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We study the return amplitude, which is the overlap between the initial state and the time-evolved state,
in the Sachdev-Ye-Kitaev (SYK) model. Initial states are taken to be product states in a spin basis. We
numerically study the return amplitude by exactly diagonalizing the Hamiltonian. We also derive the
analytic expression for the return amplitude in random matrix theory. The SYK results agree with the
random matrix expectation. We also study the time evolution under the different Hamiltonian that is
originally proposed to describe the traversable wormholes in projected black holes in the context of
holography. The time evolution now depends on the choice of initial product states. The results are again
explained by random matrix theory. In the symplectic ensemble cases, we observe an interesting pattern of

the return amplitude in which they show the second dip, ramp, and plateaulike behavior.
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I. INTRODUCTION

The Sachdev-Ye-Kitaecv (SYK) model [1,2] is an inter-
esting model. This model is solvable at large N [3,4] but is
maximally chaotic [2,5], shows random matrix behaviors
[6,7], and shares the same sector with two-dimensional
dilaton gravity [8—11].

We study the time dependence of pure states in the SYK
model. Here, we consider a special class of pure states that
were first considered in Refs. [12,13] and studied further in
Refs. [14-16]. They are simultaneous eigenstates of spin
operators that are constructed from Majorana fermions.
One interesting physical interpretation of these states is that
they are states after projection measurements of maximally
entangled states by these spin operators [12,17]. In this
context, we can interpret our setup as time evolution after
projection measurements. We expect that the time evolution
starts flipping these spins under the SYK Hamiltonian, and
we get more general superpositions of these product states.
In this paper, we consider the return amplitude, which is
the square of the fidelity and used in the similar setup in
conformal field theory [18,19]. We can also consider the
time evolution under deformed Hamiltonians after the
measurements. Here, we consider a deformation proposed
by Ref. [12]. They are interpreted as a traversable wormhole
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protocol to see the insides of black holes [12,20]. This
deformed Hamiltonian can also be seen as a deformation of
an integrable Hamiltonian with degenerate spectrum by the
chaotic SYK Hamiltonian.

II. SYK MODEL

In the SYK model, we consider even N Majorana
fermions ; that are obeyed by the anticommutation
relation {y;,y;} = &;;. The Hamiltonian of the SYK
model with g body interactions is given by

4
Hgyg = 12 E

aj<ay<--<a,

Jal-uaql//al T 'Waq' (1)

Here, J,, ..., are random couplings with mean (J,,, a, ), =0

and variance (Jﬁl_..al)] = 12[(\5{;1])!. The g = 4 model is the

original SYK model that we mainly focus on in this paper.
This system has two important symmetries [6,21]. The first
one is the antiunitary symmetry 7. This symmetry satisfies
Tw, T ' =y, The SYK Hamiltonian (1) is invariant
under 7 when g = 0(mod4). The other important sym-
metry is the modulo 2 fermion number operator (—1)F with
((=1)F)? = 1. These symmetries can have global anoma-
lies depending on N (mod 8) [21]. These anomalies are the
origin to realize all of Gaussian unitary (GUE), orthogonal
(GOE), and symplectic (GSE) ensembles in the SYK model
[6]. Here, we summarize the results [6,22] in Table 1.

Now, we consider the return amplitude. The return
amplitude is

Published by the American Physical Society


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.126017&domain=pdf&date_stamp=2019-12-17
https://doi.org/10.1103/PhysRevD.100.126017
https://doi.org/10.1103/PhysRevD.100.126017
https://doi.org/10.1103/PhysRevD.100.126017
https://doi.org/10.1103/PhysRevD.100.126017
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

TOKIRO NUMASAWA

PHYS. REV. D 100, 126017 (2019)

TABLE I. Symmetry property in the SYK model.

N(mod8) 7% 7T (-1)f =a(-1)FT Statistics Degeneracy

N=0 +1 a=+l1 GOE 1

N=2 +1 a=-1 GUE 2

N=4 -1 a=+1 GSE 2

N=6 -1 a=-1 GUE 2
9p(1) = [{wole™ ™ |yo) *. 2)

Here, |y) is a initial state, and H is the Hamiltonian of the
system. This definition is also applicable to any quantum
systems. We take the square of |(yq|e™"#!|y)|, which is
different from the definition in Refs. [18,19]. Our choice
makes the relation to the so-called spectral form factor
clear, which is studied extensively in the field of quantum
chaos and also recently in holography [7,23-26].

