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We apply the instanton counting method to study a class of four-dimensional N' = 2 supersymmetric
quiver gauge theories with alternating SO and USp gauge groups. We compute the partition function in the
Q-background and express it as functional integrals over density functions. Applying the saddle point
method, we derive the limit shape equations which determine the dominant instanton configurations in the
flat space limit. The solution to the limit shape equations gives the Seiberg-Witten geometry of the low
energy effective theory. As an illustrating example, we work out explicitly the Seiberg-Witten geometry for
linear quiver gauge theories. Our result matches the Seiberg-Witten solution obtained previously using the

method of brane constructions in string theory.
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I. INTRODUCTION

Four-dimensional N' = 2 supersymmetric gauge theo-
ries are an extremely interesting playground for studying
nonperturbative dynamics of quantum field theories.
Following the paradigm of Seiberg and Witten [1,2], we
can solve exactly the topological sector of the theory,
including the Wilsonian low energy effective prepotential
F and the correlation functions of gauge-invariant chiral
operators. These quantities receive perturbative corrections
only at one-loop order, while the nonperturbative correc-
tions are entirely from instantons. The solution is encoded
in the data of a family of complex algebraic curves X,
fibered over the Coulomb moduli space B, with a mero-
morphic differential A.

When the theory admits a microscopic Lagrangian
description, a purely field theoretical algorithm for the
derivation of the Seiberg-Witten solution using the multi-
instanton calculus was proposed in [3], and no conjectured
dualities are assumed. In order to introduce a supersym-
metric regulator of the infinite volume of spacetime
and also to simplify the evaluation of the path integral,
the four-dimensional N = 2 supersymmetric gauge theory
is formulated in the Q-background, which is a particular
supergravity background with two deformation parameters
€1, €. The Poincaré symmetry of R* is broken in a
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rotationally covariant way. Applying the technique of
equivariant localization, the partition function Z in the Q-
background can be written as a statistical sum over special
instanton configurations. In the flat space limit &, &, — 0,
where the theory in the Q-background approaches the
original flat space theory, the partition function Z is
dominated by a particular instanton configuration, the so-
called limit shape, with the instanton charge ~ % Based on

field theoretical arguments [3.,4], the Seiberg-Witten prepo-
tential F of the low energy effective theory can be extracted
from the partition function Z in the following limit,

F =— lim g, log Z(ey, &). (1)

£1,.6,—0

This approach has hitherto been used to derive the
Seiberg-Witten solution for gauge theories with a simple
classical gauge group [4-6], and SU(N) quiver gauge
theories with hypermultiplets in the fundamental, adjoint
or bifundamental representations [7]. However, these are
far from all the N = 2 supersymmetric gauge theories for
which we are able to compute the partition function in the
Q-background. It is certainly interesting to cover all the
possible cases and test the validity of this approach.

In this paper, we will be dealing with mass-deformed
four-dimensional A =2 superconformal quiver gauge
theories with alternating SO and USp gauge groups.
Restricting ourselves to superconformal theories does not
result in a loss of generality, since asymptotically free
theories can always be obtained from superconformal
theories by taking proper scaling limits and decoupling a
number of fundamental hypermultiplets. Generalizing pre-
vious computations for a single SO or USp gauge group
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[5,8-10], we can compute the partition function in the
Q-background for SO — USp quiver gauge theories. More
precisely, we write the partition function in terms of contour
integrals, and it is not necessary to give the prescription
for choosing the correct poles. One important ingredient in
the computation is the treatment of half-hypermultiplets.
Although we cannot compute their contributions to the
partition function directly, we will follow the conjecture
made in [11,12] that the contribution of a half-hypermultiplet
is given by the square-root of the contribution of a mass-
less full hypermultiplet composed of a pair of half-
hypermultiplets. Similar to the SU quiver gauge theories,
the limit shape equations give the gluing conditions of the
amplitude functions. The Seiberg-Witten geometry is finally
derived by constructing the functions invariant under the
instanton Weyl group [7]. As a representative example,
we will describe in great detail the Seiberg-Witten geometry
for linear quiver gauge theories. Our result matches the
Seiberg-Witten solutions obtained previously [13—19].

The rest of the paper is organized as follows. In Sec. II
we describe the four-dimensional N' = 2 SO — USp super-
conformal quiver gauge theories we are dealing with. We
introduce a biparticle quiver diagram to represent the
theory. In Sec. III we compute explicitly the partition
function in the Q-background. In the flat space limit, we
rewrite the partition function as a functional integral over
density functions. In Sec. IV, we apply the saddle point
method to determine the special instanton configuration
which dominates the partition function in the flat space
limit &;, &, — 0. We solve the limit shape equations by
constructing the characters invariant under the instanton
Weyl group. We write down the Seiberg-Witten curve
using the characters. In Sec. V, we describe explicitly
the Seiberg-Witten geometry for linear SO — USp quiver
gauge theories. In Sec. VI we sketch some possible further
developments of our work. In Appendix, we review the
Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction of
instanton moduli space for all classical gauge groups.

II. SO-USp QUIVER GAUGE THEORIES

A major subtlety of SO — USp quiver gauge theories
compared with SU quiver gauge theories is the appearance
of half-hypermultiplets. Recall that the N = 2 hypermul-
tiplet in the representation R of the gauge group G consists
of a pair of AV = 1 chiral multiplets, one in the represen-
tation R and another in the conjugate representation R* of
G. If the representation R is pseudoreal, a single A" = 1
chiral superfield forms a consistent A/ = 2 multiplet, the
half-hypermultiplet. From the representation theory of Lie
groups SO(N) and USp(2N), we know that the funda-
mental representation of SO(N) is strictly real, while the
fundamental representation of USp(2N) is pseudoreal. The
bifundamental representation of SO(N;) x USp(2N,),
which is the tensor product of the fundamental representa-
tion of SO(N,) and the fundamental representation of

USp(2N,), is also pseudoreal. When we couple an
SO(N) vector multiplet to N, fundamental hypermultip-
lets, the flavor symmetry group is USp(2N;), and the
gauge coupling constant is marginal when Ny = N — 2.
Meanwhile, when we couple an USp(2N) vector multiplet
to N, fundamental half-hypermultiplets, the flavor sym-
metry group is SO(N ), and the gauge coupling constant is
marginal when Ny = 4N + 4. Therefore, there is a natural
way to construct superconformal quiver gauge theories
with alternating SO and USp gauge groups. We certainly
cannot avoid half-hypermultiplets in such SO — USp quiver
gauge theories.

We represent such an SO — USp quiver gauge theory by a
bipartite quiver diagram y, which consists of vertices which
are colored either black or white and edges connecting
vertices of different colors. The set of vertices is denoted by

V, = VO U V®, where each vertex i € Vy/® is associated

with a vector multiplet with SO/USp gauge group G;. The
total gauge group of the quiver gauge theory is

G= HGZ = XSO(U,‘ :2n1+ﬂl)
i€V,
X USp(vi1 =2 =2n1) X -+, (2)

with y; € {0, 1}. We also define y; = 0 for all i € V®. The
microscopic gauge coupling constant g; and the theta angle
9; are combined into the complexified gauge couplings,
& 4rni
e 3
Tt (3)
We denote the collection of instanton counting para-
meters by

a= Uda= e, (4)

An edge e = (i, j) connecting a vertex i € V? with a
vertex j € V],. represents a half-hypermultiplet in the
bifundamental representation of SO(v;) x USp(v;4; —2).
The set of all edges is denoted by E|,. Unlike the SU quiver
gauge theories, the edges are not oriented. For simplicity,
we assume that there is no edge connecting a vertex to
itself. In particular, in our analysis we disregard the A/ = 2*
theory, which can be treated separately.

