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We demonstrate that the energy density of an accelerated fermion gas evaluated within quantum-
statistical approach in Minkowski space is related to a quantum correction to the vacuum expectation
value of the energy-momentum tensor in a space with nontrivial metric and conical singularity. The key
element of the derivation is the existence of a novel class of polynomial Sommerfeld integrals. The
emerging duality of quantum-statistical and geometrical approaches is explicitly checked at temperatures T
above or equal to the Unruh temperature TU. Treating the acceleration as an imaginary part of the chemical
potential allows for an analytical continuation to temperatures T < TU. There is a discontinuity at T ¼ TU

manifested in the second derivative of the energy density with respect to the temperature. Moreover, energy
density becomes negative at T < TU , apparently indicating some instability. Obtained results might have
phenomenological implications for the physics of heavy-ion collisions.

DOI: 10.1103/PhysRevD.100.125009

I. INTRODUCTION

Study of collective quantum properties of relativistic
matter is crucial for the descriptions of media under
extreme conditions, in particular, of the quark-gluon
plasma produced in heavy-ion collisions. It led to the
discovery of new important chiral phenomena [1] such as
chiral magnetic effect, as well as the influence of rotation
and magnetic fields on polarization [2–5] and the phase
diagram [6–8]. A lot of efforts were made to improve our
understanding of the effects associated with rotation and
magnetic fields, while the role of acceleration a has been
much less discussed in this context.
Most recently, the situation has been changing due to

development of a novel approach to the quantum-statistical
physics based on the use of the Zubarev density operator.
There exists now a systematic way to include the accel-
eration a into the parameters characterizing equilibrium
and evaluate perturbative expansion in the ratio a=T.

In particular, the energy densities of accelerated gas of
massless particles with spins 0 and 1=2 were evaluated
explicitly [9,10].
As first noted in [9,11], the quantum-statistical approach—

rather unexpectedly—is sensitive to the Unruh temper-
ature [12]

TU ¼ a
2π

: ð1:1Þ

Let us remind that TU is the temperature of the radiation
seen by an accelerated observer. Within the quantum-
statistical approach, the energy density changes its sign
at T ¼ TU.
The Unruh effect is seen by an observer accelerated in

Minkowski vacuum. In this case, the relation (1.1) estab-
lishes a one-to-one correspondence between temperature
and acceleration. The quantum-statistical approach, on the
other hand, treats T and a as independent parameters.
We borrow the interpretation of these states at T > TU from
quantum-field theory on the background of a space with
horizon; see, e.g., [13,14]. Namely, the Euclidean version
of the Rindler space with a conical singularity provides an
adequate image for a state with T and a being independent
parameters.
As for the temperatures T < TU, we argue that a proper

analytical continuation of the energy density to this region
can be worked out by using the Fermi distribution with the
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acceleration providing an imaginary part of the chemical
potential [9,15]. To this end, we need a nonperturbative
representation for the energy density for the fermion gas at
nonvanishing (T; a). We did suggest such a representation
to be valid in our previous paper [9]. This integral
representation was fitted to reproduce the first three terms
of the perturbative expansion in a=T and here we associate
it with a novel type of polynomial Sommerfeld integrals
which demonstrate, in the particular case of the energy
density, the absence of perturbative terms beyond the first
three terms known explicitly.
To summarize, at T > TU, we have two dual represen-

tations for the energy density of the fermion gas. One is
provided by the integral representation, see (3.1), derived
within the quantum-statistical approach. The other one is
given by the quantum correction to the vacuum expectation
value of the T00 component of the energy-momentum
tensor in a space with horizon and conical singularity.
The two representations, indeed, turn identical upon the
proper identification of the corresponding parameters. With
a stretch of imagination, we can say that starting with the
thermodynamics of the accelerated gas we get the horizon
emerging as a result of summation of the perturbative
expansion in a=T. Also, it is important to notice, that since
the results, obtained in [13,14], are nonperturbative, and all
the corrections above a4 are equal to zero, we get one more
evidence of polynomiality of energy density.
At temperaturesT < TU, the quantum-statistical approach

provides us with the means to evaluate the energy density of
the fermion gas in the one-loop approximation. The explicit
expression obtained in this way differs from the naive use of
the (finite) perturbative series valid at T > TU. There is a
discontinuity at the point T ¼ TU [9,15]. Analytic continu-
ation allows to associate this instability at T ¼ TU with the
crossing of the pole of the Fermi distribution in the complex
plane. This pole is a nonperturbative manifestation of the
observation that acceleration appears as an imaginary chemi-
cal potential [15]. However, the transition from T > TU to
T < TU is rather smooth, so that only the second derivative
from the energy density with respect to the temperature
experiences a jump at T ¼ TU.
We interpret the behavior of ρðTÞ around T ¼ TU as