III. RETURN AMPLITUDE IN RANDOM
MATRICES AND IN THE SYK MODEL

Because we expect that the late time behavior of the
SYK model is governed by random matrices [7], it is good
to study first the return amplitude in random matrix
theory. Now, we want to compute {|(yo|e™ ! |wo)|?)Gug =
[ dHe 5" | (yrole ™|y, |2, where dH is the Haar mea-
sure on the space of L x L Hermitian matrices. We can
compute this in random matrix theory using the Haar
integrals. The results are

(| wole™ o) P = —— 1)(<g(t)>GUE+L)7 (3)

L(L+

where g(t) = Z(t)Z(t)* with Z(t) = Tr(e~""). This g(t) is
the spectral form factor, which diagnoses the energy-level
correlations in chaotic systems. We also find that this
relation also holds in the GSE by replacing the average with
()gsE» using the Haar integral [27,28]. This formula that
relates the spectral form factor to the return amplitude in
random matrices in the GUE and GSE is our first main
result on the random matrices side.' We put the derivation
of this formula in Appendix B. In the GOE, the return
amplitude depends on the initial state |w). Equation (3)
means that the return amplitude is given essentially by the
constant L shift of the spectral form factor. When ¢t = 0,
the spectral form factor is simply given by the square of the
dimension of the Hilbert space g(0) = L?. Under the time
evolution, (g(7))gug decreases and hits the minimal value.
These regimes are called the slope and the dip [7]. Then,
(g(1))gug increases linearly. This linear growth is called
the ramp [7], and this reflects the long-range eigenvalue
correlations in chaotic systems. Finally, (¢(7))gup saturate

"The return amplitude in the GOE is also studied in Ref. [29].

the late time value (g(o0))gue = L in sufficiently late time.
This is called the plateau [7]. The plateau value generically
coincides with the infinite time average,

LT —i(E,—E
frg, Ao 2 N W

where N is the degeneracy of each energy level E.
This plateau value is much smaller than the initial value
g(0) = L? but still bigger than O(1). The relation (3)
between the return amplitude g, () and the spectral form
factor g() says that the return amplitude also shows the
slope, the dip, the ramp, and the plateau. The plateau value
for the return amplitude is given by (g,(?))gur =
2/(L + 1), which is also much smaller than the initial
value g,(0) = 1.

The spectral form factor has a finite temperature gener-
alization g(t; ) = Tr(ePH=H!)Tr(e=PH+H") For a finite
temperature analog of the return amplitude, we consider

9p(t:8) = [wole = [yrg) . (5)

We can think of this as the return amplitude with the initial

y . . .
state 2 lwo). As is the case with the finite temperature
spectral form factor [7], when we take the ensemble

—pH—iH! 2y .
W is not equal

[(wole==1" yry ) |2 .
Ll Bl . where is an
[(wole ™ Jyro) | e o

ensemble average. In this paper, we consider the annealed
disorder in which the analytic treatment becomes easy
[7,30]. Another motivation to take the annealed version is
its similarity with the unnormalized cylinder amplitude in
quantum field theories [18,19]. The ensemble average of
the finite temperature return amplitude (5) in random
matrix theory becomes

average, the annealed disorder

to the quenched disorder (

(|{wole PH=H o) |*) u

1

LT ((9(t: B))aue + (9(0:28))gue)-  (6)

This formula that relates the finite temperature spectral
form factor to the finite temperature return amplitude in
random matrices in the GUE is our second main result in
random matrices side. We call the right-hand side of (3) and
(6) the shifted spectral form factor.

