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We study a (3þ 1)-dimensional UðNÞ gauge theory with N-flavor fundamental scalar fields, whose
color-flavor locked (CFL) phase has topologically stable non-Abelian vortices. The Uð1Þ charge of the
scalar fields must be Nkþ 1 for some integer k in order for them to be in the representation of UðNÞ gauge
group. This theory has a ZNkþ1 one-form symmetry, and it is spontaneously broken in the CFL phase, i.e.,
the CFL phase is topologically ordered if k ≠ 0. We also find that the world sheet of topologically stable
vortices in CFL phase can generate this one-form symmetry.
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I. INTRODUCTION

Order or disorder is a basic concept to classify classical
and quantum phases of matter in modern physics.
Classically, phases such as liquid and solid are character-
ized by local order parameters according to Landau’s
symmetry breaking theory. Local order parameters, how-
ever, are insufficient to classify quantum phases; topologi-
cal order does not have local order parameters, but still they
lead to distinct phases. Topologically ordered states exhibit
exotic properties such as fractional statistics, topological
degeneracy of ground states, and long range entanglement
[1–9]. According to the recent developments in the under-
standing of the symmetry classification of quantum phases,
some of the topologically ordered phases can be classified
by a spontaneous breakdown of a higher form symmetry
[10–12], which is a symmetry acting on extended objects
such as vortex lines and domain walls [13]. In addition to

ordinary symmetries, higher form symmetries can be
employed to classify quantum phases.
Fractional quantum Hall system and a toric code

[14–16] are typical examples of (2þ 1)-dimensional
topological orders, and they possesses spontaneously
broken one-form symmetries. Low-energy effective the-
ories of those can be expressed as Chern-Simons or BF-
type topological gauge theories [17–19] (see Refs. [20]
for review). In the case of fractional quantum Hall
systems, the charged object and symmetry generator
are both Wilson loops. An anyon is attached to the
endpoint of an open Wilson line while the trajectory
can be represented by the Wilson line; a braiding of
trajectories of two anyons results in a fractional phase
when the Wilson lines are linked. A similar situation
occurs in (3þ 1) dimensions. An example of a topologi-
cal order in (3þ 1) dimensions is provided by s-wave
Bardeen-Cooper-Schrieffer superconductors [6]. In the
superconducting phase, Z2 one-form (and also two-form)
symmetry emerges at low energies below Cooper-pair
binding energy. Objects charged under these symmetries
are a Wilson loop and a surface operator, respectively. In
the superconducting phase, the Wilson loop exhibits a
perimeter law, i.e., Z2 one-form symmetry is spontane-
ously broken. There are string-like excitations called
Abrikosov-Nielsen-Olesen (ANO) vortices [21,22], and
their world sheets can be regarded as generators of the
one-form symmetry. Unlike the (2þ 1)-dimensional
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topological order, a braiding phase appears between a
particle and a vortex.
Non-Abelian gauge theories admit a non-Abelian gen-

eralization of ANO vortices in the Higgs phase. For
example, UðNÞ gauge theory coupled with N × N complex
scalar fields in the fundamental representation admits non-
Abelian vortices in the color-flavor locked (CFL) phase
[23–29]1 (see Refs. [30–33] for a review). Those vortices
are accompanied by CPN−1 Nambu-Goldstone modes
which are localized along them. QCD at high densities
is also in the CFL phase [34,35] (see Refs. [36–39] for a
review), and it admits similar non-Abelian vortices [40–42]
accompanied by CP2 moduli [41,43,44] (see Ref. [45] for a
review). One natural question is whether these theories are
topologically ordered or not, since they can be regarded as
non-Abelian extensions of superconductors [6]. In the case
of the CFL phase of dense QCD, this question was first
addressed in Ref. [46] and later elaborated on in Ref. [47].
It turned out that the CFL phase of QCD is not topologi-
cally ordered. This is because the emergent discrete two-
form symmetry is unbroken due to the interaction between
vortices and massless Nambu-Goldstone bosons. Those
particles mediate the forces between vortices, resulting in a
log-confining potential between a vortex and an antivortex.
This implies the vanishing of the expectation value of the
vortex surface operator at a large surface, which is the order
parameter for this symmetry.
In this paper, we discuss a possible appearance of

topological order in quantum field theories that have
non-Abelian vortices. We study a UðNÞ gauge theory
coupled to complex scalar fields in the fundamental
representation of SUðNÞ gauge symmetry as well as
SUðNÞ=ZN flavor symmetry. In order for the scalar fields
to be in the representation of UðNÞ, their Uð1Þ charge must
be taken as Nkþ 1 with some integer k. Unlike the CFL
phase of QCD [47], we find that the CFL phase in theUðNÞ
gauge theories is topologically ordered if k ≠ 0, while the
previously considered UðNÞ theories with k ¼ 0 [30–33]
are not. This is because the system has a ZNkþ1 one-form
symmetry, and it is spontaneously broken in the Higgs
phase, which means that this phase has a topological order.
We also find that the ZNkþ1 two-form symmetry emerges at
low energies, and it is also spontaneously broken.
This paper is organized as follows. In Sec. II, we

review the topological order in the (3þ 1)-dimensional
Abelian Higgs model. In Sec. III, we discuss the existence
of topologically ordered phase in UðNÞ gauge theories
with N-flavor scalar fields. Section IV is devoted to a
summary and discussions. We summarize some properties
of the delta function forms and linking numbers in
the Appendix. In this paper, we use the Euclidian metric,

δmn ¼ diagðþ1;þ1;þ1;þ1Þ, wherem; n;… are indices of
the spacetime coordinates.

