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The nonclassicality of primordial gravitational waves (PGWs) is characterized in terms of sub-
Poissonian graviton statistics. The sub-Poissonian statistics are realized when quantum states are squeezed
coherent states. In the presence of matter fields, the Universe experiences the squeezed coherent state
during inflation. The condition to realize the sub-Poissonian graviton statistics is translated into the
frequency range of gravitational waves. If the initial state is the Bunch-Davies vacuum, there is another
necessary condition between phases of squeezing and coherent parameters. Here, we extend the initial state
to entangled states. We consider α-vacua as the initial entangled state that are more general de Sitter
invariant vacua than the Bunch-Davies vacuum. We find that, unlike the Bunch-Davies vacuum, PGWs
generated in the initial entangled state become sub-Poissonian without requiring the condition between the
phases.
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I. INTRODUCTION

One of the greatest achievements of inflationary cosmol-
ogy is that the connection between the quantum theory of
the microscopic world and the large scale structure of the
macroscopic world. The idea that the Universe has a
quantum mechanical origin is now one of the cornerstones
of inflationary cosmology. Primordial gravitational waves
(PGWs) also arise out of original minute quantum fluctua-
tions during inflation. However, any compelling observa-
tional evidence for the quantum nature of the initial
fluctuations has not yet been found.
Quantum entanglement is an essential feature of quan-

tum physics that correlations are shared between distant
particles even beyond the cosmological horizon [1].
Recently, it was shown that quantum fields of causally
disconnected regions in de Sitter space is entangled [2–10].
If we can find the observational evidence of the initial
quantum fluctuations, we might be able to find the
information about entanglement with other Universes
encoded in them.
The recent direct detection of gravitational waves in

2015 [11] encourages us to challenge these problems.
Currently, to detect PGWs is an important target for
gravitational physics [12,13]. Since they interact very
weakly with matter, traveling through the Universe vir-
tually unimpeded, they give us information about the

original minute quantum fluctuations during inflation.
Furthermore, if PGWs were detected, the detection could
be regarded as a proof of inflationary cosmology. This is
because the energy scale that generates PGWs has to be
around GUT scale in order to detect them at present and it is
difficult to find a possible scenario other than the infla-
tionary scenario to realize such a high energy scale. On top
of that, if we succeeded in detecting nonclassical PGWs, it
would imply discovery of gravitons.
In this work, we characterize nonclassicality of PGWs in

terms of sub-Poissonian graviton statistics as is known in
quantum optics [14]. The particle number distribution for
coherent fields is Poissonian and any distribution which is
wider than Poissonian is called super-Poissonian. Since the
particle number distribution in classical theory is always
super-Poissonian, it follows that sub-Poissonian distribu-
tion which is narrower than Poissonian must be a signature
of nonclassicality.
In our previous work [15], we studied graviton statistics

of the inflationary Universe when the initial state is the
Bunch-Davies vacuum. We found that the presence of
matter fields during inflation makes graviton statistics sub-
Poissonian. The condition to realize the sub-Poissonian
graviton statistics is translated into the frequency range of
gravitational waves. We showed that PGWs with frequency
higher than 10 kHz enable us to observe their nonclassi-
cality if the phases of parameters satisfy a necessary
condition. In this work, we extend the initial state to
entangled states. We consider α-vacua as the initial
entangled state that are more general de Sitter invariant
vacua. We show that unlike the Bunch-Davies vacuum,
PGWs generated in the initial entangled state become sub-
Poissonian without requiring the condition between phases.
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The organization of this paper is as follows. We start in
Sec. II, by reviewing the regimes of graviton statistics and
introduce the Fano factor, a useful measure to distinguish
the regime of graviton statistics. In Sec. III, we introduce
quantum states and find that squeezed coherent states
produce sub-Poissonian statistics. In Sec. IV, we review
our previous paper [15] that studied nonclassical PGWs
generated in the Bunch-Davies vacuum. In Sec. V, we
calculate graviton statistics in the initial entangled state.
We summarize our result and discuss the possible detec-
tion of the nonclassical PGWs with Hanbury Brown and
Twiss interferometry in Sec. VI. In Appendix A, we give
some formulas used in the computation in Sec. V,
Appendix B gives short notes on useful relations between
coherent and squeezing operators, and Appendix C con-
tains the details of the result of graviton statistics in the
initial entangled state.

II. GRAVITON STATISTICS AND FANO FACTOR

In this section, we characterize graviton statistics by
counting graviton numbers in a given state. To do this, we
see the probability of finding n gravitons. As a useful
measure to distinguish the regime of graviton statistics, we
introduce the Fano factor F defined by the ratio of the
variance squared to the mean such as

F ¼ ðΔnÞ2
hni : ð2:1Þ

If the variance is equal to the mean number ðΔnÞ2 ¼ hni,
it is called Poisson distribution. Then the Fano factor
becomes

F ¼ 1; for Poissonian: ð2:2Þ

If the distribution becomes wider than Poissonian, that is,
ðΔnÞ2 > hni, it is called super-Poissonian and the Fano
factor is

F > 1; for super − Poissonian: ð2:3Þ

The point here is that any classical theory leads to super-
Poissonian distribution and the Fano factor is above one.
Therefore, any distribution narrower than Poissonian,
which is called sub-Poissonian, ðΔnÞ2 < hni or the Fano
factor is

F < 1; for sub − Poissonian; ð2:4Þ

must correspond to nonclassical fields.

III. QUANTUM STATES

In this section, we consider what kind of states make sub-
Poissonian distribution. We see coherent states, squeezed

states and squeezed coherent states [16,17] in the
following.

A. Coherent states

The coherent states jξi is defined as

b̂jξi ¼ ξjξi; ð3:1Þ

where the coherent parameter is written as ξ ¼ jξjeiθ. Thus,
the coherent state remains unchanged by the annihilation of
a particle. The formal solution of the eigenvalue equation is
given by

jξi ¼ exp ðξb̂† − ξ�b̂Þj0i≡ D̂ðξÞj0i; ð3:2Þ

where D̂ is a unitary operator called displacement opera-
tor. Then the mean and the variance of particles are
calculated as

hξjn̂jξi ¼ jξj2; ðΔnÞ2 ¼ hξjn̂2jξi − hξjn̂jξi2 ¼ jξj2;
n̂ ¼ b̂†b̂: ð3:3Þ

Then, the Fano factor Eq. (2.1) becomes F ¼ 1. We find
that the coherent state gives Poisson distribution.