Now, we consider the return amplitude in the SYK
model. The states we consider are defined as follows. First,
there are N /2 spin operators in the SYK model defined by
Sy = —2iwy_ 1wy These satisfy S7 = 1, and eigenvalues
of S, are given by s, = 1. The pure states |B,) we
consider are defined as common eigenstates of these spin
operators:

Sk|Bs) = s¢|Bs), fork=1,...,N/2. (7)
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FIG. 1. These are numerical plots for the N = 14 ¢ =4 SYK

model. We take the disorder average for 1500 samples except
for the single sample case. We put f = 1.5. The return amp-
litude is defined (9), and we choose the state that satisfies
S¢|By..4) = |By...+). The shifted spectral form factor is the right-
hand side of (6) for the SYK Hamiltonian. We normalize them so
that the initial values become 1. A single sample of g, () shows
erratic oscillation around the averaged return amplitude at late
time, and it is not self-averaging [32].

This defines 27 states, one for each choice of the spins s.
These states form a basis of the SYK Hilbert spaces. By
including the Euclidean evolution in the SYK Hamiltonian,
we can produce lower-energy states:

B,(5)) = 8o B,). (8)
The return amplitude for the SYK model is
9p(t:8) = |(B,|e Pswx=iHlsxt| B )2, ©)

Currently, we do not have any technique to analytically
compute (9) for finite N, and we numerically computed the
finite temperature return amplitude (9) in the SYK model.
The results are plotted in Fig. 1. Clearly, we observe the
slope, the dip, the ramp, and the plateau in the return
amplitude in the SYK model. The early time decay is
almost the same with the spectral form factor. In the large N
limit, (B,|e™#Hsv|B,) = 27Tr(e PHsvc) 4 O(1/N4™") for
any |B,) [12] in the leading of 1/N expansion. The early
time dependence is captured by the analytic continuation of
p — P+ it from the leading term in 1/N, and we expect the
match between them. On the other hand, in the ramp and
the plateau regions, we do not expect that because they are
nonperturbative effects in 1/N expansion [7,31]. The plot
shows that they take different values at late time. The late
time behavior is expected to be governed by random matrix
theory [7]. We also for the return amplitude. To confirm
this, we compare the return amplitude with the shifted
spectral form factor (6) in which the ensemble average
(9(t;8))gue is replaced by the SYK coupling average
(9(t;)),;. We also restrict the Hamiltonian to the fixed

(=1)F charge sector in the shifted spectral form factor
because only that acts on the state |B,). The plots agree very
well, and these results also support the random matrix
behavior in the late time in the SYK model.

IV. EVOLUTION AMPLITUDE IN RANDOM
MATRICES AND IN THE SYK MODEL

Equation (3) also means that the initial state |y) can
evolve to other states that are orthogonal to |y). Let us
pick a state |y) that satisfies (y|wg) = 0. In the similar
way with the return amplitude, we can calculate the overlap
|(y1|e= |y ) ). Here, we call this the evolution amplitude.
The evolution amplitude becomes

1 <L_<g([2>GUE>. (10)

L?—1

(w1 le ™ |wo) [P gue =

This expression for the evolution amplitude in terms of the
spectral form factor is our third main result in random
matrices side. We put the derivation of this formula in
Appendix B. The evolution amplitude increases under the
time evolution from 0, then slightly decreases, and finally
saturates the late time value 1/(L + 1). Interestingly, this
late time value is not equal to the late time value of the
return amplitude g,(co) = 2/(L + 1) but half of that. On
the other hand, we get [dU|(y|U|p)|* =1/L for any
choice of |w) and |¢) for Haar random unitary U. This is
because the average with limy_o, [ dHe s F(e™H1) is
not equivalent to the Haar random unitary average
JdUF(U) for functions F on the space of L x L unitary
groups [31].

In the GUE case, the spectral form factor at infinite
temperature is given by [30]

J1(1)?
2

(9(1))gug = L? —-L <1 —i) O2L—1)+L, (11)
where J,(7) is the Bessel function of the first kind and 6(¢)
is the Heaviside step function. Together with this expres-
sion of the spectral form factor and (3) or (10), we can
determine the exact time evolution of the return amplitude
and the evolution amplitude in the GUE. We plot (3) and
(10) in Fig. 2. Clearly, the return amplitude acquires a larger
value than the evolution amplitude at late times. In this
sense, the time-evolved state e #"|y) never forgets about
the direction of the initial state |y). This plot also makes it
clear that the return amplitude starts to acquire the larger
value from the ramp region, which is the signature of
quantum chaos.

