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While the classification of α0 corrections of string inspired effective theories remains an unsolved
problem, we show how to classify duality invariant α0 corrections for purely time-dependent (cosmological)
backgrounds. We determine the most general duality invariant theory to all orders in α0 for the metric,
b-field, and dilaton. The resulting Friedmann equations are studied when the spatial metric is a time-
dependent scale factor times the Euclidean metric and the b-field vanishes. These equations can be
integrated perturbatively to any order in α0. We construct nonperturbative solutions and display duality
invariant theories featuring string-frame de Sitter vacua.
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I. INTRODUCTION

String theory is arguably the most promising candidate
for a theory of quantum gravity. As a theory of gravity, the
prospect for a confrontation between string theory and
observation seems to be particularly promising in the realm
of cosmology, where the effects of fundamental physics at
very small scales may be amplified to very large scales.
Since the early days of string theory there have been
intriguing ideas of how its unique characteristics could play
a role in cosmological scenarios [1–3], ideas that have been
revisited and extended recently [4–7]. Two such features of
classical string theory will be central for the present paper:
(i) the existence of dualities that for cosmological back-
grounds send the scale factor aðtÞ of the universe to 1=aðtÞ,
in sharp contrast to Einstein gravity, and (ii) the presence of
infinitely many higher-derivative α0 corrections.
It is a natural idea that the higher-order corrections of

string theory play a role, for instance, in resolving the big-
bang singularity. The first step is the inclusion of the α0
corrections of classical string theory. Such corrections have
been computed to the first few orders in the 1980s [8–10],
but a complete computation or classification of these
corrections is presently out of reach. In recent years
duality-covariant formulations of the string spacetime
theories (double field theory [11–14]) have been used to
make progress in describing α0 corrections; see [15–21].
These developments hint at a completely novel kind of

geometry where the diffeomorphism invariance of general
relativity is replaced by a suitably generalized notion of
diffeomorphisms, which in turn partly determines the α0

corrections. These ideas play a key role in the “chiral”
string theory of [15], which is the only known gravitational
field theory that is exactly duality invariant and has
infinitely many α0 corrections. This program, however,
has not yet been developed to the point that it can deal with
the set of all α0 corrections for bosonic or heterotic string
theory. (See, however, the recent proposal for heterotic
string theory [22].)
This state of affairs is unsatisfactory since the inclusion

of a finite number of higher-derivative α0 corrections is
generally insufficient. Gravitational theories with a finite
number of higher derivatives typically display various
pathologies that are an artifact of the truncation and not
present in the full string theory [23]. In this paper we will
bypass these difficulties by classifying the higher-derivative
corrections relevant for cosmology to all orders in α0.
Rather than finding the complete α0 corrections in general
dimensions and then assuming a purely time-dependent
cosmological ansatz, we immediately consider the theory
reduced to one dimension (cosmic time) and determine
the complete higher-derivative corrections compatible
with duality. String theories, being duality invariant, must
correspond to some particular points in this theory space.
While we do not know which points those are, the full
space of duality invariant theories is interesting in its own
right, and may exhibit phenomena that are rather general
and apply to string theory.
Our analysis is based on the result by Veneziano and

Meissner [24], extended by Sen [25], concerning the
classical field theory of the metric, the b-field, and the
dilaton arising from D ¼ dþ 1 dimensional string theory.
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This field theory displays an Oðd; d;RÞ symmetry to all
orders in α0 provided the fields do not depend on the d
spatial coordinates. This symmetry, henceforth referred to
as “duality,” contains the scale-factor duality a → a−1.
The work of Meissner [26] implies that in terms of standard
fields the duality transformations receive α0 corrections, but
it was shown that to first order in α0 there are new field
variables in terms of which dualities take the standard form.
We will assume that there are field variables so that duality
transformations remain unchanged to all orders in α0 (this
certainly happens in conventional string field theory
variables [27]). With this assumption we are able to classify
completely the duality invariant α0 corrections. This work
amounts to an extension and elaboration of the results
obtained by us in [28]. We use the freedom to perform
duality-covariant field redefinitions to show that only first-
order time derivatives need to be included and that the
dilaton does not appear nontrivially, thereby arriving at a
minimal set of duality invariant higher-derivative terms
to all orders. We prove that at order α0k the number of
independent invariants, and thus the number of free
parameters not determined by Oðd; d;RÞ, is given by
pðkþ 1Þ − pðkÞ, with pðkÞ the number of partitions of the
integer k.
Let us briefly summarize the core technical results of the

first part of the paper. The two-derivative spacetime theory
for the metric g, the b-field b, and the dilaton ϕ, restricted to
depend only on time, is described by the one-dimensional
action [24]

I0 ¼
Z

dte−Φ
�
− _Φ2 −

1

8
trð _S2Þ

�
; ð1:1Þ

where Φ is the Oðd; d;RÞ invariant dilaton, defined by
e−Φ ¼ ffiffiffiffiffiffiffiffiffi

det g
p

e−2ϕ, and we introduced the Oðd; d;RÞ
valued matrix

S ≡
�
bg−1 g − bg−1b

g−1 −g−1b

�
; ð1:2Þ

in terms of the spatial components g and b of the metric and
b-field. Our classification implies that the most general
duality invariant α0 corrections take the form

I ≡ I0 þ
Z

dte−Φ
�
α0c2;0trð _S4Þ þ α02c3;0trð _S6Þ

þ α03½c4;0trð _S8Þ þ c4;1trð _S4Þtrð _S4Þ�
þ α04½c5;0trð _S10Þ þ c5;1trð _S6Þtrð _S4Þ�
þ α05½c6;0trð _S12Þ þ c6;1trð _S8Þtrð _S4Þ þ c6;2ðtrð _S6ÞÞ2
þ c6;3ðtrð _S4ÞÞ3� þ � � � ; ð1:3Þ

where only first-order time derivatives of S need to be
included. Moreover, there are no terms involving trð _S2Þ.

The pattern is clear: the general term at order α0k involves
traces with 2k factors of _S. Each trace must have an even
number of _S factors, where the even number cannot be
two. The c’s are a priori undetermined coefficients, duality
holding for any value they may take. Except for a few of
them, their values for the various string theories are
unknown. In establishing the above result, we made
repeated use of field redefinitions iteratively in increasing
orders of α0. The result is striking in that only first
derivatives of the fields appear in the action. All duality
invariant terms with more than one time derivative on S can
be redefined away. All terms with one or more derivatives
of the dilaton can also be redefined away. The resulting
higher derivative actions are in fact actions with high
numbers of fields acted on by one derivative each. This is a
major, somehow unexpected, simplification.
In the second part of this paper we investigate this

general α0-complete theory for the simplest cosmological
ansatz, a Friedmann-Lemaître-Robertson-Walker (FLRW)
background whose spatial metric is given by a time-
dependent scale factor times the Euclidean metric and a
vanishing b-field. The resulting Friedmann equations are
determined to all orders in α0. While there is of course still
an infinite number of undetermined ck;l parameters in (1.3),
we can write the equations efficiently in terms of a single
function FðHÞ of the Hubble parameter whose Taylor
expansion is determined by these coefficients:

FðHÞ ≔ 4d
X∞
k¼1

ð−α0Þk−122k−1ckH2k; ð1:4Þ

where, in terms of (1.3), ck ≔ ck;0 þ 2dck;1 þ � � �. The
Friedmann equations then take the concise form

d
dt

ðe−ΦfðHÞÞ ¼ 0;

Φ̈þ 1

2
HfðHÞ ¼ 0;

_Φ2 þ gðHÞ ¼ 0; ð1:5Þ

where the functions fðHÞ and gðHÞ are determined in terms
of FðHÞ as

fðHÞ ≔ F0ðHÞ; gðHÞ ≔ HF0ðHÞ − FðHÞ; ð1:6Þ

where 0 denotes differentiation with respect to H.
We show that solutions of the lowest-order equations

given by Mueller in [29] can be extended, perturbatively, to
arbitrary order in α0. We then turn to the arguably most
intriguing implication of our results: the potential existence
of interesting cosmological solutions that are nonperturba-
tive in α0. We discuss a general nonperturbative initial-value
formulation, and we state conditions on the function FðHÞ
so that the theory permits de Sitter vacua (in string frame).
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There are functions satisfying these criteria, and so there are
duality invariant theories with nonperturbative de Sitter
vacua, suggesting that string theory may realize de Sitter
in this novel fashion [30]. Note that the Lagrangian for
the theory does not include a cosmological constant term.
We also note that in pure gravity the possibility of
generating inflation through restricted higher-derivative
interactions leading to second-order Friedmann equations
has been investigated [31]. Here we do not constrain the
number of derivatives in the original theory. Rather, duality
invariance and field redefinitions lead to two-derivative
equations in the cosmological setting.
The paper is organized as follows. In Sec. II we review

the two-derivative theory and its equations of motion and
then tackle the classification problem. We examine care-
fully the freedom to perform field redefinitions, including
those of the lapse function nðtÞ, which is usually set to one
by a gauge choice. In Sec. III we derive the equations of
motion of the higher-derivative action restricted to the
single trace terms, and then compute the Noether charges
for the global duality symmetry. Section IV specializes to
the FLRW metric with zero curvature and derives the
Friedmann equations to all orders. As it turns out, this result
is valid even when the action contains the most general
multitrace terms. The solutions in perturbation theory of α0
are determined. In Sec. V we consider nonperturbative
solutions. We solve the initial-value problem and show
how de Sitter solutions are possible in the space of duality-
invariant theories. We conclude this paper with a discussion
of possible further generalizations.

II. CLASSIFICATION OF COSMOLOGICAL
Oðd;dÞ INVARIANTS

Our goal is to classify Oðd; dÞ invariant actions to all
orders in α0, up to field redefinitions. This was partially
done in [28], whose results will here be completed by
allowing for Oðd; dÞ covariant field redefinitions of the
lapse function.

A. Review of two-derivative theory

We start with the two-derivative theory for metric gμν,
antisymmetric b-field bμν, and the scalar dilaton ϕ,

I0¼
Z

dDx
ffiffiffiffiffiffi
−g

p
e−2ϕ

�
Rþ4ð∂ϕÞ2− 1

12
H2−

2ðD−26Þ
3α0

�
;

ð2:1Þ

where Hμνρ ¼ 3∂ ½μbνρ�. Here we displayed the action for a
generally noncritical bosonic string theory in D dimen-
sions. In the following we assume D ¼ 26 but comment
on the general case in Sec. V C below. We now drop the
dependence on all spatial coordinates; i.e., we set ∂i ¼ 0,
where xμ ¼ ðt; xiÞ, i ¼ 1;…; d, and we subject the fields to
the ansatz

gμν ¼
�−n2ðtÞ 0

0 gijðtÞ

�
; bμν ¼

�
0 0

0 bijðtÞ
�
;

ϕ ¼ ϕðtÞ: ð2:2Þ

The resulting one-dimensional two-derivative action then
takes the Oðd; dÞ invariant form [24]1

I0 ≡
Z

dtne−ΦL0 ¼
Z

dtne−Φ
1

n2

�
− _Φ2 −

1

8
trð _S2Þ

�
;

ð2:3Þ

where

S ≡ ηH ¼
�
bg−1 g − bg−1b

g−1 −g−1b

�
; η ¼

�
0 1

1 0

�
:

ð2:4Þ

The field S is constrained: it satisfies S2 ¼ 1. We have also
defined the Oðd; dÞ invariant dilaton Φ via

e−Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
det gij

q
e−2ϕ: ð2:5Þ

The action is time-reparametrization invariant, with nðtÞ
transforming as a density under time reparametrizations
t → t − λðtÞ:

δλn ¼ ∂tðλnÞ: ð2:6Þ

A scalar A under this reparametrization transforms as
δλA ¼ λ∂tA. The metric, the b-field, and the dilaton Φ
are scalars under time reparametrizations. Defining the
covariant time derivative D,

D≡ 1

nðtÞ
∂
∂t ; ð2:7Þ

one can quickly show that if A is a scalar, so is DA.
The covariant derivative satisfies the usual integration by
parts rule

