3) or (10), we can
determine the exact time evolution of the return amplitude
and the evolution amplitude in the GUE. We plot (3) and
(10) in Fig. 2. Clearly, the return amplitude acquires a larger
value than the evolution amplitude at late times. In this
sense, the time-evolved state e−iHtjψ0i never forgets about
the direction of the initial state jψ0i. This plot also makes it
clear that the return amplitude starts to acquire the larger
value from the ramp region, which is the signature of
quantum chaos.
Now, we consider the evolution amplitude in the SYK

model. Especially, we consider the amplitude between jBsi
with different spins:

jhBs0 je−iHSYKtjBsij2: ð12Þ

FIG. 1. These are numerical plots for the N ¼ 14 q ¼ 4 SYK
model. We take the disorder average for 1500 samples except
for the single sample case. We put β ¼ 1.5. The return amp-
litude is defined (9), and we choose the state that satisfies
SkjB↑���↑i ¼ jB↑���↑i. The shifted spectral form factor is the right-
hand side of (6) for the SYK Hamiltonian. We normalize them so
that the initial values become 1. A single sample of gpðtÞ shows
erratic oscillation around the averaged return amplitude at late
time, and it is not self-averaging [32].
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In Fig. 3, we compare the return amplitude and the
evolution amplitude numerically in the SYK model.
After the ensemble average, they show that the plateau
value in the return amplitude is clearly larger than the
evolution amplitude. Even in single realization, the return
amplitude looks to take larger value than the evolution
amplitude.

V. DEFORMED HAMILTONIAN

Next, we consider the following “mass term” Hami-
ltonian [12]:

HM ¼ −
1

2

X
k

skSk ¼ i
X
k

skψ2k−1ψ2k: ð13Þ

This Hamiltonian is diagonalized in the jBsi state basis.
Especially, the unique ground state of this Hamiltonian is

given by jBsi with spin fskg and energy Eð0Þ
0 ¼ −N=4. By

flipping some spins from the ground state jBsi, we obtain
the whole energy eigenstates. The excited state energy
levels are given by

Eð0Þ
m ¼ −

N
4
þm with degeneracy dm ¼

�
N=2

m

�
: ð14Þ

There are energy gaps, which are given by Eð0Þ
mþ1 −

Eð0Þ
m ¼ 1, between the bands. Now, we consider the

Hamiltonian that contains the both the SYK term and (13):

Hdef ¼ HSYK þ μHM: ð15Þ

This Hamiltonian was originally proposed to describe the
traversable wormhole after projection measurements [12].
We call this Hdef the deformed Hamiltonian. Here, we
consider the regime that μ is large, and we can treat the
SYK term as a perturbation. This can be seen as a
perturbation of the integrable system with the degenerate
spectrum by the chaotic Hamiltonian.2 We also concentrate
on the infinite temperature cases. Because μ is large, exact
energy levels from Eim with im ¼ d1 þ � � � þ dm−1 þ 1

to Efm with fm ¼ d1 þ � � � þ dm localize near Eð0Þ
m and

form a bandlike structure. By exactly diagonalizing the
Hamiltonian, we can study the return amplitude under the
deformed Hamiltonian. We show the numerical results in
Fig. 4. Here, we explain the results. First, the ground state
ofHdef is almost given by jBsi withm ¼ 0 because the gap
between the ground state and the first excited states is μ,
which is sufficiently large and suppresses the mixing
with other jBsi states. In this case, the return amplitude
does not decay and also shows oscillation at early time.

FIG. 2. The plot of the return amplitude and the evolution
amplitude in random matrices in the GUE with L ¼ 50. From this
picture, the return amplitude acquires a larger value than the
evolution amplitude because of the ramp that is the signal of
quantum chaos.

FIG. 3. These are the numerical plots of the return amplitude
and the evolution amplitude in the N ¼ 14, q ¼ 4 SYK
model. For an example of the return amplitude, we consider
jhB↑↑↑↑↑↑↑je−iHSYKtjB↑↑↑↑↑↑↑ij2, and for an example of the evo-
lution amplitude, we consider jhB↓↓↑↑↑↑↑je−iHSYKtjB↑↑↑↑↑↑↑ij2.
Top: We take the average over 1500 samples for both the return
amplitude and the evolution amplitude. Bottom: The return
amplitude and the evolution amplitude with the single sample.