Now, we consider the evolution amplitude in the SYK
model. Especially, we consider the amplitude between |Bj)
with different spins:

|(By|eHsx!|B,)[2. (12)
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FIG. 2. The plot of the return amplitude and the evolution
amplitude in random matrices in the GUE with L = 50. From this
picture, the return amplitude acquires a larger value than the
evolution amplitude because of the ramp that is the signal of
quantum chaos.
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FIG. 3. These are the numerical plots of the return amplitude

and the evolution amplitude in the N =14, ¢ =4 SYK
model. For an example of the return amplitude, we consider
[(Birr1114|€7 536! Byysarpq)|? and for an example of the evo-
lution amplitude, we consider [(B| | 11111]e™ s |Bypprrng )]
Top: We take the average over 1500 samples for both the return
amplitude and the evolution amplitude. Bottom: The return
amplitude and the evolution amplitude with the single sample.

In Fig. 3, we compare the return amplitude and the
evolution amplitude numerically in the SYK model.
After the ensemble average, they show that the plateau
value in the return amplitude is clearly larger than the
evolution amplitude. Even in single realization, the return
amplitude looks to take larger value than the evolution
amplitude.

V. DEFORMED HAMILTONIAN

Next, we consider the following “mass term” Hami-
Itonian [12]:

1 .
Hy = —EZskSk = lzskWZk—IV/Zk' (13)
k k

This Hamiltonian is diagonalized in the |B,) state basis.
Especially, the unique ground state of this Hamiltonian is
given by |B,) with spin {s;} and energy E(()O) = —N/4. By
flipping some spins from the ground state |B,), we obtain
the whole energy eigenstates. The excited state energy
levels are given by

N N/2
Ef,?) = ) -+ m with degeneracy d,, = ( / ) (14)
m

There are energy gaps, which are given by E£r?>+1 -
©) _

wm = 1, between the bands. Now, we consider the
Hamiltonian that contains the both the SYK term and (13):

(15)

This Hamiltonian was originally proposed to describe the
traversable wormhole after projection measurements [12].
We call this Hgys the deformed Hamiltonian. Here, we
consider the regime that y is large, and we can treat the
SYK term as a perturbation. This can be seen as a
perturbation of the integrable system with the degenerate
spectrum by the chaotic Hamiltonian.” We also concentrate
on the infinite temperature cases. Because y is large, exact
energy levels from E; with i, =d+ - +d,_;+1

to E; with f, =d; +---+d, localize near ES,(,)) and
form a bandlike structure. By exactly diagonalizing the
Hamiltonian, we can study the return amplitude under the
deformed Hamiltonian. We show the numerical results in
Fig. 4. Here, we explain the results. First, the ground state
of Hg.s is almost given by |B;) with m = 0 because the gap
between the ground state and the first excited states is y,
which is sufficiently large and suppresses the mixing
with other |B;) states. In this case, the return amplitude
does not decay and also shows oscillation at early time.

Hyet = Hgyg + pH .

2Other kinds of mass deformations are considered in
Refs. [33-35]
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FIG. 4. These are numerical plots for the N =12 g=4
deformed SYK model with 4 =50 and s, =1 in (13) for
all k. We take the average over 2000 samples. m is the number
of flips of spins from the B state from the ground state of H,,.
More explicitly, we choose |Byy1444) for m =0, [B} 1444) as an
example of m = 2 cases and B 444) for m = 3. We also plot
the shifted spectral form factor of band m, where the spectral form
factor restricted on the mth band is >/ n_, e {(EE) and the shift
(3)is given by L = d,,,. We see the kink around the transition time
from the ramp to the plateau in the m = 3 case, which reflects
GSE statistics [7].