II. TOPOLOGICAL ORDER
IN U(1) GAUGE THEORY

We here review the appearance of topological order in
the low-energy effective theory of the Abelian Higgs model
in (3þ 1) dimensions [6]. We derive a dual theory of the
Abelian Higgs model with a charge k scalar field. The
derived theory is the so-called BF-theory [48,49] at level k.
We then show that there is an emergent Zk two-form
symmetry in addition to the Zk one-form symmetry in the
original action, and both of the Zk symmetries are sponta-
neously broken, by calculating correlation functions of
Wilson loops and surface operators [48–51].

A. Dual BF-theory from Abelian Higgs model

Here, we derive the BF-theory via an Abelian duality.
We begin with the low-energy theory of the Abelian Higgs
model in (3þ 1) dimensions described by the action,

SAH ¼
Z

ξ

2
jdχ − kAj2 þ 1

2e2

Z
jdAj2; ð2:1Þ

where χ is a 2π-periodic scalar field, A is a Uð1Þ gauge
field, d is an exterior derivative operator, � is a Hodge’s star
operator, ξ is a parameter with mass-dimension 2, k is an
integer, and e is a coupling constant. The symbol

R jωj2 for
a p-form field ω denotes

Z
jωj2 ¼

Z
ω ∧ �ω ¼

Z
d4x

ffiffiffi
g

p 1

p!
ωm1…mp

ωm1…mp;

ð2:2Þ

where g ¼ detðgmnÞ. The scalar field χ and the parameterffiffiffiffiffiffiffi
ξ=2

p
can be understood as the phase component and

the vacuum expectation value of the amplitude of the Higgs
field, respectively. Photons are massive via the Higgs
mechanism. The action has a Uð1Þ gauge symmetry
χ → χ þ kλð0Þ and A → Aþ dλð0Þ, where λð0Þ is a zero-
form gauge parameter. In addition, the action has a Zk one-
form global symmetry given by A → Aþ n

k ϵ
ð1Þ with the

condition
R
C ϵ

ð1Þ ∈ 2πZ for a closed loop C and n ∈ Z,
since the charge of the matter field χ is k.
The action (2.1) can be dualized to a system with a two-

form gauge field as follows. We introduce the following
first order action:

SAH;1st ¼
1

8π2ξ

Z
jHj2 þ 1

2e2

Z
jdAj2

−
i
2π

Z
H ∧ ðdχ − kAÞ; ð2:3Þ

1Although those findings were made in supersymmetric
models, the supersymmetry is not essential for the existence of
non-Abelian vortices.
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whereH is a three-form field. The equation of motion forH
gives us the original action in Eq. (2.1). Instead, the
equation of motion of χ leads to dH ¼ 0 and thus the
three-form field can be written as

H ¼ dB; ð2:4Þ

where B is a two-form Uð1Þ gauge field.2 The one-form
gauge transformation is B → Bþ dλð1Þ, where λð1Þ is a one-
form gauge parameter. Substituting the solution in Eq. (2.4)
into the first order action in Eq. (2.3), we obtain the dual
action:

SAH;dual ¼
1

8π2ξ

Z
jdBj2 þ 1

2e2

Z
jdAj2 − ik

2π

Z
B ∧ dA:

ð2:5Þ
In the presence of the topological coupling B ∧ dA, both of
the one-form and two-form gauge fields become massive.
Therefore, the low-energy effective action, where we can
neglect the kinetic term of A and B, becomes the BF-action:

SBF ¼ −
ik
2π

Z
B ∧ dA: ð2:6Þ

The gauge fields satisfy the usual Dirac quantization
condition,

Z
S
dA ∈ 2πZ;

Z
V
dB ∈ 2πZ; ð2:7Þ

where S and V are closed 2- and 3-dimensional manifold,
respectively.

B. BF-theory and topologically ordered phase

The BF-theory describes topologically ordered states.
We show that there is an emergent Zk two-form symmetry
in addition to the Zk one-form symmetry, and both of them
are broken spontaneously.
The action (2.6) is invariant under one-form and two-

form gauge transformations:

A → Aþ dλð0Þ; B → Bþ dλð1Þ; ð2:8Þ

where λð0Þ and λð1Þ represent zero- and one-form gauge
parameters. In addition, the action has symmetries under
global one- and two-form transformations:

A → Aþ n
k
ϵð1Þ; B → Bþ n

k
ϵð2Þ; ð2:9Þ

where n ∈ Z, dϵð1Þ ¼ 0 and dϵð2Þ ¼ 0. They are properly
normalized as

Z
C
ϵð1Þ ∈ 2πZ;

Z
S
ϵð2Þ ∈ 2πZ: ð2:10Þ

The charged object and the symmetry generator of the one-
form symmetry are a Wilson loop on a closed path C and a
surface operator on a closed surface S [52,53],

WðCÞ ¼ ei
R
C
A; VðSÞ ¼ ei

R
S
B; ð2:11Þ

respectively. On the other hand, as for the two-form
symmetry, VðSÞ is the charged object and WðCÞ is the
symmetry generator. Indeed, one can readily find thatWðCÞ
and VðSÞ are topological, i.e., they do not depend on
the small change of C and S thanks to the equation of
motion dA ¼ 0 and dB ¼ 0, and this is nothing but the
conservation law [12].
The topological nature of symmetry generators implies

that the expectation value of VðSÞ on the spacetime
manifold R4 is trivial because the symmetry generator
can shrink to the point:

hVðSÞi ¼ h1i ¼ 1; ð2:12Þ

where the expectation value of an object O is given as

hOi ¼ N
Z

DBDAe−SBFO: ð2:13Þ

Here the normalization factor N −1 ≡ R
DBDA expð−SBFÞ

is chosen such that h1i ¼ 1. Similarly, one can find
hWðCÞi ¼ 1.
In contrast, the correlation function of the charged object

WðCÞ and the symmetry generator VðSÞ is nontrivial when
they are linked:

hVðSÞWðCÞi ¼ eiϕhWðCÞi; ð2:14Þ

with ϕ ¼ −2πlinkðS; CÞ=k. Here linkðS; CÞ denotes the
linking number between S and C. This relation
VðSÞWðCÞ ¼ eiϕWðCÞ is nothing but the transformation
of the Wilson loop under the one-form symmetry [12]
(For the detailed derivation of these relations in the path
integral formulation, see Appendix). As with the case of
ordinary symmetries, the nonvanishing expectation value
of the charged object is the signal of symmetry breaking.3

Since both hWðCÞi and hVðSÞi are nonvanishing, both one-
and two-form symmetries are spontaneously broken.

