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The stochastic gravitational wave background (SGWB) is expected to be a key observable for
gravitational wave (GW) interferometry. Its detection will open a new window to early Universe cosmology
and to the astrophysics of compact objects. Using a Boltzmann approach, we study the angular anisotropies
of the GW energy density, which is an important tool to disentangle the different cosmological and
astrophysical contributions to the SGWB. Anisotropies in the cosmological background are imprinted
both at its production and by GW propagation through the large-scale scalar and tensor perturbations of
the Universe. The first contribution is not present in the cosmic microwave background radiation (as the
Universe is not transparent to photons before recombination), causing an order 1 dependence of the
anisotropies on frequency. Moreover, we provide a new method to characterize the cosmological SGWB
through its possible deviation from Gaussian statistics. In particular, the SGWBwill become a new probe of
the primordial non-Gaussianity of the large-scale cosmological perturbations.
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I. INTRODUCTION

Operating ground-based interferometers is not far from
reaching the sensitivity to detect the stochastic gravitational
wave background (SGWB) from unresolved astrophysical
sources [1,2]. On the other hand, future space-based
gravitational wave detectors, like LISA [3] and DECIGO
[4], and earth-based gravitational wave detectors, like the
Einstein Telescope [5] and Cosmic Explorer [6], may be
able to detect a stochastic background of cosmological
origin, generated by early Universe mechanisms of pro-
duction of gravitational waves (GWs) [7–13]. The most
immediate way to differentiate the two backgrounds is by
their frequency profiles [14]. However, given that the
SGWB is the sum of different contributions whose profiles
are not fully known, it is important to also develop other
means to characterize them. In this work, we study the

statistics of the angular anisotropies in the energy density of
the GWs, which are either produced primordially or
imprinted in the GWs as they propagate in the perturbed
Universe [15–20].
This approach has several analogies with the well

established formalism developed for cosmic microwave
background (CMB) anisotropies. Following [16], we study,
as is commonly done for the CMB, the GW phase-
space distribution function f, which can immediately be
related to their energy density. We solve the collisionless
Boltzmann equation for this distribution and compute
the two-point and three-point correlators of the GW energy
density anisotropies on our sky. We focus on one crucial
difference from the CMB: while the CMB temperature
anisotropies are generated only at the last scattering sur-
face, or afterward, the Universe is instead transparent to
GWs at all energies below the Planck scale. Therefore, the
SGWB provides a snapshot of the Universe right after
inflation, and its anisotropies retain precious information
about the primordial Universe and the mechanisms for
the GW formation. In particular, the primordial signal may
be characterized by a significant (i.e., order 1) dependence
of the anisotropies on frequency. On the contrary, this
dependence is very small in the CMB case since any initial
condition is erased by collisions before recombination,
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and any frequency dependence of the anisotropies is
generated only at second order in perturbations [21–23].
We show, through a representative example of sourced
GWs during axion inflation [24,25], that a primordial GW
signal visible at interferometer scales can indeed lead to
anisotropies with a large frequency dependence.
Secondly, we study another important tool to character-

ize the cosmological SGWB—namely, its non-Gaussianity.
Recent works, starting with [26], have investigated whether
the GW three-point function hh3i can be tested at inter-
ferometers. The measurement of this signal requires the
measurement of phase correlations of the GW wave
functions. As shown in [27,28], two effects make such a
measurement unfeasible: (i) the GW propagation in the
perturbed Universe destroys any hh3i correlation possibly
present in the primordial signal, and (ii) modes of nearby
frequencies get confused with one another due to the finite
duration of the experiment, also resulting in a large phase
decorrelation. There is, however, another type of non-
Gaussianity that can be observed, and it is the one present
in the spatial distribution of the GW energy density. This
does not involve initial phase correlation of the GW field
itself: here we present the first steps for the computation
and study of the three-point function (the bispectrum) of the
GW energy density. Notice that Planck set the tightest
limits from CMB data on deviations from Gaussian
statistics for cosmological fluctuations [29]. Still, this does
not rule out the possibility of primordial non-Gaussian
signatures: the observable we discuss (the angular bispec-
trum of GW energy density anisotropies) relies on future
measurements that might be sensitive enough to probe
primordial non-Gaussian signals. It might be the case for
models of inflation (like those where the inflaton interacts
with additional fields), producing a GW signal with a peak
at interferometric scales (see [9]) which would favor the
measurement of the two- and three-point angular correlators.
For brevity reasons, this paper contains results under the