2Other kinds of mass deformations are considered in
Refs. [33–35]
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The behavior of jBsi with m ≠ 0 is described by random
matrix theory. According to the perturbation theory of
quantum mechanics, the first-order shift of energy levels is
determined by the projection of HSYK onto the degenerate
energy levels [36]. Therefore, at early time, the projection
of HSYK on each degenerate energy level determines
the time evolution of jBsi. We know the dimension of
the projected Hamiltonian from (14). By considering the
spectral form factor restricted on the mth band and its shift
by L ¼ dm, we see the very good agreement with the return
amplitude. Because the spectral form factor and the return
amplitude depend on the level statistics, next we determine
the symmetry class of each band. To see this, we need to
know the symmetry properties of jBsi. These are eigen-
states of ð−1ÞF. The antiunitary T flips the spin T SkT −1 ¼
−Sk. Therefore, we find that T jBsi ¼ eiθs jB−si, where eiθs
is a phase factor and jB−si is the state that satisfies
SkjB−si ¼ −skjB−si. From this, we find that for the
projection operator onto the flip number m sector Pm ¼P

#flip¼m jBsihBsj satisfies

T PmT −1 ¼ PN
2
−m: ð16Þ

This means that T flips the bands.
Now, we consider the symmetry class based on these

properties. First, we consider the m ≠ N
4
bands. In this

case, Hm satisfies T HmT −1 ¼ HN
2
−m. Therefore, there are

no constraints from the symmetry T , and we expect GUE
statistics for Hm. Next, we consider m ¼ N

4
th bands, which

exist in N ¼ 0; 4ðmod 8Þ cases. Now, T imposes symmetry
constraint T HN

4
T −1 ¼ HN

4
, and we expect the GOE for

N ¼ 0ðmod 8Þ and GSE for N ¼ 4ðmod 8Þ on these bands
at the first order of perturbation. Except for m ¼ N

4
th bands

in N ¼ 4ðmod 8Þ, we expect that degeneracies are com-
pletely removed by the SYK Hamiltonian perturbation.
Because of Kramers’s degeneracies of HN

4
that originate to

the time-reversal anomaly T 2 ¼ −1,m ¼ N
4
th bands inN ¼

4ðmod 8Þ still have two degeneracies at each level at the
first-order perturbation. According to the second-order
perturbation theory [36], the second-order shift of degen-
erate spectra is determined by Hi

N
4

¼ PiHSYKQN
4
HSYKPi.

Here, QN
4
¼ P

m≠N
4

Pm
−N

4
þm and Pi¼jψ i;1ihψ i;1jþjψ i;2ihψ i;2j

with two eigenstates of ith degenerate eigenvalues. We
choose the basis that satisfies T jψ i;1i ¼ jψ i;2i. From
these definitions, we find that T PiT −1 ¼ Pi and
T QN

4
T −1 ¼ −QN

4
. This means T Hi

N
4

T −1 ¼ −Hi
N
4

. By solv-

ing this symmetry constraint in the basis with T ¼ ð0
1
−1
0
ÞK,

we obtain

Hi
N
4

¼ PiHSYKQN
4
HSYKPi ¼

�
x a

a� −x

�
; ð17Þ

with a real number x and a complex number a. This means
that in a generic Hamiltonian the off-diagonal element a
enters and the degeneracies are removed. Therefore, the
degeneracy is removed at the second order of the pertur-
bation. This difference of the order means that the return
amplitude (and the spectral form factor) does not see the
true degeneracy at early time. We see numerically in Fig. 4
that they show the first-order degeneracy at the first plateau,
but after that, they show the second slop, dip, ramp, and
plateau. The second plateau value is smaller than the first
plateau value because (4) means that degeneracies give
larger plateau values.
To see the level statistics further, we study the distribu-

tion of the adjacent gap ratio [6,37–39] for each mth band
(see Fig. 5). The adjacent gap ratio is defined as rn ¼
Enþ1−En
En−En−1

for an ordered spectrum En−1 < En < Enþ1. The
distribution of the ratio rn in Poisson statistics is

pðrÞ ¼ 1

ð1þ rÞ2 : ð18Þ

On the other hand, in random matrices, the distribution of
the ratio rn becomes [40]