2To be more precise, H ∈ H3ðX; 2πZÞ, where X is the
spacetime manifold.

3More precisely, the nonvanishing expectation value of
charged object WðCÞ [VðSÞ] with the large length (area) limit
is the signal of spontaneous breaking of the one- (two-) form
symmetry [12,54]. Since WðCÞ and VðSÞ are topological in the
BF-theory, their expectation values are independent of the choice
of C and S.
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As is seen in the following, the link between symmetry
generators leads to the important properties of topological
order such as degeneracy of ground state depending on a
spatial manifold, and braiding statistics.

1. Ground state degeneracy

One of the key properties of a topological order state is
the ground state degeneracy depending on the topology of
spatial manifold. This can be understood as a consequence
of spontaneous breaking of higher form symmetries. If the
spatial manifold M is trivial, e.g., M ¼ S3 or R3, the
generator of higher form symmetry cannot nontrivially act
on the vacuum. This is because the symmetry generator can
deform to the point on S3 and it vanishes (See Fig. 1).
In this case, there is no degeneracy associated with the
spontaneous breaking of higher form symmetries. In
contrast, when M is nontrivial, more precisely, both
π1ðMÞ and π2ðMÞ are nontrivial, the surface and line
operators can act on the vacuum. As an example, we
consider the manifold M ¼ S2 × S1, and choose the sur-
face and line operators as VðSÞ ¼ exp i

R
S B and WðCÞ ¼

exp i
R
C A with S ¼ S2 and C ¼ S1. On this manifold, these

operators satisfy the following relation in the operator
formalism at equal time:

VðSÞWðCÞV−1ðSÞ ¼ eiϕWðCÞ; ð2:15Þ

with ϕ ¼ 2π=k. The graphical representation is shown in
Fig. 2. Equation (2.15) implies the degeneracy of ground
state, which can be shown as follows: Since the unitary
operator VðSÞ is a symmetry generator, we can choose a
vacuum jΩi as the eigenstate of VðSÞ with the eigenvalue
eiθ. WðCÞ is also a symmetry generator, so that the state
jΩ0i ≔ WðCÞjΩi has the same energy as jΩi. If Eq. (2.15)
is satisfied, jΩi and jΩ0i must be different vacua. To see
this, let us consider the overlap of vacua hΩjΩ0i ¼
hΩjVjΩi. Using Eq. (2.15), we find

hΩjΩ0i ¼ e−iϕhΩjVWV−1jΩi
¼ e−iϕhΩje−iθVeiθjΩi
¼ e−iϕhΩjΩ0i; ð2:16Þ

where we have used the fact that jΩi is the eigenstate of V.
Since ϕ ¼ 2π=k ≠ 0, the vacua must perpendicular to each
other, hΩjΩ0i ¼ 0. That is, the vacuum is degenerate. More
specifically, the vacuum is k-fold degenerate on the spatial
manifold M ¼ S2 × S1.

2. Braiding phases

Another property of a topologically ordered state is the
existence of anyonic braiding phases: when two particles
are exchanged, the quantum state acquires a phase. When
the phase is not �1 for identical particles, they are anyons.
In (3þ 1) dimensions, there is a braiding phase between a
particle and a vortex. For an open line operator, a particle
(point) operator can be attached to the boundary of the line
operator. The particle operator is not arbitrary, but it needs
to respect the gauge symmetry. Similarly, a vortex operator
can be attached to the boundary of an open surface operator.
The trajectories of the particle and vortex are represented as
the world line and world sheet, respectively. The left figure
in Fig. 3 shows their braiding trajectory. Since the surface
and line operators are topological, it can be deformed into
the right figure in Fig. 3. This trajectory causes the phase
2π=k relative to the straight trajectory. The half of the
linking phase can be understood as the exchanging phase of
the particle and vortex.

III. UðNÞ GAUGE THEORY IN THE
COLOR-FLAVOR LOCKED PHASE

In this section, we discuss a (3þ 1)-dimensional UðNÞ
gauge theory coupled to scalar fields. The CFL phase of
this theory has non-Abelian vortices are topologically
stable excitations. We show that a topological order appears
in the CFL phase and discuss fractional braiding statistics
between non-Abelian vortices and quasiparticles.

A. Non-Abelian vortices in color-flavor locked phase

Here let us introduce our model. We consider a UðNÞc
gauge theory coupled with N-flavor scalar fields ϕf, with

FIG. 1. Graphical representation of WðCÞjΩi ¼ jΩi on S3.

FIG. 2. Graphical representation of Eq. (2.15): VðSÞWðCÞ
V−1ðSÞ ¼ eiϕWðCÞ.