indication of an instability. The negative sign of ρðTÞ at T <
TU implies decay of the state into particles with positive
energies (compensated by occupation of the corresponding
levels with negative energy) and Minkowskian vacuum.
An analogy to this process provided, for example, by the
superradiance from the ergosphere of a rotating black hole,
where negative energy levels also exist [16].
On the other hand, in the framework of the approach with

space with a boundary, when T ¼ TU the conical singu-
larity disappears and the cone turns into a plane. So, we see
that this phenomenon is echoed by a quantum instability
which is arising at the same point. It is amusing that a
similar picture arises [17,18] in the context of vacuum
stability in external fields.

We also discuss the application of instability at Unruh
temperature to the description of heavy-ion collisions. The
pioneering attempts to relate the thermalization and the
universality of the hadronization temperature to the Unruh
effect were made in Refs. [19–21]. The observation of the
instability existence allows us to introduce the picture of
hadronization which proceeds through the stage of for-
mation of a state with high acceleration and temperature
lower than TU. The instability is then responsible for the
decay of this state into final hadrons.
The paper has the following structure. Section II dis-

cusses perturbative results for the energy density of an
accelerated massless fermion gas, obtained in the frame-
work of the quantum-statistical approach. Section III dem-
onstrates the possibility of representing a perturbative result
in terms of Sommerfeld integrals of a new type and shows
by integration in the complex plane that these integrals are
polynomial. Section IV is devoted to quantum-field theory
with a conic singularity and shows that the results of
this approach exactly coincide with the quantum-statistical
approach. Section V discusses analytic continuation into
region T < TU and shows the existence of an instability.
Section VI considers various aspects of this instability and
emphasizes a parallel with the decay of vacua in strong
external fields. The physical interpretation of the instability
and possible phenomenological applications are also dis-
cussed in this section. The conclusion is given in Sec. VII.
Technical details related to the calculation of the order of
the derivative of the energy density with instability, and
instability at repeated crossing of the pole, are included in
Appendices A and B.

II. ENERGY DENSITY OF ACCELERATED
FERMION GAS

The properties of a medium in a state of global
thermodynamic equilibrium can be described by the
quantum-statistical Zubarev density operator of the form
[10,11,22,23]

ρ̂ ¼ 1

Z
exp

�
−βμðxÞP̂μ þ 1

2
ϖμνĴ

μν
x þ ζQ̂

�
; ð2:1Þ

where P̂ is the four-momentum operator, Q̂ is the charge
operator, Ĵx are the generators of the Lorentz transforma-
tions displaced to the point x, andϖμν is a tensor of thermal
vorticity. Acceleration effects are contained in the term
ϖμνĴ

μν
x , because

ϖμνĴ
μν
x ¼ −2αμK̂

μ
x − 2wμĴ

μ
x; ð2:2Þ

where αμ ¼ aμ=T is the thermal acceleration, K̂μ
x is the

boost operator, wμ ¼ ωμ=T is the pseudovector of thermal
vorticity, Ĵμx is the angular momentum operator. It is
important to note that, as followed from (2.1), from the
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point of view of quantum-statistical mechanics, the effects
of acceleration can be described in space with the usual
Minkowski metric by adding a term with a boost to the
density operator.
In [10], a perturbation theory in ϖ was developed at a

finite temperature. This perturbation theory was used in [9]
to calculate the mean value of the energy-momentum tensor
of the accelerated fermion gas when wμ ¼ 0; μ ¼ 0; m ¼ 0.
The following expression was obtained for the energy
density:

ρ ¼ 7π2T4

60
þ T2jaj2

24
−
17jaj4
960π2

þOðjaj6Þ; ð2:3Þ

where jaj ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
−aμaμ

p
, in what follows we will denote

jaj ¼ a.
It is easy to see that (2.3) satisfies the condition

ρ

�
T ¼ a

2π

�
¼ 0; ð2:4Þ

which is an indication of the Unruh effect from the point
of view of the quantum-statistical approach with the
Zubarev density operator [9,11,24].