pðrÞ ¼ 1

Zβ

ðrþ r2Þβ
ð1þ rþ r2Þ1þ3

2
β
: ð19Þ

For the GOE, β ¼ 1 and Zβ ¼ 27
8
. For the GUE, β ¼ 2 and

4π
81

ffiffi
3

p . For the GSE, β ¼ 4 and Zβ ¼ 4π
729

. r → 0 behavior

FIG. 4. These are numerical plots for the N ¼ 12 q ¼ 4
deformed SYK model with μ ¼ 50 and sk ¼ 1 in (13) for
all k. We take the average over 2000 samples. m is the number
of flips of spins from the B state from the ground state of HM.
More explicitly, we choose jB↑↑↑↑↑↑i for m ¼ 0, jB↓↓↑↑↑↑i as an
example of m ¼ 2 cases and jB↓↓↓↑↑↑i for m ¼ 3. We also plot
the shifted spectral form factor of bandm, where the spectral form
factor restricted on themth band is

Pfm
i;j¼im

e−iðEi−EjÞt and the shift
(3) is given by L ¼ dm. We see the kink around the transition time
from the ramp to the plateau in the m ¼ 3 case, which reflects
GSE statistics [7].
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pðrÞ ∼ rβ represents the level repulsion. We study this gap
ratio numerically in the N ¼ 16 case and compare with the
random matrix case. The m ¼ N

4
¼ 4th band shows GOE

statistics, and the m ¼ 3rd band shows GUE statistics.
These result agree with our symmetry analysis above. For
m ¼ N

4
th bands in N ¼ 4ðmod 8Þ, the degeneracies are

removed at a different order of perturbation. Therefore,
E2n − E2n−1 is of order μ−1, while E2nþ1 − E2n is of order 1.
In this case, we expect E2nþ2 − E2n is determined by the
first-order perturbation and looks like the GSE when μ is
large. We study the gap ratio r0n ¼ E2nþ2−E2n

E2n−E2n−2
numerically,

and the results show GSE statistics. On the other hand, the
gap ratio r00n ¼ E2nþ2−E2nþ1

E2n−E2n−1
is also an order 1 quantity because

both the numerator and the denominator are of order μ−1.
These gaps E2n − E2n−1 come from (17), which is
Hermitian. Therefore, we expect this ratio to show GUE
statistics. We study this gap ratio r00n numerically, and it
shows GUE statistics as expected.

VI. CONCLUSIONS

The return amplitude in random matrices is exactly
calculated and related to the spectral form factor. Our
numerical study also shows that this relation holds in the
SYK model. At early time the return amplitude decays but
at late time it grows from the dip and then saturates the
plateaux value. Because the random matrix behavior is
expected to be universal in chaotic systems, we expect that
these behaviors are true even in more generic chaotic
systems like conformal field theory after a suitable average
like a time average. When we deform the SYKHamiltonian

by a mass term, the return amplitude depends on the choice
of initial states. If we choose the initial product states to be a
ground state of the mass term, the return amplitude does not
decay. This deformation prevents the initial state from
being scrambled and protects from thermalization. If we
flip them spins from the almost ground state one, the return
amplitude decays and their behaviors are again explained
by random matrix theory. The most interesting case is the
m ¼ N

4
cases in N ¼ 4 (mod 8) cases in which we see the

second dip, ramp, and plateau. In early time, the return
amplitude behaves like GSE statistics with two degener-
acies at each level, but at late time, it realizes that the
degeneracies are actually removed and finally decays to
smaller values. This serves an example of the return
amplitude or the spectral form factor with complicated
patterns. It is interesting that, though the total deformed
Hamiltonian is not time-reversal invariant, the spectrum
around E ¼ 0 is characterized by the property of the time-
reversal symmetry of the SYK Hamiltonian.
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APPENDIX A: EXPLICIT REALIZATION OF
MAJORANA FERMIONS

In this Appendix, we give an explicit representation of
Majorana fermions. We follow the notation of Ref. [31]. We
can realize the fermions as the tensor products of the Pauli
matrices:

ψ2k−1 ¼
1ffiffiffi
2

p Z1 � � �Zk−1XkIkþ1 � � � IN=2;