FIG. 3. World sheet of a vortex (black line) and a world line of a
particle (red line).
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f ¼ 1;…; N. Each ϕf is the CN-valued scalar field, and its
representation of the gauge group is taken as

RkðgÞϕ ¼ detðgÞkg · ϕ ð3:1Þ

for g ∈ UðNÞc with some integer k. We denote UðNÞc
gauge fields as A, then the field strength is given as

F ¼ dAþ iA ∧ A: ð3:2Þ

The Lagrangian of the model we consider is given by

SNA ¼ 1

2g21

Z
trðF ∧ �FÞ þ 1

2g22

Z
trðFÞ ∧ �trðFÞ

þ
Z

Dϕ̄f ∧ �Dϕf þ
Z

Vðϕ; ϕ̄Þ � 1: ð3:3Þ

Here, g1 and g2 are gauge coupling constants. Covariant
derivatives on the scalar fields are given by the trans-
formation law of ϕf in Eq. (3.1) as

Dmϕf ¼ ð∂m − iktr½Am�1N − iAmÞϕf: ð3:4Þ

The potential V shall be chosen so that the theory is in a
deep Higgs regime, but the details are not important for our
discussion.
The flavor symmetry of this theory is SUðNÞf=ðZNÞf .

Note that the center of SUðNÞf , ðZNÞf , is absorbed into the
gauge group UðNÞc. In addition to this ordinary symmetry,
this theory has the one-form symmetry. We consider the
transformation on transition functions g → geiα, and then
the representation matrix RkðgÞ changes as

RkðgÞ → eiðNkþ1ÞαRkðgÞ: ð3:5Þ

When α is quantized to 2π=ðNkþ 1Þ, the dynamical fields
are not affected, but the UðNÞ Wilson loop can detect this
phase α. This means that the theory has ZNkþ1 one-form
symmetry. In the following, we set

q ¼ Nkþ 1: ð3:6Þ

Now, let us consider the vacuum structure. The minimum
of the potential is realized by

hϕ̄cf1ϕcf2i ¼
ξ

2
1N: ð3:7Þ

where 1N is the N-dimensional unit matrix in the flavor
space, and the subscript or superscript c ¼ 1;…; N denote
the index of the fundamental or antifundamental represen-
tations of UðNÞc, respectively. Therefore, the flavor sym-
metry SUðNÞf=ðZNÞf is unbroken, but the one-form
symmetry is spontaneously broken:

Zðone-formÞ
q → 1: ð3:8Þ

At the mean-field level, this is realized by fixing the gauge
so that

ðhϕcfiÞ ¼
ffiffiffi
ξ

2

r
1N: ð3:9Þ

As a result, all the gauge fields are Higgsed, and there is no
massless Nambu-Goldstone mode. The symmetry breaking
pattern is given by

UðNÞc × SUðNÞf
ðZNÞf

→ Zq ×
SUðNÞcþf

ðZNÞf
: ð3:10Þ

The vacuum expectation value is invariant under the
simultaneous rotations of color and flavor, SUðNÞcþf .
That is why it is called the CFL phase. This phase admits
topological vortices. The vacuum manifold is given by

UðNÞc×SUðNÞf
ðZNÞf

Zq ×
SUðNÞcþf
ðZNÞf

≃
UðNÞ
Zq

: ð3:11Þ

Since the first homotopy group of the vacuum manifold
is π1ðUðNÞ=ZqÞ ¼ Z, there exist topologically stable
vortices. Asymptotic behavior of vortex solutions far from
the vortex core can be found as [24],

ðhϕcfivÞ →
ffiffiffi
ξ

2

r
diagð1;…; 1; eiθÞ; ð3:12Þ

hAIiv → −
1

Nkþ 1
diagðk;…; k; k − ðNkþ 1ÞÞ∂Iθ;

ð3:13Þ

hA0iv ¼ 0: ð3:14Þ

Here, the arrows indicate the limit r → ∞, and h…iv
denotes the expectation value in the presence of a vortex,
θ is the angle of the coordinate which is perpendicular to
the vortex, r is the distance from the vortex center, and
I ¼ 1, 2, 3 is the index of spatial coordinates. For a finite
distance from the core of the vortex, the configurations of
the fields can be written by

ðhϕcfivÞ ¼
ffiffiffi
ξ

2

r
0
BBBBB@

gðrÞ
. .
.

gðrÞ
eiθfðrÞ

1
CCCCCA; ð3:15Þ
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hAIiv ¼
�
−

1

Nkþ 1
diagðk;…; k; k − ðNkþ 1ÞÞ

−
1

NðNkþ 1Þ 1Nh
Uð1ÞðrÞ

þ 1

N
diagð1;…; 1; 1 − NÞhSUðNÞðrÞ

�
∂Iθ; ð3:16Þ

where the functions f, g, hUð1Þ and hSUðNÞ satisfy

fð∞Þ ¼ gð∞Þ ¼ 1; hUð1Þð∞Þ ¼ hSUðNÞð∞Þ ¼ 0;

ð3:17Þ

and

fð0Þ ¼ 0; g0ð0Þ ¼ 0; hUð1Þð0Þ ¼ hSUðNÞð0Þ ¼ 1:

ð3:18Þ

A Wilson loop W across the plane perpendicular to the
vortex strings can be calculated as

hWiv ¼
�
trP exp i

Z
C
dxIAI

�
v
¼ N exp

�
−2πi

k
Nkþ 1

�
:

ð3:19Þ

Here, C is a circle at infinity which surrounds the vortex
string, and P denotes the path ordered product. We observe
that the unit of the Abelian magnetic flux is 1=N of the
ANO magnetic flux, whose configurations are given by

hϕcfiv →
ffiffi
ξ
2

q
eiθ1N and hAIiv → 1

Nkþ1
1N∂Iθ at the limit

r → ∞, and whoseWilson loop is htrP expði RC dxIAIÞiv ¼
N expð2πi 1

Nkþ1
Þ ¼ N expð−2πi Nk

Nkþ1
Þ.

The vortex configuration in Eqs. (3.15) and (3.16) breaks
the CFL symmetry SUðNÞcþf into subgroup SUðN − 1Þ ×
Uð1Þ around its core. Consequently there appear Nambu-
Goldstone modes CPN−1≃SUðNÞcþf=½SUðN−1Þ×Uð1Þ�
localized around the vortex core, giving rise to the
moduli CPN−1.

