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The structure of a light quark star is studied within a new two-flavor Nambu–Jona-Lasinio model. By
retaining the contribution from the vector term in the Fierz-transformed Lagrangian, a two-solar-mass pure
quark star is achieved. To overcome the disadvantage of three-momentum truncation in the regularization
procedure, we introduce the proper-time regularization. We also employ the newly proposed definition of
vacuum pressure [J. Phys. G 45, 105001 (2018)], in which the quasi-Wigner vacuum (corresponding to the
quasi-Wigner solution of the gap equation) is used as the reference ground state. The free parameters
include only a mixing constant α which weighs the contribution from the Fierz-transformed Lagrangian.
We constrain α to be around 0.9 by the observed mass of pulsars PSR J0348þ 0432 and PSR J1614-2230.
We find that the calculated surface energy density meets the requirement (>2.80 × 1014 g=cm3) [Phys.
Rev. D 99, 043001 (2019)]. Besides, for a 1.4-solar-mass star, the deformability Λ is calculated, which is
consistent with a recent analysis on the binary neutron star merger GW170817 with Λ in (0,630) for large
component spins and 300þ420

−230 when restricting the magnitude of the component spins [Phys. Rev. X 9,
011001 (2019)], and satisfies the constraints 200 < Λ < 800 of early works.

DOI: 10.1103/PhysRevD.100.123003

I. INTRODUCTION

Investigations of dense matter are an important part of
studying strong interactions. The experimental data on the
ground tell us that the ground state of the strong interacting
baryon at a zero density is a nucleon. At a nonzero density,
when the quark chemical potential is higher than the
strange quark mass, the strange quark matter may be the
ground state [1]. Therefore, the observed pulsars may be
quark stars rather than traditional neutron stars. After the
discovery of two-solar-mass pulsars [2–5], many theoreti-
cal models about a nonstrange star were excluded, because
they lead to equations of state (EOSs) that were too soft.
Considering the EOS of a strange baryon (hyperon), the
maximum pulsar mass is still lower than 2 M⊙. But the
structure of neutron stars can be explored by considering
the modified theory of gravity [6,7], introducing a strong

electromagnetic field [8–10], or introducing a high-speed
rotation effect [11–13] to obtain a 2 M⊙ neutron star.
Recently, one paper indicates that stable hadron matter can
be a nonstrange quark state when the baryon number is
greater than a certain minimum value [14]. Quark matter
with only u-d quarks can be the ground state of baryonic
matter other than the u-d-s strange quark matter [1,15,16].
Therefore, if the observed pulsar is a nonstrange quark star
and regardless of all other corrections, a suitable EOS
becomes necessary.
Studying the EOS at an extreme environment usually

resorts to effective field theories, and the Nambu–Jona-
Lasinio (NJL) model is one of them. With a few parameters
fitted to the low-energy experimental data, the NJL model
and its many generalizations provided much information on
both hadron physics and QCDmatter at a finite temperature
and density [17,18]. We note that, within the NJL model,
there are two equivalent descriptions, i.e., the original
Lagrangian density LNJL and its Fierz transformation
LFierz. After doing the mean-field approximation, hLNJLi
contains only the Hartree term, while hLFierzi contains only
the Fock term. When calculating the quark condensation,
the parameters are calibrated to reproduce the physical pion
meson mass and decay constant. In this way, the two
descriptions are equivalent. However, when considering
finite density matter, the effective chemical potentials given
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by the two Lagrangians are different at the mean-field-
approximation level: The effective potential from the
Fierz-transformed Lagrangian has a contribution from
quark vector density hψ†ψi. Actually, without the Fierz
transformation, the standard approach of the mean-field
approximation is considered to be not self-consistent
theoretically [19]. We, therefore, propose a self-consistent
treatment that combines the hLNJLi and hLFierzi linearly
with a weighting parameter α and study its implication on
QCD matter at a finite density [20]. Based on this, our
previous study [21,22] has shown that two-flavor quark
matter could be more stable than three-flavor quark matter,
unlike Witten’s prediction based on MIT bag model [1].
As stated in Ref. [20], the parameter α used to reflect the
weight of different interaction channels cannot be given in
advance by the mean-field theory. It must be determined by
related experimental data of high-density strong interacting
matter. The neutron star provides such a laboratory. One
motivation of this paper is to determine the α through
current astronomical observations on neutron stars.
In this paper, we will extend our study in several new