We also couple w; € Z5, fundamental hypermultiplets
to the gauge group G;, and additionally &; € {0, 1} funda-
mental half-hypermultiplets to the gauge group USp(2n;).
The vanishing of the one-loop beta functions of coupling
constants leads to

2’[]1:2Wl+(4—26l)+ Zvjv lev?’
(if)eE,
<i,j>€E7
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where o; is the number of edges (i, j) € E, for the fixed

i€ V? . Since we always make sure that the number of

half-hypermultiplets for each USp gauge group is even, the

theory is safe under Witten’s global anomaly [20].

The condition (5) can be solved in a similar way as the

SU quiver gauge theories. Following the notation in [7], we

have the following classification:

(1) Class I theories. The quiver y is the simply laced

Dynkin diagram of the Lie algebra A,, D, or E¢;g.

For A,-type quivers, we have two possible choices of

coloring for the biparticle diagram, depending on

whether the first vertex is SO or USp gauge group.

For the D,-type and E ; g-type quivers, we also have

two different choices of coloring, depending on the
gauge group at the trivalent vertex.

(2) Class II theories. The quiver y is the simply laced

affine Dynkin diagram of the affine Lie algebra A,

D, or Em.g. For A,—type quivers, we have the

consistency condition which requires that r should

be an odd positive integer. There is no preferred

choice of the first vertex, and we can always fix the

first vertex to be a SO gauge group. For the D,-type

|

and the Eﬁj.g-type quivers, depending on the choices
of coloring, we again have two sub-types according
to the gauge groups at the trivalent vertices. Notice
that there is no class II* theories as in the SU quiver
gauge theories (except for the N = 2* theories which
we neglect).
(3) Class III theories. There are some extra bizarre

theories with non-Dynkin type quivers. Such theo-
ries have to be discussed case by case. See [21] for a
complete list.

We consider the low energy effective theory on the

Coulomb branch B of the moduli space. The coordinates

on the Coulomb branch B are given by the vacuum

expectation values of the gauge-invariant polynomials of

the scalars ¢; in the vector multiplet,

u= U {uiss=1,....n}. (6)
iev,

In the weakly coupled regime, the vacuum expectation
values of ¢, parametrize the Coulomb branch B locally,

a = U {ai = <¢l> = diag{ai,h _ai,l LERRE) ai,n,»? _ai,n,-9 (O)}}
iev?

U U {Cl] = <¢]> = diag{aj’l, ...,aj,nl,,—aj’l,

. { ]
JEVY

where (0) is absent for ¢; = 0. We also turn on generic mass
deformations for the fundamental hypermultiplets. Notice
that a single half-hypermultiplet does not allow a gauge
invariant mass term and must be massless. We collectively
denote the set of masses as

m = U {mi = diag{mi.lv ---»mi.w,-}}‘ (8)

i€V,

It is convenient to encode the Coulomb moduli @; and
masses m; in the characters of two vector space N; and M;
assigned for each vertex i € V,.

Ni=ch(N;) = Z(eiai‘“ + e ) + )

a

M; = ch(M;) = etmr. (10)
f

III. PARTITION FUNCTION OF QUIVER GAUGE
THEORIES IN THE Q-BACKGROUND

In this section, we compute the partition function
of SO — USp quiver gauge theories in the Q-background.
The partition function contains not only the information of
the Seiberg-Witten low energy effective action on R*, but
also the low energy effective couplings of the theory to

s =G} (7)

supergravity background. For the purpose of this paper, we
keep only the relevant information of the partition function
in the flat space limit and rewrite the partition function as
functional integrals over density functions.

It is useful to introduce the following notations. The
conversion operator € is defined to map characters into
weights,

e{zi:niex'} = Hx (11)

When the number of terms is infinite, we adopt the
regularization via the analytic continuation,
= p

G{Z""EXi}:eXp(_% OV
x (Znie—ﬁxf». (12)

The dual operator V is used to flip of sign of the weights

<Zl_niex">v = (Zne‘) (13)

1 [edp
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The scaling operator [p] is used to scale the weights,

(Zinie"f>[p] - (Znel’> (14)

We denote the Q-deformation parameters as ¢, &,, and
define

e=¢ + &, 8i:€17j:82. (15)
We also introduce
q=e,  ga=et qo=ett,
P = (g~ a:)(ds — 4. (16)

Notice that the definition of P is different from the standard
definition in the SU quiver gauge theories.

A. Instanton partition function

A four-dimensional N =2 supersymmetric gauge
theory in the Q-background preserves a supercharge Q,
with Q? being a sum of the constant gauge transformation
acting on the framing at infinity, the automorphism trans-
formation of hypermultiplets, and the spacetime rotation.
Hence in the twisted formulation of the theory Q becomes
the equivariant differential, with the equivariant group
being the product of the gauge group G, the flavor group
G, and the rotation group SO(4). Let T be the maximal
torus of the equivariant group, with (a, m; ¢, &,) being the
coordinates on the complexified Lie algebra of T. It can be
shown using the supersymmetric localization principle that
the infinite-dimensional path integral is reduced to finite-
dimensional equivariant integrals over the moduli space of
framed instantons,

M={A e AF =0}/Ge. (17)

where A is the space of connections of principal bundles
over R%, and G, denotes the group of frame-preserving
gauge transformations. For the quiver gauge theories, I is
factorized as

m = |Z|sz,§ = |?|<Hzma,{> (18)

v

where we label the instanton charges by

k= {k { Koo I€VP } zZ". (19)
pr— l pr— e bl
- 2%+ v, i€V® 20

and M ;. is the moduli spaces of framed G;-instantons
with instanton charge k; (see the Appendix for a review).
Then the instanton partition function can be written as

Zinst(g; a,m;e, 82) — Zgl_c Aﬁ GT((‘;],), (20)
R &

where

o = [ar Lo (21)

=170 1@
IS i€vy

and the integration measure er(&,) is the T-equivariant
Euler class of the matter bundle £, — M, whose fiber is

the space of the virtual zero modes for the Dirac operator in
the instanton background. According to the Atiyah-Singer
equivariant index formula, we have

er(€,) = e{—/y chT(Ey)A(Cz)} = e{—W},
(22)

where 1 is the pull-back homomorphism induced by the
inclusion 151 0 x Mg, — C> x M.  Applying  the
Atiyah-Bott equivariant localization formula we can further
reduce the equivariant integration over M ; to a discrete
sum over the set M, , of T-fixed points on M .