B. Dual BF-theory and topologically ordered phase

Next, we will show that there is an emergent ZNkþ1

two-form symmetry in addition to the ZNkþ1 one-form
symmetry, and both of these symmetries are broken
spontaneously in the CFL phase. In order to show them
explicitly, it is convenient to dualize the effective action
described by scalar fields to the action described by two-
form gauge fields. Here, we derive a dual topological action
of the low-energy effective theory in Eq. (3.3). We consider
the dynamics at lower energies compared to the mass of the
amplitude fluctuation of jϕcfj, or the mass of the gauge
fields. Since the vacuum manifold is UðNÞ=Zq, one can

always go to the gauge by the color rotation where the
matrix ðϕcfÞ is diagonalized:

ðϕcfÞ ¼
ffiffiffi
ξ

2

r
diagðeiχ1 ;…; eiχN Þ; ð3:20Þ

where χi ði ¼ 1;…; NÞ are 2π-periodic scalar fields. In this
gauge, the low-energy action is given by4

SNA;eff ¼
ξ

2

Z
jdχ1− ðkþ1Þa1−ka2− � � �−kaN j2

þ ξ

2

Z
jdχ2−ka1− ðkþ1Þa2−ka3− � � �−kaN j2

þ�� �þ ξ

2

Z
jdχN −ka1− � � �−kaN−1− ðkþ1ÞaN j2:

ð3:21Þ

Here, aA ðA ¼ 1;…; NÞ are the one-form gauge fields
aA ¼ ðaAÞmdxm which correspond to the Cartan’s subal-
gebra of UðNÞc. We take the basis of the Cartan’s
subalgebra as

H1 ¼ diagð1; 0.::; 0Þ;
H2 ¼ diagð0; 1; 0;…; 0Þ;…; HN ¼ diagð0;…; 0; 1Þ:

ð3:22Þ

The gauge group of the action after the gauge in
Eq. (3.20) is

Uð1ÞH1
× � � � ×Uð1ÞHN

: ð3:23Þ

Following the steps in Sec. II A, we obtain the dual
action

Sdual ¼
1

8π2ξ

X
i

Z
jdbij2 −

i
2π

KiA

Z
bi ∧ daA; ð3:24Þ

where bi are two-form gauge fields and the matrix KiA is
given by

ðKiAÞ ¼ 1N þ kJN; ð3:25Þ

Here, JN is the N × N matrix where every entry is 1.
Explicitly, KiA takes the form of

4Such structure of the Stückelberg couplings between scalar
fields and one-form fields are sometimes called an Abelian tensor
hierarchy [55–59].
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ðKiAÞ ¼

0
BBBBB@

kþ 1 k � � � k

k kþ 1 � � � k

..

. . .
. ..

.

k k � � � kþ 1

1
CCCCCA: ð3:26Þ

The equation of motion varying aA gives dbi ¼ 0, since
KiA has an inverse. So we can drop all the kinetic terms
for bi. This is in contrast with the case of SUð3Þ gauge
theories [47], where there remains a massless Nambu-
Goldstone mode. Therefore, at a mass scale lower than that
of the one-form fields and amplitude fluctuations, the
effective action can be simply written as a BF-theory with
matrix coupling,

SUðNÞ;BF ¼ −
i
2π

KiA

Z
bi ∧ daA: ð3:27Þ

The gauge fields should satisfy the Dirac quantization
condition,

Z
S
daA ∈ 2πZ;

Z
V
dbi ∈ 2πZ; ð3:28Þ

where S and V are 2- and 3-dimensional submanifold
without boundary. Incidentally, the same form of KiA
matrix (3.25) appeared in the description of the fractional
Hall effect with filling factor ν ¼ N=ðNkþ 1Þ by a Chern-
Simons theory with matrix coupling [60].
Let us discuss the observables of the dual low-energy

gauge theory (3.27). Similarly to the case of s-wave
superconductors, the physically observable operators are
the Wilson loops of the form,5

WðCÞ ¼
XN
A¼1

exp

�
i
Z
C
aA

�
; ð3:29Þ

where C is a closed loop. As a remnant of the UðNÞ gauge
invariance, the physical Wilson lines should be invariant
under the Weyl reflections SN , and we here take an example
of the fundamental Wilson line. There are also observable
surface operators,

ViðSÞ ¼ exp

�
i
Z
S
bi

�
; ð3:30Þ

where S is a 2-dimensional closed surface. The set fV1ðSÞ;
V2ðSÞ;…; VNðSÞg constitute the generators of all the
physical surface operators. They are nothing but the

non-Abelian vortices with minimal circulations when the
surface S is extended in time and one spatial directions.
We can compute the correlation function between

Wilson loops and vortex world-sheets as

hWðCÞViðSÞi ¼
XN
A¼1

exp ð−2πiðK−1ÞAilinkðC;SÞÞ

¼ N exp

�
2πi

k
Nkþ 1

linkðC;SÞ
�
; ð3:31Þ

which reproduces the result of (3.19). Here we used the
fact that the inverse of Ki

A is given by ððK−1ÞAiÞ ¼
1N − k

Nkþ1
JN . This relation shows that the theory has

spontaneously broken ZNkþ1 one-form and dual two-form
symmetries, thereby implying a topological order.

C. Adding theta term

We have shown that the CFL phase of the UðNÞ gauge
theory with N-flavor Higgs fields is topologically ordered
phase. In four-dimensional gauge theories, we can further
introduce the so-called theta term. Here, we show that
the background theta term gives rise to an effect on the
correlation function as well as the vacuum expectation
value (VEV) of the vortex surface operator. First, we will
see the effect of the theta term on the correlation function
between the Wilson loop and the vortex surface operators.
Second, we will interpret the effect of the theta term on the
correlation function as an anomaly between the periodicity
of the theta term and the one-form symmetry [62–68].