Z
dtnBDA ¼

Z
dt∂tðABÞ −

Z
dtnðDBÞA: ð2:8Þ

The action I0 above can now be written in a manifestly
reparametrization invariant form

1This result generalizes to the compactification of the
D-dimensional theory on a d-torus to D − d dimensions, which
also exhibits a global Oðd; dÞ symmetry [25,33,34].
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I0 ¼
Z

dtne−Φ
�
−ðDΦÞ2 − 1

8
trððDSÞ2Þ

�
: ð2:9Þ

The variation of the dilaton yields the dilaton equation of
motion EΦ ¼ 0,

δΦI0 ¼
Z

dtne−ΦδΦEΦ;

EΦ ≡ 2D2Φ − ðDΦÞ2 þ 1

8
trððDSÞ2Þ: ð2:10Þ

Let us explain first in general terms how we vary with
respect to S to find field equations. Consider an arbitrary S
dependent action I of the form

I ¼
Z

dtne−ΦLðSÞ; ð2:11Þ

where L could also depend on other fields. To vary I one
first varies S as if it would be an unconstrained field with an
unconstrained variation, finding an expression of the form

δSI ¼
Z

dtne−ΦtrðδSFSÞ: ð2:12Þ

The equation of motion is not the vanishing of FS because
δS is a constrained variation: since S2 ¼ 1 the variation δS
satisfies δS ¼ −SδSS. We can write δS in terms of an
unconstrained variation δK as follows:

δS ¼ 1

2
ðδK − SδKSÞ: ð2:13Þ

Note that δK cannot be written in terms of δS; it has extra
information that drops out in the combination shown in the
above right-hand side. Substituting δS into the above
variation δSI we now get

δSI ¼
Z

dtne−ΦtrðδKESÞ; ES ¼ 1

2
ðFS − SFSSÞ:

ð2:14Þ
The equation of motion is indeed ES ¼ 0, since δK is
an unconstrained variation. Note that any ES defining an
equation of motion for S satisfies

ES ¼ −SESS: ð2:15Þ
There is finally an alternative rewriting of δSI that can now
be seen to be valid too:

δSI ¼
Z

dtne−ΦtrðδSESÞ: ð2:16Þ

Using the expression forES in terms ofFS and the constraint
δS ¼ −SδSS one quickly verifies that trðδSESÞ ¼
trðδSFSÞ, and comparing with (2.12) we conclude that the

above right-hand side is indeed equal to δSI. However, (2.16)
is not the operational way to derive ES by variation.
Applying the above discussion for the case of the action

I0 we now find by direct variation

δSI0 ¼
Z

dtne−ΦtrðδSFSÞ;

with FS ≡ 1

4
ðD2S −DΦDSÞ: ð2:17Þ

The equation of motion is now ES ¼ 0 with ES ¼
1
2
ðFS − SFSSÞ. It is straightforward to simplify the result-

ing expression for ES. For this we note from SS ¼ 1 that S
and DS anticommute:

SDS ¼ −ðDSÞS: ð2:18Þ

Taking a further derivative of this equation we also find that

SðD2SÞS ¼ −D2S − 2SðDSÞ2: ð2:19Þ

It is now a simple matter to show that

ES ≡ 1

4
ðD2S þ SðDSÞ2 − ðDΦÞðDSÞÞ: ð2:20Þ

The lapse equation of motion follows by varying with
respect to n. The variation is written in the form

δnI0 ¼
Z

dtne−Φ
δn
n
En: ð2:21Þ

This is sensible, because one can readily show that a
variation δn transforms as a density and, as a result, the
ratio δn=n transforms as a scalar. The quantity En is then a
scalar as well. To compute this variation it is simplest to
write the action I0 in terms of ordinary time derivatives
using (2.3):

I0 ¼
Z

dte−Φ
1

n

�
− _Φ2 −

1

8
trð _S2Þ

�
: ð2:22Þ

It follows that

δnI0 ¼
Z

dtne−Φ
�
δn
n

��
ðDΦÞ2 þ 1

8
trððDSÞ2Þ

�
: ð2:23Þ

Comparing with (2.21) we have therefore found that

En ≡ ðDΦÞ2 þ 1

8
trððDSÞ2Þ: ð2:24Þ

B. Oðd;dÞ invariant α0 corrections

Wewill discuss a recursive procedure to write the duality
invariant action in a canonical form. In this we use the
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two-derivative part of the action to do field redefinitions
that allow us to simplify the higher-derivative parts of the
action. The four-derivative part of the action is of order α0.
The terms of order α0k will have 2kþ 2 derivatives. We call
Ik the part of the action of order α0k, and it is a sum of terms,

Ik ¼
XNðkÞ

p¼1

Ik;p; ð2:25Þ

where each term Ik;p is a product of dilaton derivatives and
traces of strings of S and its derivatives, in order to be
duality invariant. There are only a finite number of terms
NðkÞ that can be constructed with the requisite number of
derivatives. We have

Ik;p ¼ α0kck;p

Z
dtne−Φ

Y
i

ðDjiΦÞni

×
Y
l

trððDk1lSÞm1
l � � � ðDk

ql
l SÞmql

l Þ; ð2:26Þ

where ck;p are unit-free constants. For each i in the first
product, the values of the indices ji and ni denote the
number of time derivatives and the power of the term.
Because of the dilaton theorem [35], all nonderivative
dependence on the dilaton is in the exponential prefactor,
and we thus take ji ≥ 1. For each l in the second product
we get a trace factor. Inside the trace there are ql factors,
each one a fixed power of a multiple time derivative of S.
This includes the possibility of some kl ¼ 0 which means
no derivatives of S. This must be accompanied by ml ¼ 1

since S2 ¼ 1. Implicit above is a sum rule that requires that
the total number of derivatives is 2kþ 2.
We will use a notation that makes clear what are the

arguments of a function X of fields. When we write

XðA; B;…Þ; ð2:27Þ

we mean that X is strictly a function constructed from
A;B;…, without including time derivatives D of these
functions. When we write

XðfAg; fBg;…Þ; ð2:28Þ

with braces around the arguments, we mean X is a function
of A;DA;D2A;…, as well as B;DB;D2B;…. Mixed types
of arguments are also possible: XðA; fBgÞ would depend
only on A, but possibly on B;DB;D2B;…. In this notation
equation (2.26) would be described as saying that

Ik;p ¼ α0k
Z

dtne−ΦXðfDΦg; fSgÞ; ð2:29Þ

for some choice of X.

Our goal is now to prove that IðkÞ can be brought to the
form

Ik ¼ α0k
Z

dtne−ΦXðDSÞ: ð2:30Þ

This means that all we can have is a product of traces of
powers of DS. The proof will proceed inductively, assum-
ing that all terms up to Iðk−1Þ are of this form and then
using field redefinitions to show that the action IðkÞ can be
brought to this form (at the cost of changing the actions
Ikþ1, Ikþ2, etc., which will be taken care of in the next
induction step).
To this end we use various simple theorems established

in [28]:

trðSÞ ¼ trðDSÞ ¼ trðD2SÞ ¼ � � � ¼ 0; ð2:31Þ

trððDSÞ2kþ1Þ ¼ 0; for k ¼ 0; 1;…; ð2:32Þ

trðSðDSÞkÞ ¼ 0; for k ¼ 0; 1;…: ð2:33Þ

The strategy will be to work at each order of α0. Assume
that we have succeeded in casting the action in the
expected form (2.30) for I2;…; Ik−1. Then we are faced
with bringing Ik to the desired form. The action can be
written as

I¼ I0þ
Xk−1
p¼1

Ipþα0k
Z

dtne−ΦXðfDϕg;fSgÞþOðα0kþ1Þ:

ð2:34Þ

We will then consider field redefinitions of the form

Φ → Φþ α0kδΦ; S → S þ α0kδS: ð2:35Þ

To see how I changes, we need only vary I0, because this
will generate Oðα0kÞ terms that we are interested in. The
variations of I1;…; Ik−1 generate terms of higher order than
α0k that are not relevant, but are of the prescribed form
(2.26). The variations of I0 are determined by the field
equations and take the form

δI0 ¼ α0k
Z

dtne−ΦðδΦEΦ þ trðδKESÞÞ with

δS ¼ 1

2
ðδK − SδKSÞ: ð2:36Þ

At each step we use these field redefinitions to remove
undesirable terms from the Oðα0kÞ part of the action.
We elaborate and systematize some of the derivations of

[28], carefully proving several statements that lead to the
desired claim.
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(1) A factorD2Φ in an action can be replaced by a factor
of QΦ with only first derivatives.
Consider a generic such term Zk at order α0k as

part of (2.34):

Zk ¼ α0k
Z

dtne−ΦXðfDΦg; fSgÞD2Φ: ð2:37Þ

With a dilaton field redefinition equation (2.36)
gives us

δI0 ¼ α0k
Z

dtne−Φ2δΦ

×

�
D2Φ−

1

2
ðDΦÞ2þ 1

16
trððDSÞ2Þ

�
: ð2:38Þ

If we choose

2δΦ ¼ −XðfDΦg; fSgÞ; ð2:39Þ

the shift in I0 cancels Zk completely and replaces it
with

Z0
k ¼ α0k

Z
dtne−ΦXðfDΦg; fSgÞ

×

�
1

2
ðDΦÞ2 − 1

16
trððDSÞ2Þ

�
: ð2:40Þ

The net effect is that the following replacement is
allowed in the Oðα0kÞ action:

D2Φ → QΦ ≡ 1

2
ðDΦÞ2 − 1

16
trððDSÞ2Þ; ð2:41Þ

with QΦ having only first derivatives.
(2) A factor of D2S in an action can be replaced by a

factor of QS with only first-order derivatives.
Consider a generic term Zk at order α0k with a

second derivative on S:

Zk ¼ α0k
Z

dtne−ΦXðfDΦg; fSgÞtrðGD2SÞ;

ð2:42Þ

where G is a matrix of type GðfSgÞ. With a field
redefinition of S, Eq. (2.36) gives

δI0 ¼ α0k
Z

dtne−Φtr

�
1

4
δKðD2S þ SðDSÞ2

− ðDΦÞðDSÞÞ
�
: ð2:43Þ

Choosing the matrix δK [which determines δS ¼
1
2
ðδK − SδKS)] to be

1

4
δK ¼ −XðfDΦg; fSgÞG; ð2:44Þ

and realizing that X is a scalar that can go out of the
trace, it gives

δI0 ¼−α0k
Z

dtne−ΦXðfDΦg;fSgÞ

×tr½GðD2SþSðDSÞ2− ðDΦÞðDSÞÞ�: ð2:45Þ

This variation cancels the Zk term above and
replaces it with

Z0
k ¼ α0k

Z
dtne−ΦXðfDΦg; fSgÞ

× trðGð−SðDSÞ2 þ ðDΦÞðDSÞÞÞ: ð2:46Þ

The net effect is that the following replacement is
allowed in the Oðα0kÞ action:

D2S → QS ≡ −SðDSÞ2 þDΦDS; ð2:47Þ

with QS having at most first derivatives.
(3) Any action can be reduced so that it only has first

time derivatives of Φ.
We already know how to eliminate terms with
two derivatives on the dilaton. Suppose we have an

action with more than two derivatives of Φ. This can
always be written in the form

Zk ¼ α0k
Z

dtne−ΦXðfDΦg; fSgÞDpþ2Φ;

0 < p ≤ 2k; ð2:48Þ

where the dilaton factor to the right has more than
two derivatives. Now, write Dpþ2Φ ¼ DpðD2ΦÞ
and integrate by parts the Dp, finding

Zk ¼ α0k
Z

dtnð−DÞpðe−ΦXÞD2Φ; ð2:49Þ

suppressing the arguments of X. We can now use
property 1 to eliminate the D2Φ, replacing Zk by

Z0
k ¼ α0k

Z
dtnð−DÞpðe−ΦXÞ

×
�
1

2
ðDΦÞ2 − 1

16
trðDSÞ2

�
: ð2:50Þ

Now we integrate back the p derivatives of the left
factor, one by one. At each step this will generate a
second-order time derivative of the second factor,
but these can be reduced to first derivatives by
properties 1 and 2. We can write this formally
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defining a derivative operator D̄ that acts on func-
tions F of S;DS, and DΦ:

ðD̄FÞðS;DS;DΦÞ
≡DðFðS;DS;DΦÞÞjD2Φ→QΦ;D2S→QS

: ð2:51Þ

The replacements here are those in (2.41) and (2.47).
Note that after taking a D̄ derivative, the result is still
a function of only S, DS, and DΦ. It follows now
that Zk in (2.48) is eventually replaced by

Z00
k ¼ α0k

Z
dtne−ΦXðfDΦg; fSgÞD̄pQΦ: ð2:52Þ

The factor to the right of X contains only first
derivatives of Φ and at most first derivatives of S.
Because of (2.33), the factor to the right of X cannot
contain S; it must be built explicitly with DS only.
Should X above still contain factors with more

than two derivatives of Φ the procedure is carried
through again for each factor. Proceeding in this way
we can reduce the higher derivative factors in Φ one
by one to first order in time derivatives. This step has
shown that the most general form of the action is

Ik ¼ α0k
Z

dtne−ΦXðDΦ; fSgÞ: ð2:53Þ

This means that, apart from the e−Φ factor, only first
derivatives of the dilaton appear.