B 1 lzko,p)ChT(Sy)
"2 2 o PR

*
where 1 o,

inclusion 1 ,): 0 x p — C* x M. For the SO - USp
quiver gauge theories, if we denote &; to be the ith universal
bundle over C% x I «» whose fiber over an element A €
Me. r, C My is the “total space of the bundle E with
connection A, then &, is given by

») is the pull-back homomorphism induced by the

£ = { OM ® s,} ® [ OMEE g:-siﬂ o L ® E® 6j><%>] : (24)

iev? icv®

where the superscript (%) means half-hypermultiplets.

.J)€EE,
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The classification of fixed points I,

for SO/USp gauge group is a complicated problem [8—11]. Nevertheless, it is

sufficient for us to represent the instanton partition function as contour integrals,

qut (9 a,m;e

iev,

where |W;| is the order of the dual Weyl group of G;, and
the factors Zinstvee zinsthnd 4 2SOl are contributions
to the instanton pamtlon functlon from the vector multiplet,
the fundamental matter, and the bifundamental half-hyper-
multiplet. The variables ¢; ; in the integral are the weights
of the T-action on the space K;,

o emit L,
et e7is (1)}, (26)

i € VY diag{elh, ... e
i € V®: diag{elh e i, ..,

e_i¢!<,~ }’

where (1) is absent for v; = 0. The equivariant character of
the universal bundle &£; evaluated at the origin is given by
g = loCh'[r( ) ./\/ P}Cl, (27)

where N; is given in (9), and

2l 2 [2 2 2l

S I

leE

Ki e Z (ei¢i,r + e_i¢ij) + I/l" (28)

r=1

We will compute explicitly the factors Zi™tvee, zinstfund

Zinst bif

and (i) in the following. We also compute their

expansion around the flat space limit.

1. Vector multiplets

In order to compute Zi-m’v“, we use the basic fact that
the character of the tangent space T, is dual to the
index of Dirac operator in the adjoint representation twisted
by the square-root of the canonical bundle. From the
representation theory, the adjoint representation is isomor-
phic to the rank-two antisymmetric or symmetric repre-
sentation for SO or USp group, respectively. Therefore, the
equivariant character for the vector multiplet G;, i € V? is

)@+ a (). e

where the first term is the perturbative contribution, and the contribution to the instanton partition function from the vector

multiplet at the vertex i € V}Q is

Zhvee = €{‘Q+Ni’Ci +(1+q) (M) (g1 + a2) (@) }
(o) (M =) s &
where
Ai(x) = ][0 = ado), (31)
8i(x) = [ [[(@ir + ¢15)* = 2)(1r = 1.0 = 7). (32)

r<s

Similarly, for i € Vy‘ , we have

vec_q+(52+g )

YT op P 2

A2 1 N2 K2 - k2 K2+ kP
(M) gk 1+ 0 (M) s (D). )

2

Again, the first term is the perturbative contribution, and the contribution to the instanton partition function from the vector

multiplet at the vertex i € V},' is

125015-5
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inst,vec ’sz _IC['Z]
Zee = 6{_Q+Nilci +(1+gq) (#) —(q1 + %)(

-2 {HA (Bir+ e A, = ) (447,

)
4, —ez>]_l

1 a 2 (¢?, — &%)

ir

2 2

X
ngzAi(€+) 1 ( ir T €

@, ) Grensies)

(34)

In the flat space limit, the dominant instanton configuration contributing to the instanton partition function has the instanton
charge of the order ~ . Therefore, we should take the limit &, &, — 0, k; — co while keeping &, &,k; ~ O(1) fixed. Using

the expansion

log x*(x? — &%)

we have for i € V?

inst,vec __ inst,vec
Fimstyee — zl

— lim €&, log

£1,6,—0
Hi — 1) IOg

ki 1
= 28182 Z |:<§
r=1

and for i € Vy.

+Zlog

inst,vec inst,vec
Fi Z

= — lim €&, log

£1,6,—0

= 2¢& Z [Iog )+ Z log (

Notice that the v;-dependent term drops out because it
behaves as

which vanishes in the flat space limit.

2. Fundamental matter

The equivariant index of a fundamental hypermultiplet is

_ léchﬂ'(Mi ® 5,)
’ - P

fund,hyper

1
7—)/\/15/\/[ + MK, (39)

where the first term is the perturbative contribution, and the
second term gives

(=) —e3)

=2 L O(ere)), (35)
Ki 1 1
2 , 36
1(1):| + (8182) ; |:(¢i,r + ¢i.s)2 + (¢i,r _ ¢i,.&')2:| ( )
5 Ki 1 1
):| - 2(8182) ; |:(¢i,r + ¢i,s)2 - (¢i,r - ¢i,s)2:| . (37)
[
Zinst,fund,hyper _ M IC. } H |: ! 12,r — mlzf>:| .
r:l
(40)

Fori e V},’ , we also need to consider the half-hypermultiplet,
which must be massless. We take the contribution of a
fundamental half-hypermultiplet to be the square-root of a
massless fundamental hypermultiplet [11],

stt .fund,hh (E{K } % _ H¢’ - (4])

where {; = +. Combining the fundamental hypermultiplet
with possible half-hypermultiplet, we can write the con-
tribution of the fundamental matter to the instanton
partition function as
Ki w;
v
r=1 f=1

Zlnst Lfund _ Cf, <Hm )

In the flat space limit,

—m?’f)} . (42)

125015-6
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F;nst.tund — — lim €16, IOg Z;nst,tund

K ?; w;

—-eier Y Phou(d?,) + D tou(d?, - ).
r=1 f=1

(43)

where the dependence on the overall sign {; disappears.

3. Bifundamental half-hypermultiplet

The equivariant index of a massless bifundamental
hypermultiplet composed of a pair of bifundamental
half-hypermultiplets is given by

bif hyper

1

1
~ NN HNK; + NK = PRK,. (44)

where the first term is the perturbative contribution, and the
instanton contribution given by the remaining terms is a
complete square,

stt bif hyper

. . Ki lzr —g% 2v;
(1) ()

x[f[l/&j(gbn] {HA %] < 4,»(8 )>2’

11(8+)
(45)
where
%) = TLLL 1 + #307 =1er - 5.0* = %)
r=1 s=1
(46)

3(9; a,m; e, e,) = Z¢Zpert Zinst

We identify the contribution to the instanton partition
function from the bifundamental half-hypermultiplet as [11]

stt bif

e L))
. {ﬁl/&,(qﬁerHA "’”K jE€+))>

(47)
with the overall sign {; ;, = =+. Using the expansion
.X'Z — E_ E1E 4
IOg B > _—2+O((81»€2) )v (48)

we can compute the flat space limit,

b1f inst,bif
Finst — lim &&,log Z"
(i.J) e (F162108 =i j)

= —£16 Z Zlog ] @)
—81822{ log( +Zlog(¢ Aj g )}

K 1
(e1€2) ZZ [(¢l,+¢” (¢i,r_¢j,s)2:|.

(49)

We see that the v;-dependent term and the overall sign £; ;)
drop out again.