1. Deformation of correlation function

Let us introduce a theta term as an external background
field. In theUðNÞ gauge theory given by Eq. (3.3), the theta
term can be written as

−
i

8π2
ΘtrðF ∧ FÞ − i

8π2
Θ0ðtrFÞ ∧ ðtrFÞ; ð3:32Þ

where Θ and Θ0 are external fields. We assume that Θ and
Θ0 have 2π periodicity. In the following discussion, we
consider only the ΘtrF ∧ F term for simplicity. In the
Abelian gauge, we assume that the gauge fields other than
aA (A ¼ 1;…; N) are set to zero. Under the condition, the
theta term can be written as

−
i

8π2
ΘdaA ∧ daA: ð3:33Þ

In order to see the effects of the theta term, we consider
the dual BF-theory given by Eq. (3.27). Under the dual
transformation, the theta term is not changed because
the one-form gauge fields are not changed. Thus, the
BF-action with the theta term is given by

5The Wilson loop is not necessarily given by a dynamical
particle. It can be thought of as a test particle with a possible
charge (representation) [61].
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SUðNÞ;BF;Θ ¼ −
i
2π

KiA

Z
bi ∧ daA −

i
8π2

Z
ΘdaA ∧ daA:

ð3:34Þ

Note that BF-theories with theta terms were considered in
Refs. [51,69–71].
Let us see the correlation function of the Wilson loop

WðCÞ and the vortex surface operator ViðSÞ in the presence
of the theta term. The correlation function is given by

hWðCÞViðSÞe
i

8π2

R
ΘdaA∧daAi: ð3:35Þ

This correlation function can be evaluated as

hWðCÞViðSÞe
i

8π2

R
ΘdaA∧daAi

¼ N exp

�
2πik

Nkþ 1
linkðC;SÞ

�

× exp

�ð2πÞ2i
8π2

�
1 −

Nk2 þ 2k
ðNkþ 1Þ2

�

×
Z

ΘJ2ðSÞ ∧ J2ðSÞ
�
: ð3:36Þ

Equation (3.36) shows that the linking phase is deformed
if the surface S has a self-intersection number.6 This effect
of the theta term appears even if we set WðCÞ ¼ 1.
Therefore, the VEV of the vortex surface operator is
deformed by the theta term. Furthermore, the periodicity
of the Θ is enlarged from 2π to 2πðNkþ 1Þ2 in the right-
hand side of Eq. (3.36).

2. Anomaly between one-form symmetry
and periodicity of Θ

In the previous section, we have explicitly shown that the
correlation function is deformed by adding the theta term.
However, the applicability of that computation is limited to
the case ξ → ∞, i.e., in the deep Higgs regime, so the
details of the result may also be affected by finite ξ. We
here show that the interesting enlargement of Θ-angle
periodicity is topologically protected following the argu-
ments in Refs. [62–68]. This shows that the correlation
function of extended objects must have the dependence
on expðiΘ=ðNkþ 1Þ2Þ.
To see it, we introduce the background gauge field B for

ZNkþ1 one-form symmetry [11]. This can be realized as the
Uð1Þ two-form gauge fields with the constraint,

ðNkþ 1ÞB ¼ dC; ð3:37Þ

where C is the Uð1Þ one-form gauge field. We postulate
the invariance under the one-form gauge transformation,
where the gauge parameter λ is also the Uð1Þ one-form
gauge field:

B ↦ B þ dλ; C ↦ C þ ðNkþ 1Þλ: ð3:38Þ

Under this transformation, the dynamical UðNÞ gauge field
is transformed by

A ↦ Aþ λ: ð3:39Þ

We can find the gauge-invariance of the scalar kinetic term
by noticing that the following replacement of the covariant
derivative,

Dϕ ⇒ ðd − iðk tr½A� þ A − CÞÞϕ; ð3:40Þ

keeps the manifest one-form gauge invariance. We also
have to replace the UðNÞ field strength F ¼ dAþ iA2 by

F − B: ð3:41Þ

Using this knowledge, we can now show that the
periodicity of the theta angles is extended from 2π to
2πðNkþ 1Þ2 for certain extended objects. To see it, let us
compute the one-form gauge-invariant topological term as
follows7:

1

8π2

Z
trðF−BÞ2¼ 1

8π2
trF2

|fflfflfflffl{zfflfflfflffl}
∈Z

−
1

4π2

Z
tr½F�∧B|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

∈ 1
Nkþ1

Z

þ N
8π2

Z
B2

|fflfflfflfflffl{zfflfflfflfflffl}
∈ 1

ðNkþ1Þ2Z

:

ð3:42Þ

This shows that the periodicity of the partition function
Z½B;Θ� with the background gauge field B is no longer 2π
periodic. Indeed, we obtain

Z½B;Θþ2πðNkþ1Þ�¼Z½B;Θ�expi
�
NðNkþ1Þ

4π

Z
B2

�
:

ð3:43Þ

Here, we shift the Θ by 2πðNkþ 1Þ in order to eliminate
the contribution from the mixed term,

R
tr½F� ∧ B, and then

the extra phase is determined only from the background
gauge field. Since gcdðN;Nkþ 1Þ ¼ 1, this expression
proves the extension of 2π periodicity to 2πðNkþ 1Þ2
periodicity.
Before closing this section, let us make a few remarks.

The topologically ordered phase in the UðNÞ gauge-Higgs
6For a step function like Θ that satisfies dΘ ¼ J3ðVÞ with a

three-dimensional closed subspace V, the linking phase is
deformed if the surface S has a self linking number on V.

