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In this work we study contributions due to vector and axial-vector meson fluctuations to their in-medium
spectral functions in an effective low-energy theory inspired by the gauged linear sigma model. In
particular, we show how to describe these fluctuations in the effective theory by massive (axial-)vector
fields in agreement with the known structure of analogous single-particle or resonance contributions to the
corresponding conserved currents. The vector and axial-vector meson spectral functions are then computed
by numerically solving the analytically continued functional renormalization group flow equations for their
retarded two-point functions at finite temperature and density in the effective theory. We identify the new
contributions that arise due to the (axial-)vector meson fluctuations, and assess their influence on possible
signatures of a QCD critical end point and the restoration of chiral symmetry in thermal dilepton spectra.
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I. INTRODUCTION

Understanding the phases of strong-interaction matter
and the transitions between them is still one of the main
goals in theoretical and experimental heavy-ion physics
[1–4]. In order to relate the experimental observations from
heavy-ion collision experiments at various beam energies
to the phase diagram of quantum chromodynamics (QCD)
photons and dileptons are of particular importance to obtain
information, e.g., on the temperature and the lifetime of the
fireball [5–7]. They arise from various processes and are
emitted in all stages of the collisions. Because they escape
the fireball almost unaffected, these electromagnetic probes
carry the spectral information of the matter in the interior of
the collision zone during the evolution of the fireball.
Therefore, the spectral properties of strong-interaction
matter and the features of the QCD phase diagram, such
as the in-medium modifications of hadrons reflecting chiral
symmetry restoration and the transition to the quark-gluon
plasma, are encoded in the measured photon and dilepton
spectra [8].
The thermal rates are determined by the in-medium

electromagnetic spectral function and can therefore be used
to probe the QCD phase diagram [9]. Especially in the
resonance region, for invariant masses of dilepton pairs
below 1 GeV, the electromagnetic spectral function is
dominated by vector mesons, in particular the ρ meson

which gave rise to the famous vector-meson dominance
(VMD) model [10]. Chiral symmetry on the other hand
requires one to study the ρ alongside its chiral partner, the
a1 meson. From the in-medium modifications to the
spectral functions of vector and axial-vector mesons one
then hopes to deduce the nature of chiral symmetry
restoration and to find evidence of an associated critical
end point in the phase diagram of QCD [6,11–13].
In this paper we compute the in-medium spectral

functions of vector and axial-vector mesons in an extended
linear sigma model with quarks as a chiral low-energy
effective theory for two-flavor QCD. As in a previous study
[14] we employ the functional renormalization group
(FRG) as the nonperturbative computational framework
to include fluctuations beyond mean-field approximations.
The FRG has proven to be a powerful tool in diverse areas
of physics, see [15–19] for reviews. One particular bonus
that it shares with other functional methods here is its
applicability, at least in principle, to the entire QCD phase
diagram including the region of finite baryon density
[20,21] where lattice QCD suffers from the fermion sign
problem. Mainly for technical reasons, applications to full
QCD [22,23] are nowadays often used to motivate effective
low-energy models with the potential to constrain the input
parameters at their upper limit of applicability, their ultra-
violet (UV) scale. From this input, these can then be used to
describe chiral symmetry restoration [24,25] or model the
deconfinement transition [26,27] with two or three quark
flavors [28–30], and to describe vector mesons [31,32].
For real-time quantities such as spectral functions or

transport coefficients one faces the additional problem,
common to all Euclidean approaches to quantum field
theory, of the analytic continuation from Euclidean back to

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 116009 (2019)