B. Squeezed states

The definition of the squeezed states jζi is

jζi ¼ exp ðζ�ĉ ĉ−ζĉ†ĉ†Þj0i≡ ŜðζÞj0i; ð3:4Þ

where ζ ¼ reiφ and r is the squeezing parameter. Ŝ is a
unitary operator named squeezing operator. The operator ĉ
is obtained by the Bogoliubov transformation,

ĉ ¼ cosh rb̂ − eiφ sinh rb̂†; b̂jζi ¼ 0: ð3:5Þ

The mean and the variance of particles are

hζjn̂jζi ¼ sinh2r;

ðΔnÞ2 ¼ hζjn̂2jζi − hζjn̂jζi2 ¼ 2sinh4rþ 2sinh2r;

n̂ ¼ ĉ†ĉ: ð3:6Þ

Then the Fano factor becomes

F ¼ 2 sinh2 rþ 2 sinh r > 1: ð3:7Þ

Thus the particle statistics in the squeezed state becomes
super-Poissonian.

C. Squeezed coherent states

Lastly, let us see the squeezed coherent states. The
squeezed coherent state is defined as
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jζ; ξi ¼ ŜðζÞD̂ðξÞj0i: ð3:8Þ

The particle statistics in this state is calculated as

hζ; ξjn̂jζ; ξi ¼ jξj2
�
e−2rcos2

�
θ −

φ

2

�
þ e2rsin2

�
θ −

φ

2

��
þ sinh2r;

ðΔnÞ2 ¼ jξj2
�
e−2rcos2

�
θ −

φ

2

�
þ e2rsin2

�
θ −

φ

2

��
þ 2sinh4rþ 2sinh2r: ð3:9Þ

If we take the limit r → 0, the above recovers Eq. (3.3). In
the limit ξ → 0, the particle statistics become Eq. (3.6). The
Fano factor is

F ¼ jξj2e−4r þ 2sinh2rþ 2sinh4r
jξj2e−2r þ sinh2r

; ð3:10Þ

where for simplicity, we assumed θ − φ=2 ¼ 0. Now two
parameters ξ and r come in the Fano factor, then particle
statistics can become Poissonian, super-Poissonian and
sub-Poissonian. If the Fano factor satisfies

F < 1⇔ jξj2e−2r þ sinh2r > jξj2e−4r þ 2sinh2rþ 2sinh4r;

ð3:11Þ
then the particle statistics become sub-Poissonian and we
have a chance to observe the nonclassicality.

IV. REVIEW OF GRAVITON STATISTICS
IN THE BUNCH-DAVIES VACUUM

In the previous section, we find that the squeezed
coherent state gives sub-Poissonian distribution. In this
section, we review that the Universe has experienced
the squeezed coherent state in the past. To explain this,
we first consider how PGWs are generated by quantum
fluctuations.

A. PGWs generated by quantum fluctuations

The gravitational waves hijðη; xiÞ are expressed by the
tensor perturbations in the metric

ds2 ¼ a2ðηÞ½−dη2 þ ðδij þ hijÞdxidxj�; ð4:1Þ

where η is the conformal time, aðηÞ is the scale factor, xi are
spatial coordinates, and δij and hij are the Kronecker delta
and the tensor perturbations which satisfy hij;j ¼ hii ¼ 0.
The indices (i, j) run from 1 to 3. In order to quantize the
tensor field, we decompose the tensor field hijðη; xiÞ in
terms of the Fourier modes as

aðηÞhijðη; xiÞ ¼
ffiffiffi
2

p

Mpl

1ffiffiffiffi
V

p
X
k

X
A

hAk ðηÞeik·xpA
ijðkÞ; ð4:2Þ

where pA
ijðkÞ is the polarization tensor normalized as

p�A
ij p

B
ij ¼ 2δAB and the index A denotes the polarization

modes, for example, for circular polarization modes A ¼ �
and for linear polarization modes A ¼ þ;×. Notice that we
consider finite volume V ¼ LxLyLz and discretize the
k-mode with a width k ¼ ð2πnx=Lx; 2πny=Ly; 2πnz=LzÞ
where n are integers in order to discuss graviton number
distribution later.
In quantum field theory, the tensor field on the right-hand

side, hAk ðηÞ, is promoted to the operator. The operator hAk ðηÞ
satisfies

h00Ak þ
�
k2 −

a00

a

�
hAk ¼ 0; ð4:3Þ

where k is the magnitude of the wave number k. In order to
solve this, we need to determine the scale factor aðηÞ. As
the Universe evolves, the scale factor changes as

aðηÞ ¼
(
− 1

Hðη−2η1Þ ; forðIÞ −∞ < η < η1;
η

Hη2
1

; forðRÞ η1 < η;
ð4:4Þ

where we assumed the Universe goes through an instanta-
neous transition from the inflationary epoch approximated
by de Sitter space (I) to a radiation-dominated era (R) and
the transition occurs at η ¼ η1 > 0. Then Eq. (4.3) gives the
positive frequency mode in each epoch as

(
vIkðηÞ≡ 1ffiffiffiffi

2k
p ð1 − i

kðη−2η1ÞÞe−ikðη−2η1Þ;
vRk ðηÞ≡ 1ffiffiffiffi

2k
p e−ikη:

ð4:5Þ

In the inflationary era, the operator hAk ðηÞ is expanded as

hAk ðηÞ ¼ bAkv
I
kðηÞ þ bA†−kv

I�
k ðηÞ; ½bAk ; bB†p � ¼ δABδk;p;

ð4:6Þ

where � denotes complex conjugation. The operator
hAk ðηÞ should be the same even if we expand it by vRk ðηÞ
such as

hAk ðηÞ ¼ cAkv
R
k ðηÞ þ cA†−kv

R�
k ðηÞ; ½cAk ; cB†p � ¼ δABδk;p:

ð4:7Þ

Here, the Bunch-Davies vacuum j0iI and the vacuum in the
radiation-dominated era j0iR are defined respectively as

bAk j0iI ¼ 0; cAk j0iR ¼ 0: ð4:8Þ

In the following, we omit the label of polarization modes A
and focus on either mode for simplicity because the
equation of motion for different polarization modes is
decoupled in the absence of the sources. From the relation
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between Eqs. (4.6) and (4.7), we find the operators bk, b
†
−k

and ck, c
†
−k are related by a Bogoliubov transformation,

bk ¼ α�kck − βkc
†
−k; ð4:9Þ

where the Bogoliubov coefficients can be read off from the
relation as follows:

αk ¼
�
1 −

1

2k2η21
−

i
kη1

�
e−2ikη1 ≡ cosh rk; ð4:10Þ

βk ¼
1

2k2η21
≡ eiφ sinh rk; ð4:11Þ

so that jαkj2 − jβkj2 ¼ 1 holds. The φ is an arbitrary phase
factor. Note that the Bogoliubov coefficients are written
by a parameter kη1. However, for later convenience, we
introduced a new parameter rk known as the squeezing
parameter. Applying Eq. (4.9) to the definition of the
Bunch-Davies vacuum in Eq. (4.8) and by using the
commutation relations in Eq. (4.6), the Bunch-Davies
vacuum can be written in terms of ck, c

†
k and the vacuum

associated to each mode, j0kiR and j0−kiR such as

j0iI ¼
Y
k

X∞
n¼0

einφ
tanhnrk
cosh rk

jnkiR ⊗ jn−kiR;

tanh rk ¼
���� βkα�k

����; ð4:12Þ

where we defined jnkiR ¼ 1=
ffiffiffiffiffi
n!

p ðc†kÞnj0kiR and j0iR ¼
j0kiR ⊗ j0−kiR. The term cosh rk is the normalization
factor of this relation. In this way, n particle excitation
with momentum k and −k appears. That is, the Bunch-
Davies vacuum looks like graviton pair production occurs
from the point of view of the radiation-dominated era.
The rhs of Eq. (4.12) is obtained by applying the

squeezing operator in Eq. (3.4) to the vacuum of k and
−k modes in the radiation-dominated era as

j0iI ¼
Y
k

exp ½ζ�ckc−k − ζc†kc
†
−k�j0kiR ⊗ j0−kiR

¼
Y
k

ŜðζÞj0kiR ⊗ j0−kiR; ð4:13Þ

where ζ ¼ rkeiφ. Thus, the Bunch-Davies vacuum is
expressed by a two-mode squeezed state of the modes k
and −k from the point of view of the radiation-dominated
era. Hence, we find that the Universe experienced a
squeezed state in the past.
Furthermore, if we expand the exponential function in

Eq. (4.13) in Taylor series, we find the two-mode squeezed
state is an entangled state as below:

j0iI ∼ j0kiRj0−kiR þ ζj1kiRj1−kiR þ ζ2j2kiRj2−kiR � � � :
ð4:14Þ

That is, the Bunch-Davies vacuum looks like an entangled
state between the modes k and −k of gravitons from the
point of view of the radiation-dominated era.

B. The Bunch-Davies vacuum in the presence
of matter fields

In the previous subsection, we found the Universe
experienced the squeezed state in the past. In this sub-
section, we see how the coherent state appears in the history
of the Universe.
We consider the general action for the matter field. If we

consider the linear interaction between metric and the matter
field, we find the definition of the energy-momentum tensor
Tμν such as

Sm ¼
Z

d4x
δSm
δgμν

δgμν ¼ −
1

2

Z
d4x

ffiffiffiffiffiffi
−g

p
Tμνδgμν: ð4:15Þ

Then the interaction Hamiltonian becomes

i
Z

dηHint ¼
i
2

Z
dη

Z
d3xa2ðηÞhijðη; xÞTijðη; xÞ;

¼
X
k

X
A

½ξAk bA†k − ξA�k bAk �; ð4:16Þ

where the coefficient ξAk is expressed as

ξAk ¼ −
iffiffiffi
2

p
Mpl

Z
dηaðηÞpA

ijðkÞvI�k ðηÞTijðη;−kÞ: ð4:17Þ

Note that we used Eqs. (4.2) and (4.6). This interaction
generates a coherent state such as

jξAk iI ¼ exp

�
−i

Z
dηHint

�
j0iI;

¼
Y
k

Y
A

exp ½ξAk bA†k − ξA�k bAk �j0iI ¼
Y
k

Y
A

D̂ðξÞj0iI:

ð4:18Þ

Hence, the Bunch-Davies vacuum in the presence of the
matter fields becomes a coherent state [18].

C. Graviton statistics of the inflationary Universe

Up to here, we learned that the Bunch-Davies vacuum
looks like a squeezed state of gravitons from the point of
view of the radiation-dominated era. The initial presence of
matter fields induces the coherent state during inflation,
which looks like a squeezed coherent state from the point of
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view of the radiation-dominated era. In this subsection, we
consider graviton statistics that an observer in the radiation-
dominated era finds.
In the presence of matter fields, an observer in the

vacuum state of the radiation-dominated era will observe
gravitons defined by operator ck. The expectation number
of gravitons is found to be

IhξkjnkjξkiI ¼ RhξkjŜ†ðζÞnkŜðζÞjξkiR;

¼ jξkj2
�
e−2rkcos2

�
θ−

φ

2

�
þ e2rksin2

�
θ−

φ

2

��
þ sinh2rk;

¼ Ihξkjn−kjξkiI; ð4:19Þ

where we used the fact that the coherent state in the
inflationary epoch looks like the squeezed coherent state
from the point of view of the radiation-dominated era in the
first equality. We also used Eqs. (3.1), (A1) and (B4). The
standard variance is

ðΔnÞ2 ¼ Ihξkjðnk þ n−kÞ2jξkiI − Ihξkjnk þ n−kjξki2I ;

¼ 2jξkj2½e−4rkcos2
�
θ −

φ

2

�
þ e4rksin2

�
θ −

φ

2

��
þ 4sinh2rk þ 4sinh4rk; ð4:20Þ

where we assumed that nk and n−k are indistinguishable
and computed the standard variance for the sum of them.
Then the Fano factor Eq. (2.1) becomes

F ¼ ðΔnÞ2
Ihξkjnk þ n−kjξkiI

;

¼ jξkj2½e−4rkcos2ðθ − φ
2
Þ þ e4rksin2ðθ − φ

2
Þ� þ 2sinh2rk þ 2sinh4rk

jξkj2½e−2rkcos2ðθ − φ
2
Þ þ e2rksin2ðθ − φ

2
Þ� þ sinh2rk

: ð4:21Þ

For simplicity, if we take θ − φ=2 ¼ 0, we get

F ¼ jξkj2e−4rk þ 2 sinh2 rk þ 2 sinh4 rk
jξkj2e−2rk þ sinh2 rk

: ð4:22Þ

If the Fano factor satisfies

jξkj2ðe−2rk − e−4rkÞ > sinh2 rk þ 2 sinh4 rk; ð4:23Þ

the graviton statistics in the squeezed coherent state
become sub-Poissonian. Note that we have F ∼ e−2r < 1
for jξkj ≫ 1 in Eq. (4.22). Thus, the graviton statistics are
always sub-Poissonian for jξkj ≫ 1 if θ − φ=2 ¼ 0. This is
plotted in Fig. 1.