7Here, we only pay attention to Θ, but the discussion for Θ0 is
also straightforward
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system is very similar to that of an Abelian Higgs model
with a charge Nkþ 1 Higgs field, since both of the systems
have spontaneously broken ZNkþ1 one- and two-form
global symmetries. It is therefore interesting if they are
indeed the same.
For the UðNÞ gauge-Higgs system, the numerical factor

1 − Nk2þ2k
ðNkþ1Þ2 in Eq. (3.36) is determined by

P
A K

−1
Ai K

−1
Ai ¼

1 − Nk2þ2k
ðNkþ1Þ2 (i is not summed over), which is originated

from the low-energy effective theory of the UðNÞ gauge-
Higgs system. On the other hand, for the Abelian Higgs
model with the charge Nkþ 1 Higgs field, one can
calculate the correlation function in the presence of the
background theta term. In this case, the numerical factor
is 1 − N · Nk2þ2k

ðNkþ1Þ2 ¼ 1
ðNkþ1Þ2. These numerical factors are

different between those two theories, so this difference
might be a candidate for distinction between topological
phases of UðNÞ gauge Higgs and Abelian-Higgs models.
However, the anomaly discussed in this section is not the

’t Hooft anomaly in the usual sense, because the periodicity
of theta angle is not symmetry. This kind of anomaly is
sometimes called global inconsistency [62–66] or mixed
anomaly with (−1)-form symmetry [67,68]. The difference
of global inconsistency leads to the fact that one of those
two theories has to have a nontrivial (topological) order or
those two theories must be distinguished as symmetry-
protected topological orders. In our situation, both theories
have nontrivial intrinsic topological orders, and the differ-
ence of above anomaly does not immediately mean the
distinction as quantum phases. We therefore leave it as an
open problem if the difference of the numerical factors in
Eq. (3.36) give the distinction between topological orders
of UðNÞ gauge-Higgs and Abelian Higgs models.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied a UðNÞ gauge theory
with N-flavor scalar fields whose Uð1Þ charge is Nkþ 1
(k ∈ Z). This theory has a ZNkþ1 one-form symmetry, and
it is spontaneously broken in the CFL phase, which means
that the phase is topologically ordered. The CFL phase
hosts non-Abelian vortices appearing as topologically
stable excitations, and the world sheets of these vortices
are the generators of the ZNkþ1 one-form symmetry. In
order to see this, we have taken the Abelian dual of the low-
energy effective description of the CFL phase, and have
obtained a BF-action. The Wilson loop operators as well as
the surface operators are described by the one-form and
two-form gauge fields, respectively, in the BF-action. We
have studied the braiding of the observable Wilson loops
and surface operators, and found that they obey ZNkþ1

braiding statistics.
We have discussed the deformation of the correlation

function in the presence of the background theta term. We
have shown that the theta term gives rise to the effects on

the correlation function as well as the VEV of the vortex
surface operator. We have further argued that the effect of
the theta term on the correlation function can be understood
as an anomaly between the periodicity of the theta term and
the one-form symmetry.
The existence of topological order in the UðNÞ gauge

theory studied here is in contrast with the CFL phase of the
SUðNÞ gauge theory with N-flavor scalar fields, which is
not topologically ordered [47]. In the latter case, there is an
emergent two-form symmetry, but one-form symmetry is
absent. And it turns out that the discrete two-form sym-
metry is the subgroup of a Uð1Þ two-form symmetry.
Because a continuous two-form symmetry cannot be
spontaneously broken in (3þ 1) dimensions, the discrete
two-form symmetry is always unbroken, hence there is no
topological order. The crucial difference is that Uð1Þ part is
gauged in the current case, and also the Uð1Þ charge of the
scalar fields is taken to be a larger value, Nkþ 1.
There are several possible future directions. One in-

triguing nature of non-Abelian vortices is that they have
internal CPN−1 moduli inside them. The role of those
modes in the topological properties of the system is to be
investigated. For instance, Yang-Mills instantons and mag-
netic monopoles are realized as sigma model instantons and
kinks [25,72–74], respectively in the CPN−1 model of the
vortex world sheet. In this paper, we have taken an Abelian
duality after fixing the gauge in Eq. (3.20). Instead of
taking a particular gauge, it would be interesting to take a
non-Abelian duality in order to understand non-Abelian
nature of the vortices [75,76]. In particular, a coupling
between non-Abelian two-form field and the vortex CPN−1

modes was derived in Ref. [76]. Another direction is
to examine the existence of topological order in a wider
class of quantum field theories. Even if there is a topo-
logical order, coupling of the gauge fields to massless
fermions might destroy the order. When we add more
flavors, vortices become non-Abelian semilocal vortices
having non-normalizable size moduli [77,78]. Since these
vortices have polynomial tails of profile functions, inter-
actions between vortices may destroy topological order.
Although we have considered theUðNÞ gauge group in this
paper, more general gauge group of the type ½Uð1Þ ×
G�=CðGÞ would be possible [79], where CðGÞ denotes the
center of the group G. Supersymmetric theories with
topological vortices would allow us to do the analysis in
a controlled way [30–33], for which the superfield formu-
lation of duality of vortices in Ref. [80] would be useful.
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APPENDIX: NOTES ON BF-THEORY AND
LINKING NUMBER

Here, we review the derivations of Eqs. (2.12) and (2.14).
First, we introduce delta function forms, intersection
numbers, and linking numbers. Next, we show the deri-
vations of Eqs. (2.12) and (2.14) by using the delta function
forms and linking numbers.