ψ2k ¼
1ffiffiffi
2

p Z1 � � �Zk−1YkIkþ1 � � � IN=2: ðA1Þ

Here,

Xi ¼
�
0 1

1 0

�
; Yi ¼

�
0 −i
i 0

�
; Zi ¼

�
1 0

0 −1

�

ðA2Þ

are the Pauli operators on the ith site, and we omit the
symbols ⊗ for the tensor product in (A1). Then, the kth
spin operator Sk becomes

Sk ¼ −2iψ2k−1ψ2k ¼ I1…Ik−1ZkIkþ1…IN
2
: ðA3Þ

This confirms that Sk is the spin operator that measures
the eigenvalues of Zk. In this basis, we can write the jBsi
state as

FIG. 5. We plot the probability density Pðln rÞ ¼ pðrÞr for
some examples. The solid lines are the Wigner surmise given by
(18) and (19). Top: The gap ratio rn for the m ¼ 3rd band and
m ¼ 4th band in the N ¼ 16, q ¼ 4 deformed SYK model. We
take the average over 1000 samples. Bottom: We consider the
m ¼ 3rd band in the N ¼ 12, q ¼ 4 deformed SYK model. The
left is the gap ratio for even energy levels r0n ¼ E2nþ2−E2n

E2n−E2n−2
. The right

is the gap ratio r00n ¼ E2nþ2−E2nþ1

E2n−E2n−1
. We take the average over 2000

samples for both cases.
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jBsi ¼ js1s2 � � � sN
2
i ðA4Þ

for the state with SkjBsi ¼ skjBsi.
We also give the explicit form of antiunitary symmetry

T and mod 2 fermion number ð−1ÞF in this basis. The
fermion number ð−1ÞF is given by

ð−1ÞF ¼
YN

2

k¼1

Sk ¼ 2
N
2 i−

N
2ψ1ψ2 � � �ψN: ðA5Þ

T depends on the N. When N=2 is an odd case that
corresponds to N ¼ 2; 6ðmod 8Þ,

T ¼ 2
N
4Kψ1ψ3 � � �ψN−3ψN−1; ðA6Þ

where K is the antiunitary operator that takes the complex
conjugate. When N=2 is an even case that corresponds to
N ¼ 0; 4ðmod 8Þ,

T ¼ 2
N
4Kψ2ψ4 � � �ψN−2ψN: ðA7Þ

Using this explicit representation, we can show the sym-
metry property in Table I. Though these realizations give a
way to see the symmetry property, they are characterized by
topological invariants [21] and independent from explicit
realization.

APPENDIX B: HAAR INTEGRALS AND THE
DERIVATION OF THE RETURN AMPLITUDE

IN RANDOM MATRICES

We derive the return amplitude in random matrix theory.
The key observation is that the measure is invariant under
unitary conjugation dðU†HUÞe−VðU†HUÞ ¼ dHe−VðHÞ with
VðHÞ ¼ L

2
TrH2. Though we choose the potential VðHÞ of

the GUE, we only need the invariance of VðHÞ under the
unitary conjugation. Then, we can represent the GUE
average as hfðHÞiGUE ¼ R

dH
R
dUe−

L
2
TrH2

fðU†HUÞ for
any function fðHÞ, where dU is the Haar measure. For the
return amplitude, we get

Z
dH

Z
dUe−VðHÞjhψ0jU†e−iHtUjψ0ij2

¼
Z

dH
Z

dUe−VðHÞTrðe−iHtUΠU†eiHtUΠU†Þ: ðB1Þ

In the integrand we have the fourth moment of the unitary
matrices. To evaluate this, we need the following integral:

Z
dUHaarUi1j1Ui2j2U

�
i0
1
j0
1
U�

i0
2
j0
2

¼ 1

L2 − 1
ðδi1i01δi2i02δj1j01δj2j02 þ δi1i02δi2i01δj1j02δj2j01Þ

−
1

LðL2 − 1Þ ðδi1i01δi2i02δj1j02δj2j01 þ δi1i02δi2i01δj1j01δj2j02Þ:

ðB2Þ

Using this integral, we obtain

hjhψ0je−iHtjψ0ij2iGUE ¼ 1

LðLþ 1Þ ðhZðtÞZðtÞ
�iGUE þ LÞ:

ðB3Þ

In a similar way, we obtain

hjhψ1je−iHtjψ0ij2iGUE ¼ 1

L2 − 1

�
L −

hZðtÞZðtÞ�iGUE
L

�
;

ðB4Þ
for orthogonal jψ0i and jψ1i.
For GSE or GOE cases, the Haar integral for U ∈ UðLÞ

is replaced by the Haar integral for symplectic groups S ∈
SpðL=2Þ or orthogonal groups O ∈ OðLÞ. The Haar
integral for symplectic groups is given by [27,28]

Z
dSHaarSi1j1Si2j2S

�
i0
1
j0
1
S�i0

2
j0
2

¼ L − 1

LðLþ 1ÞðL − 2Þ ðδi1i01δi2i02δj1j01δj2j02
þ δi1i02δi2i01δj1j02δj2j01 þ Ci1i2Cj1j2Ci0

1
j0
1
Cj0

1
j0
2
Þ

−
1

LðLþ 1ÞðL − 2Þ ðδi1i01δi2i02δj1j02δj2j01
þ δi1i02δi2i01δj1j01δj2j02 þ ðδi1i01δi2i02 − δi1i02δi2i01ÞCj1j2Cj0

1
j0
2

þ Ci1i2Ci0
1
i0
2
ðδj1j01δj2j02 − δj1j02δj2j01ÞÞ; ðB5Þ

where Cij is the antisymmetric invariant. This coupling
gives the inner product between the Kramers pairs. Because
this coupling is antisymmetric, the diagonal part viCijvj for
jψ0i ¼

P
i vijeii vanishes, and they can be ignored in

the calculation of the return amplitude. Using this integral,
we obtain

hjhψ0je−iHtjψ0ij2iGSE ¼ 1

LðLþ 1Þ ðhZðtÞZðtÞ
�iGSE þ LÞ;

ðB6Þ

which is the same expression with the GUE case, though
the Haar integrals themselves are different.
The Haar integral for orthogonal groups is given by

[27,28]
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Z
dOHaarOi1j1Oi2j2O

�
i0
1
j0
1
O�

i0
2
j0
2

¼ Lþ 1

LðL − 1ÞðLþ 2Þ ðδi1i01δi2i02δj1j01δj2j02
þ δi1i02δi2i01δj1j02δj2j01 þ Ci1i2Cj1j2Ci0

1
j0
1
Cj0

1
j0
2
Þ

−
1

LðL − 1ÞðLþ 2Þ ðδi1i01δi2i02δj1j02δj2j01
þ δi1i02δi2i01δj1j01δj2j02 þ ðδi1i01δi2i02 þ δi1i02δi2i01ÞCj1j2Cj0

1
j0
2

þ Ci1i2Ci0
1
i0
2
ðδj1j01δj2j02 þ δj1j02δj2j01ÞÞ; ðB7Þ

where Cij is the symmetric coupling and we can choose a
basis with Cij ¼ δij. Unlike the case of symplectic groups,
the diagonal part viCijvj for jψ0i ¼

P
i vijeii does not

vanish, and the return amplitude depends on states.

APPENDIX C: SYMMETRY ANALYSIS OF
THE DEFORMED SYK HAMILTONIAN AT

FIRST-ORDER PERTURBATION

In this Appendix, we study the symmetry class Hm in
detail that is imposed by T symmetry. Because T relates
the mth band and the ðN

2
−mÞth band, it is sufficient to

consider the symmetry constraint on the submatrix

Hm;N
2
−m ¼

�Hm Sm
S†m HN

2
−m

�
; ðC1Þ

where Hm ¼ PmHSYKPm and Sm ¼ PmHSYKPN
2
−m. Using

the symmetry of the SYKHamiltonian ð−1ÞFHSYKð−1ÞF¼
HSYK, we find PmHSYKPN

2
−m ¼ ð−1ÞN2PmHSYKPN

2
−m. This

means Sm ¼ 0 for N ¼ 2; 6ðmod 8Þ. For N ¼ 0; 2ðmod 8Þ
cases, T 2 ¼ 1. In these cases, we can choose the basis with
T ¼ ð 0

Idm

Idm
0
ÞK, where Idm is the identity matrix of rank dm

and K is the complex conjugate operator. The invariance
under this T imposes the condition H�

N
2
−m ¼ Hm and

STm ¼ Sm. For N ¼ 0ðmod 8Þ, this means that Hm;N
2
−m is

conjugate to real symmetric matrix, though Hm;N
2
−m is

expressed in an unusual basis in which the reality is not
manifest. To see the reality manifestly, it is convenient to
change the basis in the following way:�
Hm Sm
S�m H�

m

�
→

1ffiffiffi
2

p
�

Idm Idm
iIdm −iIdm

��
Hm Sm
S�m H�

m

�

×
1ffiffiffi
2

p
�
Idm −iIdm
Idm iIdm

�

¼
�

ReHm þ ReSm ImHm − ImSm
−ImHm − ImSm ReHm − ReSm

�
:

ðC2Þ
This takes the form of the real symmetric matrix under the
condition STm ¼ Sm and H†

m ¼ Hm. Though T relates Hm

and HN
2
−m, it does not impose any constraint on Hm itself.

Therefore, for generic matrix Hm;N
2
−m, Hm belongs to

the GUE.
For N ¼ 4; 6ðmod 8Þ, T 2 ¼ −1. In these cases, we can

choose the basis with T ¼ ð 0
Idm

−Idm
0
ÞK. In the same manner,

we obtain Hm ¼ H�
N
2
−m and STm ¼ −Sm. For N ¼ 4ðmod 8Þ,

this means that Hm;N
2
−m is a quaternion Hermitian. We can

write it as Hm ¼ H þ iAz and Sm ¼ iAx þ Ay, where H is
real symmetric and Ax, Ay, Az are real antisymmetric. Then,
Hm;N

2
−m ¼ H ⊗ I2 þ

P
α iAα ⊗ σα gives an usual realiza-

tion of quaternion Hermitian matrices. Hm ¼ H þ iAz
spans generic Hermitian matrices, and the ensemble is
GUE. Again, though T relates Hm and HN

2
−m, T does not

impose any condition on Hm itself.

APPENDIX D: TIME AVERAGE OF SINGLE
SAMPLE IN THE SYK MODEL

The spectral form factor is not self-averaging [32], and we
need some averages to get smooth behaviors. In the SYK
model, we take the ensemble average over the coupling
Ja1���aq . In this Appendix, we consider the time average of the
return amplitude in a single sample in the SYKmodel, which
is another kind of average. First, we consider the infinite time
average, which gives the averaged plateau value, in general
quantum systems without degeneracy. By decomposing the
state jψ0i ¼

P
i cijEii, we obtain

lim
T→∞

1

T

Z
T

0

jhψ0je−iHtjψ0ij2

¼ lim
T→∞

1

T

Z
T

0

dt
X
i;j

c�i cic
�
jcje

−iðEi−EjÞt

¼
X
i

jcij4: ðD1Þ

FIG. 6. This is the plot of the return amplitude in the N ¼ 18,
q ¼ 4 SYKmodel with the time average. We choose jB↑↑↑↑↑↑↑↑↑i
as the initial state. We can see the slope, dip, ramp, and plateau
even in the time-average cases. As we mentioned, the plateau value
of the time averaged return amplitude has a small deviation from
the shifted spectral form factor.
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Therefore, the time average is not exactly the same with the
plateau value in the ensemble average (3). If we take the
average of (D1) over states, it becomes the late time value
2=ðLþ 1Þ in the ensemble average. In the SYK model, we
consider the following time average:

gtime
p ðt; βÞ ¼

Z 3
2
t

1
2
t
jhBsje−iHSYKt0−βHSYK jBsij2dt0: ðD2Þ

Here, we take the time average between 1
2
t < t0 < 3

2
t around

time t, which is taken in Ref. [23]. We show the plots of the

return amplitude and the spectral form factor with time
average in Fig. 6. Both the return amplitude and the spectral
form factor show the slope, dip, ramp, and plateau behavior.
This motivates us to expect that the return amplitude in more
generic quantum systems like chaotic conformal field
theories shows these structures after the time average. We
also compare the shifted spectral form factor (D1) in which
the ensemble average of the spectral form factor is replaced
by the time average. As we pointed out, their late time value
is not exactly the same, but the behavior shows good
agreement on each time.
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