D. Frequency range of nonclassical PGWs

In this subsection, we rewrite the condition Eq. (4.23) in
terms of frequency range of nonclassical PGWs. Since the
relation between kη1 and rk is given in Eq. (4.11), we first
focus on kη1. We translate the comoving wave number k
into physical wave number and the time inflation ends η1
into physical frequency at present. Then the quantity kjη1j
is computed as

kjη1j≡ f
f1

; f1 ¼ 109

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

10−4Mpl

s
½Hz�; ð4:24Þ

where f1 is the cutoff frequency. Thus, there are no more
PGWs generated during inflation with frequency higher

FIG. 1. The plots of ðΔnÞ2 − hni versus squeezing parameter rk for the Bunch-Davies vacuum. The region ðΔnÞ2 − hni < 0 (below
thick blue line) indicates that graviton statistics become sub-Poissonian. The enlarged plot around ðΔnÞ2 − hni ¼ 0 of the left panel is
depicted in the right panel. The graviton statistics are always sub-Poissonian for jξkj ≫ 1 if θ − φ=2 ¼ 0.
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than 1 GHz when the Hubble parameter is 10−4Mpl.
Plugging this back into Eq. (4.11), we have

sinh rk ¼
1

2

�
f1
f

�
2

: ð4:25Þ

Combining the above relation with the condition Eq. (4.23),
we get the condition to observe nonclassical PGWs can be
approximately written by

f >

�
1

8

� 1
12

109jξkj−1
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H

10−4Mpl

s
½Hz�: ð4:26Þ

Since 1 GHz is a cutoff scale for PGWs generated during
inflation, we have the chance to observe the nonclassical
PGWs if the amplitude of jξkj is larger than 1.

E. Prediction of frequency range
of nonclassical PGWs

In our previous paper [15], the jξkj of Eq. (4.26) was
estimated by considering two models with a gauge field as
the matter field during inflation (anisotropic inflation
model [19–21] and axion inflation model [22–26]). In
both models, gauge fields grow during inflation and
disappear after the inflation. In the anisotropic inflation
model [27,28]l, the frequency range in which we can
observe nonclassicality is given by

f > 108.1e−
4
17
νNgauge

�
H

10−4Mpl

� 6
17 ½Hz�: ð4:27Þ

Then the nonclassical PGWs can be observed for f >
100 kHz with the model parameter νNgauge ∼ 30 and
H ¼ 10−4Mpl. On the other hand, in the axion inflation
model, the frequency range is found to be

f > 107.9e−
2
7
πχχ

1
14

�
H

10−4Mpl

� 9
28 ½Hz�: ð4:28Þ

If we take the model parameter χ ∼ 10 and H ¼ 10−4Mpl,
the frequency range reduces to f > 10 kHz, which can be
marginally observed nonclassicality in the PGWs with the
LIGO detector.

F. A remark on necessary condition for phases

In Eq. (4.22), we considered the case of θ − φ=2 ¼ 0
for simplicity. However this combination of phases is
another necessary condition to have a chance to get sub-
Poissonian graviton statistics. This is because, in the exact
form of Fano factor in Eq. (4.21), the second term in the
numerator of F becomes dominant for jξkj ≫ 1 and rk ≫ 1
if θ − φ=2 ≠ 0. Then we have F > 1 and graviton statistics
become super-Poissonian. The θ can be zero in the two

models of anisotropic and axion inflation models.
However, we cannot set φ ¼ 0 in Eq. (4.10) because η1
has to be finite values, so as not to get the squeezing
limit η1 → 0 (rk → ∞) which corresponds to super-
Poissonian statistics. Thus we need the combination of
the phases θ − φ=2 ¼ 0 in order to observe nonclassical
PGWs if the initial state of the Universe is the Bunch-
Davies vacuum.1

V. GRAVITON STATISTICS IN THE INITIAL
ENTANGLED STATE

In the previous section, we reviewed the graviton
statistics in the Bunch-Davies vacuum. Here, we extend
the initial state to more general de Sitter invariant vacua,
that is, α-vacua. The α-vacua look like entangled states
from the point of view of the Bunch-Davies vacuum as
shown in the following.

A. Initial entangled states—α-vacua

Suppose that the Universe starts from α-vacua, then the
operator hkðηÞ is expanded as

hk ¼ dkvEk ðηÞ þ d†−kv
E�
k ðηÞ; ½dk; d†p� ¼ δk;p; ð5:1Þ

where vEk ðηÞ is the positive frequency mode in the α-vacua
which is obtained by the Bogoliubov transformation from
the positive frequency mode of the Bunch-Davies vacuum
vIk in Eq. (4.5) such as

vEk ðηÞ ¼ cosh r̃kvIkðηÞ þ sinh r̃kvI�k ðηÞ: ð5:2Þ

Here, r̃k is the squeezing parameter in the α-vacua. Com-
paring Eq. (5.2) with Eq. (4.6), we find the operators dk,
d−k and bk, b−k are related by a Bogoliubov transformation

dk ¼ γ�kbk − δkb
†
−k; ð5:3Þ

where the Bogoliubov coefficients can be written as

γk ¼ cosh r̃k; δk ¼ eiφ̃ sinh r̃: ð5:4Þ

Here, φ̃ is an arbitrary phase factor. Then the α-vacua are
expressed in terms of the Bunch-Davies vacuum as

j0iE ¼
Y
k

X∞
n¼0

einφ̃
tanhnr̃k
cosh r̃k

jnkiI ⊗ jn−kiI; tanh r̃k ¼
���� δkγ�k

����;
¼

Y
k

exp ½ζ̃�bkb−k − ζ̃b†kb
†
−k�j0kiI ⊗ j0−kiI

¼
Y
k

Ûðζ̃Þj0kiI ⊗ j0−kiI; ð5:5Þ

1If θ − φ=2 ≠ 0, the result would agree with the papers
[29,30].
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where ζ̃ ¼ r̃keiφ̃. Û is the squeezing operator. As we
reviewed in Sec. IVA, this can be expanded in the form
of an entangled state as in Eq. (4.14). Thus, the α-vacua
look like entangled states from the point of view of the
Bunch-Davies vacuum.