aspects. We first employ the proper-time regularization
rather than the three-momentum cutoff scheme, since the
latter limits the value of α < 0.9 and, hence, is considered
to be less reliable [22]. Note that, for a nonrenormalizable
theory, the regularization scheme could play an important
role in making physical predictions. Testing with different
regularization schemes, therefore, provides a qualitative
check for consistency. Second, when calculating the EOS,
there is a free parameter, i.e., the bag constant B. The bag
constant B gives the pressure of quark matter at a zero
temperature and zero density. Usually, it is treated as a
phenomenological parameter and determined by experi-
mental requirements [21–26]. It has a great influence on
the EOS and, consequently, the mass-radius relation of the
neutron star. We should be more careful in choosing its
value. Experimental requirements [27–29] suggest a typical
value about ð120 MeVÞ4, but it is also calculable in
effective theories. A traditional treatment is to subtract
the thermodynamic potential of the current quark from the
thermodynamic potential corresponding to the Nambu-
Goldstone solution, i.e., B ¼ ΩðmcurrentÞ −ΩðMNambuÞ
[17]. But the current quark is not the solution to the gap
equation. We therefore use a recently proposed definition
B ¼ ΩðMWignerÞ −ΩðMNambuÞ [26,30,31], i.e., to subtract
from the thermodynamic potential corresponding to the
Wigner-Weyl solution. Such a definition is more theoreti-
cally self-consistent, since the Wigner-Weyl solution is
another (although unphysical) solution to the quark gap
equation in the NJL model. The bag constant is now the
pressure difference between the Nambu andWigner phases.
It is an intrinsic quantity within the NJL model instead of an
input parameter as in Ref. [22]. Finally, we determine the
weighting factor α from the experimental data. Besides the
observations of the pulsars mass, the tidal deformability

measurement from the neutron star merger GW170817
[32–37] has also been used to constrain the stiffness of the
EOS. We will check if our predictions agree with other
current observations on, e.g., the radius and surface energy
of a star.
This paper is organized as follows: In Sec. II, we

introduce the NJL model and its Fierz transformation.
The weighting factor α is introduced here, and its effects on
the quark mass and quark number density are presented. In
Sec. III, the EOS, mass-radius relation, and tidal deform-
ability of the stars are calculated. The effect of α on the
EOS is presented. In the end, a short summary is given.

II. THE NJL MODEL AND ITS FIERZ
TRANSFORMATION

The standard NJL model is a model of QCD with four-
quark interaction [17,18]. Beyond the chiral limit, the two-
flavor Lagrangian is

LNJL ¼ ψ̄ði=∂ −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2� þ μψ†ψ :

ð1Þ

In the mean-field approximation,

L1 ¼ ψ̄ði=∂ −mÞψ þ 2Gσ1ψ̄ψ þ μψ†ψ ; ð2Þ

where m is the current quark mass and G is the four-quark
effective coupling. The two-quark condensate is denoted as
σ1. The effective quark mass is defined as

M ¼ m − 2Gσ1; ð3Þ

with the two-quark condensate defined as

σ1 ¼ hψ̄ψi ¼ −
Z

d4p
ð2πÞ4 Tr½SðpÞ�; ð4Þ

where SðpÞ is the dressed quark propagator and the trace is
taken in color, flavor, and Dirac spaces. The integration is
divergent, and a cutoff Λ on the momentum is usually used.
In this case, the chemical potential μ must be less than the
cutoff Λ so as to get a reliable result, setting an upper limit
for the weighting parameter α [22]. To circumvent this
defect, we introduce the proper-time regularization here.
The key equation is a replacement