B. Full partition function

After deriving the instanton partition function, we would
like to combine it with the classical and the perturbative
contributions to form the full partition function,

de;
=l i,s ~pert,vec wpert,fund ~inst,vec ~inst,fund pert bif mSt bif
z§q(|||W|/|| Zhertvee ghertfund Zinsi,vec Zi )(”z zZp ) (50)

iev,

The classical partition function is simply given by

2&152 l(l

=[Ja

i€v,

ZNqas €, )

whose flat space limit is

l]EE

FCl = — lim E16 10gZC1

£1,6,—0

Zlog ,2a. (51)

lEV

The perturbative contribution to the partition function in
the Q-background is one-loop exact. In fact, we have
already obtained them as the byproduct of our derivation of
the instanton partition function,

125015-7
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2]
ert,vec q+ N?_Ni
Zp =5 () @
pert,vec qu sz + NF]
et A G 2 (53)

‘ 1 !
goenfund _ e{—7—) <Mi + E(p[)N,}, (54)
A 1
i _ { NN } (55)

We set the cutoff energy scale Ayy = 1. Using the
regularization (12), we can write the perturbative contri-
butions in terms of Barnes’ double Gamma function
I'>(x|er, &,). Apply the relation

X
- 1 logT ==—1 2
gl,g]loelez og ' (x[ey. &) 4 og(x 4

we get the perturbative contributions in the flat space limit,

pert,vec __ . pert,vec
erVO = —Ell’gr_l)oelez log Z;
= —ZIC(aa + ag) Z}C - ag)
a<f a<p
+2uy Klay), (57)
a
pert,vec __ . pert,vec
ieve = _5,1,:-2208182 log Z;
= —ZIC(CI{, + a/i) - Z’C(aa - a/i)* (58)
a<f a<p
Fg)ert,fund = — lim 08182 log dert.fund
£1,6)—>
_ZZ 1(1+mf +IC( l(l_mi._f)]
+ fizlc(ai,a) + Hi Z K(m f), (59)
a f=1

- o] -
o[-

) log(z) + Zlog

F1<)ert>b1f _8 lim 08182 10g Z;()ert)blf
—Z ta+aj/f +IC( A aj,/f)]
+ ﬂlZ’C ] [1 (60)

Therefore, the full partition function in the flat space

limit can be written as
F
1€ ’

Z(q;g,_;fl,Sz)—qu/HH ¢ls
X
(61)

iev, s

where

It, rt,fund inst, inst,fund
F — Fcl +§ :(FFe vec + Fge un + F;ns ,vec + F;ns un )
i€V,

£ £ 0. (6
(iJ)€E,

C. The functional integrals over density functions

It is useful to rewrite F in terms of functional integrals
of density functions. We introduce the instanton density
functions

0(2) = e162 S e = ) + 0+ )], (63)

with the normalization ensuring the finiteness in the flat
space limit. They are even functions,

0i(2) = 0i(~=2). (64)

Using the standard rule

81822 ¢zr +f ¢lr _)/dZQl Z)’ (65)

vee F ;-“St’f““d, and F™ §n terms of

we can rewrite F"*" i

0i(z) as

1 /Qi(Z)Qi(Z/)
i g :| + EJ[dZdZ —(Z — Z/)z

)+ 2 Kle = } ‘_][dZdZ' [(@)e! (2K (z =), (66)

125015-8
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1 1 1
Fi’:“/ze" = 2/sz, [log —I—Zlog } 2][d d ’Q(( 2)ailz ,()2>

2 dzg/<z[ )+ YK~ } -5 fde e - 2), (67)

pinstiond / dz;(z) F log(z) + Zlog z—m; f):| /dZQZ-/(Z) [%’C(Z) + ilC(z - mi.f)}’ (68)

f=1
inst,bif i : = . :
it =~ / dzgi(z);log (z—ajq) = /dZQj(Z) [’%log(Z) + Zlog (z- ai.a):| - z]ld dz %

- [zt @3Kte - ai) - [ dseia ) + S a4 5 sttt (69

a

where [-denotes the principal value of the improper integral.
In order to combine the instanton contribution with the perturbative contribution, we introduce the full density functions

pid(z) + 20[0(z = ai0) +6(z+ a;0)] = €"(2), i€V

pila) = 26(z) + [6(z — ara) + 6(z + a;)] — "(z). i€ V® (70)

so that
Fvee — Fpen,vec + FinSt'VeC _ _%JﬁdZdZ/pi(Z)pi(Z/)IC(Z - ZI) + 2depi(Z)IC(Z), i € V}Q (71)
’ ’ ’ —3 fdzdZp;(2)pi(2)K(z = 2), ievy
Fims — g e =S [ e = mig) + 5 [ depi(a), (72)
i ert,bi inst,bi 1
Foif, = F‘Zi’?;bf + F<l.;]?§bf = E][a’zdz’pi(z)pj(z’)lC(z -7) - / dzpi(2)K(z), (73)
[
where we have used the fact that /C(0) = 0. Clearly  —¢¢,log (Z¢gF)
the expressions (71)—(73) are much simpler than the N | |
perturbative and instanton contributions separately, and = Z log(q;) < Za?a — 6 (Ki + ,/i))
the explicit dependence of the Coulomb moduli a;, i€V, 25 2
disappears.
For the classical contribution and the factor g*, we can = —Z log(q;) / Zpi(2)dz + Oley. &) (75)
lEV

evaluate that

Therefore, we can rewrite the full partition function in
terms of functional integrals over p = {p;};cy .

_/Hdplexp (—Z—M+(’)(81,82)> (76)

iev,

/z2p,-(z)dz = ZZa%a —4de ek, (74)

which leads to where Flp| is given by
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- ——Z][dzdzp,(z pi(Z)K(z = 2') + Z

i€V, iev?

/dzp, [log z+ZIC

1€V'

/ 2 (2) 22 + § log(@) +

i)

1
+ 5 1 dzdZ'pi(2)p;(2)K(z = 2) = [ dzpi(2)K(2)|. (77)
(Z[zj[zzpzpz -2z /zpz z]

i.j)€E,

IV. THE LIMIT SHAPE EQUATIONS

Now we are ready to perform the saddle-point evaluation
following the approach in [4-7,9] to determine the limit
shape of the instanton configuration which dominates the
partition function (61) in the flat space limit ¢, e, — O.

A. Saddle point analysis

In the limit &, &, — 0, the distribution p;(z) becomes a
function with compact support C;. In an appropriate domain
of the parameter space, C; for different i are widely
separated, and each C; is a union of disjoint intervals along
the real axis,

C;=UZ:, = Ulai,. ai,].
7 7

C<diy<af,<aj, <dai,, <---. (78)
Here
{i—l,iz,...,ini, ievy
oL 42, 4y, i€V

with +a;, €7Z,;., and 0 € Z;,. The function p;(z) is
normalized according to

2, ieVe® /=0
/ pi(z)dz = { g . (19
Ii.f

1, otherwise

The Coulomb moduli enter the variational problem via the
additional constraints

/ wi(z)dz = £a;,. (80)
Iz +a

After incorporating the constraints via Lagrangian multi-
pliers b;, and al » our task is to find the limit shape p,
which extremizes the following effective free energy,

Feﬁ [,0 _|_
i€V

: ; [bi,f <1 - /I,-,f ﬂi(Z)dZ>
Lab, <a,,f -/ zpi(z)dzﬂ, (81)

where a?, is the dual special coordinate of a; ,, and the low
energy effectlve prepotential is given in terms of p, as

F=Fp,]. (82)

Forany i € VO and x € Z, 4, the variation of F*[p] with
respect to p;(x) leads to the following linear integral
equation,

0= / d2p (2K (e = x) +2K(x) + log(a,)2

w;

+Z

(e,

(x=my )+ K(x 4+ m; )]

(83)

Keep in mind that we must preserve the symmetry p;(x) =
pi(=x) in the variation. Similarly, for any j & VJ,. and
x€Z;,, we have

0= - [ depy(IK(z - )+ 1og(q))
3 Z (x=
"‘% Z / dzpi(2)K(z = x) = b, — xaf,. (84)

(i) €E,

7))+ K(x+mj )] +%K(x)

Taking the second derivative with respect to x, we obtain
the limit shape equations

125015-10



SEIBERG-WITTEN GEOMETRY OF FOUR-DIMENSIONAL ...