B. Graviton statistics

In Sec. IV C, we found the necessary condition for
graviton statistics to become sub-Poissonian in the case
of the Bunch-Davies vacuum. In this subsection, we
assume the presence of matter fields in the initial entangled
state and consider graviton statistics that an observer in
radiation-dominated era finds.
The expectation number of gravitons is calculated as

EhξkjnkjξkiE ¼ IhξkjÛ†ðζ̃ÞnkÛðζ̃ÞjξkiI
¼ RhξkjŜ†ðζÞÛ†ðζ̃ÞnkÛðζ̃ÞŜðζÞjξkiR
¼ jξkj2ðjfj2 þ jgj2 − eiðφ−2θÞf�g

− e−iðφ−2θÞfg�Þ þ jgj2
¼ Ehξkjn−kjξkiE; ð5:6Þ

where we defined

f ≡ ðcosh r̃k þ sin ðφ̃ − φÞ sinh r̃k sinh 2rk
�
cosh rk

þ sinh r̃kðeiðφ̃−φÞcosh2rk þ e−iðφ̃−φÞsinh2rkÞ sinh rk;
g≡ ðcosh r̃k þ sin ðφ̃ − φÞ sinh r̃k sinh 2rkÞ sinh r

þ sinh r̃kðeiðφ̃−φÞcosh2rk þ e−iðφ̃−φÞsinh2rkÞ cosh rk:
ð5:7Þ

Note that φ̃ ¼ φ and r̃k ¼ 0 correspond to the case of the
Bunch-Davies vacuum and then we have f ¼ cosh rk and
g ¼ sinh rk which recover Eq. (4.19). Here, we used the
fact that the coherent state in the initial entangled state

looks like the squeezed coherent state from the point of
view of the Bunch-Davies vacuum in the first equality.
Then we used Eqs. (A1), (A3) and (B5). The standard
variance in this case is calculated as

ðΔnÞ2 ¼ Ehξkjðnk þ n−kÞ2jξkiE − Ehξkjnk þ n−kjξki2E
¼ jξkj2ð6jfgj2 þ 2jgj4 þ jfj2 þ jgj2
− ðjfj2 þ 2jgj2 þ 1Þðeiðφ−2θÞf�gþ e−iðφ−2θÞfg�ÞÞ
þ jfgj2 þ jgj4 þ jgj2: ð5:8Þ

Finally, we find the difference between the standard
variance and the expectation number is expressed as

ðΔnÞ2 − Ehξkjnk þ n−kjξkiE ¼ jξkj2Aþ B; ð5:9Þ
where A and B consist of

A ¼ AO16þ AO14þ AO12þ AO10þ AO8;

B ¼ BO16þ BO14þ BO12þ BO10þ BO8: ð5:10Þ
HereO16 and so forth represent the total order of squeezing
parameters. The details of AO16;…; AO8 and BO16…;
BO8 are given in Appendix C.

C. Nonclassical PGWs from the initial
entangled state

As we discussed in Eq. (4.23), the condition for graviton
statistics to become sub-Poissonian is that the Fano factor
in Eq. (2.1) satisfies F < 1, that is, the rhs of Eq. (5.9) is

jξj2Aþ B < 0: ð5:11Þ
Note that the above condition recovers Eq. (4.21) for
φ̃ − φ ¼ 0 and r̃ ¼ 0. The condition for the graviton
statistics to become sub-Poissonian is depicted in Fig. 2.
Below the thick blue line ðΔnÞ2 − hni ¼ jξj2Aþ B < 0
indicates that graviton statistics is sub-Poissonian. The
range of squeezing parameter during inflation rk turns out

FIG. 2. The plots of ðΔnÞ2 − hni versus squeezing parameter rk for the initial entangled state. The region ðΔnÞ2 − hni < 0 (below
thick blue line) indicates that graviton statistics become sub-Poissonian. The left panel shows the sub-Poisson range increases as the
difference between φ̃ and φ gets smaller. The difference is πð1 − 1=105Þ (green) and πð1 − 1=109Þ (red). The right panel shows the sub-
Poissonian range shifts to the large value of rk keeping the same shape as we increase r̃k.
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to be frequency range for the nonclassical PGWs as in
Eq. (4.26). The left panel shows the dependence of φ̃ − φ
on ðΔnÞ2 − hni. We see that squeezing parameter rk tends
to increase as φ̃ − φ gets smaller. On the right panel, we
depicted the dependence of the squeezing parameter of the
initial entangled state r̃ on ðΔnÞ2 − hni. As r̃k increases, the
sub-Poissonian range tends to shift to a larger value of rk
keeping its shape.
Let us discuss the condition for graviton statistics to be

sub-Poissonian in Eq. (5.11). If we take large coherence
jξkj ≫ 1 and squeezing rk ≫ 1 during inflation, then the
jξkj2AO16 term becomes dominant. The graviton statistics
then become super-Poissonian because AO16 in Eq. (C1) is
positive definite. However, we can think of the situation
where the squeezing is not so strong and just rk > 1. Then
the next order AO14 overcomes the AO16 in some cases. In
such a situation, the graviton statistics can be sub-
Poissonian. This situation occurs if the squeezing param-
eter satisfies the condition

jξkj2ðAO16þ AO14Þ þ BO16 < 0; ð5:12Þ

which is written as

e2rk <
8jξkj2 sin ðφ2 − θÞð3 sin ðθ − φ̃

2
Þ þ sin ðθ þ φ̃

2
− φÞÞ

sin ðφ̃
2
− φ

2
Þð8jξkj2sin2ðφ2 − θÞ þ 1Þ ;