simplest conditions only. In a companion paper [30], we
shall present the details of these computations, extend them
to include the GW propagation to second order in pertur-
bations, and develop a more extended analysis of the GW
bispectrum.

II. BOLTZMANN EQUATION FOR GWs

We consider a distribution f ¼ fðη; xi; q; n̂iÞ of GWs as
a function of their position xμ and momentum pμ ¼
dxμ=dλ, where λ is an affine parameter along the GW
trajectory. This distribution obeys the Boltzmann equation
L½f� ¼ C½fðλÞ� þ I ½fðλÞ�, where the Liouville term is
L≡ d=dλ, while C and I account, respectively, for the
collision of GWs along their patch and for their emissivity
from cosmological and astrophysical sources [16]. The
collision among GWs affects the distribution at higher
orders (in an expansion series in the gravitational strength
1=Mplanck) with respect to the ones we are considering,

and it can be disregarded. The emissivity may be due to
astrophysical processes (such as black holes merging) in
the relatively late Universe, as well as cosmological
processes, such as inflation or phase transitions. In this
work, we are interested only in the stochastic GW back-
ground of cosmological origin, so we treat the emissivity
term as an initial condition on the GW distribution (see [31]
and the references therein for a discussion of collisional
effects involving gravitons). This leads us to study the
free Boltzmann equation, df=dη ¼ 0, in the perturbed
Universe. Specifically, we consider scalar (Φ and Ψ) and
tensor (hij; taken to be transverse and traceless) perturba-
tions in the so-called Poisson gauge, around a homo-
geneous and isotropic background, giving the line element

ds2 ¼ a2ðηÞ½−e2Φdη2 þ ðe−2Ψδij þ hijÞdxidxj�; ð1Þ

where aðηÞ is the scale factor, and η is conformal time.
Dividing the free Boltzmann equation by p0 leads to

∂f
∂η þ

∂f
∂xi

dxi

dη
þ ∂f
∂q

dq
dη

þ ∂f
∂ni

dni

dη
¼ 0; ð2Þ

where n̂≡ p̂ is the direction of motion of the GWs, while
q≡ jp⃗ja is the comoving momentum that we use (as
opposed to the physical one that was used in [16],
following the standard computation done for the CMB
photon propagation [32]), as it simplifies Eq. (3). The first
two terms in Eq. (2) encode free streaming, that is, the
propagation of perturbations on all scales. At higher order,
this term also includes gravitational time delay effects.
The third term causes the redshifting of gravitons, includ-
ing the Sachs-Wolfe (SW), integrated Sachs-Wolfe (ISW),
and Rees-Sciama effects. The fourth term vanishes to first
order and describes the effect of gravitational lensing.
We shall refer to these terms as the free-streaming, redshift,
and lensing terms, respectively, in a way similar to CMB
physics. Keeping only the terms up to first order in the
perturbations, Eq. (2) gives

∂f
∂η þ ni

∂f
∂xi þ

�∂Ψ
∂η − ni

∂Φ
∂xi þ

1

2
ninj

∂hij
∂η

�
q
∂f
∂q ¼ 0: ð3Þ

In analogy to the split in Eq. (1), we also assume that the
GW distribution has a dominant, homogeneous, and
isotropic contribution, with distribution function f̄, plus
a subdominant contribution δf. The two functions are
obtained by solving Eq. (3) at zeroth and first order in
perturbations. Doing so, one immediately finds that any
function f̄ðqÞ of the comoving momentum solves Eq. (3) at
zeroth order. As a consequence, the associated number
density n ∝