PHYS. REV. D 100, 125015 (2019)

1
0= _][dei(Z) log(x —z) +2logx + > log(q;)
+3)Tos(e? =)
2#1 gx=—mj,

1 .
+ Z {Efdzpj(z)log(x—z)—logx, ievy,

(i.j)EE,

1
0 _][dzpj(z) log(x —2) +log(q)
+1§:10 (x* =m?,)
22 gX™ —mi

¢ 1
+Elogx+§ Z ][dzp,-(z)log(x—z),

<i~j>€Ey

jeve. (85)

B. Analytic continuation and the instanton Weyl group

The limit shape equations (85) can be solved in terms of
the amplitude function, which is the generating function of
the vacuum expectation values of all the gauge invariant
local observables commuting with the supercharge Q [7],

Vi(x) = exp / dzpi(2)log (x—2).  (86)

We can expand Y;(x) as a Laurant series in x,
v;—2
Vix) = x" + Z Vi jxl. (87)

j==c0

The function Y;(x) is analytic on C\C;, and has branch cuts
on C;. According to Sokhotsky’s formula, for x € C;, the
principal value

][ dzpi(2)log (x — 2) = Vi(x + 10)V,(x — i0),  (88)

and the discontinuity across C;

H = exp (—27:1 /_ :o dzp,-(z)>, (89)

where );(x & 10) are the limit values at the top and the
bottom of Z; ,. If A; , is a small cycle surrounding the cut
la; ;. am, then from (80) we know that

1
:I:aia = —% xdlogyi. (90)
v 2mi 4,

Alternatively, we can view Y;(x) as a single-valued
holomorphic function living on a Riemann surface, which

is the double cover of the complex plane, glued together
along the cuts.

The limit shape equations (85) in terms of p; is the same
as the nonlinear difference equations on Y;(x),

Yi(x+10)Y;(x—10) =qux*~> H(xz —m; ) H Y;x),
= (i)€E,
ievy,
Vi +i0)Y(x=10)=qu [[(2=m2,) T Y.
F= (i.)eE,

jeve. (91)

Recall that for SU quiver gauge theories, the limit shape
equations can be written as [7]

Vi(x+10)Y;(x = 10) = q; H(X —mz)

< I Yol=m). @2

where );(x) is the ith amplitude function in the SU quiver
gauge theory, m, is the mass of the bifundamental hyper-
multiplet associated with the oriented edge e whose source
and target vertices are s(e) and #(e) respectively. We find
that (91) and (92) are very similar. The differences arise
because we have unoriented bipartite quiver diagrams for
SO — USp quiver gauge theories and the bifundamental
matter fields are half-hypermultiplets rather than full
hypermultiplets.

We can analytically continue );(x) across the cuts
according to (91), leading to a multivalued function on
the complex plane. We define the following reflections on a
single vertex,

sit Vi(x) > x¥20P(x) Vi(x) 7! H V;(x),

(i.j)EE,
iev?,
52 Vi) = Pi(Y;07 T wito),
(iJ)€E,
jeve. (93)

It is easy to check that 57 = 1 and s;5; = s;s; if (i, j) & E,.
These reflections generate a group, called the instanton
Weyl group W. It is the finite Weyl group W(g) of the
ADE simple Lie algebra g for the Class I theories of type g,
and is the affine Weyl group WW(g) of the affine Lie algebra
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g for the Class II theories of type § [7]. For class III
theories, it needs to be worked out case by case.

The instanton Weyl group W is useful due to the
following reason. Notice that although );(x) has disconti-
nuity across the cut C;, the combination Y;(x) + s;[V;(x)]
is invariant under the reflection s;, making it continuous
across the cut C;. There are new discontinuities across
other cuts C; introduced by s;[);(x)]. Again these dis-
continuities can be canceled by acting on other reflections
s;. The iteration process will close in a finite or infinite
number of steps and produces an W-orbit. The resulting
function is manifestly analytic on C\(U; C;) and is also
continuous across all the cuts due to the V-invariance.
Therefore, it must be a single-valued analytic function
on the whole complex plane. Our solution to the limit
shape equations (91) can then be given in terms of a set
of WW-invariants.

C. Characters and Seiberg-Witten geometry

Among all the Weinvariants, we are particularly inter-
ested in the characters y;())(x)) of the WV-orbits containing
Vi(x),
ievV

xi(Y(x) = Vi(x) 4 - - = TrLi(x), (94)

y?
where L;(x) is a diagonal matrix with entries the compo-
nents of y;,

L;(x) = diag{L;.L;5. ...}, (95)

which is a finite matrix for class I theories, and is an infinite
matrix for class II theories. Each term in - -- are Laurent
polynomials in Y;(x) and Y;(x)”' and the asymptotic
power of x is the same as );(x) near x = 0. In the weakly
coupled limit g — 0, y;(x) = V;(x). According to the
asymptotic behavior near x = co, we know that they must
be polynomials in x,

1i(V(x)) = Ti(x), (96)

where the coefficients of 7;(x) are functions of the
couplings g, the masses m, and the coordinate u on the
Coulomb branch B.

The Seiberg-Witten curve of the theory can be uniformly
written as

%, det(1— ' ¢@)L(0))], —r, =0, (97)

|Z./

where {(x) is a normalization factor to be determined, and
the meromorphic differential takes the canonical form

V. SEIBERG-WITTEN GEOMETRY OF LINEAR
QUIVER GAUGE THEORIES

In this section, we shall carefully describe the Seiberg-
Witten geometry of linear quiver gauge theories as an
illustrative example.

A. Linear quiver gauge theories
We consider the class I theory of A,-type. The set of
vertices is V, = {1,2,...,r}, and the edges connect ver-

tices of nearest neighbors. The total gauge group has the
structure [16,21]

G=]]Gi=---xS0(v;) x USp(vi;1 =2) x -, (99)
i=1
where
V) <V < <V <V ="'""="0Vg>Vgy|>" """V
(100)

We refer to the parts to the left of v, and to the right of v
as the two tails of the quiver. We also define vy = v, = 0.
The condition (5) becomes

20; = iy — vy = 2w; + & + 267 + 257

Lr’

(101)

where 5?1 =lifi=1¢€e V? and vanishes otherwise, and
similarly for 87. It is convenient to express v; in the

following way,

d, 1<i<Q0-1

i.
J=1"

v; =1 2N, VESEY ) (102)
id; @+1<i<r,
where
v — Vo, 15i<Q
di=<¢0, Q+1<i<éd-1, (103)
Vi —Viqq, QSlSr
satisfying

dy2dy> - 2dy20, 0<dy<dg < <d,.