ð5:13Þ

where we approximated Eq. (5.12) by taking large enough
rk. The squeezing parameter in the entangled state r̃k is
canceled out. The above condition tells us that, unlike the
condition of Bunch-Davies vacuum in Eq. (4.21), we have
a chance to have sub-Poissonian statistics even if θ ≠ φ=2.
And if φ̃ ∼ φ, then the sub-Poissonian range of rk increases
as long as Eq. (5.13) is satisfied as is shown in the left panel
of Fig. 2. This range of squeezing parameter rk turns out to
be frequency range for the nonclassical PGWs as in
Eq. (4.26). For jξj ≫ 1, Eq. (5.13) becomes

e2rk <
3 sin ðθ − φ̃

2
Þ þ sin ðθ þ φ̃

2
− φÞ

sin ðφ̃
2
− φ

2
Þ sin ðφ

2
− θÞ : ð5:14Þ

Hence, unlike the condition mentioned below of Eq. (4.23),
the above condition does not depend on jξkj. If we take
φ̃ ∼ φ or θ ∼ φ=2, the sub-Poissonian range of rk increases
as long as Eq. (5.14) is satisfied. This is depicted in Fig. 3.

VI. SUMMARY AND DISCUSSION

We explored the conditions for primordial gravitational
waves (PGWs) to be nonclassical. We characterized
the nonclassicality by sub-Poissonian graviton statistics.
Among quantum states, we find that squeezed coherent
states realize the sub-Poissonian statistics. In our previous
work [15], we studied the graviton statistics when the initial
quantum state is the Bunch-Davies vacuum. We found that
the presence of matter fields during inflation makes
graviton statistics sub-Poissonian. We derived the condition
for graviton statistics to be sub-Poissonian in Eq. (4.23),
which tells us that the modes of PGWs that do not stay a
long time outside horizon tend to be sub-Poissonian. We
concluded that PGWs with frequency higher than 10 kHz
enable us to observe their nonclassicality. Besides the
condition, another condition between the phases of squeez-
ing and coherent parameters was necessary to have sub-
Poissonian graviton statistics.
In this work, we extended the initial quantum state to

entangled states. As the initial entangled state, we consid-
ered α-vacua, which are more general de Sitter invariant
vacua than the Bunch-Davies vacuum. We found that,
unlike the Bunch-Davies vacuum, the nonclassical PGWs
generated in the initial entangled state become sub-
Poissonian without requiring the condition between the
phases and tend to keep their nonclassicality outside the
horizon as long as Eq. (5.13) is satisfied.
Let us discuss the possible detection of the nonclassical

PGWs. In quantum optics, it is known that the sub-
Poissonian statistics can be detected with Hanbury

FIG. 3. The plots of ðΔnÞ2 − hni versus squeezing parameter rk for the Bunch-Davies vacuum. The region ðΔnÞ2 − hni < 0 (below
thick blue line) indicates that graviton statistics become sub-Poissonian. The right panel is an enlarged plot of the left panel around
ðΔnÞ2 − hni ¼ 0. The graviton statistics become sub-Poissonian for φ̃ ∼ φ with smaller values of jξkj than the values of the Bunch-
Davies vacuum and θ ≠ ϕ=2.
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Brown and Twiss (HBT) interferometry [31,32]. The HBT
interferometry is a method to investigate the nonclassical
nature of fields developed in quantum optics. This con-
cept has been first applied to cosmology in [33–35] and
more recently in [36]. The HBT interferometry con-
siders two-source interference and uses two detectors.
The signals from the two detectors are converted to
electronically correlated current and the net current is mea-
sured. The HBT interferometry measures the intensity-
intensity correlations characterized by the second-order
coherent function gð2Þ,

gð2ÞðτÞ ¼ ha†ðtÞa†ðtþ τÞaðtþ τÞaðtÞi
ha†ðtÞaðtÞiha†ðtþ τÞaðtþ τÞi ; ð6:1Þ

where the time delay between the two signals at the two
detectors is expressed by τ. If the sources are classical, the
operators a and a† become the amplitude of the two fields.
This second-order coherence function makes us possible to
distinguish between classical and nonclassical fields from
the fringe pattern of the interference. The point is that the
second-order coherence function can be expressed by using
the Fano factor in Eq. (2.1) as follows:

gð2Þð0Þ ¼ 1þ ðΔnÞ2 − hni
hni2 ¼ 1þ F − 1

hni : ð6:2Þ

Hence, if the sources are classical fields, the Fano factor is
above one and then gð2Þ becomes larger than one. On the
other hand, if the sources are nonclassical fields, the Fano
factor is below one and then gð2Þ becomes smaller than one.
In this way, we can distinguish between classical and
nonclassical fields by using the HBT interferometry. Thus,
we could detect the nonclassical PGWs with the HBT
interferometry if an experiment is carried out to detect
nonclassical PGWs in the future.
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APPENDIX A: SOME FORMULAS

If we use the relation, eABe−A ¼ Bþ ½A;B� þ
1=ð2!Þ½A; ½A;B�� þ � � �, we find Eq. (3.4) leads to

Ŝ†ðζkÞckŜðζkÞ ¼ ck cosh rk − c†−ke
iφ sinh rk;

Ŝ†ðζkÞc†kŜðζkÞ ¼ c†k cosh rk − c−ke−iφ sinh rk: ðA1Þ

Similarly, we have

Û†ðζ̃kÞbkÛðζ̃kÞ ¼ bk cosh r̃k − b†−ke
iφ̃ sinh r̃k;

Û†ðζ̃kÞb†kÛðζ̃kÞ ¼ b†k cosh r̃k − b−ke−iφ̃ sinh r̃k: ðA2Þ

By using the Bogoliubov transformation bk ¼ α�ck − βc†−k,
we get

Û†ðζ̃kÞckÛðζ̃kÞ ¼ cðcosh r̃k þ sin ðφ̃ − φÞ sinh 2rk sinh r̃kÞ
− c†eiφ sinh r̃kðeiðφ̃−φÞcosh2rk
− e−iðφ̃−φÞsinh2rkÞ;

Û†ðζ̃kÞc†kÛðζ̃kÞ ¼ c†ðcosh r̃k þ sin ðφ̃ − φÞ sinh 2rk sinh r̃kÞ
− ce−iφ sinh r̃kðe−iðφ̃−φÞcosh2rk
− eiðφ̃−φÞsinh2rkÞ: ðA3Þ