R
d3pf̄ðqÞ is diluted as a−3 as the Universe

expands. This is also the case for CMB photons, whose
distribution function f̄CMB ¼ ðep=T − 1Þ−1 is controlled
only by the ratio p=T ∝ pa ¼ q, where T is the
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temperature of the CMB bath. This is a consequence of the
free particle propagation in an expanding background, and
it does not rely on the distribution being thermal.
The subdominant anisotropic component δf can be

present as an initial condition. However, even if it is
initially absent, Eq. (3) shows that this anisotropy is
produced by the propagation of the isotropic component
f̄ in the perturbed background. Assuming that ∂f̄=∂q ≠ 0
(otherwise the solution of δf also becomes trivial), it is
convenient to rescale the perturbed part of the distribution
function as

δf ≡ −q
∂f̄
∂qΓðη; x⃗; q; n̂Þ: ð4Þ

In this variable and in Fourier space, Eq. (3) gives

Γ0 þ ikμΓ ¼ Sðη; k⃗; n̂Þ; ð5Þ

where from now on prime will denote a derivative with
respect to conformal time, μ is the cosine of the angle
between k⃗ and n̂, while the source function is S ¼ Ψ0−
ikμΦ − 1

2
ninjh0ij. As we now show, the quantity Γ can be

immediately related to the anisotropic component of the
GW energy density, ρGW ≡ R

d3ppf. It is customary to
parametrize the GW energy density measured at the time η
at the location x⃗ in terms of its fractional contribution ΩGW
through

ρGWðη; x⃗Þ≡ ρcrit

Z
d ln qΩGWðη; x⃗; qÞ; ð6Þ

where ρcrit ¼ 3H2M2
p is the critical energy density of the

Universe, and H is the Hubble rate. Nearly all studies
assumeΩGW to be homogeneous. Since we are interested in
its inhomogeneous and anisotropic component, we have
allowed ΩGW to depend on space. We account for the
anisotropic dependence by defining ωGW through ΩGW ¼R
d2n̂ωGWðη; x⃗; q; n̂Þ=4π, and by introducing the density

contrast δGW ≡ δωGWðη; x⃗; q; n̂Þ=ω̄GWðη; qÞ. Using Eq. (4),
one then finds that

δGW ¼
�
4 −

∂ ln Ω̄GWðη; qÞ
∂ ln q

�
Γðη; x⃗; q; n̂Þ; ð7Þ

with Ω̄GW being the homogeneous, isotropic component
of ΩGW.
In the CMB case, by inserting definition (4) into the

Planck distribution and expanding to first order, one finds
that ΓCMB ¼ δT=T. The main difference between the CMB
and the GW case is that, before recombination, the collision
term between photons and baryons suppresses any existing
temperature anisotropy, thus removing any memory of the
initial state. The observed temperature anisotropies δT=T
arise since recombination, following an equation analogous

to Eq. (5), with a source that, to first order, is independent
from the energy of the CMB photons. While in the CMB
this dependence arises only to second order in perturba-
tions, a significantly greater dependence can be present in
the GW distribution as an initial condition. In the follow-
ing, we first compute and discuss the cosmological corre-
lators of the GWanisotropies, then show through a concrete
example that they can indeed have a significant dependence
on frequency.