III. NOVEL CLASS OF POLYNOMIAL
SOMMERFELD INTEGRALS

In this section, we discuss an interesting property related
to the solution (2.3) and the possibility of representing it in
the form of a new type of Sommerfeld integrals and show
that these integrals are polynomial.
In [9], an integral representation was proposed for (2.3)

ρ ¼ 2

Z
d3p
ð2πÞ3

� jpj þ ia

1þ e
jpj
T þ ia

2T

þ jpj − ia

1þ e
jpj
T −

ia
2T

�

þ 4

Z
d3p
ð2πÞ3

jpj
e
2πjpj
a − 1

: ð3:1Þ

It was shown in [9], that for T > TU Eq. (3.1) exactly
coincides with the perturbative result (2.3) (with
Oðjaj6Þ ¼ 0).
Equation (3.1) also receives further support from the

consideration of the Wigner function [25] on the basis of
which, in particular, it is also possible to show the addition
of an imaginary term with acceleration � ia

2
to the chemical

potential [9]. Equation (3.1) is remarkable in that it
automatically leads to the condition (2.4) since in this case
the bosonic “counterterm” in (3.1) turns out to be exactly
equal to the first integral with the opposite sign. As
discussed in [9], this fact is a manifestation of the
Unruh effect within quantum-statistical mechanics [11].
Indeed, the energy density of the Minkowskian vacuum is
normalized to zero and (2.4) demonstrates that the energy
density vanishes at the Unruh temperature.

The most unusual property of the Eq. (3.1) is the
appearance of a bosonic type contribution in it. This
contribution corresponds formally to a gas of massless
bosons with 4 degrees of freedom (d.o.f.) and in limit
T → 0 it is the only nonvanishing contribution

ρðT → 0Þ ¼ 4

Z
d3p
ð2πÞ3

jpj
e
2πjpj
a − 1

: ð3:2Þ

The appearance of such a term can be qualitatively related
to the equivalence principle [26]. Somewhat similar coun-
terterm was also introduced in [11,27], while its bosonic
nature can be attributed to imaginary chemical potential,
connected with acceleration. Note also, that our counter-
term is positive, while in [11] a similar counterterm is
negative.
From a mathematical point of view, integrals of the form

(3.1) are a new type of Sommerfeld integrals (look, e.g.,
[27]). Similar Sommerfeld integrals have already been
discussed in the literature in various contexts; however,
(3.1) differs by the presence of an imaginary term in the
exponent.
A remarkable property of the integrals (3.1) is their

polynomiality. Here we present a simple method that allows
us to show this polynomiality and better understand its
source. We will use the Blankenbecler’s method [28–30],
originally used in nuclear physics. We generalize this
method to the case of antisymmetric weight function and
imaginary chemical potential. Equation (3.1) can be con-
verted to

ρ ¼ a4

120π2
þ T4

π2

��Z
∞

0

x3dx
exþiy þ 1

þ
Z

∞

0

x3dx
ex−iy þ 1

�

þ 2iy

�Z
∞

0

x2dx
exþiy þ 1

−
Z

∞

0

x2dx
ex−iy þ 1

��
; ð3:3Þ

where y ¼ a
2T and we substituted the value of a Bose

integral right away, as its polynomiality is obvious in
advance. Let us consider a more general case of integrals of
the type (3.3), for almost arbitrary weight function. Two
types of integrals are possible,

Is1 ¼
Z

∞

0

fðxÞdx
exþiy þ 1

þ
Z

∞

0

fðxÞdx
ex−iy þ 1

;

Is2 ¼
Z

∞

0

gðxÞdx
exþiy þ 1

−
Z

∞

0

gðxÞdx
ex−iy þ 1

; ð3:4Þ

where fðxÞ ¼ −fð−xÞ is an odd function, and gðxÞ ¼
gð−xÞ is an even function. In the case of (3.3), fðxÞ ¼ x3

and gðxÞ ¼ x2. First, we calculate the integral Is1 and
assume that 0 < y < π. To do this, we integrate both terms
by parts in (3.4) and make the change of variables
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Is1 ¼ −
Z

∞

0

FðxÞSðxþ iyÞdx

−
Z

∞

0

FðxÞSðx − iyÞdx;

Sðxþ iyÞ ¼ ∂
∂x

1

exþiy þ 1
¼ −

exþiy

ðexþiy þ 1Þ2 ;

FðxÞ ¼
Z

x

0

fðxÞdx: ð3:5Þ

After the change of variables and using the parity SðxÞ ¼
Sð−xÞ and FðxÞ ¼ Fð−xÞ, we get

Is1 ¼ −
Z

iyþ∞

iy−∞
Fðx − iyÞSðxÞdx: ð3:6Þ

Note that for obtaining (3.6), the oddness of function fðxÞ,
is crucial, leading to an even function FðxÞ. Also, the
presence of two integrals with þiy and −iy [which
correspond to the appearance of contributions with þia
and −ia in (3.1)] is significant.
Now let us present the Taylor expansion of the function

Fðx − iyÞ in the form of an exponent with the derivative (in
other words, we use the translation operator)