2470-0010=2019=100(11)=116009(18) 116009-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.116009&domain=pdf&date_stamp=2019-12-11
https://doi.org/10.1103/PhysRevD.100.116009
https://doi.org/10.1103/PhysRevD.100.116009
https://doi.org/10.1103/PhysRevD.100.116009
https://doi.org/10.1103/PhysRevD.100.116009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Minkowski spacetime. Unlike lattice QCD, where numeri-
cal reconstruction methods are usually required, the FRG
flow equations for correlation functions can be analytically
continued before they are solved [33–35]. For a comparison
of spectral functions from such analytically continued
functional renormalization group (aFRG) flows to those
from various reconstruction methods, see [36]. The power
of the aFRG flow equations has by now been demonstrated
in various model studies where mesonic and fermionic
spectral functions have been computed [37–41], recently
also self-consistently [42]. In order to assess truncation
effects, one can furthermore compare with classical-stat-
istical lattice simulations of spectral functions [43,44]
which are able to capture exactly their universal critical
behavior in the vicinity of continuous phase transitions.
Extending the previous study of aFRG flows for vector

and axial-vector meson spectral functions [14], in this paper
we include the contributions from the (axial-)vector mesons
themselves to these aFRG flows. The structure of the
propagators for the massive (axial-)vector fields of the
effective theory is thereby fixed via current-field identities,
i.e., requiring it to agree with that of analogous single-
particle or resonance contributions to the corresponding
conserved currents. In particular, this implies that the
massless single-particle contributions of the Stueckelberg
formulation must be avoided. To implement such a struc-
ture into the FRG framework, we have to go beyond the
leading order in the derivative expansion. Additional
longitudinal modes are included which switch themselves
off in the infrared, ensuring the transversality of the massive
(axial-)vector correlations in this limit. To demonstrate the
feasibility of this formulation, we compute the ρ and a1
spectral functions from the resulting aFRG flow equations
at finite temperature and density, across the critical end
point (CEP) in the phase diagram of the model, in parallel
with the previous study in [14] but now with the fluctua-
tions due to the massive vector and axial-vector mesons
included. We identify the new contributions that arise from
these fluctuations, and assess their influence on the temper-
ature and chemical-potential-dependent pole masses, the
possible signatures of a CEP and the restoration of chiral
symmetry.
This paper is organized as follows: In Sec. II A we

discuss the formulation of massive vector fields and verify
the extraction of the vector spectral function from the
imaginary part of the resulting transverse retarded propa-
gator. After motivating and introducing the effective model
in Sec. II B we show how the massive vector-meson
propagators can be implemented in the FRG framework
in Sec. II C. In Sec. III we then present the numerical
results, first for the Euclidean parameters in Sec. III A, then
the real-time results in the vacuum in Sec. III B, and finally
the ρ and a1 spectral functions at finite temperature and
chemical potential in Sec. III C. We conclude with our
summary in Sec. IV. An effective Lagrangian for massive
vector fields based on antisymmetric rank-2 tensors [45] is

shown to lead to vector correlators of the same form in the
Appendix A. Further technical details concerning the FRG
flow equations and the analytic continuation procedure are
provided in Appendixes B and C.

II. THEORETICAL SETUP

A. Massive vector fields and covariant time ordering

To describe massive vectors by fundamental fields in
an effective theory is known to be problematic [46,47],
if not impossible, without the Higgs mechanism. In the
Proca formalism the transversality of the corresponding
Green’s functions is maintained only on-shell which,
among other problems, leads to a pathological ultra-
violet behavior. While this is fixed in the Stueckelberg
formalism, one is then left with spurious massless single-
particle contributions to the vector Green’s functions
when restoring transversality in the Stueckelberg limit.
Essentially the same is true for Nakanishi’s B-field
formalism.
There is of course no problem with massive vectors in

Abelian-Higgs or Fradkin-Shenker models, for example,
or in the Standard Model for that matter. However, the
physical and hence gauge-invariant vectors are then nec-
essarily described by composite fields [48,49]. Here we
adopt a somewhat simpler approach to describe fluctuations
due to (axial-)vector mesons within our FRG framework
below. It starts from the fairly general point of view,
describing massive vectors as single-particle contributions,
which may well be composites, to the corresponding
conserved vector-current correlation functions. In order
to understand their spectral representations, on the other
hand, it is important to remember the subtlety in defining
covariant time ordering for vector or higher-rank tensor
field operators [50–53].
Our brief review here follows the discussion in [46] for