(4) Any action can be reduced so that it only has first
time derivatives of S.
Assume there is a trace factor that has a time

derivative of S of a degree higher than 2. Using the
form of the action (2.53) we already know to be true,
we write the action separating out such a term:

Zk ¼ α0k
Z

dtne−ΦXðDΦ; fSgÞtr½GðfSgÞDpþ2S�;

0 < p ≤ 2k: ð2:54Þ
Clearly X must contain 2k − p derivatives, but we
need not include this in the notation. Moreover, G is
a matrix built as products of S and its derivatives.
Defining the matrix F as follows:

F ðDΦ; fSgÞ≡ e−ΦXðDΦ; fSgÞGðfSgÞ; ð2:55Þ

the action above takes the form

Zk ¼ α0k
Z

dtntr½FDpþ2S�: ð2:56Þ

For brevity, we do not indicate the arguments of F ,
which are given in (2.55). In this form integration by
parts is straightforward and folds the derivatives into

F . We integrate by parts Dp and then are allowed to
replace D2S by QS, finding that Zk is replaced by

Z0
k ¼ α0k

Z
dtntr½ð−DÞpFQS�: ð2:57Þ

The derivatives are then folded back into QS, one at
a time, at each step eliminating the second deriva-
tives that are generated. As explained in property 3,
each ð−DÞ derivative becomes a D̄ derivative, and
we find that Z0

k becomes

Z0
k ¼ α0k

Z
dtntr½FD̄pQS�: ð2:58Þ

Using the definition of F we now note that (2.54)
has become

Z00
k ¼ α0k

Z
dtne−ΦXðDΦ; fSgÞtr½GðfSgÞD̄pQS�;

ð2:59Þ

achieving the desired elimination of the higher
derivative of S in terms of first derivatives of Φ
and up to first derivatives of S. This procedure can
be iterated until all higher derivatives of S are
eliminated. At his point only S and DS can appear
and, as explained before, this means that only DS
can appear. We have thus shown that terms of Ik,
already put in the form (2.53), can be simplified
further to be set in the form

Ik ¼ α0k
Z

dtne−ΦXðDΦ;DSÞ: ð2:60Þ

Each term Ik;p in such an action is written in the
form

Ik;p ¼ α0k
Z

dtne−ΦðDΦÞpXðDSÞ: ð2:61Þ

Wewill now show that, in fact, any dilaton derivative
or power of a dilaton derivative can be eliminated.

(5) Any action Ik, with k > 1 is equivalent to one
without any appearance of DΦ.
Suppose we have an action Ik with a term

Ik;p ¼
Z

dtne−ΦðDΦÞpXlðDSÞ: ð2:62Þ

HereXl is an arbitrary (generallymultitrace) invariant:

XlðDSÞ ¼ tr½ðDSÞl1 � � � � tr½ðDSÞln �;
l ¼ l1 þ � � � þ ln: ð2:63Þ
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In a moment we will need that the time derivative of
this function has a simple form.Aswe take a derivative
we generate D2S factors within the traces. Each such
factor can be replaced byQS ¼ −SðDSÞ2 þDΦDS,
but since traces with a singleSmultiplyingDS factors
vanish [Eq. (2.33)], the replacement is effectively
D2S → DΦDS. As a result, inside an integral repre-
senting a term in Ik, the following replacement is
allowed:

DXl ∼ lDΦXlðDSÞ: ð2:64Þ

We begin by rewriting (2.62) with one factor of DΦ
written as a derivative of e−Φ, and then proceed to do
integration by parts:

Ik;p ¼ −
Z

dtnDðe−ΦÞðDΦÞp−1Xl

¼
Z

dtne−Φððp − 1ÞðDΦÞp−2D2ΦXl

þ ðDΦÞp−1DXlÞ: ð2:65Þ

ReplacingD2Φ byQΦ and using the above evaluation
of DXl we get

Ik;p ∼
Z

dtne−Φ
�
ðp − 1ÞðDΦÞp−2

×

�
1

2
ðDΦÞ2 − 1

16
trðDSÞ2

�
Xl þ lðDΦÞpXl

�

¼
Z

dtne−Φ
�
1

2
ðpþ 2l − 1ÞðDΦÞpXl

−
1

16
ðp − 1ÞðDΦÞp−2trðDSÞ2Xl

�
: ð2:66Þ

The first term is of the same formas the original (2.62),
and thus bringing it to the left-hand side we have the
equivalence

1

2
ð3 − p − 2lÞ

Z
dtne−ΦðDΦÞpXl

¼ −
1

16
ðp − 1Þ

Z
dtne−ΦðDΦÞp−2trðDSÞ2Xl;

ð2:67Þ

and thus in actions we can replace

Z
dtne−ΦðDΦÞpXlðDSÞ

∼
1

8

�
p − 1

pþ 2l − 3

�Z
dtne−ΦðDΦÞp−2

× trðDSÞ2XlðDSÞ: ð2:68Þ

Let us note that the denominator on the right-hand side
never vanishes for any case of interest. Since the total
number of derivatives in the term is pþ l, for a term
in an action Ik, the denominator takes the value

ðpþ lÞ þ l − 3 ¼ 2kþ 2þ l − 3 ¼ 2kþ l − 1 ≥ 1;

for k ≥ 1: ð2:69Þ

The formula can be used recursively to reduce the
power ofDΦ in steps of two; in each step p decreases
by two units and l increases by two units [since
trðDSÞ2Xl is an Xlþ2 object], and at no stage will
the denominator vanish. If p ¼ 2m is even, it follows
from (2.68) that we have

Z
dtne−ΦðDΦÞ2mXlðDSÞ

∼ C
Z

dtne−Φ½trðDSÞ2�mXlðDSÞ; ð2:70Þ

where C is a constant that is easily determined.
Note also that for p ¼ 1 Eq. (2.68) tells us that

Z
dtne−ΦDΦXlðDSÞ ∼ 0: ð2:71Þ

For the case l ¼ 1, where the prefactor in (2.68) gives
zero divided by zero, the left-hand side vanishes too
because trðDSÞ ¼ 0. Since the recursion relation
works in steps of two units, the vanishing of terms
with a single DΦ implies that

Z
dtne−ΦðDΦÞ2mþ1XlðDSÞ ∼ 0: ð2:72Þ

The formula (2.68) also applies when l ¼ 0 and
Xl ¼ 1, in which case it gives

Z
dtne−ΦðDΦÞp ∼ 1

8

�
p − 1

p − 3

�

×
Z

dtne−ΦðDΦÞp−2trðDSÞ2:

ð2:73Þ

The denominator in the prefactor only vanishes for
p ¼ 3 which is not relevant for any action Ik. The
remarks above apply again. When p ¼ 2m is even,
the term can be reduced to one containing no dilaton
derivatives and just ½trðDSÞ2�m. If p is odd, the term
vanishes because it does for p ¼ 1.
We have shown so far that any term Ik;p in the action

Ik takes the form (2.61). Since we have now learned
that powers of derivatives of the dilaton can be
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eliminated completely,we have shown that any term in
Ik takes the claimed form (2.30):

Ik ¼ α0k
Z

dtne−ΦXðDSÞ: ð2:74Þ

While this is a great simplification, further simplifi-
cation can be achieved by using redefinitions of the
lapse function nðtÞ. We explore this next.

1. Lapse redefinitions

We have confirmed that up to Oðd; dÞ covariant rede-
finitions of S and Φ one only needs to consider (arbitrary
powers of) first time derivatives of S and no time
derivatives of Φ. Thus, the most general action takes the
following form:

I ¼
Z

dtne−ΦðL0 þ α0L1 þ ðα0Þ2L2 þ ðα0Þ3L3 þ � � �Þ;

ð2:75Þ

where the general forms of L1, L2, and L3 are

L1 ¼ a1trðDSÞ4 þ a2½trðDSÞ2�2;
L2 ¼ b1trðDSÞ6 þ b2trðDSÞ4trðDSÞ2 þ b3½trðDSÞ2�3;
L3 ¼ c1trðDSÞ8 þ c2½trðDSÞ4�2 þ c3trðDSÞ6trðDSÞ2

þ c4trðDSÞ4½trðDSÞ2�2 þ c5½trðDSÞ2�4: ð2:76Þ

Wewill now show that using lapse redefinitions, together
with further dilaton redefinitions, we can remove any term
in the action I that has a trðDSÞ2 factor. This leaves, as one
can see, the first term in L1, the first term in L2, and the first
two terms in L3.
As before, we work at fixed orders of α0 recursively: at

each fixed order α0k we eliminate terms with a trðDSÞ2
factor by doing a redefinition of n of order α0k that
contributes through the variation of I0. This variation
was given in (2.23):

δnI0 ¼
Z

dtne−Φ
�
δn
n

��
ðDΦÞ2 þ 1

8
trðDSÞ2

�
: ð2:77Þ

Consider now a general term in Ik;p with a trðDSÞ2 factor:

Ik;p ¼ α0k
Z

dtne−ΦX2kðDSÞtrðDSÞ2: ð2:78Þ

Here X2kðDSÞ denotes a term with 2k derivatives built from
products of traces of powers ofDS. It does not matter if X2k

has additional factors of trðDSÞ2; it may. Wewill consider a
redefinition of the form

δn
n

¼ βα0kX2kðDSÞ; ð2:79Þ

where β is a constant to be determined. The associated
variation of I0 is therefore

δnI0 ¼ βα0k
Z

dtne−ΦX2kðDSÞ
�
ðDΦÞ2 þ 1

8
trðDSÞ2

�
:

ð2:80Þ
This counts as an additional term in the action. Note the
second term in parentheses gives a contribution that could
cancel the term in Ik;p above. The first term also does, if we
use identity (2.68) which amounts to a further dilaton
redefinition. This identity with p ¼ 2 and l ¼ 2k allows us
to write

δnI0 ¼ βα0k
Z

dtne−ΦX2kðDSÞ

×

�
1

8ð4k − 1Þ trðDSÞ2 þ 1

8
trðDSÞ2

�

¼ βk
2ð4k − 1Þ α

0k
Z

dtne−ΦX2kðDSÞtrðDSÞ2: ð2:81Þ

One can cancel Ik;p in (2.78) by choosing β such that
βk

2ð4k−1Þ ¼ −1. Since this can always be done, this completes

our proof that any term with a trðDSÞ2 factor can be set
to zero.
Given this result, the most general α0 corrections up to

order ðα0Þ3 given in (2.76) can be simplified to take the
form

L1 ¼ a1trðDSÞ4;
L2 ¼ b1trðDSÞ6;
L3 ¼ c1trðDSÞ8 þ c2½trðDSÞ4�2: ð2:82Þ

Thus, refining the classification of [28], we find that the
number of independent coefficients in the Oððα0ÞkÞ action
is given by the number of partitions of kþ 1 that do not
use 1, which in the literature is sometimes denoted by
pðkþ 1; 2Þ. Using Euler’s generating function for the
unrestricted number pðnÞ of partitions of the integer n,
it is easy to prove that this equals

pðkþ 1; 2Þ ¼ pðkþ 1Þ − pðkÞ; ð2:83Þ
see, e.g., [36]. This proves our statement in the Introduction.