Fðx − iyÞ ¼ exDFð−iyÞ; D ¼ ∂
∂ð−iyÞ : ð3:7Þ

Making change of variables, η ¼ ex, we get

Is1 ¼
Z
Is1

ηDdη
ðηþ 1Þ2 Fð−iyÞ; ð3:8Þ

where integration is along a straight line in the complex
plane at an angle y ¼ a

2T to the real positive semiaxis (the
left plot in Fig. 1). Nonzero slope of the integration contour
with respect to the positive semiaxis is a direct consequence

of existence of the imaginary chemical potential, and this
distinguishes our calculation from a similar one in [28–30].
The integrand in (3.8) has a second-order “Regge-like”
pole [31] in η ¼ −1, stemming from the Fermi distribution,
and a cut along the positive real semiaxis. To calculate the
integral Is1, one has to close the contour in the complex
plane at infinity as shown in the left plot in Fig. 1.
The integral IG ¼ Iγ ¼ 0, since following [28,29] we

assume jDj < 1. The integral along the whole contour IC is
then equal to

IC ¼ Is1 þ I2: ð3:9Þ

At the same time, due to the rotation angle equal to 2π in
the case of I2,

I2 ¼ −e2πiDIs1: ð3:10Þ

Using the residue theorem, we get

IC ¼ 2πiResη¼−1
ηD

ðηþ 1Þ2 Fð−iyÞ; ð3:11Þ

and after calculating the residue at the second-order pole,
we obtain

Is1 ¼
πD

sinðπDÞFð−iyÞ ð0 < y < πÞ: ð3:12Þ

Note that though the case considered is somewhat different
from [28,29], where the keyhole contour was considered,
the final formula is the same (differences will appear after
crossing the pole, as we discuss below).
In the sameway, it is possible to obtain similar expressions

for Is2,

FIG. 1. The slope of the integration contour y ¼ a
2T is determined by the acceleration. Left: integration contour in (3.8) when

0 < y < π. Right: integration contour in (3.8) when y > π.
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Is2 ¼
πD

sinðπDÞGð−iyÞ ð0 < y < πÞ;

GðxÞ ¼
Z

x

0

gðxÞdx: ð3:13Þ

To get a final answer, one need to expand the function πD
sinðπDÞ

into a Taylor series. We give the first four terms of the series

πD
sinðπDÞ ¼ 1þ ðπDÞ2

6
þ 7ðπDÞ4

960
þOððπDÞ6Þ: ð3:14Þ

Thus, the polynomiality of the energy is guaranteed by the
polynomiality of the functionsF andG, or f and g. Then the
energy density in (3.3) becomes

ρ¼ a4

120π2
þT4

π2

�
πD

sinðπDÞ
ð−iyÞ4

4
þ2iy

πD
sinðπDÞ

ð−iyÞ3
3

�				
y¼ a

2T

¼7π2T4

60
þT2a2

24
−

17a4

960π2
T>

a
2π

; ð3:15Þ

where the condition0 < y < π, necessary for the contour not
to cross the pole, leads to the condition that the temperature
be higher than theUnruh temperatureT > a

2π. To summarize,
it is essential for polynomiality that Fermi distributions in
(3.1) are taken with polynomial weights, and also that
symmetric combinations of integrals with �ia appear (the
odd weight function must correspond to the sum of the
integrals with �ia, and even to their difference). If we use
the physical interpretation of [9], then only the total con-
tribution of the modes with imaginary chemical potential
þia and −ia is polynomial.

IV. DUALITY OF QUANTUM-STATISTICAL
MECHANICS AND QUANTUM-FIELD

THEORY IN A SPACE WITH BOUNDARY

In this section, we show that the energy density of an
accelerated gas can also be calculated in another way in
the framework of field theory in a space with a conical
singularity [13,14]. Thus, we demonstrate duality between
quantum-statistical calculations and quantum-field theory
in a space with a boundary.
Consider the Rindler metric in the form

ds2 ¼ −r2dη2 þ dr2 þ dx2⊥; ð4:1Þ

where η ¼ γλ; x ¼ r cosh η; t ¼ r sinh η, and γ is a positive
constant [in (4.1) for convenience, unlike the rest of the
text, we consider definition of the metric such that g00 < 0].
The world lines with r ¼ const;x⊥ ¼ const correspond to
uniformly accelerated motion. The relations between the
proper acceleration a and the proper time τ along these
world lines, with the variables λ and r are determined by the
formulas

a ¼ r−1; τ ¼ γrλ: ð4:2Þ
In particular, for a world line with r ¼ γ−1, the proper
acceleration is a ¼ γ, and the proper time is τ ¼ λ. We
emphasize, however, that one should not confuse constant γ
with the proper acceleration a and the variable λ with the
proper time τ.
When constructing the field theory at finite temperatures,