(104)

and

(105)

Y di=> di= o

L)
i=1 i=Q

Therefore, it is natural to associate each tail with a Young
tableau [16]. The Young tableau associated with the left
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tail has row lengths being nonincreasing integers d;—
26%,(1’2, ...,do, and the difference between the ith and

the (i + 1)th row lengths gives 2w; + &;. We also have a
similar Young tableau associated with the right tail.

B. Seiberg-Witten curve

The instanton Weyl group W for the quiver of A,-type is
the symmetric group S,,;, which is generated by

Vi FUJ);137L-1JJL+1, i=1,...,r,

(106)
|

where

Pi(x) = qua 20 +@H(x —m? (107)

This is very similar to the case for the SU linear quiver
gauge theories. Under a chain of Weyl reflections, we get a
W-orbit starting from ));,

yll)p[l]yl—lyzl,p[Z]yEI%L . ﬁ)p[r—llyr—_llyrl,p[r]y;l, (108)
where
plil — HPJ" i=1,....r (109)
j=1
The instanton Weyl group W acts by permuting the eigenvalues of the matrix L, (x),
L (x) = diag{V,. PNYT'Y,, PEY;1Y; . Pyl Pyt (110)
We can check that the ith character is given by
2= (P~ ey (0 PUYTI Y, PRIV Y o PEIYEL Y, YY), (111)
|
where we introduce the notation ol : 4 4
det (1 = E(0L1 (1)) = D (=1)E (@) er(Ly (0)r -
j i=0
plidl =TT pi (112) r+l
1l = 3 (L) Py ()
i=0
and e; is the ith elementary symmetric polynomial (116)

eo(xys .. x,) =1,
ei(xy,....,x,) = Z Xj X,
1<ji<<j;<n

1<i<n. (113)

In fact, the elementary symmetric polynomials are totally
symmetric in the variables, and ); is one term in y; (111),

(P ) (PUYTY,) - (PERYEL V) = V.

(114)

Therefore, (111) is the characters of the WV-orbits starting
from ); for i = 1, ..., r. We also define

Xo=Xrs1 = 1. (115)

We expand the character polynomial in terms of the
elementary symmetric polynomials

Substituting y;(x) by T;(x), we get explicitly the Seiberg-
Witten curve,

T, tf“+z

( )rC( )rplr :0’

P[ll 1] ( )trJrl i

(117)

where the polynomial T;(x) takes the form

v

Ty~ 20),
(118)

= Xvi(T,"O + T[ylx_z + Ti’2X_4 + -+

with || being the greatest integer less than or equal to a.
Notice that only even powers of x can appear in the bracket.
The leading coefficient depends only on the couplings
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i-1
Tip= (H%_l) (1,91, %, ... 102+ + Q). (119)
=1

The next-to-leading coefficient 7;; is a function of the
couplings and the masses. The remaining coefficients
encode the information of vacuum expectation values of
Coulomb branch operators. The Seiberg-Witten curves
(117) with different normalization factor {(x) contain the
same physical information and are related to each other by a
change of variables (z,x). The Seiberg-Witten curve
obtained in [14,15] by lifting a system of D4/NS5/D6-
branes with orientifolds in type IIA string theory to
M-theory matches (117) with {(x) = —1.

VI. FURTHER DEVELOPMENTS

In this paper, we derive the Seiberg-Witten geometry of
SO — USp quiver gauge theories using the instanton
counting method, with an emphasize on linear quiver
gauge theories. Our discussion can be straightforwardly
lifted to five-dimensional N = 1 theories compactified on
S or six-dimensional N = (1, 0) theories compactified on
T2. For the partition function, the equivariant cohomology
should be replaced by corresponding K-theoretical or
elliptic version. The corresponding Seiberg-Witten geom-
etry can be derived in the same way.

After solving the linear quiver gauge theories, it is very
natural to also work out the other quiver gauge theories.
Indeed, if the quiver is one of the ADE or affine ADE
Dynkin diagrams, the analysis would be very similar to the
corresponding SU quiver gauge theories [7]. However, it is
more interesting to consider the non-Dynkin type quivers.
Even the Seiberg-Witten solutions to most of them are
unknown so far. The instanton counting method seems to
be the most promising approach to solve them. We will
discuss all these cases in Part II of our article.

There are many other open questions that will be studied
in the future. We can study the Bethe/gauge correspon-
dence between the supersymmetric gauge theories and
quantum integrable systems by sending only &, — 0 while
keeping &, = # finite [22], generalizing the derivation for
SU quiver gauge theories in [23,24]. The effective twisted
superpotential can be obtained from the partition function
via

W (g; a. m; )
= —lime, log Z(Q;a,m; &) = h. &) + W‘”(g, m; h),

&—0

(120)

where W is the possible perturbative contribution from
the boundary conditions at infinity, and Wt is identified

with the Yang-Yang function of some quantum integrable
system [22,25-29].

We can go one step further and consider the situation
where both &; and e, are finite. In this case we shall
introduce an interesting class of gauge-invariant observ-
ables, );(x), whose vacuum expectation values are );(x).
We should be able to define the so-called qg-characters
X;(x), which are composite operators built from Y;(x) and
satisfy the nonperturbative Dyson-Schwinger equations
[30,31]. The theory of gg-characters play an important
role in the study of SU quiver gauge theories. For example,
they can be used to derive the Belavin-Polyakov-
Zamolodchikov equations from the field theory point of
view [32,33]. It is also interesting to study the relations
among the vacuum expectation values of chiral operators in
the Q-background [34]. A closely related issue is the study
of the gauge origami [35] in the presence of the orienti-
fold plane.

In recent years much of the investigation of super-
symmetric gauge theories has involved the presence of
nonlocal operators. We can naturally study surface oper-
ators in the Q-background [36—44]. Unfortunately, almost
nothing has been said about surface operators in the
Q-background when the gauge group is SO/USp.

Finally, we would like to emphasize that the analysis
of SO — USp quiver gauge theories is not as rigorous as
that of SU quiver gauge theories. The hazards come not
only from the treatment of the half-hypermultiplets, but
also the noncompactness of the moduli space of SO/USp
instantons. When we take the flat space limit, we neglect a
lot of information of the partition function in the
Q-background, and many potentially problematic issues
are avoided. Hence we cannot say that we fully understand
the Q-background before we have completed the above
generalizations from SU to SO — USp quiver gauge
theories.
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APPENDIX: INSTANTON MODULI SPACE

In this appendix, we review some properties of the
moduli spaces M of framed G-instantons on C? with
instanton charge &,

WGJC = {A GAG|F+*F:O,k

1
:mézTrade/\ F}/gm, (Al)
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where A is the space of G-connections, 1 is the dual
Coxeter number for the Lie algebra of G, Tr,g; is the trace in
the adjoint representation, and G, is the group of gauge
transformations that are identity at infinity. For G being a
classical group, Atiyah, Drinfeld, Hitchin and Manin found
a description of M, in terms of solutions to quadratic
equations for certain finite-dimensional matrices [45].