III. CORRELATORS OF GW ANISOTROPIES
AND NON-GAUSSIANITY

As is standard [32], we express each of the sources
appearing in Eq. (5) as a mode function times an initial
variable that is constant at large scales, assuming for
simplicity adiabatic scalar perturbations, and whose stat-
istical properties have been set well before the propagation
stage that we are considering (for instance during inflation,
or during an early phase transition). Therefore, the scalar
modes are (disregarding anisotropic stresses as, for exam-
ple, those due to the relic neutrinos) Ψ ¼ Φ≡ TΦðη; kÞ
ζ̂ðk⃗Þ; we then decompose the tensor modes as hij ≡P

λ¼�2 eij;λðk̂Þhðη; kÞξ̂λðkiÞ, where the sum is over right-
and left-handed (respectively, λ ¼ �2) circular polariza-
tions, and the polarization operators are constructed as in
[26]. We insert these expressions in the source function
into Eq. (5) and solve for Γ. We then follow the treatment
done for CMB perturbations, and we expand the solution in
spherical harmonics, Γðn̂Þ ¼ P

l

Pl
m¼−l ΓlmYlmðn̂Þ,

where we recall that n̂ is the direction of motion of the
GWs, and thus the direction at which the GWs arrive at our
sky. The multipoles Γlm are the sum of three contributions.
The first contribution arises from the initial conditions,

Γlm;IðqÞ
4πð−iÞl ¼

Z
d3k
ð2πÞ3 Γðηin; k⃗; qÞ × Y�

lmðk̂Þjl½kðη0 − ηinÞ�;

ð8Þ

where η0 denotes the present time, and we set our location
to x⃗0 ¼ 0. We also remark that this term in general depends
on q. The second contribution is due to the scalar sources in
Eq. (5),

Γlm;S

4πð−iÞl ¼
Z

d3k
ð2πÞ3 ζðk⃗ÞY

�
lmðk̂ÞT ð0Þ

l ðk; η0; ηinÞ; ð9Þ

where the scalar transfer function T ð0Þ
l is the sum of a term

analogous to the SW effect for CMB photons, TΦðηin; kÞ
jl½kðη0 − ηinÞ�, and the analog of the ISW term,

R
η0
ηin
dη0

½T 0
Ψðη; kÞ þ T 0

Φðη; kÞ�jl½kðη − ηinÞ�. Finally, the third con-
tribution Γlm;T is due to the tensor modes in Eq. (5), and it
is formally analogous to Eq. (9), with the product ζ̂Y�

lm

replaced by the combination
P

λ¼�2 ξ̂λðk⃗Þ−λY�
lmðΩkÞ,
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involving the spin-2 spherical harmonics, and with the
scalar transfer function replaced by the tensor one

T ð�2Þ
l ðk; η0; ηinÞ, given by

T ð�2Þ
l ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2Þ!
ðl − 2Þ!

s Z
η0

ηin

dηh0ðη; kÞ jl½kðη0 − ηÞ�
k2ðη0 − ηÞ2 : ð10Þ

We are interested in statistical correlators of the anisotro-
pies. Under the assumption of statistical homogeneity
and isotropy, the two-point and three-point correlators of
ζ̂ are expressed in terms of, respectively, the scalar power
spectrum and bispectrum through hζðk⃗Þζ�ðk⃗ 0Þi0¼ð2π2=k3Þ
Pð0ÞðkÞ and hζ3ðk⃗iÞi0 ¼ Bð0ÞðkiÞ [we use the standard
notation of the prime to eliminate the momentum
conservation Dirac delta and the ð2πÞ3 coefficient].
Analogously, correlators PðλÞ and BðλÞ can also be defined
for the two tensor polarizations. Moreover, we impose
correlators of the same structure for the initial conditions—
namely, hΓðηin; k⃗; qÞΓ�ðηin; k⃗0; qÞi0 ¼ ð2π2=k3ÞPðIÞðkÞ—
and for the bispectrum BðIÞ. In this work, we assume that
the different contributions are uncorrelated. Under these
assumptions, one obtains hΓlmΓ�

l0m0 i≡ δll0δmm0C̃l ¼
δll0δmm0 ½C̃l;IðqÞ þ C̃l;S þ C̃l;T �, where we denote the
correlators with a tilde to distinguish them from the
CMB case. The contribution from the initial condition
reads