it is necessary to consider the proper time τ as a coordinate
periodic in the inverse proper temperature T−1 and, there-
fore, to identify the points τ ¼ γrλ ¼ 0 and τ ¼ γrλ ¼ T−1.
Accordingly, we need to identify η ¼ 0 and η ¼ 1=ðrTÞ.
According to (4.2), 1=ðrTÞ ¼ a=T, and this ratio is a
spatiotemporal constant [11].
Thus, the metric (4.1), when considering field theory at

finite temperatures, takes the form

ds2 ¼ r2dη2 þ dr2 þ dx2⊥: ð4:3Þ
Equation (4.3) describes the space, containing a flat two-
dimensional cone with an angular deficit 2π − a=T. The
world line of a uniformly accelerated object corresponds to
a circle on the cone. Moreover, according to (4.2), the
distance from the top of the cone to the circle determines
the inverse acceleration for this world line, and the length of
the given circle determines the inverse proper temperature,
as it is shown on the left panel of Fig. 2. An essential
property of the metric (4.3) is the presence of a conical
singularity at r ¼ 0. Note that, as in the Fig. 1, the angular
deficit of the cone is determined by the ratio of acceleration
to temperature, a=T.
The quantum-field theory in the space (4.3) can be

constructed using the heat kernel method [13,14,32]. As a
result, nonperturbative mean values for different operators
can be obtained. In particular, in [13,14], the mean value for
the energy density of Weyl spinor field was calculated as
follows:

ρ ¼ 1

2

�
7π2T4

60
þ T2

24r2
−

17

960π2r4

�
: ð4:4Þ

In this case, the last term, which is independent of temper-
ature, is associated with the vacuum energy arising due to the
Casimir effect in the space with a horizon [33].
An amazing observation is that taking into account (4.2),

we get from (4.4)

ρ ¼ 1

2

�
7π2T4

60
þ T2a2

24
−

17a4

960π2

�
; ð4:5Þ

and thus, there is a complete agreement with the result (2.3)
(the difference in the coefficient 1=2 is associated with
half the number of d.o.f. of the Weyl spinors in comparison
with the Dirac spinors). This means that the energy density
of accelerated matter can be calculated in two completely
different ways: either by means of the statistical Zubarev
density operator (2.1) and calculation of corrections in flat
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space, or by considering space with boundary, which
transforms to the space with the conical singularity (4.3)
in the framework of the heat kernel approach.
The results obtained in the framework of this approach

are nonperturbative, which corresponds to the nonpertur-
bative nature of the heat kernel, which takes into account all
the orders in a. In particular, the expression (4.5) is an exact
nonperturbative formula and higher-order corrections are
absent at least when T > TU.
Thus, the polynomiality of (2.3), which, as it was shown in

the previous section, is connected with the polynomiality of
Sommerfeld integrals, is justified in the framework of the
approach with conical singularity on the field theoretical
side.
One could expect that the polynomiality of energy density

and of other observables is related to the quantum anomalies.
It is well known that quantum anomalies can lead to the
suppression of higher-order quantum corrections, and as the
result, the exact expression of a physical quantity is described
by the first terms of the quantum-field perturbative series.
This statement is known as the Adler-Bardeen theorem [34]
and is well known in quantum-field theory.
Recently, it has been shown that anomalies play crucial

role in hydrodynamics. In various contexts, the relationship
of quantum anomalies with the chiral vortical, magnetic,
and other chiral effects, as well as with the Hawking effect,
was shown [27,35,36]. We would expect that quantum
anomalies in hydrodynamics also should guarantee through
a kind of the Adler-Bardeen theorem, the polynomiality in
acceleration. However, finding the proof of this statement
remains an interesting unsolved problem.

V. INSTABILITY AT UNRUH TEMPERATURE

A. Analytical continuation to the region T < TU

From the point of view of the quantum-field approach
described in the previous section, the angular deficit
2π − a=T cannot be less than 0 and therefore, the temper-
ature satisfies the condition