1

Aðp2Þn →
1

ðn − 1Þ!
Z

∞

τUV

dττn−1e−τAðp2Þ; ð5Þ

where τUV is introduced to regularize the ultraviolet
divergence.
Beyond the chiral limit, three parameters (τUV,G, andm)

need to be fixed by requirements such as the two-quark
condensate derived from QCD sum rules or lattice QCD,
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pion decay constant, or pion mass which are the results of
chiral symmetry breaking. Since the Gell-Mann–Oakes–
Renner relation is satisfied in low energy, it also can be
used to calibrate these parameters. Fixing m ¼ 5.0 MeV,
with G ¼ 3.086 × 10−6 MeV−2, and τUV ¼ 1092 MeV, it
gives fπ ¼ 93 MeV and mπ ¼ 135 MeV. At a zero tem-
perature, the condensate is

hψ̄ψi ¼ −2Nc

X
u;d

Z
d3p
ð2πÞ3

M
Ep

ð1 − θðμ − EpÞÞ

¼ −2Nc

X
u;d

�Z
d3p
ð2πÞ3

Z
∞

τUV

dτ
e−τE

2

ffiffiffiffiffi
πτ

p

−
Z

d3p
ð2πÞ3

M
Ep

θðμ − EpÞ
�
; ð6Þ

with Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2 þM2

p
.

As a purely technical device to examine the effect of a
rearrangement of fermion field operators, the Fierz trans-
formation of LNJL is

LFierz ¼ ψ̄ði∂ −mÞψ þ G
8Nc

½2ðψ̄ψÞ2 þ 2ðψ̄iγ5τ⃗ψÞ2

− 2ðψ̄ τ⃗ ψÞ2 − 2ðψ̄iγ5ψÞ2 − 4ðψ̄γμψÞ2
− 4ðψ̄γμγ5ψÞ2 þ ðψ̄σμνψÞ2 − ðψ̄σμντ⃗ψÞ2�: ð7Þ

The mean-field-approximation result is

L2 ¼ ψ̄ði=∂ −mÞψ þ G
2Nc

σ1ψ̄ψ þGσ21

þ μψ†ψ −
G
Nc

σ2ψ
†ψ þ G

2Nc
σ22; ð8Þ

with σ2 ¼ hψ†ψi. Apparently, the effective quark mass and
chemical potential in the Fierz-transformed Lagrangian can
be defined, respectively, as

M ¼ m −
G
2Nc

σ1; ð9Þ

μr ¼ μ −
G
Nc

σ2: ð10Þ

Although the two formulas [Eqs. (3) and (9)] look
different, in fact, when the parameters are recalibrated with
different values of couplingG, they get the same result of the
quark mass. If the NJL Lagrangian and its Fierz trans-
formation are combined according to the literature [18], the
second term in Eq. (9) is equivalent only to the next-to-
leading-order term of large Nc expansion. The amending in
the effective chemical potential almost can also be neglected.
However, the equivalence of LNJL and LFierz means their

linear combination with any complex α, and in the mean-
field approximation it reads

LC ¼ ð1 − αÞL1 þ αL2: ð11Þ
With this combination, the effective mass and chemical
potential are, respectively,

M ¼ m − 2

�
1 − αþ α

4Nc

�
Gσ1; ð12Þ

μr ¼ μ −
αG
Nc

σ2: ð13Þ

Since the coefficient ð1 − αþ α
4Nc

ÞG in Eq. (12) requires
fitting low-energy data, we can redefine the effective
coupling as

G0 ¼
�
1 − αþ α

4Nc

�
G: ð14Þ

Thus, the quark mass and chemical potential are rewritten,
respectively, as

M ¼ m − 2G0σ1; ð15Þ

μr ¼ μ −
G0

Nc

α

1 − αþ α
4Nc

σ2: ð16Þ

Only for α < 1, this is mathematically equivalent to adding
a vector-isoscalar channel in the LNJL [38]. By introducing
a positive value of α, one counts in more terms that may be
ignored in the mean-field approximation with only LNJL.
So, in this sense, the two approaches are different.
At a zero temperature, the quark number density is

given by

ρu;d ¼ 2Nc

Z
d3p
ð2πÞ3 θðμr − EÞ: ð17Þ

The α dependence of the effective quark mass and baryon
number density are shown in Figs. 1 and 2, respectively. The
quark mass decreases as the chemical potential increases. α
has an impact on the effective quark mass. When α is greater
than 0.9, dependence of the quark mass on α is obvious.
The quark baryon number density increases as the chemical
potential increases. At a fixed chemical potential, the quark
baryon number density decreases as α increases. Comparing
Fig. 2, we can see that at the mean-field level the contribution
of the effective potential from the Fierz-transformed
Lagrangian to the baryon number density is negligible at
a low chemical potential (for example, less than 400 MeV).
Specifically, α ¼ 0 is equivalent to not considering the
contribution of the Fierz-transformed Lagrangian to the
effective potential. That is, the contribution of the next-to-
leading-order term in large Nc expansion is not considered,
while the case of α ≠ 0 is equivalent to considering the
influence of the next-to-leading-order term in large Nc
expansion on the effective potential.
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III. THE QUARK STAR STRUCTURES