the simplest example of the correlation function of a
conserved Uð1Þ current jμðxÞ. As for any Feynman
propagator, its causal Green’s function must be covariant
while the naive time-ordered product is not. One therefore
defines covariant time ordering,

hTcovjμðxÞjνð0Þi ¼ θðx0ÞhjμðxÞjνð0Þi
þ θð−x0Þhjνð0ÞjμðxÞi þ τμνðxÞ; ð1Þ

which differs from naive time ordering by a seagull term
τμνðxÞ proportional to a delta distribution at x ¼ 0. Such a
seagull term must occur whenever the corresponding equal-
time commutators between different current components
contain a Schwinger term [54]. In our example this is the
case for

h½j0ðxÞ; jið0Þ�ijx0¼0 ¼ i∂iδ
3ðx⃗Þ

Z
∞

0

ds
ρðsÞ
s

; ð2Þ
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where ρðsÞ ≥ 0 is the spectral function of the current-
current correlators. Together with the covariance of their
causal Green’s functions, the requirement that Schwinger
terms are canceled from Ward identities [55] then fixes the
seagull term uniquely, in the present case,

τμνðxÞ ¼ iðgμ0gν0 − gμνÞδ4ðxÞ
Z

∞

0

ds
ρðsÞ
s

; ð3Þ

with metric and other conventions as in [46], where it is
explicitly demonstrated that this leads to a spectral repre-
sentation of the causal Green’s function, with covariant
time ordering,

hTcovjμðxÞjνð0Þi

¼ −i
Z

∞

0

ds
ρðsÞ
s

Z
d4p
ð2πÞ4 e

−ipx p
2gμν − pμpν

p2 − sþ iϵ
: ð4Þ

This is manifestly transverse and covariant as it should be,
with a measure given by the semipositive spectral density
ρðsÞ. This is the spectral function of the conserved Uð1Þ
current per charge squared. Assuming a (minimal) first-
order interaction gvjμVμ of the current with a vector field
VμðxÞ, with coupling gv, it is related to the vector field’s
spectral function ρvðsÞ by

g2vρðsÞ ¼ s2ρvðsÞ: ð5Þ

A massive single-particle contribution of strength Z in
ρvðsÞ, corresponding to a stable vector meson of mass mv,
will therefore contribute to the current spectral function
with a term

ρðsÞ ¼ m4
v

g2v
Zδðs −m2

vÞ þ � � � : ð6Þ

In order to describe such a possibly composite state by a
single-particle contribution to the vector-meson field Vμ in
the spirit of vector-meson dominance, i.e., with a current-
field identity

jμðxÞ ¼
m2

v

gv
VμðxÞ; ð7Þ

we therefore need to arrive at a transverse vector-meson
propagator DV

μν with a single-particle contribution of the
form (here still in Minkowski space),

DV
μνðpÞ ¼ −i

Z
m2

v

p2gμν − pμpν

p2 −m2
v þ iϵ

þ � � � : ð8Þ

This is not of the form of a massive Proca propagator, and it
differs by a factor p2=m2

v from the transverse propagator
that results in the Stueckelberg limit. In particular, it does

therefore not come along with massless single-particle
contributions. The price, however, is the poor ultraviolet
behavior when viewed as the propagator of an elementary
field. Although we have therefore obviously not succeeded
to describe an off-shell vector meson by an elementary
field, this form is still useful for our effective description of
vector-meson fluctuations. The correct low-energy effec-
tive Lagrangian for a massive transverse propagator of this
form, in fact, starts from describing left- and right-handed
vectors in terms of (anti-)self-dual field strengths [45]
which can then be reexpressed in terms of conserved four-
vectors to yield propagators of the form in Eq. (8) as we
describe in Appendix A.
The introduction of a regulator function RkðpÞ to