T ≥ TU: ð5:1Þ

At T ¼ TU, the cone turns into a plane as it is shown on the
right panel of the Fig. 2 and the quantum-field approach
with a conical singularity in its standard form does not
allow us to study the region T < TU.
However, from the point of view of the quantum-statistical

approach, we can consider this region. In particular, Eq. (3.1)
describes the analytic continuation into the region T < TU,
and the pointT ¼ TU itself corresponds to the crossing of the
pole η ¼ −1, as it is shown in Fig. 1. As will now be shown,
in the region T < TU, the perturbative results (2.3) are
inapplicable, and nonperturbative effects appear.
Consider (3.1) in the domain T < a=2π. At 0 < y < π,

we have IC ¼ 0 from the residue theorem and from (3.9),
we get

0 ¼ Is1 þ I2: ð5:2Þ

But I2 remains the same as in the region T > a=2π. It is
therefore easy to get

Is1 ¼ e2πiD
πD

sinðπDÞFð−iyÞ

¼
�
1þ 2iπD −

11ðπDÞ2
6

− iðπDÞ3

þ 127ðπDÞ4
360

þOððπDÞ5Þ
�
Fð−iyÞ ð5:3Þ

and the same formula for Is2 withGð−iyÞ. Accordingly, for
the energy density, we get

ρ ¼ 127π2T4

60
−
11T2a2

24
−

17a4

960π2
− πT3aþ Ta3

4π
: ð5:4Þ

We note an interesting fact—according to (5.4) at T < TU,
the terms of odd powers in a appear [there are no contra-
dictions from the point of view of parity and Lorentz
invariance, since in (3.1) acceleration appears as a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
−aμaμ

p
].

One can see that nonperturbative result (5.4) is different
from the perturbative one (2.3).

FIG. 2. Left: space with a conical singularity and the relationship of geometric characteristics, circumference, and distance to the cone
point, with statistical parameters, acceleration, and temperature. Right: transformation of a cone into a plane with the temperature
decreasing to T ¼ TU.
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B. Instability

The analytic continuation to the region T < TU, con-
sidered in the previous subsection, allows us to show the
existence of instability at the Unruh temperature.
Consider the energy density in two regions T > TU and

T < TU. ρT>TU
is given by (3.15) and ρT<TU

is given by
(5.4). It is easy to show that

ρT>TU
ðT → TUÞ ¼ ρT<TU

ðT → TUÞ ¼ 0;

∂
∂T ρT>TU

ðT → TUÞ ¼
∂
∂T ρT<TU

ðT → TUÞ ¼
a3

10π
;

∂2

∂T2
ρT>TU

ðT → TUÞ ≠
∂2

∂T2
ρT<TU

ðT → TUÞ; ð5:5Þ

in particular,

∂2

∂T2
ρT>TU

ðT → TUÞ ¼
13

30
a2;

∂2

∂T2
ρT<TU

ðT → TUÞ ¼
73

30
a2;

∂2

∂T2
ρT<TU

−
∂2

∂T2
ρT>TU

¼ 2a2: ð5:6Þ

Thus, we see that crossing of the pole leads to an instability
in the energy density, which manifests itself in the
discontinuity of the second-order derivative ∂2ρ

∂T2 at the
Unruh temperature. It is also easy to see from (5.5) that
near, but below TU, the energy density is negative [11,24],
which also indicates instability in the system.
The order of the derivative ∂dρ

∂Td, in which discontinuity
occurs, turns out to be related to the pole order k in (3.8)
(where k ¼ 2) and the order of polynomial weight n in
integrals (3.4) as follows:

d ¼ n − kþ 2: ð5:7Þ
The derivation of formula (5.7) is given in Appendix A.
From (5.7), the appearance of a discontinuity in the second-
order derivative in (5.5) is obvious as minimal n equals 2
and k ¼ 2 in (3.1).
It is clear that as the temperature decreases further, the

integration contour Is1 (and Is2) crosses the pole η ¼ −1
again in Appendix B.

VI. DISCUSSION

Let us turn to possible applications of our results to
heavy-ion collisions. It is known that the final state can be
described as thermal hadronic excitations over the standard
Minkowski vacuum. Combining this well-known fact with
the instability for T < TU described in the previous
sections, we come to the key point that the observed
hadronic spectrum could appear as a result of decay of this
unstable state.
While the relation of hadronization to the Unruh effect

was first introduced in papers [19–21], the role of

intermediate unstable state had not been discussed, to
our best knowledge.
The analytic continuation of our basic result (3.1) allows

us to evaluate the energy density down to T ¼ 0. The
resulting tricky oscillating behavior (see Appendix B), when
applied to hadronization, may lead to appearance of a sort of
mixed phase. However, our derivation corresponds to equi-
librium so that only the region ðTU − TÞ ≪ TU can be
described rigorously.
We note that similar conclusions have been reached in

the recent field-theoretical analysis [17],where the instability
of vacuum in strong external fields was considered. Cases
of a scalar field with an external potential, an electric field
[18], and a gravitational field were addressed. The key
observations concern the fields being above the critical
values allowing the unsuppressed pair production. It turns
out that close to the threshold values the reliable calculations
of critical exponents and vacuum decay rates are possible.
As in [17], we show that violation of the classical