APPENDIX B: RELATION BETWEEN
COHERENT AND SQUEEZING OPERATORS

The displacement operator has a relation below

D̂IðξkÞ ¼ exp ½ξkb† − ξ�bk� ¼ exp ½ξ̄kc† − ξ̄�kc� ¼ D̂Rðξ̄kÞ;
ðB1Þ

where

ξ̄k ¼ ξk cosh rk − eiφξ�k sinh rk: ðB2Þ

By using the above relation, the coherent state is
expressed as

jξkiI ¼ D̂IðξkÞj0iI ¼ D̂Rðξ̄kÞj0iI: ðB3Þ

This can be also expressed as

jξkiI ¼ D̂Rðξ̄kÞŜðζkÞj0iR ¼ ŜðζkÞD̂RðξkÞj0iR ¼ ŜðζkÞjξkiR:
ðB4Þ

Similarly, we can get

jξkiE ¼ Ûðζ̃kÞjξkiI: ðB5Þ

APPENDIX C: DETAILS OF A AND B

AO16 ¼ 8 sin4ðϕ̃ − ϕÞ sinh4 r̃ sinh4 2r cosh 2rðcosh 2r
− cosðϕ − 2θÞ sinh 2rÞ: ðC1Þ
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AO14 ¼ 2 sin3 ðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2rð2 − cosh 2rþ 2 cosh 4rÞ
þ 8 sin ð2ϕ̃ − 2ϕÞ sin2 ðϕ̃ − ϕÞ sinh4 r̃ sinh4 2r cosh 2r
− 2 sin3 ðϕ̃ − ϕÞ cos ðϕ − 2θÞ sinh 2r̃ sinh2 r̃ sinh4 2rð−1þ 4 cosh 2rÞ
− 8 sin3 ðϕ̃ − ϕÞ cos ðϕ̃ − 2θÞ sinh4 r̃ sinh3 2r sinh2 r cosh 2r
− 8 sin3 ðϕ̃ − ϕÞ cos ðϕ̃ − 2ϕþ 2θÞ sinh4 r̃ sinh3 2r cosh 2r cosh2 r
þ 16 sin4 ðϕ̃ − ϕÞ sin ðϕ − 2θÞ sinh4 r̃ sinh3 2r cosh 2r cosh2 r
− 4 sin ð2ϕ̃ − 2ϕÞ sin2 ðϕ̃ − ϕÞ cos ðϕ − 2θÞ sinh4 r̃ sinh5 2r: ðC2Þ

AO12 ¼ 1

8
sin2 ðϕ̃ − ϕÞ sinh2 r̃ sinh2 2rð2þ 30 cosh 2r̃þ 25 cosh ð2r̃ − 4rÞ − 8 cosh ð2r̃ − 2rÞ

− 32 cosh 2rþ 14 cosh 4r − 8 cosh ð2r̃þ 2rÞ þ 25 cosh ð2r̃þ 4rÞÞ
þ 6 sin2 ð2ϕ̃ − 2ϕÞ sinh4 r̃ sinh2 2r cosh2 r sinh2 r
þ 12 sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh2 2r cosh 2r cosh r sinh r
þ sin2 ðϕ̃ − ϕÞ cos ð2ϕ̃ − 2ϕÞ sinh4 r̃ sinh4 2r
þ sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2rð−1þ 2 cosh 2rÞ
− 2 sin2 ðϕ̃ − ϕÞ cos ðϕ − 2θÞ sinh2 r̃ sinh3 2rð−2 − cosh 2r̃þ 3 cosh ð2r̃ − 2rÞ þ 2 cosh 2r

þ3 cosh ð2r̃þ 2rÞÞ − 2 sin2 ðϕ̃ − ϕÞ cos ðϕ̃ − 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r sinh2 rð−1þ 4 cosh 2rÞ
þ 4 sin3 ðϕ̃ − ϕÞ sin ðϕ − 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r cosh2 rð−1þ 4 cosh 2rÞ
− 2 sin2 ðϕ̃ − ϕÞ cosðϕ̃ − 2ϕþ 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r cosh2 rð−1þ 4 cosh 2rÞ
− 4 sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ cos ðϕ − 2θÞ sinh 2r̃ sinh2 r̃ sinh4 2r
− 4 sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ cos ðϕ̃ − 2θÞ sinh4 r̃ sinh3 2r sinh2 r
þ 8 sin ð2ϕ̃ − 2ϕÞ sin2 ðϕ̃ − ψÞ sin ðϕ − 2θÞ sinh4 r̃ sinh3 2r cosh2 r
− 4 sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ cos ðϕ̃ − 2ϕþ 2θÞ sinh4 r̃ sinh3 2r cosh2 r: ðC3Þ

AO10 ¼ 2 sinðϕ̃ − ϕÞ sinh 2r̃ sinh 2r
�
1

4
sinh2 r̃ð7þ 5 cosh 4rÞ þ 2 cosh2 r̃ sinh2 rð1þ 2 cosh 2rÞ

�
þ 12 sinð2ϕ̃ − 2ϕÞ cosðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh 2r cosh2 r sinh2 r
− sinð2ϕ̃ − 2ϕÞ sinh2 r̃ sinh2 2rð2þ cosh 2r̃ − 4 coshð2r̃ − 2rÞ − 4 cosh 2r − 4 coshð2r̃þ 2rÞÞ
þ sinðϕ̃ − ϕÞ cosð2ϕ̃ − 2ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2r
þ sinðϕ̃ − ϕÞ cosðϕ − 2θÞ sinh 2r̃ sinh2 2rð1þ cosh 2r̃ − 2 coshð2r̃ − 2rÞ − 2 coshð2r̃þ 2rÞÞ
− 2 sinðϕ̃ − ϕÞ cosðϕ̃ − 2θÞ sinh2 r̃ sinh 2r sinh2 rð−2 − cosh 2r̃þ 2 coshð2r̃ − 2rÞ
þ 2 cosh 2rþ 2 coshð2r̃þ 2rÞÞ
þ 4 sin2ðϕ̃ − ϕÞ sinðϕ − 2θÞ sinh2 r̃ sinh 2r cosh2 rð−2 − cosh 2r̃þ 2 coshð2r̃ − 2rÞ
þ 2 cosh 2rþ 2 coshð2r̃þ 2rÞÞ
− 2 sinðϕ̃ − ϕÞ cosðϕ̃ − 2ϕþ 2θÞ sinh2 r̃ sinh 2r cosh2 rð−2 − cosh 2r̃þ 2 coshð2r̃ − 2rÞ
þ 2 cosh 2rþ 2 coshð2r̃þ 2rÞÞ − 2 sinð2ϕ̃ − 2ϕÞ cosðϕ − 2θÞ sinh2 r̃ sinh3 2rð1þ 2 cosh 2r̃Þ
− 4 sinð2ϕ̃ − 2ϕÞ cosðϕ̃ − 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r sinh2 r
þ 8 sinðϕ̃ − ϕÞ sinð2ϕ̃ − 2ϕÞ sinðϕ − 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r cosh2 r
− 4 sinð2ϕ̃ − 2ϕÞ cosðϕ̃ − 2ϕþ 2θÞ sinh 2r̃ sinh2 r̃ sinh2 2r cosh2 r: ðC4Þ