The behavior of |B) with m # 0 is described by random
matrix theory. According to the perturbation theory of
quantum mechanics, the first-order shift of energy levels is
determined by the projection of Hgyk onto the degenerate
energy levels [36]. Therefore, at early time, the projection
of Hgyg on each degenerate energy level determines
the time evolution of |B;). We know the dimension of
the projected Hamiltonian from (14). By considering the
spectral form factor restricted on the mth band and its shift
by L = d,,, we see the very good agreement with the return
amplitude. Because the spectral form factor and the return
amplitude depend on the level statistics, next we determine
the symmetry class of each band. To see this, we need to
know the symmetry properties of |B,). These are eigen-
states of (—1)¥. The antiunitary 7 flips the spin 75,7 ! =
—S}. Therefore, we find that 7'|B,) = €'%|B_), where ¢
is a phase factor and |B_;) is the state that satisfies
S¢|B_y) = —si|B_;). From this, we find that for the
projection operator onto the flip number m sector P,, =

> sttip—m |Bs) (Bj| satisfies

TPmT_l = P»n

F—m*

(16)

This means that 7 flips the bands.

Now, we consider the symmetry class based on these
properties. First, we consider the m #% bands. In this
case, H,, satisfies TH,, 7! = H%_m. Therefore, there are
no constraints from the symmetry 7, and we expect GUE
statistics for H,,. Next, we consider m = %th bands, which

existin N = 0,4(mod 8) cases. Now, 7 imposes symmetry
constraint 7~ H%’T -1 = H%, and we expect the GOE for
N = 0(mod 8) and GSE for N = 4(mod 8) on these bands
at the first order of perturbation. Except for m = J/th bands
in N =4(mod8), we expect that degeneracies are com-
pletely removed by the SYK Hamiltonian perturbation.
Because of Kramers’s degeneracies of Hy that originate to
the time-reversal anomaly 72 = —1, m = Jth bandsin N =
4(mod 8) still have two degeneracies at each level at the
first-order perturbation. According to the second-order
perturbation theory [36], the second-order shift of degen-
erate spectra is determined by H ‘% = PiHSYKQ%HSYKPi.

Here, Oy = 3, v _gim and P =y ) (Wil + wiz)(wizl
with two eigenstates of ith degenerate eigenvalues. We
choose the basis that satisfies 7 |y; ;) = |y;,). From
these definitions, we find that 7P,7-! =P, and
TQ%T" = —Qy. This means TH&T" = —H&. By solv-

ing this symmetry constraint in the basis with 7 = ()X,
we obtain

) an

A X
Hy = PiHgsyx QuH sy P; = ( y

4 a* —x
with a real number x and a complex number a. This means
that in a generic Hamiltonian the off-diagonal element a
enters and the degeneracies are removed. Therefore, the
degeneracy is removed at the second order of the pertur-
bation. This difference of the order means that the return
amplitude (and the spectral form factor) does not see the
true degeneracy at early time. We see numerically in Fig. 4
that they show the first-order degeneracy at the first plateau,
but after that, they show the second slop, dip, ramp, and
plateau. The second plateau value is smaller than the first
plateau value because (4) means that degeneracies give
larger plateau values.

To see the level statistics further, we study the distribu-
tion of the adjacent gap ratio [6,37-39] for each mth band
(see Fig. 5). The adjacent gap ratio is defined as r, =
E*_‘—E_E] for an ordered spectrum E,_| < E, < E, ;. The

n n—

distribution of the ratio r, in Poisson statistics is

p(r) =1 : (18)

1+r)?

On the other hand, in random matrices, the distribution of
the ratio r,, becomes [40]

r+r2)f
pr) = )

= 19
Zg(1 + r+ P+ (19)

For the GOE, = 1 and Z; = %7 For the GUE, p = 2 and

47_ For the GSE, f =4 and Z; = 2%

. .- i
813 735- T 0 behavior
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FIG. 5. We plot the probability density P(Inr) = p(r)r for
some examples. The solid lines are the Wigner surmise given by
(18) and (19). Top: The gap ratio r, for the m = 3rd band and
m = 4th band in the N = 16, ¢ = 4 deformed SYK model. We
take the average over 1000 samples. Bottom: We consider the
m = 3rd band in the N = 12, ¢ = 4 deformed SYK model. The

left is the gap ratio for even energy levels 7, = % The right

2n
. . O
is the gap ratio r), = ﬁ We take the average over 2000

samples for both cases.