geometric constraint is accompanied by instability at the
quantum level, and the transition through this instability is
smooth. However, despite of the similarity of results
between quantum-statistical and field-theoretical examples,
there are certain differences in technical details. In par-
ticular, in [17], quantum instability is due to imaginary part
to the effective action. In thermodynamics, on the other
hand, energy density becomes negative, but remains real
and the discontinuity manifests itself at jump of the second-
order derivative (5.6). Also, energy density as the function
of acceleration appears to be even for T > TU, but becomes
odd below TU.
Note, however, that the validity of the results based on

the analytical continuation of the Eq. (3.1) deeply into the
region T < TU is questionable. Indeed, Eq. (3.1) originally
refers to equilibrium. However, as it is discussed above, the
states with T < TU are unstable. Therefore, the results
based on the analytical continuation of Eq. (3.1) to T < TU
can be trusted only as far as the effect of instability is small,
or close to the point T ¼ TU.

VII. CONCLUSIONS

In the first part of the present paper, we showed the exact
correspondence of the fermion energy-momentum tensor
calculated in the flat space, described by the Minkowski
metric, based on the Zubarev quantum-statistical density
operator and based on the heat kernel in a spacewith a conical
singularity. In particular, this is manifested in the exact
correspondence of the formulas (2.3) and (4.5) (up to a factor
of 1=2, associated with a different number of d.o.f.).
The found correspondence establishes polynomiality of

Eq. (2.3) and absence of higher-order corrections an,
n ¼ 6; 8…. On the other hand, we have shown that the
polynomiality of the Sommerfeld integrals, which describe
the energy density of the accelerated fermion gas, can be
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easily found by transforming them into contour integrals in
the complex plane.
Let us notice that polynomial Sommerfeld integrals exist

for any integer dimension of the integrand. The lowest
dimensional examples are known to be related to quantum
anomalies [27]. In general case, Sommerfeld integrals
are expected to allow to obtain exact one-loop results. It is
not ruled out that this is more general phenomenon, than
anomalies.
Further, we show that at Unruh temperature several

processes take place simultaneously. From the point of
view of a space with a conical singularity, the angular
deficit of the cone reaches its limiting value and the cone
turns into a plane. This behavior makes the analysis of
region T < TU problematic within the framework of the
conical singularity approach.
At the quantum-statistical level, the integration contour

crosses the pole of the thermodynamic distribution in the
complex momentum plane, as a result of which the second
derivative of the energy density has discontinuity at T ¼ TU.
Moreover, the consideration of acceleration as an imaginary
part of the chemical potential makes it possible to construct
an analytic continuation into region T < TU.
As the result we show that, at T < TU, odd terms in

acceleration appear in the energy density and also the
energy density becomes a negative. It turns out, however,
that the result differs from the perturbative calculation, that
is, nonperturbative effects become significant.
The described features of states at T < TU allow us to

interpret them as unstable states. By analogy with the
phenomenon of superradiance [16], the decay of these
unstable states should be accompanied by particle produc-
tion, which may have applications in heavy-ion physics and
explain thermalization and hadronization, expanding the
approach using the Unruh effect to describe the thermal
hadronic spectrum [19–21].
The described instability is similar to the results of the

analysis of [17,18], where nonthermodynamic instability
of the vacuum was discussed. Like the analysis in [17,18],
we have a violation of the constraint resulting from
geometry at the classical level, which is accompanied by
quantum instability. As in [17,18], we constructed an
analytic continuation into the region of instability and
show that the transition through instability is smooth.
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APPENDIX A: THE ORDER OF THE
DERIVATIVE WITH DISCONTINUITY

The purpose of this appendix is to derive Eq. (5.7) for the
order of the derivative in which instability occurs at the

Unruh temperature. To do this, let us consider the integral
of the form

Is ¼
T4

π2
yl
�Z

∞

0

xn

exþiy þ 1
þ ð−1Þnþ1

Z
∞

0

xn

ex−iy þ 1

�
;

ðA1Þ
where y ¼ a

2T. Equation (A1) is a special case of (3.4) for
polynomial weight functions. For l ¼ 0, n ¼ 3 and l ¼ 1,
n ¼ 2, one obtains integrals from (3.3). As described in
Sec. V, at T < a

2π, there is an additional contribution to this
integral due to the crossing of the pole. From (3.12), it
follows that ΔIs ¼ IT<TU

s − IT>TU
s has the following form:

ΔIs ¼ −
T4yl

π2
2πiResη¼−1

ηD

ðηþ 1Þk
ð−iyÞnþ1

nþ 1
; ðA2Þ

where compared to (3.12) we do not fix the order of the
pole k. Finding a residue, we get