C̃l;IðqÞ
4π

¼
Z

dk
k
PðIÞðq; kÞj2l½kðη0 − ηinÞ�; ð11Þ

where again we stress the possible frequency dependence.
The other two terms are

C̃l;S þ C̃l;T

4π
¼

X
α¼0;�2

Z
dk
k
PðαÞðkÞT ðαÞ2

l ðk; η0; ηinÞ: ð12Þ

At large scales, this contribution is dominated by the term

proportional to the initial value of Φ in T ð0Þ
l (the analog of

the SW contribution for the CMB). For modes that reenter
the horizon during matter domination (as is the case for
those that give the large-scale anisotropies that we are
considering), TΦ ¼ 3=5 at early times [32]. So, for scale
invariant power spectra,

C̃l ≃ C̃l;IðqÞ þ C̃l;S ≃
2π

lðlþ 1Þ
�
PðIÞðqÞ þ

�
3

5

�
2

Pð0Þ
�
:

ð13Þ

The second term can be compared to the SW contribution
to the CMB anisotropies. In that case, the final temperature
anisotropy is 1=3 times the scalar perturbation at the last

scattering surface, while Φ at that moment decreased by a
factor 9=10 in the transition from radiation to matter
domination [32]. Therefore, C̃l;S ¼ ð10=3Þ2CSW

l . If instead
the initial condition term ΓI and the scalar propagation term
ΓS are correlated (as for instance under the assumption that
ΓI is controlled by the adiabatic scalar perturbation) then
the sum of both terms should be compared to the SW for
the CMB.
The structure of the bispectrum is forced by statistical

isotropy to be the product of an li-dependent term and
Gaunt integrals [33], hQ3

i¼1 Γlimi
i≡ b̃l1l2l3G

m1m2m3

l1l2l3
. The

initial condition term leads to

b̃l1l2l3;I ¼
Z

∞

0

drr2
Y3
i¼1

�
2

π

Z
dkik2i jli ½kiðη0 − ηinÞ�

× jli
ðkirÞ

�
BðIÞðq; k1; k2; k3Þ: ð14Þ

The scalar term b̃l1l2l3;S is analogous, with the first
spherical Bessel function replaced by the transfer func-

tion T ð0Þ
li
, and with the scalar bispectrum Bð0Þ as the

last term. In particular, for a primordial bispectrum of
the local form [34], Bð0Þðk1; k2; k3Þ ¼ ð6fNL=5Þ½ð2π2Þ2=
ðk31k32ÞPð0Þðk1ÞPð0Þðk2Þ þ 2 perm:�, when applied to the
CMB result [34,35], the same rescaling done after
Eq. (13) gives the dominant SW contribution at large
scales:

b̃l1l2l3;S ≃ 2fNL½C̃l1;SC̃l2;S þ 2 perm:�: ð15Þ

Finally, the tensor term reads

b̃l1l2l3;T
4π

¼
�Y3
i¼1

Z
k2i dki
ð2πÞ3 T

T
l;iðkiÞ

�X
λ¼�2

X
mi

G̃m1m2m3

l1l2l3

×

	Y3
i¼1

4πð−iÞli
2li þ 1

Z
dΩki−λY

�
limi

ðΩkiÞξλðk⃗iÞ


;

ð16Þ

with the Wigner 3-j symbols being employed in defining

G̃m1m2m3

l1l2l3
≡

�
l1 l2 l3

0 0 0

�−2
Gm1m2m3

l1l2l3
: ð17Þ

For the case of purely adiabatic fluctuations, the formalism
developed here allows us to determine consistency relations
for the squeezed limit of the bispectrum Bδðk⃗1; k⃗2; k⃗3Þ ¼
hδGWðk⃗1ÞδGWðk⃗2ÞδGWðk⃗3Þi0. Such a squeezed limit is
determined by nonlinear effects coupling long and short
modes, and it can be computed using well-known tech-
niques developed in the context of cosmic inflation [36]
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and the CMB [37–39]. Focusing on a matter dominated
Universe, neglecting second-order tensor fluctuations, and
considering for simplicity only isotropic contributions to
the density contrast, we find that