It is useful to introduce the following notations. Let S*
be the positive and negative spin bundles, and the line
bundle L = IC::/Z2 be the half canonical bundle of C2. The
group of rotations on C? with a fixed translationally
invariant symplectic form is Gp = U(2) ~SU(2)_x
U(1), c Spin(4), under which ST splits as L & L.

1. U(n) instantons

We start with the moduli space of U(n) instantons. We
introduce a quartet of linear operators

(B, B,,1,J) € Hom(K,K) ® C*> ¢ Hom(N, K)

D Hom(K,N), (A2)
where K and N are two complex vector spaces of
dimension k and n, respectively. The moduli space of
framed U(n) instantons on C? with instanton charge k is
given by the regular locus of the hyperkahler quotient of the
space of operators (By, By, 1,J) by the U(k) action,

My(nyk = {(B1, By, I, J) [uc = 0, up = 03¢ /U(k), (A3)

where the ADHM moment maps are

pe = [By. By) + 17, (Ad)
we = By B + By, BY) + 11T = U0, (AS)
the action of g € U(k) is
9+ (B1.By.1.J) = (9B1g™" . gBrg™" . gI.Jg™").
g € U(k), (A6)

and the regularity requires that the group action of U(k) is
free on the solution (B, B,,1,J).

The ADHM construction can be represented by the
following complex,

0-K®L'-SK®S HN-SK®L—0, (A7)

where £ and S~ are the fibers of L and S~, respectively, and

p=(-By+z. Bi—z. I).

(A8)

From the middle cohomology of the complex (A7), we can
form the virtual universal bundle £ on C? x My(n)x Y

E=N@PKQ (5os5). (A9)

The moduli space My, has singularities due to
pointlike instantons. In order to make the localization
computations appropriate, we may work with another space

MG, 4 2 {(B1,Bo 1) e = 0, u = ¢ - I }/U(K),
(A10)

where ¢ > 0 is a constant. The moduli space EUZ%W,,{ is a

4nk dimensional smooth manifold, with the metric inher-
ited from the flat metric on (B, B,, I, J), and we can again
form the universal sheaf £ on C? x My () similar to (A9).

An equivalent description of Emg(n). , can be given as

gJz%(n)k = {(817327 I, J)|,uc

=0,C[B,.B,)I(N) = K}/GL(K).  (All)

It was shown in [46] that 9)2%("» « describes the moduli space
of framed U(n) instantons on noncommutative C> with
instanton charge k. Mathematically, ETR%(,[)J{ is the moduli
space of framed torsion free sheaves (E, @ E|cpt ;0%1 )

of rank N on CP? = C U CP,, with {(ch,(E), [CP?]) =
k [47].

There is a natural GL(N) action acting on the moduli
space,

p-(B1, By, 1,J) = (By, By, Ip7", pJ), p € GL(N).

(A12)

The central GL(1,C) subgroup acts trivially due to the
equivalence under GL(1,C) c GL(K). Meanwhile,
the rotation symmetry of C? induces a (C*)%-action on
the moduli space via

(By,By,1,J) = (q1B1, 4B, 1, q197), q1.9, € C".

(A13)

2. SO/USp instantons

The ADHM construction for SO/USp instantons can be
obtained by a projection of the U(n) instantons. Here we
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follow the description given in [48]. We define SO(n) to be
the special unitary transformations on C" that preserve its
real structure ®,, and define USp(2n) to be the special
unitary transformations on C?” that preserve its symplectic
structure @,.

For SO(n), we consider linear operators

(B, B,,J) € Hom(K,K) ® C* ¢ Hom(K,N), (Al4)

where K and N are two complex vector spaces of
dimension 2k and n, respectively, together with a sym-
plectic structure @, on K and a real structure ®, on N. The
moduli space of framed SO(n) instantons is given by

Mo« = {(B1. By, J)|®,B;, DB, en’ K*,
®,[B,.B,] — J*®,J = 0}¢/USp(2k). (Al5)
Similarly, for USp(2n), we consider linear operators

(By,B,,J) € Hom(K,K) ® C> @ Hom(K,N), (Al6)

where K and N are two complex vector spaces of
dimension k and 2n, respectively, together with a real
structure @, on K and a symplectic structure @, on N. The
moduli space of framed USp(2n) instantons is given by

Musp2n)k = {(B1. B2, J)|®, B, @B, € S’K*,

®,[B,. By — J*D.J = 0}2/O(k).  (Al17)

For both SO(n) and USp(2n) instantons, we do not
know the compactification of the moduli space of framed
instantons which admits a universal bundle with the
universal instanton connection over Mg, x C2. Never-
theless, we still have the ADHM complex

0-K®L'-SK®S ONLK ®L -0,

(A18)
where
By -z
a=| B, — Zz) s
J
0 &, 0
pO=|-d, 0 0 ,
0 0 -0,
0O &, 0
pr=1-o 0 0 . (A19)
0 0 —-d

The induced (C*)?-action on the moduli space is given by

(B1.By,J) = (q1By.92B5.q.J). (A20)

[1] N. Seiberg and E. Witten, Nucl. Phys. B426, 19 (1994);
B430, 485(E) (1994).
[2] N. Seiberg and E. Witten, Nucl. Phys. B431, 484 (1994).
[3] N. A. Nekrasov, Adv. Theor. Math. Phys. 7, 831 (2003).
[4] N. Nekrasov and A. Okounkov, Progress of mathematics
244, 525 (20006).
[5]1 S. Shadchin, J. High Energy Phys. 10 (2004) 033.
[6] S. Shadchin, J. High Energy Phys. 03 (2006) 046.
[7] N. Nekrasov and V. Pestun, arXiv:1211.2240.
[8] M. Marino and N. Wyllard, J. High Energy Phys. 05 (2004)
021.
[9] N. Nekrasov and S. Shadchin, Commun. Math. Phys. 252,
359 (2004).
[10] F. Fucito, J. F. Morales, and R. Poghossian, J. High Energy
Phys. 10 (2004) 037.
[11] L. Hollands, C. A. Keller, and J. Song, J. High Energy Phys.
03 (2011) 053.
[12] L. Hollands, C. A. Keller, and J. Song, J. High Energy Phys.
10 (2011) 100.
[13] N.J. Evans, C. V. Johnson, and A. D. Shapere, Nucl. Phys.
B505, 251 (1997).
[14] K. Landsteiner, E. Lopez, and D. A. Lowe, Nucl. Phys.
B507, 197 (1997).

[15] A. Brandhuber, J. Sonnenschein, S. Theisen, and S.
Yankielowicz, Nucl. Phys. B504, 175 (1997).

[16] Y. Tachikawa, J. High Energy Phys. 07 (2009) 067.

[17] Y. Tachikawa, J. Phys. A 44, 182001 (2011).

[18] O. Chacaltana and J. Distler, J. High Energy Phys. 02 (2013)
110.

[19] O. Chacaltana, J. Distler, and A. Trimm, J. High Energy
Phys. 04 (2015) 173.

[20] E. Witten, Phys. Lett. 117B, 324 (1982).