suppress fluctuations of momentum modes p < k in the
FRG framework requires one to modify Ward identities
accordingly [56]. We will therefore use an ansatz for
fluctuating vector mesons which contains additional
longitudinal terms that vanish with k → 0 in a way such
that a transverse vector-meson propagator of the form
as in Eq. (8) is obtained in the infrared as explained in
Sec. II C below.
In order to extract spectral functions from the results of

integrating the analytically continued FRG flow equations
we also need the imaginary parts of the retarded (axial-)
vector propagators. This is slightly subtle for the same
reasons, Schwinger and seagull terms, but the result will
luckily be just as one would naively expect.
The spectral function ρvðsÞ is originally defined from the

commutator of the vector field. Via Eq. (7) this is
essentially the same as that of the current jμðxÞ which,
however, includes the Schwinger term in Eq. (2),

h½VμðxÞ; Vνð0Þ�i

¼ −
Z

∞

0

ds
s2ρvðsÞ
m4

v

�
gμν þ

∂μ∂ν

s

�
iΔðx; sÞ;

written in terms of the invariant delta function

iΔðx;m2Þ ¼
Z

d4p
ð2πÞ4 ϵðp0Þ2πδðp2 −m2Þe−ipx:

As usual, its Fourier transform therefore essentially defines
the spectral function. In particular, we obtain here,

Z
d4xeipxh½VμðxÞ; Vνð0Þ�i

¼ −2πϵðp0Þθðp2Þp
2ρvðp2Þ
m4

v
ðp2gμν − pμpνÞ: ð9Þ

Expressing the invariant delta function by the imaginary
part of the retarded Green’s function,
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iΔðx;m2Þ ¼ −2ImΔRðx;m2Þ;

we can therefore write

ϵðp0Þθðp2Þp2ρvðp2Þðp2gμν −pμpνÞ

¼ 1

π

Z
∞

0

dss2ρvðsÞ
�
gμν −

pμpν

s

�
Im

−1
ðp0 þ iϵÞ2 − p⃗2 − s

:

ð10Þ

This is not quite the imaginary part of the retarded
propagator corresponding to Eq. (4) yet. However, because
the imaginary part of the Fourier transform of ΔRðx;m2Þ
has support only at p2 ¼ m2 we can trade powers of p2 for
matching powers of s in this spectral integral to write

ϵðp0Þθðp2Þρvðp2Þ
�
gμν −

pμpν

p2

�

¼ −
1

π
Im

Z
∞

0

ds
ρvðsÞ
s

p2gμν − pμpν

ðp0 þ iϵÞ2 − p⃗2 − s
: ð11Þ

This confirms that we can safely extract also a vector
spectral function from the discontinuity along the cut of
the transversally projected vector propagator with spectral
representation as in Eq. (4), i.e., from the transverse
imaginary part of a retarded vector propagator of the form

DT;R
μν ðpÞ ¼

Z
∞

0

ds
ρvðsÞ
s

p2gμν − pμpν

ðp0 þ iϵÞ2 − p⃗2 − s
: ð12Þ

B. Gauged linear sigma model with
quarks and the FRG

In this section we briefly introduce the effective model
we employ. For a more detailed discussion of the model we
refer to [14,31].
The starting point is the linear sigma model with quarks,

often used as effective low-energy model for two-flavor
QCD to study the chiral phase transition. It contains the
isotriplet π⃗ and the isosinglet σ as chiral partners in the
scalar sector which are coupled to quark-antiquark fields
with a Yukawa-type interaction. In these type of models
one has a CEP at low temperature and large quark chemical
potential, separating a crossover transition at larger temper-
atures from a first-order phase transition at lower ones, into
a dense region of self-bound quark matter. The σ field
contains an exactly massless critical mode at the CEP. Its
expectation value σ0 serves as an order parameter for
(spontaneous) chiral symmetry breaking and is fixed by
the pion decay constant.
In order to model confinement, Polyakov-loop exten-