p(r) ~ P represents the level repulsion. We study this gap
ratio numerically in the N = 16 case and compare with the
random matrix case. The m = % = 4th band shows GOE
statistics, and the m = 3rd band shows GUE statistics.
These result agree with our symmetry analysis above. For
m =%th bands in N =4(mod8), the degeneracies are
removed at a different order of perturbation. Therefore,
E,, — E,,_; isof order y~!, while E,,, | — E», is of order 1.
In this case, we expect Ej, ., — E;, is determined by the
first-order perturbation and looks like the GSE when y is

large. We study the gap ratio v}, = % numerically,

and the results show GSE statistics. On the other hand, the

Erni2=Epnii
Ey—Epp

both the numerator and the denominator are of order p~!.
These gaps E,, — E,,_; come from (17), which is
Hermitian. Therefore, we expect this ratio to show GUE
statistics. We study this gap ratio ), numerically, and it
shows GUE statistics as expected.

gap ratio 1, = is also an order 1 quantity because

VI. CONCLUSIONS

The return amplitude in random matrices is exactly
calculated and related to the spectral form factor. Our
numerical study also shows that this relation holds in the
SYK model. At early time the return amplitude decays but
at late time it grows from the dip and then saturates the
plateaux value. Because the random matrix behavior is
expected to be universal in chaotic systems, we expect that
these behaviors are true even in more generic chaotic
systems like conformal field theory after a suitable average
like a time average. When we deform the SYK Hamiltonian

by a mass term, the return amplitude depends on the choice
of initial states. If we choose the initial product states to be a
ground state of the mass term, the return amplitude does not
decay. This deformation prevents the initial state from
being scrambled and protects from thermalization. If we
flip the m spins from the almost ground state one, the return
amplitude decays and their behaviors are again explained
by random matrix theory. The most interesting case is the
m = % cases in N = 4 (mod 8) cases in which we see the
second dip, ramp, and plateau. In early time, the return
amplitude behaves like GSE statistics with two degener-
acies at each level, but at late time, it realizes that the
degeneracies are actually removed and finally decays to
smaller values. This serves an example of the return
amplitude or the spectral form factor with complicated
patterns. It is interesting that, though the total deformed
Hamiltonian is not time-reversal invariant, the spectrum
around E = 0 is characterized by the property of the time-
reversal symmetry of the SYK Hamiltonian.
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APPENDIX A: EXPLICIT REALIZATION OF
MAJORANA FERMIONS

In this Appendix, we give an explicit representation of
Majorana fermions. We follow the notation of Ref. [31]. We
can realize the fermions as the tensor products of the Pauli
matrices:

Vo1 = =21 Zia Xidiyr - Ingos

Hg‘_
()

=—Z1 LY I Iy Al
Yok \/5 1 k=11 kd k1 N/2 ( )
Here,
(o) =0 o) 2= 5)
Xi: s Yi: 5 Z,':
1 0 i 0 0 -1
(A2)

are the Pauli operators on the ith site, and we omit the
symbols @ for the tensor product in (Al). Then, the kth
spin operator S; becomes

Sp = 2iyp_1yu = I1-~-1k—1Zk1k+1---Ig- (A3)
This confirms that S; is the spin operator that measures

the eigenvalues of Z;. In this basis, we can write the |B)
state as

126017-6
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1B,) = [s155 -+ s) (A4)

for the state with Si|B;) = s¢|By).

We also give the explicit form of antiunitary symmetry
7 and mod 2 fermion number (—1)¥ in this basis. The
fermion number (—1)F is given by

ol

(A5)

(=DF =[S =252y wy.

k=1

T depends on the N. When N/2 is an odd case that
corresponds to N = 2,6(mod 8),

T = 2Ky ys -

YN-3YN-1- (A6)

where K is the antiunitary operator that takes the complex
conjugate. When N/2 is an even case that corresponds to
N = 0,4(mod 8),

T = Z%Kllle//zt U YN2YN- (A7)

Using this explicit representation, we can show the sym-
metry property in Table I. Though these realizations give a
way to see the symmetry property, they are characterized by
topological invariants [21] and independent from explicit
realization.