III. EQUATIONS OF MOTION AND
NOETHER CHARGES

In this section we determine the explicit equations of
motion for the special case that only single trace invariants
are included, which is, however, sufficient for the cosmo-
logical applications in the next section. Moreover, we
discuss Bianchi identities and the conserved Noether
charges corresponding to Oðd; dÞ duality invariance.
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A. Equations of motion

We now compute the equations of motion obtained
from the action (2.3) upon including single trace
higher derivative terms. Upon setting n ¼ 1 this action
reads

I ≡
Z

dte−Φ
�
− _Φ2 þ

X∞
k¼1

α0k−1cktrð _S2kÞ
�
; ð3:1Þ

where we included the lowest-order term in the sum, with
c1 ¼ − 1

8
. The higher ck coefficients are, of course, only

partially known (e.g., c2 ¼ 1
64

for bosonic string theory,
c2 ¼ 1

128
for heterotic string theory, and c2 ¼ 0 for type II

string theories).
In order to derive the equation of motion for S we follow

the steps reviewed in Sec. II A. The variation with respect to
S of (3.1) reads

δSI ¼
X∞
k¼1

α0k−1ck

Z
dte−Φð2kÞtr

�
dδS
dt

_S2k−1
�

¼
X∞
k¼1

α0k−1ck

Z
dte−Φð2kÞtr

�
d
dt

½δS _S2k−1� −
�
δS

d
dt

_S2k−1
��

¼
X∞
k¼1

α0k−1ck

Z
dte−Φtr

�
δSð2kÞ

�
_Φ _S2k−1 −

d
dt

_S2k−1
��

¼
Z

dte−Φtr

�
δS

X∞
k¼1

α0k−1ckð2kÞ
�
_Φ _S2k−1 −

d
dt

_S2k−1
��

; ð3:2Þ

where we discarded total time derivatives. The above
defines FS , and therefore ES is given by

ES ¼ 1

2

X∞
k¼1

α0k−1ckð2kÞ
��

_Φ _S2k−1 −
d
dt

_S2k−1
�

− S
�
_Φ _S2k−1 −

d
dt

_S2k−1
�
S
�
: ð3:3Þ

This form can be simplified by using the anticommutativity
of S and _S:

ES ¼
X∞
k¼1

α0k−1ckk
�
2 _Φ _S2k−1 −

d
dt

_S2k−1 þ S
d
dt

_S2k−1S
�
:

ð3:4Þ
This equation can be further simplified as follows: using
SS̈ ¼ −S̈S − 2 _S2, which follows by taking the second
derivative of S2 ¼ 1, it is straightforward to verify

S
d
dt

_S2k−1S ¼ −
d
dt

_S2k−1 − 2S _S2k: ð3:5Þ

Using this in (3.4), ES finally reduces to

ES ¼−2
X∞
k¼1

α0k−1ckk
�
d
dt

_S2k−1− _Φ _S2k−1þS _S2k
�
: ð3:6Þ

The equation of motion for S is ES ¼ 0.
In order to find the equation of motion for n we restore

this dependence in the action (3.1):

I ≡
Z

dtne−Φ
�
−ðDΦÞ2 þ

X∞
k¼1

α0k−1cktrðDSÞ2k
�

¼
Z

dte−Φ
�
−
1

n
_Φ2 þ

X∞
k¼1

α0k−1

n2k−1
cktrð _S2kÞ

�
: ð3:7Þ

One quickly finds by variation of n and then back to
covariant notation that

I≡
Z

dtne−Φ
δn
n

�
ðDΦÞ2−

X∞
k¼1

α0k−1ð2k−1ÞcktrððDSÞ2kÞ
�
:

ð3:8Þ

The object in between big parentheses is En. It is straight-
forward to compute theΦ variation of (3.1). To recapitulate
let us record the general variation. Recall that ES can be
used directly in the variation [see (2.16)], and we can set
n ¼ 1 in the En equation, too. We have

δI ¼
Z

dtne−Φ
�
δΦEΦ þ trðδSESÞ þ

δn
n
En

�
; ð3:9Þ

with the (off-shell) functions

EΦ ≡ 2Φ̈ − _Φ2 −
X∞
k¼1

α0k−1cktrð _S2kÞ;

ES ≡ −2
X∞
k¼1

α0k−1kck

�
d
dt

_S2k−1 − _Φ _S2k−1 þ S _S2k
�
;

En ≡ _Φ2 −
X∞
k¼1

α0k−1ð2k − 1Þcktrð _S2kÞ: ð3:10Þ
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These expressions satisfy a Bianchi identity as a conse-
quence of time reparametrization invariance of I under the
field variations:

δξS ¼ ξ _S; δξΦ ¼ ξ _Φ; δξn ¼ ∂tðξnÞ: ð3:11Þ
Specializing (3.9) to these variations and integrating by
parts we then infer

0 ¼ δξI ¼
Z

dte−Φξð _ΦEΦ þ trð _SESÞ − eΦ∂tðe−ΦEnÞÞ;

ð3:12Þ
where we set n ¼ 1, which is legal after variation. Since the
integral vanishes for arbitrary ξ, we infer the

Bianchiidentity∶ _ΦðEΦþEnÞþ trð _SESÞ¼
d
dt
En: ð3:13Þ

This identity may also be verified by a direct computation
using (3.10). It will be instrumental because it implies that
it is sufficient to solve the equations

EΦ þ En ¼ 0; ES ¼ 0; ð3:14Þ
and to impose the lapse equation (or Hamiltonian
constraint) En ¼ 0 only on initial data. The lapse equa-
tion will hold for all times as a consequence of (3.13).
Note that

EΦ þ En ¼ 2Φ̈ −
X∞
k¼1

α0k−1ð2kÞcktrð _S2kÞ: ð3:15Þ

B. Noether charges

We will now compute the Noether charges correspond-
ing to Oðd; dÞ invariance. To this end we consider the
infinitesimal Oðd; dÞ transformations that leave the action
invariant and that are given by

δτS ¼ τS − Sτ; δτΦ ¼ 0; ð3:16Þ

where τ ¼ ðτMNÞ ∈ soðd; dÞ, thus satisfying
τηþ ητt ¼ 0: ð3:17Þ

In using matrix notation we also have S ¼ ðSMNÞ ¼ ηH
with η ¼ ðηMNÞ and H ¼ HMN . With h ¼ ðhMNÞ an
Oðd; dÞ group element, we have hηht ¼ η and the Lie-
algebra valued infinitesimal parameter τ arises from h ≃
1þ τ and thus satisfies (3.17). The transformation δτS
above is the infinitesimal version of the finite transforma-
tion S → S0 ¼ hSh−1, again with h ≃ 1þ τ. Note that
δτS ¼ −SδτSS and thus the variation preserves S2 ¼ 1.
The symmetry constraint on S (inherited from H ¼ Ht)
reads

Sη − ηSt ¼ 0; ð3:18Þ

and is also preserved under the variation δτS.
We can compute the Noether charges Q by the usual

trick of promoting the symmetry parameter to be local,
τ → τðtÞ, and to compute the variation

δτI ¼
Z

dttrð_τQÞ ¼ −
Z

dttrðτ _QÞ: ð3:19Þ

An explicit computation of the variation of the action I in
(3.1) under δτS follows quickly from the first line in (3.2)
and gives

Q ¼ e−Φ
X∞
k¼1

α0k−14kckS _S2k−1: ð3:20Þ

Since on-shell the variation (3.19) must vanish for arbitrary
functions τ, we conclude that on-shell _Q ¼ 0. Thus Q is
conserved, which may also be verified by a quick compu-
tation with (3.6), which gives _Q ¼ −2e−ΦSES , and shows
that the conservation of Q is equivalent to the equation of
motion of S. Moreover, Q takes values in the Lie algebra
soðd; dÞ as one quickly sees that Qηþ ηQt ¼ 0, using
(3.18) and its time derivative.

IV. FRIEDMANN EQUATIONS TO
ALL ORDERS IN α0

In this section we evaluate the equations of motion (3.10)
for the spatial metric set equal to a scale factor times the
Euclidean metric and with vanishing b-field. This yields the
α0 corrected Friedmann equations. In the first subsection we
write the Oðd; dÞ covariant fields in terms of conventional
cosmological variables and show that the standard (string)
Friedmann equations are recovered to zeroth order in α0.
In the second subsection we give the α0 corrected equations.
In the final subsection we show how to integrate these
equations to arbitrary order in α0.

A. Review of two-derivative equations

We now specialize to the FLRW metric with curvature
k ¼ 0 and vanishing b-field: we set gij ¼ a2ðtÞδij and
bij ¼ 0 in (2.4). Together with the definition of the Oðd; dÞ
invariant dilaton in (2.5) we then have

SðtÞ ¼
�

0 a2ðtÞ
a−2ðtÞ 0

�
; e−Φ ¼ ðaðtÞÞde−2ϕ; ð4:1Þ

in terms of the scale factor aðtÞ and the scalar dilaton ϕðtÞ.
We next introduce the Hubble parameter

H ≡ _a
a
: ð4:2Þ
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The time derivatives of the dilaton Φ then become

_Φ ¼ −dH þ 2 _ϕ; Φ̈ ¼ −d _H þ 2ϕ̈; ð4:3Þ

where

_H ¼ −H2 þ ä
a
: ð4:4Þ

For the following applications it will be convenient to
establish some relations for the field SðtÞ and its deriva-
tives. First, SðtÞ is constrained and satisfies S2 ¼ 1, and is
hence a “pseudocomplex” structure. Amusingly, its deriva-
tive is proportional to a complex structure:

_S ¼ 2HJ ; J ≡
�

0 a2ðtÞ
−a−2ðtÞ 0

�
; J 2 ¼ −1:

ð4:5Þ

In turn, the derivative of J is proportional to S:

_J ¼ 2HS: ð4:6Þ

Thus, the second time derivative of S can be expressed in
terms of S and J :

S̈ ¼ 2 _HJ þ 4H2S: ð4:7Þ

Let us now evaluate the two-derivative equations of
motion following from the action I0 for the above ansatz,
with the aim to compare with the standard Friedmann
equations that follow directly from the higher dimensional
action for metric and dilaton. After setting nðtÞ ¼ 1, the
equations of motion of the two-derivative theory are those
in (3.10), keeping only c1 ¼ − 1

8
and setting all ck>1 equal

to zero:

S̈ þ S _S2 − _Φ _S ¼ 0; ðSÞ

−2Φ̈þ _Φ2 −
1

8
tr _S2 ¼ 0; ðΦÞ

_Φ2 þ 1

8
tr _S2 ¼ 0: ðnÞ ð4:8Þ

Inserting the above expressions for S, Φ, and their
derivatives in terms of the scale factor, these equations
become

ðd−1Þ
�
_a
a

�
2

þ ä
a
−2

_a
a
_ϕ¼ 0; ðSÞ

dðd−1ÞH2−4dH _ϕþ4 _ϕ2−4ϕ̈þ2d
ä
a
¼ 0; ðΦÞ

dðd−1ÞH2−4dH _ϕþ4 _ϕ2¼ 0: ðnÞ ð4:9Þ

Replacing the second equation by the third minus the
second, we find

ðd − 1Þ
�
_a
a

�
2

þ ä
a
− 2

_a
a
_ϕ ¼ 0; ðSÞ

−2ϕ̈þ d
ä
a
¼ 0; ðnÞ − ðΦÞ

dðd − 1ÞH2 − 4dH _ϕþ 4 _ϕ2 ¼ 0: ðnÞ ð4:10Þ
Using linear combinations of the above equations, it is easy
to see that they are equivalent to the three standard (string)
Friedmann equations, as, for instance, given in [37].