Bδðk⃗1; k⃗2; k⃗3 → 0Þ
8π4

¼
�
3

5

∂ ln f̄ðqÞ
∂ ln q

�
3 Pð0Þðk1ÞPð0Þðk3Þ

k31k
3
3

×

�∂ lnPð0Þðk1Þ
∂ ln k1 þ 2

5

∂ ln q
∂ ln f̄ðqÞ

∂2f̄ðqÞ
∂ðln qÞ2

�
: ð18Þ

Hence the squeezed limit of the bispectrum, in this specific
situation, depends on the tilt of the scalar fluctuations, and
also on derivatives of the background distribution function
f̄ðqÞ, which is modulated by long modes. We plan to
further explore this subject in [30].

IV. ANISOTROPIES IN THE PRIMORDIAL SGWB
AND THEIR FREQUENCY DEPENDENCE

Several mechanisms for the generation of a cosmological
GW signal visible at interferometer scales have been
studied in the literature [8–10]. Here we comment on a
specific mechanism where an axion inflaton ϕ sources
gauge fields, which in turn generates a large GW back-
ground. The amount of GWs sourced in this mechanism is
controlled by the parameter ξ≡ ð _ϕ=2fϕHÞ, where fϕ is the
decay constant of the axion inflaton. The inflaton back-
ground value then results in a background ξ̄, and thus in a
homogeneous and isotropic GW component. The inflaton
fluctuations result in a perturbation δξ, and thus in the
inhomogeneities of the primordial GW background. The
anisotropy in the GW energy density arriving today at our
location from a direction n̂ is controlled by the value
assumed by the parameter ξ during inflation at the position
x⃗0 þ n̂d, where d is the distance traveled by the GWs from
their production during inflation to today. GW modes
observable at interferometers reentered the horizon during
the radiation-dominated era. The present fractional energy
density ΩGW of these modes is equal to their primordial
power spectrum PGW times a q-independent factor.
Then, by linearizing the primordial power spectrum in
δξ, relation (7) can be recast in the form ΓIðη0; x⃗0; q; n̂Þ ¼
F ðq; ξ̄Þδξðx⃗0 þ dn̂Þ, with

F ≡
�
4 −

∂ ln ½PGWðq; ξ̄Þ�
∂ ln q

�−1 ∂ ln ½PGWðq; ξ̄Þ�
∂ξ̄ : ð19Þ

We have then provided an immediate criterion for evalu-
ating whether and how much the GW anisotropies depend
on frequency (as, in principle, one could imagine a GW

power spectrum for which the dependence on q of F
vanishes, or is extremely suppressed). This conclusion
assumes only that the primordial GW signal is a function
of some additional parameter ξ which has small spacial
inhomogeneities, and therefore it likely applies to several
other mechanisms. For axion inflation, we consider the
specific evolution shown in Fig. 4 of [25], where the
inflaton potential is chosen so as to lead to a peak in
the GW signal at LISA frequencies, without overproducing
scalar perturbations and primordial black holes. We show
in Fig. 1 the corresponding evolution of the parameter F.
We see that this quantity indeed presents a nontrivial scale
dependence, and therefore the correlators of the anisotro-
pies will be different at different frequencies.

V. FUTURE WORK

We plan to extend the results presented here to analyze
several additional physical effects, including the effects of
neutrinos on the GW amplitude [40], the possible direct
dependence of ΓI on n̂, tests of nonstandard expansion
in the early Universe, possible mixed bispectra among
the three contributions to Γ that we have discussed, and the
feasibility of measuring the frequency dependence of the
two-point function and the bispectra at GW interferometers.
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FIG. 1. Quantity F as a function of the frequency f ¼ q=2π of
the GW signal for the model of axion inflation described in
the text.
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