A. The equation of state

The EOS is the key to calculating the mass-radius relation
and tidal formability Λ. The tidal formability measures the
star’s quadrupole deformation in response to the compan-
ion’s perturbing tidal field during the merger of two stars.
The model-independent equations of state of strong

interaction matter at finite μ and zero T are [39,40]

Pðμu; μdÞ ¼ Pðμ ¼ 0Þ þ
X
u;d

Z
μ

0

dμρðμÞ; ð18Þ

εðμu; μdÞ ¼ −Pðμu; μdÞ þ
X
u;d

μρðμÞ: ð19Þ

Here, Pðμ ¼ 0Þ represents the vacuum pressure at μ ¼ 0.
In some works, −Pðμ ¼ 0Þ is taken as a free parameter

corresponding to the bag constant in the MIT bag model.
In the standard NJL model, it is sometimes defined at a
zero chemical potential as the pressure difference between
results from the Nambu solution and bare quark propagator:

Pðμ ¼ 0Þ ¼ PðMNÞ − PðmÞ; ð20Þ

where MN denotes the Nambu solution of the quark
gap equation at μ ¼ 0 and m is the current quark mass.
In this definition, the vacuum pressure is Pðμ ¼ 0Þ ¼
−ð129.71 MeVÞ4. However, m is not a solution of the
gap equation. A consistent definition is to take the difference
between two solutions in analogy to the BCS theory. As
suggested in Refs. [26,30,31], the vacuum pressure in use is

Pðμ ¼ 0Þ ¼ PðMNÞ − PðMWÞ; ð21Þ

with MW the quasi-Wigner solution of the gap equation.
In this case, the vacuum pressure is Pðμ ¼ 0Þ ¼
−ð131.75 MeVÞ4.
We have considered only pressure from quarks above.

For a nonstrange quark star, we need the electron to keep
electric charge neutrality:

2

3
ρu −

1

3
ρd − ρe ¼ 0; ð22Þ

with ρu, ρd, and ρe being the number densities of the up and
down quarks and electron, respectively. Then the pressure
and energy density are

Ptot ¼ Pðμu; μdÞ þ
μ4e

12π2
; ð23Þ

εtot ¼ εðμu; μdÞ þ
μ4e
4π2

; ð24Þ

respectively. Here μe is the electron charge chemical
potential, and the electron density is given by ρe ¼
μ3e=ð3π2Þ. We have to take into account the baryon number
and electric charge conservation in weak decay d ↔
uþ eþ ν̄e. Then the chemical potential equilibrium gives
μd ¼ μu þ μe. Consequently, the EOS could be obtained.
The EOSs with different α’s are plotted in Fig. 3. With a
fixed negative pressure of the vacuum, the stiffness of EOS
increases along with α.
We are now ready to investigate the structure of a quark

star using the Tolman-Oppenheimer-Volkoff equations (in
units G ¼ c ¼ 1)

dPðrÞ
dr

¼ −
ðεþ PÞðM þ 4πr3PÞ

rðr − 2MÞ ; ð25Þ

dMðrÞ
dr

¼ 4πr2ε; ð26Þ

FIG. 1. The quark mass as a function of μ is presented. It is the
standard NJL model result with α ¼ 0 and the Fierz-transformed
result with α ¼ 1. With α ¼ 0.5, it is the result of taking into
account the next-to-leading order in large Nc expansion, which
has little impact on the effective quark mass.