B. α0 corrected equations

Let us now turn to the computation of the α0 corrected
Friedmann equations. We will start from the equations in
(3.10) and specialize to the FLRWansatz with k ¼ 0 shown
in (4.1). Although these equations were derived only from
the general single-trace action (3.1), we will now argue that
for the FLRW ansatz, and leaving the coefficients ck
generic, this is, in fact, the most general action.
Specifically, we will show that the inclusion of any

multitrace invariants in the action merely renormalizes the
coefficients ck. To this end note that with _S ¼ 2HJ and
J 2 ¼ −1 we can immediately evaluate a generic term of
order α0k−1 in the Lagrangian:

L ∝ cktrð _S2kÞ ¼ ð−1Þk22kþ1ckdH2kðtÞ: ð4:11Þ
Now, let us compare this with, say, a double trace term with
the same order of α0:

L ∝ ck;ltrð _S2ðk−lÞÞtrð _S2lÞ ¼ ck;lð−1Þk22kþ12d2H2kðtÞ;
ð4:12Þ

where ck;l are new coefficients. Comparing with (4.11) we
see that they coincide, except for the overall normalization.
Thus, the only effect of the inclusion of (4.12) is the
renormalization

ck → ck þ 2dck;l: ð4:13Þ
More generally, the inclusion of any multitrace invariant
merely leads to a (d-dependent) renormalization of the
coefficients ck. (We have also verified this at the level of
the equations of motion.) Thus, it is sufficient to start with
Eqs. (3.10) obtained from the single-trace action.
Let us begin with the S field equation. In order to

evaluate it efficiently we first collect some relations for S
and J that follow from _S ¼ 2HJ and J 2 ¼ −1:

S _S2k ¼ ð−1Þkð2HÞ2kS;
_S2k−1 ¼ _S2ðk−1Þ _S ¼ ð−1Þk−1ð2HÞ2k−1J : ð4:14Þ

We can then evaluate the derivative
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d
dt

_S2k−1 ¼ ð2k − 1Þð−1Þk−1ð2HÞ2ðk−1Þ2 _HJ

þ ð−1Þk−1ð2HÞ2kS; ð4:15Þ

and thus compute

d
dt

_S2k−1 − _Φ _S2k−1 þ S _S2k

¼ ð−1Þk−1ð2HÞ2k−2ðð2k − 1Þ2 _H − _Φð2HÞÞJ
¼ ð−1Þk−122k−1½ð2k − 1Þ _HH2k−2 − _ΦH2k−1�J

¼ ð−1Þk−122k−1
��

d
dt

− _Φ
�
H2k−1

�
J : ð4:16Þ

Note that here all terms proportional to S canceled. This
means that one obtains only a single equation, not a matrix
equation, as it should be, because we are looking for an
equation for the single function aðtÞ. Writing ES ¼ ESJ
we find

ES ¼ −
X∞
k¼1

ð−α0Þk−1kck22k
�
d
dt

− _Φ
�
H2k−1

¼ −
�
d
dt

− _Φ
�X∞

k¼1

ð−α0Þk−1kck22kH2k−1: ð4:17Þ

The last expression suggests the definition of a function
fðHÞ of the Hubble parameter H. Including some overall
constants for future convenience we write

fðHÞ≡ 4d
X∞
k¼1

ð−α0Þk−122kkckH2k−1

¼ 16dc1H − 128dα0c2H3 þ � � � ; ð4:18Þ

for then Eqs. (4.17) can simply be written as

�
d
dt

− _ΦðtÞ
�
fðHÞ ¼ 0: ð4:19Þ

This drastic simplification of the equations can be under-
stood as a consequence of the existence of the Noether
charges (3.20): for the FLRW ansatz Q can be seen to be

Q ¼ 1

2d
e−ΦðtÞfðHðtÞÞ

�−1 0

0 1

�
: ð4:20Þ

The conservation law _Q ¼ 0 gives d
dt ðe−ΦfðHÞÞ ¼ 0,

which is equivalent to (4.19), as anticipated before.
We now determine the lapse and dilaton equations from

(3.10). For the lapse equation one obtains

_Φ2 ¼ −2d
X∞
k¼1

ð−α0Þk−122kð2k − 1ÞckH2k ¼ −gðHÞ;

ð4:21Þ
where we introduced the function

gðHÞ≡ 2d
X∞
k¼1

ð−α0Þk−122kð2k − 1ÞckH2k

¼ 8dc1H2 − α03 · 25dc2H4 þ � � � : ð4:22Þ
The dilaton equation is most conveniently written in the
combination (3.14) using the lapse equation. One finds

0 ¼ Φ̈þ 2d
X∞
k¼1

ð−α0Þk−122kkckH2k: ð4:23Þ

On the right-hand side we recognize a multiple of HfðHÞ.
Thus, the above equation can also be written as

Φ̈þ 1

2
HfðHÞ ¼ 0: ð4:24Þ

Summarizing, the three α0-completed Friedmann
equations take the form

d
dt

ðe−ΦfðHÞÞ ¼ 0;

Φ̈þ 1

2
HfðHÞ ¼ 0;

_Φ2 þ gðHÞ ¼ 0; ð4:25Þ
in terms of the functions fðHÞ and gðHÞ defined in (4.18)
and (4.22):

fðHÞ ¼ 4d
X∞
k¼1

ð−α0Þk−122kkckH2k−1 ¼ −2dH þOðα0Þ;

gðHÞ ¼ 2d
X∞
k¼1

ð−α0Þk−122kð2k − 1ÞckH2k

¼ −dH2 þOðα0Þ: ð4:26Þ
These definitions show that f and g are, in fact, closely
related. One readily verifies that

g0ðHÞ ¼ Hf0ðHÞ; ð4:27Þ
where 0 denotes differentiation with respect to H.
Let us discuss briefly some general properties of its

solutions. First, as expected, they are invariant under
the duality transformation a → 1

a. Indeed, under this
transformation

H → −H; Φ → Φ; fðHÞ → −fðHÞ;
gðHÞ → gðHÞ; ð4:28Þ
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which leaves Eqs. (4.25) invariant. Thus, for any given
solution aðtÞ there is a “dual” solution ãðtÞ≡ 1=aðtÞ.
Equations (4.25) are also invariant under time reversal

t → −t. For a given solution aðtÞ, ΦðtÞ, there is the time-
reversed solution ãðtÞ≡að−tÞ, Φ̃ðtÞ≡Φð−tÞ, with H̃ðtÞ ¼
−Hð−tÞ.

C. Perturbative solutions

We now discuss how to solve the α0-corrected Friedmann
equations (4.25) perturbatively in α0. To this end it is
convenient to introduce the variable Ω as an exponential of
the dilaton Φ:

Ω≡ e−Φ: ð4:29Þ
Using the derivatives _Ω ¼ − _ΦΩ and Ω̈ ¼ ð−Φ̈þ _Φ2ÞΩ,
and taking the difference of the second and third equations
in (4.25), the set of equations becomes

X ≡ d
dt

ðΩfðHÞÞ ¼ 0;

Y ≡ Ω̈ − hðHÞΩ ¼ 0;

Z≡ _Ω2 þ gðHÞΩ2 ¼ 0; ð4:30Þ
where, for later use, they have been labeled X, Y, Z, and we
defined the function hðHÞ as

hðHÞ≡ 1

2
HfðHÞ − gðHÞ

¼ −2d
X∞
k¼2

ð−α0Þk−122kðk − 1ÞckH2k

¼ α025dc2H4 þ � � � : ð4:31Þ
Note that h, in contrast to f and g, vanishes to zeroth order
in α0, which will be crucial for our subsequent perturbative
construction. It will also be crucial to recall that there is
one Bianchi identity among the three equations; cf. (3.13).
For the functions defined in (4.30) the Bianchi identity
takes the form

dZ
dt

¼ HΩX þ 2 _ΩY: ð4:32Þ

This is easily verified directly by differentiation recalling
that g0ðHÞ ¼ Hf0ðHÞ.
We will now show how to solve these equations,

perturbatively in α0, by expanding

ΩðtÞ ¼ Ω0ðtÞ þ α0Ω1ðtÞ þ ðα0Þ2Ω2ðtÞ þ � � � ;
HðtÞ ¼ H0ðtÞ þ α0H1ðtÞ þ ðα0Þ2H2ðtÞ þ � � � : ð4:33Þ
The subscripts in these quantities denote the power of α0
that accompanies them in the expansion. The first equation,
X ¼ 0, is the Noether conservation, solved once and for
all by

fðHðtÞÞ ¼ qΩ−1ðtÞ; ð4:34Þ
with q a number, proportional to the Noether chargeQ [see
(4.20)]. The question arises whether integration constants
such as q have to be treated also as expansions in α0 by
writing q ¼ q0 þ α0q1 þ � � �. This depends on how we set
out to solve the differential equations. If we pose initial
conditions, say by specifying Ωð0Þ and _Ωð0Þ, then we have
to determine all integration constants in terms of these
initial data, in which case the value of q, for example, does
get α0 corrected. Here, however, we will follow a different
prescription that simplifies the analysis. Instead of for-
mulating an explicit initial value problem we introduce
integration constants whenever necessary, but allow our-
selves the freedom to set integration constants to zero
whose only effect is to “renormalize” constants that are
already present. As long as these previously introduced
integration constants are completely general, this procedure
does not entail a loss of generality. Then there is no need for
α0 expansions of parameters such as q.
We now show how to iteratively solve the above

equations to any desired order in α0. Since hðHÞ starts at
order α0, to lowest order Y ¼ 0 implies

Ω̈0ðtÞ ¼ 0 ⇒ Ω0ðtÞ ¼ γðt − t0Þ; ð4:35Þ
which we solved in terms of two integration constants γ and
t0. Then, from the expansion of fðHÞ and (4.34),

fðHÞ≡ 16dc1H0 ¼ q
1

γðt − t0Þ
⇒

H0ðtÞ ¼ −
q
2dγ

1

t − t0
; ð4:36Þ

where we used the universal c1 ¼ − 1
8
. The last equation of

(4.30), Z ¼ 0, can now be used to to zeroth order in α0 to
establish a relation between q and the other parameters:

0 ¼ _Ω2
0 þ gðHÞΩ2

0 ¼ γ2 − dH2
0ðtÞγ2ðt − t0Þ2 ¼ γ2 −

q2

4d
;

ð4:37Þ
and thus

q ¼ �2
ffiffiffi
d

p
jγj: ð4:38Þ

The solutions are then summarized by

H0ðtÞ ¼∓ sgnðγÞffiffiffi
d

p 1

t − t0
; Ω0ðtÞ ¼ γðt − t0Þ: ð4:39Þ

This is the complete solution to zeroth order in α0 that is
well defined for t > t0. Before turning to next order, let us
express this solution in terms of standard variables. From
the definition HðtÞ ¼ d

dt lnðaðtÞÞ we obtain by integration
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lnðaðtÞÞ ¼∓ sgnðγÞffiffiffi
d

p lnðt − t0Þ þ const; ð4:40Þ

and thus

aðtÞ ¼ Aðt − t0Þ∓sgnðγÞ 1ffiffi
d

p
; ð4:41Þ

where A is a new integration constant. For the scalar dilaton
this yields with (4.1)

e−2ϕ ¼ ðaðtÞÞ−de−Φ ¼ ðaðtÞÞ−dΩ0

∝ ðt − t0Þ1�sgnðγÞ ffiffi
d

p
: ð4:42Þ

This solution is well known in the literature [see Eqs. (4.1)–
(4.4) in [29]], which, for d ¼ 25 and the special case that all
radii are equal, reduces to (4.41) and (4.42) for γ < 0. See
also [32] for first-order α0 corrections. (The relation to our
results is more difficult to establish due to the ambiguity in
field variables and their truncation to four derivatives.)
Let us now turn to the solutions of first order in α0. To this

order, the equation Y ¼ 0 implies

α0Ω̈1 ¼ hðHÞΩ0 ¼ dðα025c2H4
0ðtÞÞΩ0

¼ α0d25c2
1

d2
1

ðt − t0Þ4
γðt − t0Þ; ð4:43Þ

and so we need to solve

Ω̈1 ¼ c225
γ

d
1

ðt − t0Þ3
: ð4:44Þ

This can be integrated immediately:

Ω1ðtÞ ¼ c224
γ

d
1

t − t0
þ b1tþ b2; ð4:45Þ

where b1 and b2 are integration constants. Looking back at
the zeroth-order solution (4.39) we infer that these effec-
tively “renormalize” the previous integration constants γ
and t0. Thus, without loss of generality we can set b1 ¼
b2 ¼ 0:

Ω1ðtÞ ¼
24c2γ
d

1

t − t0
: ð4:46Þ

Next, we have to determine H1ðtÞ. To this end we use
(4.34) and expand to first order in α0:

fðHÞ ¼ qΩ−1 ¼ qΩ−1
0 ð1þ α0Ω−1

0 Ω1Þ−1

¼ q

�
Ω−1

0 − α0
Ω1

Ω2
0

�
; ð4:47Þ

which then has to be matched to the definition of f
expanded to the same order,

fðHÞ ¼ 16dc1H − 128dα0c2H3

¼ 16dc1H0 þ 16dα0ðc1H1 − 8c2H3
0Þ: ð4:48Þ

Thus, to first order in α0 we have to solve

−
q

16d
Ω1

Ω2
0

¼ c1H1 − 8c2H3
0: ð4:49Þ

Using (4.39) and (4.46) this can be solved for H1,

H1ðtÞ ¼ � 80sgnðγÞc2
d3=2

1

ðt − t0Þ3
: ð4:50Þ

Given the way we have set up the computation, the
Z ¼ 0 equation now needs to be satisfied identically, for
we have no free parameters left to fix by this equation.
An explicit computation to first order in α0 shows that Z ¼ 0
is indeed satisfied.
More generally, it is clear that the iterative procedure of

solving the equations can be continued to arbitrary orders
as follows. Consider first the equation Y ¼ 0, setting equal
the terms that are of order α0k:

α0kΩ̈k ¼ ðhðHÞΩÞk: ð4:51Þ

Suppose we have solved for Ω0;…;Ωk−1, as well as for
H0;…; Hk−1. Since hðHÞ starts at order α0, the right-hand
side only involves Ωi’s and Hi’s that are already deter-
mined. Thus Ω̈k is determined, and we can directly
integrate twice to determine Ωk. This gives two integration
constants as in (4.45), but as before these just renormalize
γ, t0 and so we set them to zero. With Ω0;…;Ωk now
determined we next use the equation X ¼ 0 in the form
(4.34) in order to determine Hk, which completes the next
iteration step. Upon following the structural dependence
on the time-dependent factor ðt − t0Þ in this computation
one may, in fact, verify that the perturbative solutions take
the form

HðtÞ ¼ h0
1

t − t0
þ α0h1

1

ðt − t0Þ3
þ α02h2

1

ðt − t0Þ5
þ � � � ;

ΩðtÞ ¼ ω0ðt − t0Þ þ α0ω1

1

t − t0
þ α02ω2

1

ðt − t0Þ3
þ � � � ;

ð4:52Þ

where hn and ωn are time-independent coefficients, which
can in principle be expressed in terms of the cn, as done
above for the first two. Finally, it remains to prove that the
Z ¼ 0 equation is automatically satisfied. To this end we
first note that the above expansions of H and Ω in (4.52)
determine the time dependence of Z ¼ _Ω2 þ gðHÞΩ2 to be
of the form
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ZðtÞ ¼ z0 þ α0z1
1

ðt − t0Þ2
þ α02z2

1

ðt − t0Þ4
þ � � � ; ð4:53Þ

where the zi are time-independent parameters. Now, since
we have satisfied X ¼ Y ¼ 0 in finding (4.52), the Bianchi
identity (4.32) implies that Z does not depend on time, so
actually z1 ¼ z2 ¼ � � � ¼ 0. Therefore, ZðtÞ ¼ z0, but since
we fixed parameters in (4.37) so that z0 ¼ 0, we have
established Z ¼ 0 to all orders in α0.
We close this section with a few remarks. The above

solutions (4.52) seem to suggest that the perturbative
expansion breaks down in the high curvature region, since
the terms become more and more singular as t → t0.
However, it is conceivable that the entire series converges

to a regular function (as, for instance, e−
1

t−t0 is regular at
t → t0 although every term in its power series diverges).
Moreover, for late times t the solutions seem to imply that
H is driven to zero and thus to Minkowski space, but
this, of course, may change once matter contributions are
included. In any case, it is important to investigate the
possible nonperturbative solutions, to which we turn in
the next section.2

V. NONPERTURBATIVE SOLUTIONS

In this section we discuss a few aspects of possible
solutions that are nonperturbative in α0. In the first sub-
section we solve the initial-value formulation for the
general equations derived above, for generic functions
fðHÞ and gðHÞ. In the second subsection we give con-
ditions on the functions fðHÞ and gðHÞ so that the resulting
theory permits de Sitter vacua.

A. Initial-value formulation

Let us now show how to obtain the general solution
given initial conditions at time t ¼ 0 of the form

Ωð0Þ ¼ ω; _Ωð0Þ ¼ 1ffiffiffiffi
α0

p γ: ð5:1Þ

Note that since Ω ¼ e−Φ is unit free, ω and γ are unit-free
constants. Our strategy will be to solve the first and last
equations in (4.30),

X ≡ d
dt

ðΩfðHÞÞ ¼ 0;

Z≡ _Ω2 þ gðHÞΩ2 ¼ 0: ð5:2Þ
The equation Y ¼ 0 will then hold due to the Bianchi
identity (4.32),

dZ
dt

¼ HΩX þ 2 _ΩY; ð5:3Þ

assuming _Ω ≠ 0 as we will do from now on. The case
_Ω ¼ 0 will be treated separately and is a bit singular.
Let us first see that the initial conditions fix the value

Hð0Þ of the Hubble parameter at t ¼ 0. For this consider
the second equation in (5.2) which at t ¼ 0 gives

α0gðHð0ÞÞ ¼ −
γ2

ω2
: ð5:4Þ

Note that we could pass to a new function g̃ defined so that

α0gðHÞ ¼ g̃ð
ffiffiffiffi
α0

p
HÞ ¼ −dð

ffiffiffiffi
α0

p
HÞ2 þOðð

ffiffiffiffi
α0

p
HÞ4Þ; ð5:5Þ

which is a unit-free function of the unit-free argumentffiffiffiffi
α0

p
H. Equation (5.4) then becomes

g̃ð
ffiffiffiffi
α0

p
Hð0ÞÞ ¼ −

γ2

ω2
: ð5:6Þ

The possible values of Hð0Þ are the roots of this equation.
In this way Ωð0Þ and _Ωð0Þ have determined Hð0Þ up to a
discrete ambiguity. Equation (5.5) makes it clear that we
can always solve perturbatively for Hð0Þ but, of course, it
could be that nonperturbatively there are no solutions.
Now that we have the initial value ofH we use the X ¼ 0

equation to solve for _Ω=Ω as a function of H:

_Ω
Ω

¼ −
f0ðHÞ
fðHÞ

_H: ð5:7Þ

The Z ¼ 0 equation can be rewritten as

_Ω
Ω

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðHÞ

p
: ð5:8Þ

The last two equations imply

f0ðHÞ
fðHÞ

_H ¼∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðHÞ

p
; ð5:9Þ

which can be rewritten as

f0ðHÞdH
fðHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðHÞp ¼∓ dt: ð5:10Þ

Integrating from t ¼ 0 to t then gives

Z
HðtÞ

Hð0Þ

f0ðHÞdH
fðHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðHÞp ¼∓ t: ð5:11Þ

This is a complete solution. If the integral is done by
finding a WðHÞ such that

2We thank Robert Brandenberger and Jean-Luc Lehners for
discussions on these points.
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dWðHÞ ¼ f0ðHÞdH
fðHÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðHÞp ¼ −
2

HfðHÞ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðHÞ

p
; ð5:12Þ

where the second form follows by g0 ¼ Hf0 [cf. (4.27)], the
solution is of the form

WðHðtÞÞ −WðHð0ÞÞ ¼∓ t: ð5:13Þ

This implicitly determinesH as a function of t. The value of
ΩðtÞ now follows from the X ¼ 0 equation in that

ΩðtÞ ¼ q
fðHðtÞÞ ¼ ω

fðHð0ÞÞ
fðHðtÞÞ ; ð5:14Þ

where in the second step the constant of the motion q was
evaluated using the initial condition Ωð0Þ ¼ ω and the
value of Hð0Þ.
Consider now the somewhat singular case of vanishing

_Ω. If _Ω≡ 0 for all t, the Z ¼ 0 equation implies gðHÞ ¼ 0,
which fixes HðtÞ to be a constant equal to a zero of g.
We will consider this case in the next subsection. If t ¼ 0 is
the only time for which _Ω ¼ 0, then this fixes the initial
condition for H.

B. Nonperturbative de Sitter solutions

We now turn to a discussion of possible de Sitter (dS)
solutions. To this end consider the dS metric

ds2 ¼ −dt2 þ e2H0tdx2; ð5:15Þ

leading to the scale factor aðtÞ ¼ eH0t, with H ¼ H0 ≠ 0
const. Consider the Friedmann equations (4.25) copied here
for convenience:

d
dt

ðe−ΦfðHÞÞ ¼ 0;

Φ̈þ 1

2
HfðHÞ ¼ 0;

_Φ2 þ gðHÞ ¼ 0: ð5:16Þ

With H constant, the first equation then implies that Φ is
also constant:

_Φ ¼ 0 → Φ ¼ const: ð5:17Þ

SinceH0 ≠ 0, the second equation implies the vanishing of
fðH0Þ and the third the vanishing of gðH0Þ:

fðH0Þ ¼ 0; gðH0Þ ¼ 0: ð5:18Þ

Note that while the two functions fðHÞ and gðHÞ are
different, fðHÞ determines gðHÞ via the relations g0ðHÞ ¼
Hf0ðHÞ and gð0Þ ¼ 0. In the two-derivative approximation

fðH0Þ ¼ −2dH0 [see (4.26)] and therefore the only sol-
ution is H0 ¼ 0, which is not of interest.
There are, however, nonperturbative dS solutions con-

sistent with duality. That is, as we demonstrate below, there
exist functions fðHÞ such that dS solutions exist. To find a
solution to (5.18) we integrate the relation g0ðHÞ ¼ Hf0ðHÞ
to find

gðHÞ ¼ HfðHÞ −
Z

H

0

fðH0ÞdH0; ð5:19Þ

where we used gð0Þ ¼ 0, as required by the definition of g.
To get a vanishing gðH0Þ when fðH0Þ ¼ 0 we need that
the integral of fðHÞ from zero to H0 vanishes. This, for
example, happens at the nonvanishing zeros of the sine
function. More explicitly, we take

fðHÞ≡ −
2dffiffiffiffi
α0

p sinð
ffiffiffiffi
α0

p
HÞ

¼ −2d
X∞
k¼1

ð−α0Þk−1 1

ð2k − 1Þ!H
2k−1: ð5:20Þ

This fðHÞ ¼ −2dH þOðα0Þ is consistent with the known
two-derivative theory. From the definition (4.18) it is clear
that there are coefficients ck so that this holds (in fact,
ck ¼ − 1

ð2k!Þ22k). With (5.19) we then get

gðHÞ ¼ −
2d
α0

ð
ffiffiffiffi
α0

p
H sinð

ffiffiffiffi
α0

p
HÞ þ cosð

ffiffiffiffi
α0

p
HÞ − 1Þ:

ð5:21Þ

We now see that fðH0Þ ¼ gðH0Þ ¼ 0 is satisfied for

ffiffiffiffi
α0

p
H0 ¼ 2πn; n ∈ Z; n ≠ 0: ð5:22Þ

This is a discrete infinity of dS solutions.
Although (5.20) is surely not the function arising in any

string theory, the actual functions could have the properties
required in order to lead to dS vacua in the string frame.
The conditions for this to happen can be stated more
concisely as follows. Instead of fðHÞwe consider its integral

FðHÞ≡
Z

H

0

fðH0ÞdH0 ¼ 4d
X∞
k¼1

ð−α0Þk−122k−1ckH2k;

ð5:23Þ

where the evaluation used the expansion (4.26) of fðHÞ.
Then, from (5.19), we have that gðHÞ is given by

gðHÞ ¼ HF0ðHÞ − FðHÞ: ð5:24Þ

We now infer that if there is anH0 ≠ 0 so that F and its first
derivative vanish at this point,
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FðH0Þ ¼ F0ðH0Þ ¼ 0; ð5:25Þ

thenH0 is a zero of bothf andg, and hence the theory permits
dS solutions. The conditions above require F to attain value
zero at maxima or minima. Such functions are easily
constructed, as we will show below. Since the leading term
in fðHÞ is fixed by the two-derivative theory, we also
have FðHÞ ¼ −dH2 þOðα0Þ.
Let us emphasize that the dS solutions discussed above

are nonperturbative in α0: they are not constructed from a
solution of the two-derivative equations which is then α0
corrected. The complete series of all α0 corrections needs to
be used in order to obtain a solution.
We demonstrated that the two-derivative theory does not

have dS solutions. The inclusion of the leading α0 correc-
tions does not change this. But with suitable order α02
corrections, dS solutions appear. This corresponds to
fðHÞ ∼H þ α0H3 þ α02H5, and therefore FðHÞ ∼H2 þ
α0H4 þ α02H6. It is simple to see that this happens for

FðHÞ ¼ −dH2ð1 − γ2α0H2Þ2; ð5:26Þ

where γ is an arbitrary constant. The solution here isffiffiffiffi
α0

p
H0 ¼ �1=γ. Such solutions, however curious, cannot

be trusted in string theory, which carries an infinite number
of α0 corrections. A reliable solution should either solve the
two-derivative equations (and then be corrected perturba-
tively) or be nonperturbative in α0.
A general class of functions FðHÞ admitting dS solutions

is easily obtained. For a polynomial wðxÞ the condition
wðx0Þ ¼ 0 means that wðxÞ ¼ ðx − x0ÞuðxÞ, where uðxÞ is
another polynomial. The additional condition w0ðx0Þ ¼ 0

implies that uðx0Þ ¼ 0, and thus wðxÞ ¼ ðx − x0Þ2vðxÞ for
some polynomial vðxÞ. While FðHÞ is an infinite series in
H2, not a polynomial, the above remarks show how to
produce consistent solutions. A general class of FðHÞ with
possible dS Hubble parameters �Hð1Þ

0 ;…;�HðkÞ
0 takes the

form

FðHÞ ¼ −dH2

�
1þ

X∞
p¼1

dpα0pH2p

�Yk
i¼1

�
1 −

�
H

HðiÞ
0

�
2
�

2

:

ð5:27Þ

The first factor in parentheses is an arbitrary series in H2

with a leading term equal to one.
We close with a few general remarks on the possible dS

solutions. First, they are most likely insufficient as phe-
nomenologically viable models, because the natural values
of the cosmological constant Λ ∼ 1=α0 obtained by this
mechanism are many orders of magnitude too large. This is
the cosmological constant problem. Second, they are dS
solutions in the string frame, while the match with the
observable dark energy is conventionally done in the

Einstein frame. We will now discuss some aspects of the
Einstein-frame equations.3

Denoting the Einstein frame metric by Gμν, the required
Weyl rescaling reads

Gμν ¼ e−
4ϕ
D−2gμν; D ¼ dþ 1; ð5:28Þ

which implies for the Einstein frame scale factor aEðtÞ ¼
e−

2
d−1ϕðtÞaðtÞ. Thus, the Einstein frame Hubble parameter

reads

HE ≡ _aEðtÞ
aEðtÞ

¼ −
2

d − 1
_ϕþH ¼ −

1

d − 1
ð _ΦþHÞ; ð5:29Þ

where we used the relation (4.3) between dilaton
derivatives:

2 _ϕ ¼ _Φþ dH: ð5:30Þ
We next have to recall that the Weyl rescaling (5.28)
implies

G00 ¼ e−
4ϕ
D−2g00 ¼ −e−

4ϕ
D−2; ð5:31Þ

since we have set g00 ¼ −n2 ¼ −1. To identify a de Sitter
solution in the standard form (5.15) we needG00 ¼ −1, and
hence we need to reparametrize time. Let t0ðtÞ be a time
such that G0

00ðt0Þ ¼ −1 and thus

G00ðtÞdt2 ¼ G0
00ðt0Þdt02 ¼ −dt02 → e−

2ϕ
d−1dt ¼ dt0: ð5:32Þ

This redefinition has no effect on the gij components of the
metric other than reparametrizing the time dependence, so
we have

a0Eðt0Þ ¼ aEðtðt0ÞÞ: ð5:33Þ
Therefore the Hubble parameter of the solution in the
Einstein frame with coordinates ðt0; xiÞ is

H0
Eðt0Þ ¼

1

a0Eðt0Þ
da0Eðt0Þ
dt0

¼ dt
dt0

·
1

aEðtÞ
daEðtÞ
dt

¼ e
2ϕ
d−1HEðtðt0ÞÞ

¼−e
2ϕ
d−1

1

d−1
ð _ΦþHÞ; ð5:34Þ

where we used HEðtÞ computed in (5.29). On the right-
hand side dot is a t derivative, and all terms are evaluated at
tðt0Þ. Since e2ϕ ¼ ðaðtÞÞdeΦ, we then have

H0
Eðt0Þ ¼ −ðaðtÞÞ d

d−1e
Φ
d−1

1

d − 1
ð _ΦþHÞ: ð5:35Þ

Our solutions with _Φ ¼ 0 and H ¼ H0 would lead to a
time-dependent H0

E through the scale factor aðtÞ ∼ eH0t.

3We thank M. Gasperini and G. Veneziano for explanations on
how to relate the two frames.
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Thus, these solutions do not lead to dS vacua in the
Einstein frame.
The general condition for dS vacua in the Einstein frame is

d
dt0 H

0
Eðt0Þ ¼ 0 and thus, by the chain rule, that the right-hand

side of (5.34) or (5.35) is independent of t. We have not
investigated the general problem whether there are solutions
with this property, but as an illustration for the usefulness
of this framework we present a simple no-go result: there are
no dS solutions in the Einstein framewith constant dilatonϕ.
To this end we observe that _ϕ ¼ 0 implies with (5.30) that
_Φ ¼ −dH, which with (5.34) yields

H0
Eðt0ðtÞÞ ¼ e

2ϕ
d−1HðtÞ: ð5:36Þ

Since we assume ϕ to be constant, H0
E is constant if

and only if H is constant. With H constant, however, we
are back to our previous analysis of dS vacua in the string
frame, where we concluded that the Friedmann equa-
tions (5.16) imply _Φ ¼ 0 and hence, recalling _Φ ¼ −dH,
thatH ¼ 0, leading toH0

E ¼ 0 and flat space in the Einstein
frame. This proves that there are no dS vacua in the Einstein
frame with constant ϕ.

C. de Sitter solutions in noncritical string theory

We now briefly comment on the general case of
noncritical string theory in arbitrary dimension D in which
case the last term in (2.1) needs to be included. Note that
this term is not a cosmological constant term since it is
written in string frame. Rather, passing to the Einstein
frame, this term gives rise to a scalar potential for ϕ. The
theory including at most two derivatives still does not allow
for de Sitter vacua, as we confirm momentarily.
Let us now analyze the dynamics of FLRW backgrounds

in noncritical string theory. As argued around (4.11) it is
sufficient to include single-trace invariants, and so we
consider the action that simply extends (3.1) by the addi-
tional term (in the gauge n ¼ 1):

I ≡
Z

dte−Φ
�
− _Φ2 þ

X∞
k¼1

α0k−1cktrð _S2kÞ − 2ðD − 26Þ
3α0

�
:

ð5:37Þ
The equations of motion (3.10) are unaffected for S, but are
modified for Φ and n:

EΦ ≡ 2Φ̈ − _Φ2 þ 2ðD − 26Þ
3α0

−
X∞
k¼1

α0k−1cktrð _S2kÞ;

ES ≡ −2
X∞
k¼1

α0k−1kck

�
d
dt

_S2k−1 − _Φ _S2k−1 þ S _S2k
�
;

En ≡ _Φ2 −
2ðD − 26Þ

3α0
−
X∞
k¼1

α0k−1ð2k − 1Þcktrð _S2kÞ:

ð5:38Þ

Note that while EΦ and En are modified, their sum is not
and is still given by (3.15). It is then straightforward to
specialize these equations to the FLRW background:

d
dt

ðe−ΦfðHÞÞ ¼ 0;

Φ̈þ 1

2
HfðHÞ ¼ 0;

_Φ2 þ gðHÞ − 2ðD − 26Þ
3α0

¼ 0; ð5:39Þ

which generalizes (5.16).
We can now state the conditions for de Sitter vacua for

which H ¼ H0 ¼ const. As before, we see that in the two-
derivative theory there are no de Sitter vacua: the first
equation of (5.39) implies that Φ is constant, _Φ ¼ 0, which
with fðHÞ ¼ −2dH and the second equation implies that
H0 ¼ 0, leading to flat space. Including all α0 corrections,
the condition that (5.39) permits de Sitter solutions can be
stated in terms of the function FðHÞ defined in (5.23):

FðH0Þ ¼ −
2ðD − 26Þ

3α0
; F0ðH0Þ ¼ 0: ð5:40Þ

Indeed, one then finds

fðH0Þ ¼ F0ðH0Þ ¼ 0;

gðH0Þ ¼ H0F0ðH0Þ − FðH0Þ ¼
2ðD − 26Þ

3α0
; ð5:41Þ

so that (5.39) is satisfied for constant Φ. Thus, duality
invariant theories with de Sitter vacua exist provided there
is a function FðHÞ ¼ −dH2 þOðH4Þ with an extremum at

a nonzero H0 where it takes value −
2ðD−26Þ

3α0 . Clearly, these
conditions can be met. As a toy example we display a
quartic polynomial with these properties:

FðHÞ ¼ −dH2

�
1 −

1

2

�
H
H0

�
2
�
; ð5:42Þ

for which

FðH0Þ ¼ −
dH2

0

2
; F0ðHÞ ¼ −2dH

�
1 −

�
H
H0

�
2
�
;

ð5:43Þ

so that (5.40) holds for
ffiffiffiffi
α0

p
H0 ¼ 2

ffiffiffiffiffiffiffiffi
d−25
3d

q
.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have discussed, to all orders in α0, the
most general duality-invariant spacetime actions for a
metric, b-field, and dilaton that depend only on time.
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This allowed us to study some generic features for
cosmological backgrounds when all α0 corrections are
included. In particular, we discussed solutions such as
de Sitter vacua that are nonperturbative in α0. We close with
a list of natural follow-up projects and open problems:

(i) The cosmological backgrounds investigated here
involved only a single scale factor aðtÞ in addition
to the dilaton. In general it should be straightforward
to include independent “rolling radii” in different
dimensions, as analyzed to lowest order in α0 long
ago [29]. Moreover, it would be important to include
a b-field. Qualitatively new phenomena may appear
in this case.

(ii) Eventually it would be crucial to arrive at (semi)
realistic cosmological solutions. In particular, one has
to make sure that the string coupling given by the
dilaton, which here is generally time dependent, does
not become too large, for otherwise the classical string
theory can no longer be trusted. Moreover, matter
fields should be included in a duality covariant fashion,
as in [2].