APPENDIX B: HAAR INTEGRALS AND THE
DERIVATION OF THE RETURN AMPLITUDE
IN RANDOM MATRICES

We derive the return amplitude in random matrix theory.
The key observation is that the measure is invariant under
unitary conjugation d(UTHU)e™V(V'HY) = dHe=V(H) with
V(H) = 5TrH?. Though we choose the potential V(H) of
the GUE, we only need the invariance of V(H) under the
unitary conjugation. Then, we can represent the GUE
average as (f(H))gug = [dH [dUe™ " f(UTHU) for
any function f(H), where dU is the Haar measure. For the
return amplitude, we get

/dH/dUe

= / dH / dUe VI Tr(e~yTIU M UTIUT).  (BI1)

[(wolUTe ™ ' Ulyy)|?

In the integrand we have the fourth moment of the unitary
matrices. To evaluate this, we need the following integral:

212

/ dUHaarUll]] Ulzjz U

1
= L2 1 (5”! 512’26/11 5!2/2 + 6’1’ 5’21 5/1!'25/211)
1
- L(LZ 1) <6111 5121 5]1]25]2/ +511l25121 5]1] 5]2] )

(B2)

Using this integral, we obtain

(wole™ o) Phoce = T (Z0200) houe + L)
(B3)

In a similar way, we obtain

<|<l//1|e_th|l//0>|2>GUE _ LZ]_ 1 (L _ <Z(I)Zit)*>GUE>’
(B4)

for orthogonal |yp) and |y ).

For GSE or GOE cases, the Haar integral for U € U(L)
is replaced by the Haar integral for symplectic groups S €
Sp(L/2) or orthogonal groups O € O(L). The Haar
integral for symplectic groups is given by [27,28]

/dSHaarthSlzJZSZ]I SZ /2
L—1

= L(L + 1)(L ) (5111 612’ 5][]16]2]2
+ 5111 517! 5/1/ 5/2/ + Clllvcmzc’l/l C/’/z)
! (8,460,161 6;
L(L+1)(L-2) i1y Ciriy 91 1, Ca

+ 5111 5121 5111 6]21 + (5111 6171 6111 5121 )C Cy

T2~ I,

+ Clllzcl]lz (6]”1512]7 5]1/26121 )) (BS)
where Cj; is the antisymmetric invariant. This coupling
gives the inner product between the Kramers pairs. Because
this coupling is antisymmetric, the diagonal part v;C;;v; for
lwo) = > vile;) vanishes, and they can be ignored in
the calculation of the return amplitude. Using this integral,
we obtain

1

m(@(ﬂz(t)*)esa +1),

(B6)

([(wole ™  lwo)[*)gsg =

which is the same expression with the GUE case, though
the Haar integrals themselves are different.

The Haar integral for orthogonal groups is given by
[27,28]
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/ dOHaaIOlljl 012]2 0

7!2

= Ll (8, 18:.18; 15;
_L(L—l)(L—|—2) ity %ty Cj1jy iy
+6lll 512115]1] 6]2] + Clllzcjljzcl /C/ ')
1
- (0, 10,16 1 6;
L(L—l)(L—i—Z)( iiy ©iyis O jy C o)

+ 6111 5121 5!1/ 5/2// + (511/ 512/ + 5111 5121 )lejzcjllj/z
+ Clllzcl 12( ]1]] szz + 5]1]25]21 )) <B7)

where C;; is the symmetric coupling and we can choose a
basis with C;; ;- Unlike the case of symplectic groups,
the dlagonal part v iCijv; for |yo) = > vile;) does not
vanish, and the return amplitude depends on states.