sions are usually employed to suppress the contributions

from quark degrees of freedom in the pressure and other
bulk thermodynamic observables. Because extensions of
this kind are not suited to suppress equally unphysical
quark-antiquark thresholds in spectral functions, and were
hence not used in [14] where this is discussed in more
detail, we will not use them here either. We will accept the
quark thresholds seen in Figs. 9–11 as model peculiarities.
Instead of an improved modeling of confinement, one
might as well replace the quarks with baryons in the future,
leading to physical bayonic thresholds at correspondingly
higher energies in a purely hadronic effective low-energy
theory based, for example, on a chiral parity-doublet
baryon-meson model [57].
Either way, vector mesons are usually introduced in such

models as the gauge fields of a local flavor symmetry, first
proposed by Sakurai [58] and later extended to the full
chiral group to introduce the vector and axial-vector
isotriplets ρ⃗ and a⃗1 as the gauge fields of a local chiral
symmetry SUð2ÞL × SUð2ÞR [59]. This idea of local gauge
invariance was also the origin of the concept of VMD [10].
Alternatively, one sometimes imposes only a global chiral
symmetry rather than a local one [32,60].
In this work we employ the gauged linear sigma model

with quarks based on the assumption of VMD within the
framework of the functional renormalization group. The
idea of the FRG is to introduce a momentum scale k and to
integrate out fluctuations with momenta larger than this
scale. To this end one defines the so-called effective
average action Γk which interpolates between the classical
action S≡ Γk→Λ at some chosen UV cutoff scale Λ and the
full quantum effective action Γk→0 at the infrared (IR) scale
k → 0. Technically this is achieved by implementing a
regulator function Rk which suppresses low-momentum
fluctuations. The change of Γk when changing the scale k is
described by the so-called Wetterich equation [61],

∂kΓk ¼
1

2
Tr½∂kR

ϕ
k ðΓð2Þ

k ½ϕ� þ Rϕ
k Þ−1�: ð13Þ

One hence starts with an ansatz for the effective average
action Γk¼Λ at the UV scale and integrates out fluctuations
momentum shell by momentum shell until arriving at
the IR scale Γk→0. From suitable functional derivatives
of Eq. (13) one furthermore obtains flow equations for
the corresponding scale-dependent n-point vertex func-

tions ΓðnÞ
k .

Awidely used ansatz for the Euclidean effective average
action is provided by the leading order in a derivative
expansion, in the literature also referred to as the local
potential approximation (LPA). For the extended linear
sigma model with gauged SUð2Þ × SUð2Þ ≃ SOð4Þ chiral
symmetry, for example, this ansatz is of the following form,
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Γk ¼
Z

d4x

�
ψ̄ð∂ − μγ0 þ hsðσ þ iτ⃗ · π⃗γ5Þ þ ihvðγμτ⃗ · ρ⃗μ þ γμγ5τ⃗ · a⃗1μÞÞψ þ Ukðϕ2Þ − cσ

þ 1

2
ðDμϕÞ†Dμϕþ 1

8
trðVμνVμνÞ þ

1

4
m2

v;ktrðVμVμÞ þ
1

4
λktrð∂μVμÞ2

�
; ð14Þ

where, compared to [14], we only added the last term with
scale-dependent Stueckelberg parameter λk for now. We
will have to go beyond this leading order in the derivative
expansion to accommodate propagators of the form in
Eq. (8) for massive vector and axial-vector fields, however.
This will be discussed in the next subsection.
As usual, the (pseudo)scalar mesons are collected in

four-vectors, and the (axial-)vector mesons in skew-
symmetric Hermitian matrices transforming in the adjoint
SOð4Þ representation,