(iii) An important challenge for any theory of quantum
gravity is to show how the big-bang singularity
could be resolved. (Related work includes [38,39].)
One possibility is that the higher-derivative α0
corrections of classical string theory could resolve

the initial singularity, leading to a pre-big-bang
phase that is smoothly connected to the post-big-bang
phase [32]. With the framework developed here it
should be possible to investigate whether this is
possible in principle.

(iv) In our classification of higher derivative terms, field
redefinitions at each order in α0 allowed us to
eliminate any terms in which the field S had more
than one time derivative or the field Φ had any
number of derivatives. How general is this phe-
nomenon in time-dependent field dynamics?

(v) Arguably a central problem is to determine for each
string theory the free coefficients defining FðHÞ,
which determines the functions fðHÞ and gðHÞ that
appear in the α0-complete Friedmann equations.
Perhaps the significantly simplified setup developed
here will suggest a viable strategy.

ACKNOWLEDGMENTS

We are very grateful to Robert Brandenberger, Maurizio
Gasperini, Jean-Luc Lehners, Diego Marques, Krzysztof
Meissner, Mark Mueller, Ashoke Sen, Andrew Tolley, and
Gabriele Veneziano for useful discussions and correspon-
dence. The work of O. H. is supported by the ERC
Consolidator Grant “Symmetries & Cosmology.”

[1] R. H. Brandenberger and C. Vafa, Superstrings in the Early
Universe, Nucl. Phys. B316, 391 (1989).

[2] A. A. Tseytlin and C. Vafa, Elements of string cosmology,
Nucl. Phys. B372, 443 (1992).

[3] M. Gasperini and G. Veneziano, The Pre–big bang scenario
in string cosmology, Phys. Rep. 373, 1 (2003).

[4] R. Brandenberger, R. Costa, G. Franzmann, and A.Weltman,
Dual spacetime and nonsingular string cosmology, Phys. Rev.
D 98, 063521 (2018).

[5] J. Quintin, R. H. Brandenberger, M. Gasperini, and G.
Veneziano, Stringy black-hole gas in α0-corrected dilaton
gravity, Phys. Rev. D 98, 103519 (2018).

[6] R. H. Brandenberger, Beyond standard inflationary cosmol-
ogy, arXiv:1809.04926.

[7] H. Wu and H. Yang, Double field theory inspired cosmol-
ogy, J. Cosmol. Astropart. Phys. 07 (2014) 024.

[8] D. J. Gross and E. Witten, Superstring modifications of
einstein’s equations, Nucl. Phys. B277, 1 (1986).

[9] D. J. Gross and J. H. Sloan, The quartic effective action for
the heterotic string, Nucl. Phys. B291, 41 (1987).

[10] R. R. Metsaev and A. A. Tseytlin, Order alpha-prime (Two
Loop) equivalence of the string equations of motion and the
sigma model weyl invariance conditions: Dependence on
the dilaton and the antisymmetric tensor, Nucl. Phys. B293,
385 (1987).

[11] W. Siegel, Superspace duality in low-energy superstrings,
Phys. Rev. D 48, 2826 (1993).

[12] C. Hull and B. Zwiebach, Double field theory, J. High
Energy Phys. 09 (2009) 099.

[13] O. Hohm, C. Hull, and B. Zwiebach, Background indepen-
dent action for double field theory, J. High Energy Phys. 07
(2010) 016.

[14] O. Hohm, C. Hull, and B. Zwiebach, Generalized metric
formulation of double field theory, J. High Energy Phys. 08
(2010) 008.

[15] O. Hohm,W. Siegel, andB. Zwiebach, Doubled α0-geometry,
J. High Energy Phys. 02 (2014) 065.

[16] O. Hohm and B. Zwiebach, Green-Schwarz mechanism and
α0-deformed Courant brackets, J. High Energy Phys. 01
(2015) 012; Double field theory at order α0, J. High Energy
Phys. 11 (2014) 075.

[17] D. Marques and C. A. Nunez, T-duality and α0-corrections,
J. High Energy Phys. 10 (2015) 084.

[18] O. Hohm, U. Naseer, and B. Zwiebach, On the curious
spectrum of duality invariant higher-derivative gravity, J.
High Energy Phys. 08 (2016) 173.

[19] E. Lescano and D. Marques, Second order higher-derivative
corrections in Double Field Theory, J. High Energy Phys. 06
(2017) 104.

OLAF HOHM and BARTON ZWIEBACH PHYS. REV. D 100, 126011 (2019)

126011-20

https://doi.org/10.1016/0550-3213(89)90037-0
https://doi.org/10.1016/0550-3213(92)90327-8
https://doi.org/10.1016/S0370-1573(02)00389-7
https://doi.org/10.1103/PhysRevD.98.063521
https://doi.org/10.1103/PhysRevD.98.063521
https://doi.org/10.1103/PhysRevD.98.103519
https://arXiv.org/abs/1809.04926
https://doi.org/10.1088/1475-7516/2014/07/024
https://doi.org/10.1016/0550-3213(86)90429-3
https://doi.org/10.1016/0550-3213(87)90465-2
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1016/0550-3213(87)90077-0
https://doi.org/10.1103/PhysRevD.48.2826
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1088/1126-6708/2009/09/099
https://doi.org/10.1007/JHEP07(2010)016
https://doi.org/10.1007/JHEP07(2010)016
https://doi.org/10.1007/JHEP08(2010)008
https://doi.org/10.1007/JHEP08(2010)008
https://doi.org/10.1007/JHEP02(2014)065
https://doi.org/10.1007/JHEP01(2015)012
https://doi.org/10.1007/JHEP01(2015)012
https://doi.org/10.1007/JHEP11(2014)075
https://doi.org/10.1007/JHEP11(2014)075
https://doi.org/10.1007/JHEP10(2015)084
https://doi.org/10.1007/JHEP08(2016)173
https://doi.org/10.1007/JHEP08(2016)173
https://doi.org/10.1007/JHEP06(2017)104
https://doi.org/10.1007/JHEP06(2017)104


[20] O. Hohm, Background Independence and Duality Invari-
ance in String Theory, Phys. Rev. Lett. 118, 131601 (2017);
Background independent double field theory at order α0:
Metric vs. Frame-like geometry, Phys. Rev. D 95, 066018
(2017).

[21] W. H. Baron, J. J. Fernandez-Melgarejo, D. Marques, and
C. Nunez, The Odd story of α0-corrections, J. High Energy
Phys. 04 (2017) 078.

[22] W. H. Baron, E. Lescano, and D. Marqués, The generalized
Bergshoeff-de Roo identification, J. High Energy Phys. 11
(2018) 160.

[23] B. Zwiebach, Curvature squared terms and string theories,
Phys. Lett. 156B, 315 (1985).

[24] G. Veneziano, Scale factor duality for classical and quantum
strings, Phys. Lett. B 265, 287 (1991); K. A. Meissner and
G. Veneziano, Symmetries of cosmological superstring
vacua, Phys. Lett. B 267, 33 (1991).

[25] A. Sen, OðdÞ ×OðdÞ symmetry of the space of cosmologi-
cal solutions in string theory, scale factor duality and two-
dimensional black holes, Phys. Lett. B 271, 295 (1991).

[26] K. A. Meissner, Symmetries of higher order string gravity
actions, Phys. Lett. B 392, 298 (1997).

[27] T.Kugo andB. Zwiebach, Target space duality as a symmetry
of string field theory, Prog. Theor. Phys. 87, 801 (1992).

[28] O. Hohm and B. Zwiebach, T-duality constraints on higher
derivatives revisited, J. High Energy Phys. 04 (2016) 101.

[29] M. T. Mueller, Rolling radii and a time dependent dilaton,
Nucl. Phys. B337, 37 (1990).

[30] O. Hohm and B. Zwiebach, Non-perturbative de Sitter
vacua via α0 corrections, arXiv:1905.06583.

[31] G. Arciniega, P. Bueno, P. A. Cano, J. D. Edelstein, R. A.
Hennigar, and L. G. Jaime, Geometric inflation, arXiv:
1812.11187.

[32] M. Gasperini, M. Maggiore, and G. Veneziano, Towards a
nonsingular pre-big-bang cosmology, Nucl. Phys. B494,
315 (1997).

[33] J. Maharana and J. H. Schwarz, Noncompact symmetries in
string theory, Nucl. Phys. B390, 3 (1993).

[34] O. Hohm, A. Sen, and B. Zwiebach, Heterotic effective
action and duality symmetries revisited, J. High Energy
Phys. 02 (2015) 079.

[35] H. Hata, Soft dilaton theorem in string field theory, Prog.
Theor. Phys. 88, 1197 (1992); O. Bergman and B. Zwiebach,
The Dilaton theorem and closed string backgrounds, Nucl.
Phys. B441, 76 (1995); P. Di Vecchia, R. Marotta, and
M. Mojaza, Soft behavior of a closed massless state in
superstring and universality in the soft behavior of the dilaton,
J. High Energy Phys. 12 (2016) 020.

[36] H. S. Wilf, Lectures on Integer Partitions, https://www.math
.upenn.edu/ wilf/PIMS/PIMSLectures.pdf.

[37] H. Yang and B. Zwiebach, Rolling closed string tachyons
and the big crunch, J. High Energy Phys. 08 (2005)
046.

[38] T. Biswas, A. Mazumdar, and W. Siegel, Bouncing uni-
verses in string-inspired gravity, J. Cosmol. Astropart. Phys.
03 (2006) 009.

[39] T. Biswas, T. Koivisto, and A. Mazumdar, Towards a
resolution of the cosmological singularity in non-local
higher derivative theories of gravity, J. Cosmol. Astropart.
Phys. 11 (2010) 008.

DUALITY INVARIANT COSMOLOGY TO ALL ORDERS IN … PHYS. REV. D 100, 126011 (2019)

126011-21

https://doi.org/10.1103/PhysRevLett.118.131601
https://doi.org/10.1103/PhysRevD.95.066018
https://doi.org/10.1103/PhysRevD.95.066018
https://doi.org/10.1007/JHEP04(2017)078
https://doi.org/10.1007/JHEP04(2017)078
https://doi.org/10.1007/JHEP11(2018)160
https://doi.org/10.1007/JHEP11(2018)160
https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1016/0370-2693(91)90055-U
https://doi.org/10.1016/0370-2693(91)90520-Z
https://doi.org/10.1016/0370-2693(91)90090-D
https://doi.org/10.1016/S0370-2693(96)01556-0
https://doi.org/10.1143/ptp/87.4.801
https://doi.org/10.1007/JHEP04(2016)101
https://doi.org/10.1016/0550-3213(90)90249-D
https://arXiv.org/abs/1905.06583
https://arXiv.org/abs/1812.11187
https://arXiv.org/abs/1812.11187
https://doi.org/10.1016/S0550-3213(97)00149-1
https://doi.org/10.1016/S0550-3213(97)00149-1
https://doi.org/10.1016/0550-3213(93)90387-5
https://doi.org/10.1007/JHEP02(2015)079
https://doi.org/10.1007/JHEP02(2015)079
https://doi.org/10.1143/ptp/88.6.1197
https://doi.org/10.1143/ptp/88.6.1197
https://doi.org/10.1016/0550-3213(95)00022-K
https://doi.org/10.1016/0550-3213(95)00022-K
https://doi.org/10.1007/JHEP12(2016)020
https://www.math.upenn.edu/ wilf/PIMS/PIMSLectures.pdf
https://www.math.upenn.edu/ wilf/PIMS/PIMSLectures.pdf
https://www.math.upenn.edu/ wilf/PIMS/PIMSLectures.pdf
https://www.math.upenn.edu/ wilf/PIMS/PIMSLectures.pdf
https://www.math.upenn.edu/ wilf/PIMS/PIMSLectures.pdf
https://doi.org/10.1088/1126-6708/2005/08/046
https://doi.org/10.1088/1126-6708/2005/08/046
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2006/03/009
https://doi.org/10.1088/1475-7516/2010/11/008
https://doi.org/10.1088/1475-7516/2010/11/008