[21] L. Bhardwaj and Y. Tachikawa, J. High Energy Phys. 12
(2013) 100.

[22] N. A. Nekrasov and S.L. Shatashvili, in Proceedings,
16th International Congress on Mathematical Physics
(ICMPO09): Prague, Czech Republic (World Scientific,
Singapore, 2009), pp. 265-289.

[23] F. Fucito, J. F. Morales, and D. Ricci Pacifici, J. High
Energy Phys. 01 (2013) 091.

[24] N. Nekrasov, V. Pestun, and S. Shatashvili, Commun. Math.
Phys. 357, 519 (2018).

[25] N. A. Nekrasov and S. L. Shatashvili, Nucl. Phys. B, Proc.
Suppl. 192-193, 91 (2009).

[26] N. A. Nekrasov and S.L. Shatashvili, Prog. Theor. Phys.
Suppl. 177, 105 (2009).

125015-16


https://doi.org/10.1016/0550-3213(94)90124-4
https://doi.org/10.1016/0550-3213(94)90214-3
https://doi.org/10.4310/ATMP.2003.v7.n5.a4
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1007/0-8176-4467-9_15
https://doi.org/10.1088/1126-6708/2004/10/033
https://doi.org/10.1088/1126-6708/2006/03/046
https://arXiv.org/abs/1211.2240
https://doi.org/10.1088/1126-6708/2004/05/021
https://doi.org/10.1088/1126-6708/2004/05/021
https://doi.org/10.1007/s00220-004-1189-1
https://doi.org/10.1007/s00220-004-1189-1
https://doi.org/10.1088/1126-6708/2004/10/037
https://doi.org/10.1088/1126-6708/2004/10/037
https://doi.org/10.1007/JHEP03(2011)053
https://doi.org/10.1007/JHEP03(2011)053
https://doi.org/10.1007/JHEP10(2011)100
https://doi.org/10.1007/JHEP10(2011)100
https://doi.org/10.1016/S0550-3213(97)00384-2
https://doi.org/10.1016/S0550-3213(97)00384-2
https://doi.org/10.1016/S0550-3213(97)00559-2
https://doi.org/10.1016/S0550-3213(97)00559-2
https://doi.org/10.1016/S0550-3213(97)00531-2
https://doi.org/10.1088/1126-6708/2009/07/067
https://doi.org/10.1088/1751-8113/44/18/182001
https://doi.org/10.1007/JHEP02(2013)110
https://doi.org/10.1007/JHEP02(2013)110
https://doi.org/10.1007/JHEP04(2015)173
https://doi.org/10.1007/JHEP04(2015)173
https://doi.org/10.1016/0370-2693(82)90728-6
https://doi.org/10.1007/JHEP12(2013)100
https://doi.org/10.1007/JHEP12(2013)100
https://doi.org/10.1007/JHEP01(2013)091
https://doi.org/10.1007/JHEP01(2013)091
https://doi.org/10.1007/s00220-017-3071-y
https://doi.org/10.1007/s00220-017-3071-y
https://doi.org/10.1016/j.nuclphysbps.2009.07.047
https://doi.org/10.1016/j.nuclphysbps.2009.07.047
https://doi.org/10.1143/PTPS.177.105
https://doi.org/10.1143/PTPS.177.105

SEIBERG-WITTEN GEOMETRY OF FOUR-DIMENSIONAL ...

PHYS. REV. D 100, 125015 (2019)

[27] N. Nekrasov and E. Witten, J. High Energy Phys. 09 (2010)
092.

[28] N. Nekrasov, A. Rosly, and S. Shatashvili, Nucl. Phys. B,
Proc. Suppl. 216, 69 (2011).

[29] S. Jeong and N. Nekrasov, arXiv:1806.08270.

[30] N. Nekrasov, J. High Energy Phys. 03 (2016) 181.

[31] N. Nekrasov, Adv. Theor. Math. Phys. 21, 503 (2017).

[32] N. Nekrasov, arXiv:1711.11582.

[33] S. Jeong and X. Zhang, arXiv:1710.06970.

[34] S. Jeong and X. Zhang, arXiv:1910.10864.

[35] N. Nekrasov, Commun. Math. Phys. 358, 863 (2018).

[36] L.FE. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H.
Verlinde, J. High Energy Phys. 01 (2010) 113.

[37] L.E. Alday and Y. Tachikawa, Lett. Math. Phys. 94, 87
(2010).

[38] H. Awata, H. Fuji, H. Kanno, M. Manabe, and Y. Yamada,
Adv. Theor. Math. Phys. 16, 725 (2012).

[39] H. Kanno and Y. Tachikawa, J. High Energy Phys. 06
(2011) 119.

[40] E. Frenkel, S. Gukov, and J. Teschner, J. High Energy Phys.
01 (2016) 179.

[41] J. Gomis, B. Le Floch, Y. Pan, and W. Peelaers, Phys. Rev.
D 96, 045003 (2017).

[42] Y. Pan and W. Peelaers, J. High Energy Phys. 07 (2017) 073.

[43] N. Nekrasov, Lett. Math. Phys. 109, 579 (2019).

[44] S. Jeong, Nucl. Phys. B938, 775 (2019).

[45] M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Y. I. Manin,
Phys. Lett. 65A, 185 (1978).

[46] N. Nekrasov and A. S. Schwarz, Commun. Math. Phys. 198,
689 (1998).

[47] H. Nakajima and A.M. Society, Lectures on Hilbert
Schemes of Points on Surfaces, University Lecture Series
(American Mathematical Society, UK, 1999).

[48] J. Bryan and M. Sanders, Topology 39, 331 (2000).

125015-17


https://doi.org/10.1007/JHEP09(2010)092
https://doi.org/10.1007/JHEP09(2010)092
https://doi.org/10.1016/j.nuclphysbps.2011.04.150
https://doi.org/10.1016/j.nuclphysbps.2011.04.150
https://arXiv.org/abs/1806.08270
https://doi.org/10.1007/JHEP03(2016)181
https://doi.org/10.4310/ATMP.2017.v21.n2.a4
https://arXiv.org/abs/1711.11582
https://arXiv.org/abs/1710.06970
https://arXiv.org/abs/1910.10864
https://doi.org/10.1007/s00220-017-3057-9
https://doi.org/10.1007/JHEP01(2010)113
https://doi.org/10.1007/s11005-010-0422-4
https://doi.org/10.1007/s11005-010-0422-4
https://doi.org/10.4310/ATMP.2012.v16.n3.a1
https://doi.org/10.1007/JHEP06(2011)119
https://doi.org/10.1007/JHEP06(2011)119
https://doi.org/10.1007/JHEP01(2016)179
https://doi.org/10.1007/JHEP01(2016)179
https://doi.org/10.1103/PhysRevD.96.045003
https://doi.org/10.1103/PhysRevD.96.045003
https://doi.org/10.1007/JHEP07(2017)073
https://doi.org/10.1007/s11005-018-1115-7
https://doi.org/10.1016/j.nuclphysb.2018.12.007
https://doi.org/10.1016/0375-9601(78)90141-X
https://doi.org/10.1007/s002200050490
https://doi.org/10.1007/s002200050490
https://doi.org/10.1016/S0040-9383(99)00019-1