FIG. 2. The baryon number density as a function of μ is
presented. When μ < Mq, the quark number density ρðμÞ is zero.
Also, ρðμÞ decreases as α increases and dramatically as α > 0.5 at
large μ.
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which give the mass-radius relation. We have calculated
quark stars with Eq. (11) with different parameters α.
The mass-radius relation is presented in Fig. 4.
We first notice that, as α > 0.9, the maximum mass

(denoted asMTOV) can be larger than 2.0 solar masses. This
matches the observed pulsars mass of PSR J1614-2230
ðM ¼ 1.928� 0.017 M⊙Þ [3] and PSR J0348þ 0432

ðM ¼ 2.01� 0.04 M⊙Þ [4]. We have also listed the surface
energy densities ε0 in Table I which satisfy the constraint
that ε0 should be larger than 2.80 × 1014 g=cm3. Second,
the upper limit on the radius of a 1.4-solar-mass star from
three recent works are R ≤ 13.76 km, R ≤ 13.6 km, and
8.9 km ≤ R ≤ 13.76 km, respectively [41–43]. We see in
Fig. 4 that the upper limits of the radius are all larger than
our maximum radii and, thus, the radii of a 1.4-solar-mass
star. The lower limit of the radius from Ref. [37] on a
1.6-solar-mass neutron star is 10.7 km. The radii from our
parameters α ≥ 0.5 satisfy this constraint. If the compact
objects are quark stars, then in studying QCD matter at a
high density, the Lagrangian without a Fierz transformation
(α ¼ 0) is incomplete at the level of the mean-field

approximation, while Eq. (11) provides a more realistic
description.

B. The tidal deformability

During the merger of two stars, it is reasonable to think
about the magnetic breaking during the merger evolution.
The Love number measures the distortion of the shape of
the surface of a star by an external tidal field. The tidal
deformability is related to the l ¼ 2 dimensionless tidal
Love number k2. In units G ¼ c ¼ 1, it is

k2 ¼
3

2
Λ
�
M
R

�
5

: ð27Þ

The most recent analysis on the binary neutron star merger
GW170817 has found tighter constraints on the component
mass to lie between 1.00 and 1.89 M⊙ with Λ in (0, 630)
when allowing for large component spins and on the compo-
nent masses to lie between 1.16 and 1.60 M⊙ with Λ ¼
300þ420

−230 when the spins are restricted to be within the range
observed in Galactic binary neutron stars [32]. The early
restriction on the tidal deformabilityΛ for 1.4 M⊙ is less than
800 (1400) for the low- (high-) spin prior case [33,44].

FIG. 3. The EOSs for different α’s are presented. The upper plot
shows energy density ε as a function of pressure P. The lower
plot shows the square of the velocity of sound (defined as dP

dε) as a
function of u quark chemical potential μu. Zero energy density
and negative pressure appear as μu < Mq, and this part of the plot
is not shown in the figure. Different α’s show different results
only when μu is greater than 300 MeV. Both plots show that the
EOS for smaller α becomes softer than the one for larger α.

FIG. 4. The mass-radius relation of a quark star is presented.
The maximummass increases with α. The maximum radii are less
than 12 km. When α ¼ 0.9, the maximum mass is close to 2 M⊙
with a star radius of 10.87 km. When α ¼ 0.95, the maximum
mass is larger than 2.05 M⊙. Only for the case α ≥ 0.5 are the
radii of stars with a mass of 1.6 M⊙ larger than 10.7 km.

TABLE I. Properties of a ud quark star, including the maximum
mass MTOV, the corresponding radius R, and surface energy
density ε0. The radii of a 1.6-solar-mass star are also listed. It is
obvious that the maximum mass increases as α increases.

α MTOV ðM⊙Þ R (km) R1.6 (km) ε0 ð1014 g=cm3Þ
0.00 1.7376 10.17 10.56 4.3252
0.50 1.7896 10.33 10.71 4.2647
0.80 1.8949 10.50 10.98 4.1532
0.90 1.9903 10.87 11.19 4.0412
0.95 2.0773 11.14 11.37 3.9416
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In matching the interior and exterior solutions across the
star surface, the l ¼ 2 tidal Love number k2 for the internal
solution is given by [45]

k2 ¼
8

5
C5ð1 − 2CÞ2½2þ 2Cðy − 1Þ − y�

× f2C½6 − 3yþ 3Cð5y − 8Þ�
þ 4C3½13 − 11yþ Cð3y − 2Þ þ 2C2ð1þ yÞ�
þ 3ð1 − 2CÞ2½2 − yþ 2Cðy − 1Þ� lnð1 − 2CÞg−1;