1. Delta function forms

For a p-dimensional subspace Cp in a D-dimensional
space, we define the delta function (D − p)-form JD−pðCpÞ
as follows:

Z
Cp

Ap ¼
Z

Ap ∧ JD−pðCpÞ: ðA1Þ

Here, Ap is a p-form field. In the flat space, The delta
function form can be explicitly written by

JD−pðCpÞ ¼
ϵm1…mpmpþ1…mD

p!ðD − pÞ!
�Z

Cp

δðx − yÞdym1 ∧ � � � ∧ dymp

�
dxmpþ1 ∧ � � � ∧ dxmD ðA2Þ

The exterior derivative on the delta function form is

dJD−pðCpÞ ¼ ð−1ÞpJD−ðp−1Þð∂CpÞ: ðA3Þ

Here, ∂ denotes the boundary operator which satisfies
∂∂ ¼ 0. The relation in Eq. (A3) can be shown as follows:

Z
Ap−1 ∧ JD−ðp−1Þð∂CpÞ

¼
Z
∂Cp

Ap−1 ¼
Z
Cp

dAp−1 ¼
Z

dAp−1 ∧ JD−pðCpÞ

¼ ð−1Þp
Z

Ap−1 ∧ dJD−pðCpÞ: ðA4Þ

Here, we have used dðAp−1 ∧ JD−pðCpÞÞ ¼ dAp−1 ∧
JD−pðCpÞ þ ð−1Þp−1Ap−1 ∧ dJD−pðCpÞ, and used the fact
that JD−pðCpÞ ¼ 0 at infinity.

2. Intersection and linking number

Let us consider p- and q-dimensional subspaces, Cp and
Sq. We denote the intersection of Cp and Sq as Ipþq−D. The
delta function form for Ipþq−D is given by

JD−pþD−qðIpþq−DÞ ¼ JD−pðCpÞ ∧ JD−qðSqÞ: ðA5Þ

If pþ q ¼ D, the intersections of the subspaces are points.
We can define the intersection number of Cp and Sq as

IðCp;SqÞ ¼
Z

JDðI0Þ ¼
Z

JD−pðCpÞ ∧ JpðSqÞ: ðA6Þ

If Cp has a boundary ∂Cp, the intersection number becomes
the linking number of ∂Cp and Sq:

linkð∂Cp;SqÞ ¼ IðCp;SqÞ: ðA7Þ

3. Correlation function in BF-theory
and linking number

Here, we briefly review the derivation of Eq. (2.14) in the
path integral formulation following Ref. [51].8

The correlation function given in Eq. (2.14) can be
written as

hWðCÞVðSÞi¼N
Z

DADBe
ik
2π

R
B∧dAþi

R
A∧J3ðCÞþi

R
B∧J2ðSÞ:

ðA8Þ

Here, C and S are 1- and 2-dimensional closed subspaces,
respectively. J3ðCÞ and J2ðSÞ are delta function forms
defined in Eq. (A1).
In order to integrate Eq. (A8), we introduce the delta

function forms whose exterior derivatives are J3ðCÞ and

8For a BRST invariant derivation, see Ref. [50].
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J2ðSÞ as in Eq. (A3). In the 4-dimensional spacetime R4,
there are 2- and 3-dimensional subspaces SðCÞ and VðSÞ
whose boundaries are C and S:

∂SðCÞ ¼ C; ∂VðSÞ ¼ S; ðA9Þ

respectively, since C and S are closed subspaces. We can
rewrite J3ðCÞ and J2ðSÞ by using exterior derivatives on
J2ðSðCÞÞ and J1ðVðSÞÞ:

J3ðCÞ ¼ J3ð∂SðCÞÞ ¼ dJ2ðSðCÞÞ;
J2ðSÞ ¼ J2ð∂VðSÞÞ ¼ −dJ1ðVðSÞÞ; ðA10Þ

respectively. Note that SðCÞ and VðSÞ are not unique: one
can add ∂V and ∂Ω to SðCÞ and VðSÞ, where V and Ω are
3- and 4-dimensional subspaces in R4, respectively. By
using J2ðSðCÞÞ and J1ðVðSÞÞ, we can show that VðSÞ acts
on WðCÞ as a symmetry generator, and vice versa:

hVðSÞWðCÞi ¼ N
Z

DADBe
ik
2π

R
B∧dðA−2π

k J1ðVðSÞÞÞþi
R

A∧J3ðCÞ

¼ N
Z

DADBe
ik
2π

R
B∧dAþi

R
A∧J3ðCÞþ2πi

k

R
J1ðVðSÞÞ∧J3ðCÞ ¼ e−

2πi
k linkðC;SÞhWðCÞi; ðA11Þ

and

hVðSÞWðCÞi ¼ N
Z

DADBe
ik
2π

R
ðBþ2π

k J2ðSðCÞÞÞ∧dAþi
R

B∧J2ðSÞ

¼ N
Z

DADBe
ik
2π

R
B∧dAþi

R
B∧J2ðSÞ−2πi

k

R
J2ðSðCÞÞ∧J2ðSÞ ¼ e−

2πi
k linkðC;SÞhVðSÞi; ðA12Þ

where we have used the reparametrizations A → Aþ 2π
k J1ðVðSÞÞ and B → B − 2π

k J2ðSðCÞÞ, respectively. We can similarly
show hVðSÞi ¼ 1 in Eq. (2.12) and hWðCÞi ¼ 1 as follows:

hVðSÞi ¼ N
Z

DADBe
ik
2π

R
B∧dðA−2π

k J1ðVðSÞÞÞ ¼ N
Z

DADBe
ik
2π

R
B∧dA ¼ 1; ðA13Þ

and

hWðCÞi ¼ N
Z

DADBe
ik
2π

R
ðBþ2π

k J2ðSðCÞÞÞ∧dA ¼ N
Z

DADBe
ik
2π

R
B∧dA ¼ 1: ðA14Þ

Note that Eqs. (A11) and (A14) show that the correlation function in Eq. (A8) gives us the linking number of C and S:

hWðCÞVðSÞi ¼ e−
2πi
k linkðC;SÞ: ðA15Þ
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