SUGUMI KANNO PHYS. REV. D 100, 123536 (2019)

123536-10



AO8 ¼ 1

32
ð−14þ 14 cosh 4r̃ − 16 cosh ð2r̃ − 2rÞ þ 9 cosh ð4r̃ − 4rÞ þ 14 cosh 4r

−16 cosh ð2r̃þ 2rÞ þ 9 cosh ð4r̃þ 4rÞÞ þ 6 cos2 ðϕ̃ − ϕÞ sinh2 2r̃ sinh2 r cosh2 r
þ cos ðϕ̃ − ϕÞ sinh 2r̃ sinh 2rð−1þ 2 cosh ð2r̃ − 2rÞ þ 2 cosh ð2r̃þ 2rÞÞ
þ cos ð2ϕ̃ − 2ϕÞ sinh2 r̃ cosh2 r̃ sinh2 2r
− cos ðϕ − 2θÞ cosh 2r̃ sinh 2rðcosh ð2r̃þ 2rÞ þ 2 sinh2 ðr̃þ rÞÞ
− cos ðϕ̃ − 2θÞ sinh 2r̃ sinh2 rðcosh ð2r̃þ 2rÞ þ 2 sinh2 ðr̃þ rÞÞ
− cos ðϕ̃ − ϕÞ cos ðϕ − 2θÞ sinh 4r̃ sinh2 2r − 2 cos ðϕ̃ − ϕÞ cos ðϕ̃ − 2θÞ sinh2 2r̃ sinh 2r sinh2 r
þ 2 sin ðϕ̃ − ϕÞ sin ðϕ − 2θÞ sinh 2r̃ cosh2 rðcosh ð2r̃þ 2rÞ þ 2 sinh2 ðr̃þ rÞÞ
þ 2 sin ð2ϕ̃ − 2ϕÞ sin ðϕ − 2θÞ sinh2 2r̃ sinh 2r cosh2 r
− cos ðϕ̃ − 2ϕþ 2θÞ sinh 2r̃ cosh2 rðcosh ð2r̃þ 2rÞ þ 2 sinh2 ðr̃þ rÞÞ
− 2 cos ðϕ̃ − ϕÞ cos ðϕ̃ − 2ϕþ 2θÞ sinh2 2r̃ sinh 2r cosh2 r: ðC5Þ

BO16 ¼ 2 sin4 ðϕ̃ − ϕÞ sinh4 r̃ sinh4 2r cosh2 2r: ðC6Þ

BO14 ¼ sin3 ðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2rð1 − cosh 2rþ cosh 4rÞ
þ 2 sin ð2ϕ̃ − 2ϕÞ sin2 ðϕ̃ − ϕÞ sinh4 r̃ sinh4 2r cosh 2r: ðC7Þ

BO12 ¼ 1

16
sin2 ðϕ̃ − ϕÞ sinh2 r̃ sinh2 2rð10þ 22 cosh 2r̃þ 13 cosh ð2r̃ − 4rÞ − 8 cosh ð2r̃ − 2rÞÞ

− 32 cosh 2rþ 6 cosh 4r − 8 cosh ð2r̃þ 2rÞ þ 13 cosh ð2r̃þ 4rÞ

þ sin ð2ϕ̃ − 2ϕÞ sin ðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2r
�
−
1

2
þ 2 cosh 2r

�
þ sin2 ð2ϕ̃ − 2ϕÞ sinh4 r̃ sinh2 2r sinh2 r cosh2 r

þ 1

2
sin2 ðϕ̃ − ϕÞ cos ð2ϕ̃ − 2ϕÞ sinh4 r̃ sinh4 2r: ðC8Þ

BO10 ¼ sinðϕ̃ − ϕÞ sinh 2r̃ sinh 2rð2 cosh2 r̃ cosh2 r sinh2 rþ sinh2 r̃ðcosh4 rþ sinh4 rÞ
þ 2 cosh2 r̃ sinh4 rþ sinh2 r̃ sinh2 2rÞ

−
1

2
sinð2ϕ̃ − 2ϕÞ sinh2 r̃ sinh2 2rð2 − cosh 2r̃ − 2 coshð2r̃ − 2rÞ − 2 cosh 2r

− 2 coshð2r̃þ 2rÞÞ þ 2 sinð2ϕ̃ − 2ϕÞ cosðϕ̃ − ϕÞ sinh 2r̃ sinh2 r̃ sinh 2r sinh2 r cosh2 r

þ 1

2
sinðϕ̃ − ϕÞ cosð2ϕ̃ − 2ϕÞ sinh 2r̃ sinh2 r̃ sinh3 2r: ðC9Þ

BO8 ¼ 1

64
ð10þ 6 cosh 4r̃ − 16 coshð2r̃ − 2rÞ þ 5 coshð4r̃ − 4rÞ þ 6 cosh 4r − 16 coshð2r̃þ 2rÞ

þ 5 coshð4r̃þ 4rÞÞ þ 1

2
cosðϕ̃ − ϕÞ sinh 2r̃ sinh 2rðcoshð2r̃ − 2rÞ þ 2 sinh2ðr̃ − rÞÞ

þ 1

2
cosð2ϕ̃ − 2ϕÞ cosh2 r̃ sinh2 r̃ sinh2 2rþ cos2ðϕ̃ − ϕÞ sinh2 2r̃ sinh2 r cosh2 r: ðC10Þ
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