ΔIs ¼
ð−1Þk2iT4yl

πðk − 1Þ!ðnþ 1ÞDðD − 1Þ…ðD − ðk − 2ÞÞ

× eiπDð−iyÞnþ1

¼ ð−1Þk2iT4yl

πðk − 1Þ!ðnþ 1Þ ðD
k−1 þ � � �Þðiðπ − yÞÞnþ1

¼ ð−1Þk2iT4yln!
πðk − 1Þ!ðn − kþ 2Þ! ððiðπ − yÞÞn−kþ2 þ � � �Þ;

ðA3Þ
where we used the property of the translation operator
eiπDð−iyÞnþ1 ¼ ðiðπ − yÞÞnþ1 and in the brackets hold the
term of the highest order in D, and then of the lowest order
in iðπ − yÞ. The derivative of order d in temperature ∂d

∂Td

from ΔIs at the point T ¼ a
2π will be

∂d

∂Td ΔIsjT¼ a
2π
¼ ð−1Þk2in!al

πðk − 1Þ!ðn − kþ 2Þ!2l
∂d

∂Td�
T4−l

��
i
�
π −

a
2T

��
n−kþ2

þ � � �
��				

T¼ a
2π

:

ðA4Þ

It is obvious that ∂d
∂Td ΔIsjTU

is not zero if

d ≥ n − kþ 2: ðA5Þ
Thus, instability at TU appears, starting at d ¼ n − kþ 2,
as indicated in (5.7). It is also easy to find the correspond-
ing derivative discontinuity

∂d

∂TdΔIsjTU
¼ inþk−12n−k−1π2n−2kþl−1n!

ðk − 1Þ! ak−nþ2: ðA6Þ

One can easily derive jump (5.6) from (A6).
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APPENDIX B: INSTABILITIES ARISING FROM
REPEATED POLE CROSSINGS

In this appendix, we show that when T < TU, a series of
instabilities arise, similar to those discussed in Sec. V, due to
repeated crossing of the pole by the integration contour. Let
the domainsπð2n − 1Þ < y < πð2nþ 1Þ; n ¼ 0; 1; 2… cor-

respond to the integral IðnÞs1 (and analogically for IðnÞs2 ). Then

(3.12) and (3.13) define Ið0Þs1 and Ið0Þs2 . Taking into account that
each time the pole is crossed, the integral over the entire
contour changes by the value of the residue at the pole, we

can write the recurrence equation (we consider IðnÞs1 )

−Iðnþ1Þ
s1 þ IðnÞs1 ¼ 2πiDeiπð2nþ1ÞðD−1ÞFð−iyÞ: ðB1Þ

Equation (B1) can be easily solved, and it leads to a finite
geometric progression

IðnÞs1 ¼ Ið0Þs1 þ 2πiD
Xk¼n−1

k¼0

eiπð2kþ1ÞDFð−iyÞ: ðB2Þ

Taking into account the zero term (3.12), and then sum-
ming the terms of geometric progression, we obtain the
nth term

IðnÞs1 ¼ e2inπD
πD

sinðπDÞFð−iyÞ ¼ ð1þ 2inπDþ
�
1

6
− 2n2

�
ðπDÞ2 þ i

3
ðn − 4n3ÞðπDÞ3

þ 1

360
ð7 − 120n2 þ 240n4ÞðπDÞ4 þOððπDÞ5ÞÞFð−iyÞ: ðB3Þ

Calculating now the energy density, and taking into account that n ¼ b1
2
þ a

4πTc, we get

ρ ¼ 7π2T4

60
þ T2a2

24
−

17a4

960π2
þ
�
πT3a
3

þ Ta3

4π

�

1

2
þ a
4πT

�
−
�
T2a2

2
þ 2π2T4

�

1

2
þ a
4πT

�
2

−
4πT3a

3



1

2
þ a
4πT

�
3

þ 4π2T4



1

2
þ a
4πT

�
4

: ðB4Þ

Thus, we have reproduced Eq. (3.4) from [9], previously obtained on the basis of the properties of polylogarithms.
It contains instabilities at T ¼ TU=ð2kþ 1Þ; k ¼ 0; 1::, which lead at each point to the discontinuities of the second

derivative ∂2ρ
∂T2.

Equation (B4) allows formally to obtain the energy density of the accelerated gas for arbitrarily low temperatures: the
corresponding plot was shown in [9] in Fig. 2. At the same time, as the temperature decreases, it turns out that all the
coefficients at T4, T2a2; T3a… in (B4) begin to change (except for a4) and can become arbitrarily large in absolute value for
big values of index n.
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