ð28Þ

where C ¼ M=R defines the compactness of the star and y
is related to the metric variable H and surface energy
density ε0:

y ¼ RβðRÞ
HðRÞ −

4πR3ε0
M

: ð29Þ

For some neutron star model, the surface energy density is
zero. But in our NJLmodel with a negative vacuum pressure,
the surface energy ε0 is nonzero as shown in Fig. 3.
The metric variableH related to the EOS can be obtained

by integrating two differential equations:

dHðrÞ
dr

¼ β;

dβðrÞ
dr

¼ 2gH

�
−2π½5εþ 9Pþ fðεþ PÞ�

þ 3

r2
þ 2g

�
M
r2

þ 4πrP

�
2
�

ð30Þ

þ2g
β

r

�
−1þM

r
þ 2πr2ðε − PÞ

�
; ð31Þ

where g ¼ ð1 − 2M=rÞ−1 and f ¼ dε=dP. The iteration
starts from the center at r ¼ 0 via expansions HðrÞ ¼ a0r2

and βðrÞ ¼ 2a0r with constant a0. As can be seen from
Eq. (29), we concern only the ratio β=H. So a0 can be
arbitrarily chosen in a numerical calculation. The Love

number k2 and tidal deformability Λ for different α’s
are calculated and presented in Table II. They increase
as α increases. For a 1.4 M⊙ star, all the calculated tidal
deformabilities lie within a reasonable range, i.e., less than
the upper limit of a low-spin star and large than the lower
limits Λ1.4 > 200 [37].

IV. SUMMARY

Using a recently proposed generalized NJL model
[Eq. (11)] with a new parameter α incorporating different
interaction channels [20], we studied the structure of light
quark stars in this work. We find the EOS of a star gets
harder with a larger α, namely, with more contribution
from the Fierz-transformed term LFierz. We use proper-time
regularization to treat the ultradivergence, so there is no
upper limit for the choice of α. This improves upon the
momentum cutoff regularization scheme used in Ref. [22].
The weighting parameter α is the only free parameter. Other
than to set the vacuum pressure to be a free parameter or to
define the vacuum pressure with a current quark as in
Eq. (20), our vacuum pressure is fixed to be the difference
between the pressures from the Nambu solution and the
quasi-Wigner solution [30]. Then the corresponding bag
constant is obtained to be B1=4 ¼ 131.75 MeV.
From the TOV equations, the mass-radius relation and

tidal deformability are calculated for different α’s. As
α > 0.9, the 2.0 solar mass can be yielded, which matches
the masses of PSR J1614-2230 ðM ¼ 1.928� 0.017 M⊙Þ
and PSR J0348þ 0432 ðM ¼ 2.01� 0.04 M⊙Þ. Our
results of the surface energy density are larger than
2.80 × 1014 g=cm3, and the radii for a 1.4-solar-mass star
satisfy the constraints R ≤ 13.76 km and R ≤ 13.6 km
[41,42]. The lower limit 10.7 km of a 1.6-solar-mass neutron
star is satisfied for α ≥ 0.5. This suggests that the Fierz-
transformed Lagrangian must be included in the combined
Lagrangian. We have also calculated the tidal Love number
k2 and the tidal deformability Λ. The tidal deformability Λ
calculated for a 1.4-solar-mass star increases with α, is
within the interval (200 < Λ < 800) [37] and the interval
(0 < Λ < 630) for large component spin, and satisfies the
constraint with Λ ¼ 300þ420

−230 when restricting the magnitude
of the component spins from the analysis of GW170817
[32]. Admitting the nonstrange quark, our improved NJL
model therefore provides a consistent explanation to a
variety of astronomical observations.
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TABLE II. Properties of our 1.4-solar-mass quark star, includ-
ing the compactness M=R, the Love number k2, and the tidal
deformability Λ. Since the radius increases as α increases, the
compactness decreases as α increases. And the tidal deformability
increases as α increases.

α M=R k2 Λ

0.00 0.1980 0.1435 314.26
0.50 0.1962 0.1481 339.93
0.80 0.1925 0.1570 395.06
0.90 0.1895 0.1645 448.98
0.95 0.1869 0.1708 499.37
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