ϕ≡ ðπ⃗; σÞT; ð15Þ

Vμ ≡ ρ⃗μ · T⃗ þ a⃗1μ · T⃗
5: ð16Þ

The six Hermitian generators T⃗ and T⃗5 in the soð4Þ algebra
are defined such that TL

i ≡ 1
2
ðTi−T5

i Þ and TR
i ≡ 1

2
ðTi þ T5

i Þ
generate the (1,0) and (0,1) representations of SUð2ÞL×
SUð2ÞR,

½TL
i ; T

L
j � ¼ iϵijkTL

k ; ð17Þ

½TL
i ; T

R
j � ¼ 0; ð18Þ

½TR
i ; T

R
j � ¼ iϵijkTR

k : ð19Þ

The first part in Eq. (14) describes two quark flavors with
chemical potential μ plus Yukawa couplings hS to the
(pseudo)scalar mesons and hv to the (axial) vectors. Then
we have the Oð4Þ-invariant effective potential including
scalar meson self-interactions and the explicit chiral sym-
metry breaking term cσ. Next we have the kinetic term for
the scalars coupled minimally, via a covariant derivative
∂μ þ igVμ, with gauge coupling g, to the vector mesons Vμ

whose non-Abelian field-strength tensor would be given by

Vμν ¼ ∂μVν − ∂νVμ þ ig½Vμ; Vν�: ð20Þ

As in [14] we will neglect their self-interactions here,
however, and only maintain the Abelian part. Then, the last
three terms on the right-hand side in Eq. (14) together
represent one equal Abelian Stueckelberg Lagrangian for
each of the six massive vector fields described by Vμ,
related to one another by a global SOð4Þ symmetry. This
part will need further amendment as described below.
Moreover note that in a description with a fully gauged

SUð2Þ × SUð2Þ local chiral symmetry and a photon

coupling according to Kroll et al. [62] one would have
to require hv ¼ g=2 in order to be consistent with the
original VMD interaction with coupling gv ¼ g. For a most
direct comparison we instead use hs ¼ hv here, as was done
in the previous study in Ref. [14].
Taking two functional derivatives of the Wetterich

equation, Eq. (13), and using an ansatz of the from in
Eq. (14) one obtains flow equations for the Euclidean ρ-
and a1-meson two-point functions. Without truncations this
would still result in an infinite tower of equations as the

flow of ΓðnÞ
k involves vertex functions up to Γðnþ2Þ

k . To
obtain a closed set of equations we therefore extract the

n-point functions needed inside the flow equation for Γð2Þ
k

from the LPA ansatz of the effective action in Eq. (14). This
thermodynamically consistent and symmetry-preserving
scheme is self-consistent for the two-point functions only
in the limit of vanishing momenta, however. Moreover, the

scale-dependent three and four-point functions Γð3Þ
k and Γð4Þ

k
are themselves momentum independent in this truncation.
Self-consistent two-point functions at finite momenta, and
three- and four-point functions with nontrivial internal
substructures will be left as important extensions for future
studies. The resulting equations are shown diagrammatically
in Fig. 1,where one can already identify the kindof processes
that can occur in this truncation. After the analytic continu-
ation procedure, their real and imaginary parts basically
determine the spectral functions, cf. Apppendix C.

C. Vector-meson fluctuations

In this section we explain how to implement propagators
for single-particle contributions of the form in Eq. (8) from
massive (axial) vectors, as discussed in Sec. II A, into the
FRG flow equations. Since these are formulated in
Euclidean spacetime, we first write the corresponding
Feynman propagator in Eq. (8) as transverse Euclidean
momentum-space propagator,

DT;E
μν ðpÞ ¼ Z

m2

−p2

p2 þm2
ΠT

μνðpÞ; ð21Þ

with transverse projector ΠT
μνðpÞ ¼ δμν − pμpν=p2.

We also need the corresponding two-point function

Γð2Þ;E
μν ðpÞ in the FRG calculation, given by the inverse of

the propagator. One therefore adds a constant longitudinal
part in the Stueckelberg formalism, as also done for
example in [32,60]. The Stueckelberg Lagrangian in
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Eq. (14) corresponds to the following LPA-like ansatz for
the massive vector two-point functions

Γð2Þ;E
μν;k ðpÞ ¼ ðp2 þm2

v;kÞΠT
μνðpÞ þ ðλkp2 þm2

v;kÞΠL
μνðpÞ;