APPENDIX C: SYMMETRY ANALYSIS OF
THE DEFORMED SYK HAMILTONIAN AT
FIRST-ORDER PERTURBATION

In this Appendix, we study the symmetry class H,, in
detail that is imposed by 7 symmetry. Because 7 relates
the mth band and the (5 —m)th band, it is sufficient to
consider the symmetry constraint on the submatrix

i H, S,
2 = s
Sm Hy

F—m

(C1)

where H,, = P,,HgykP,, and S,, = PmHSYKP%_m. Using
the symmetry of the SYK Hamiltonian (—1)F Hgyg (—=1)F =
Hsyk, we find P,,HsykPy_,, = (=1)*P,,HsyxPy_,,. This
means S,, = 0 for N = 2,6(mod 8). For N = 0,2(mod 8)
cases, 72 = 1. In these cases, we can choose the basis with
T = (HO H"'")K where I, is the identity matrix of rank d,,,
and K is the complex conjugate operator. The invariance
under this 7 imposes the condition H%_m =H,, and
ST = §,.. For N = 0(mod8), this means that H”>™" is
conjugate to real symmetric matrix, though H™>™m s
expressed in an unusual basis in which the reality is not
manifest. To see the reality manifestly, it is convenient to
change the basis in the following way:

(Hm Sm > 1 (Hdm ]Id,,, ) (Hm Sm )
N
Sy, H, V2 iy, —ilg, Sy Hj,
1 (Hdm =il >
X = o
\/E ]Idm lHdm
B < ReH,, +ReS,, ImH,, — ImSm)
B ReH, —ReS,, )
(C2)

—ImH,, — ImS,,
This takes the form of the real symmetric matrix under the
condition ST = S, and H), = H,,. Though 7 relates H,,

and Hu_m, it does not impose any constraint on H,, itself.

Therefore, for generic matrix H mg-m,
the GUE.
For N = 4,6(mod 8), T2 = —1. In these cases, we can

choose the basis with 7 = (HS _%’m )K. In the same manner,
= H;_, and S;, = =S,,. For N = 4(mod 8),
2

H,, belongs to

we obtain H,

this means that H™2~™ is a quaternion Hermitian. We can
write it as H,, = H + iA, and §,, = iA, + A,, where H is
real symmetric and A, A, A_ are real antisymmetric. Then,
H™>™ = H ® L+ > ,iA, ® o, gives an usual realiza-
tion of quaternion Hermitian matrices. H,, = H + iA,
spans generic Hermitian matrices, and the ensemble is
GUE. Again, though 7 relates H,, and Hy T does not

impose any condition on H,, itself.

—m>

APPENDIX D: TIME AVERAGE OF SINGLE
SAMPLE IN THE SYK MODEL

The spectral form factor is not self-averaging [32], and we
need some averages to get smooth behaviors. In the SYK
model, we take the ensemble average over the coupling
Jaya,- 10 this Appendix, we consider the time average of the
return amplitude in a single sample in the SYK model, which
is another kind of average. First, we consider the infinite time
average, which gives the averaged plateau value, in general
quantum systems without degeneracy. By decomposing the
state |wo) = >, ¢;|E;), we obtain

1T .
lim / ol )

—hm dthccce i(Ei—Ej)t

l]j

Return Amplitude

Spectral Form Factor
0.100f
Shifted Spectral Form Factor

N=18
0.010F SYK model

Time Average

gt

0.001 ¢

0.1 1 10 100 1000

FIG. 6. This is the plot of the return amplitude in the N = 18,
g = 4 SYK model with the time average. We choose [Byy1441111)
as the initial state. We can see the slope, dip, ramp, and plateau
even in the time-average cases. As we mentioned, the plateau value
of the time averaged return amplitude has a small deviation from
the shifted spectral form factor.
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Therefore, the time average is not exactly the same with the
plateau value in the ensemble average (3). If we take the
average of (D1) over states, it becomes the late time value
2/(L 4 1) in the ensemble average. In the SYK model, we
consider the following time average:

3

§’|

() = [ B et g Par. (D2)
1

3t

Here, we take the time average between % r<t < % t around
time ¢, which is taken in Ref. [23]. We show the plots of the

return amplitude and the spectral form factor with time
average in Fig. 6. Both the return amplitude and the spectral
form factor show the slope, dip, ramp, and plateau behavior.
This motivates us to expect that the return amplitude in more
generic quantum systems like chaotic conformal field
theories shows these structures after the time average. We
also compare the shifted spectral form factor (D1) in which
the ensemble average of the spectral form factor is replaced
by the time average. As we pointed out, their late time value
is not exactly the same, but the behavior shows good
agreement on each time.
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