ð22Þ

where ΠL
μνðpÞ ¼ δμν − ΠT

μνðpÞ ¼ pμpν=p2.
With such an approach, based on the Stueckelberg LPA

ansatz [Eq. (14)], however, one is always left with non-
vanishing unphysical longitudinal contributions of the
vector-meson propagators inside the loops (see Fig. 1).
In particular, these unphysical fluctuations can lead to
sizable negative contributions to spectral functions and
hence to positivity violations, indicating that even the
Abelian gauge invariance is lost. In order to fix this
problem, we modify the massive vector part of our
Stueckelberg LPA ansatz for the scale-dependent effective
average action in the following way: In the parts that are
quadratic in the vector fields, in momentum space, we first
replace the Stueckelberg LPA form of Γð2Þ;E

μν;k in Eq. (22) by

Γð2Þ;E
μν;k ðpÞ ¼ ZT

k ðp2Þðp2 þm2
v;kÞΠT

μνðpÞ
þ λkZL

k ðp2Þðp2 þm2
v;k=λkÞΠL

μνðpÞ; ð23Þ

with momentum-dependent longitudinal and transverse
wave function renormalizations ZL

k ðp2Þ and ZT
k ðp2Þ in

addition to the scale-dependent mass and Stueckelberg
parameters. In order to restore the transversality of the
corresponding propagator in the infrared,

pμD
μν
k→0 ¼ 0; ð24Þ

which is anyway the proper generalization of the corre-
spondingWard identity, once a regulator function Rkðp2Þ is
introduced [56], we then choose a running Stueckelberg
parameter that starts at the ultraviolet cutoff k ¼ Λ with
some finite value λΛ > 0 and tends to zero for k → 0 in
order to effectively make the longitudinal fluctuations, now
with mass m2

v;k=λk, infinitely heavy in the infrared. One
simple choice that does the job is

λk ¼
k2

Λ2
; such that λΛ ¼ 1; λk ⟶

k→0
0: ð25Þ

The specific functional form of λk is to a large extent
arbitrary here, as long as it starts from some finite value λΛ
at the cutoff scale Λ and vanishes suitably rapidly with
k → 0 in the infrared, so that the longitudinal modes
decouple in this limit. The form in Eq. (25) represents
arguably the simplest choice with these properties.
Moreover, as further discussed below, we have verified
numerically that our results become totally insensitive to
the longitudinal fluctuations for sufficiently small ultra-
violet start values λΛ in the first place.
In addition, we require the longitudinal renormalization

function to cancel the explicit factor λk in front of the
longitudinal term. A simple way to realize this is to set

λkZL
k ðp2Þ ¼ ZT

k ðp2Þ ð26Þ

which we assume to be independent of the running
Stueckelberg parameter λk. Note that assuming ZL

k ¼ ZT
k

FIG. 1. Flow equations for the ρ and a1 two-point functions in diagrammatic form. Vertices are indicated by black filled dots, regulator
insertions by crossed circles. The color of the lines and regulators represents the type of field: blue for scalar and pseudoscalar mesons,
black for fermions and purple for vector mesons.

CHRISTOPHER JUNG and LORENZ VON SMEKAL PHYS. REV. D 100, 116009 (2019)

116009-6



and both to be independent of λk instead, would essentially
lead back to the Proca propagator for λk → 0 in the infrared
(i.e., up to the factor ZT

k ). In the present setup on the other
hand, longitudinal and transverse components start out
equally at the ultraviolet cutoff scale for k ¼ Λ so that the
two-point function is altogether proportional to δμν (as in
Feynman gauge). Relative to the transverse mass, the
longitudinal mass becomes heavier and heavier and the
unphysical longitudinal fluctuations switch themselves off
automatically during the flow.
Finally, for the transverse part to correctly model the

single-particle contribution to the vector correlator (8),
cf. Eq. (21) with scale-dependent mass mv;k and strength
Zk, all we now have left to do is to set

ZT
k ðp2Þ ¼ −Z−1

k m2
v;k=p

2 ≡ −m2
0;k=p

2; ð27Þ

with an independent mass parameterm2
0;k ¼ m2

v;k=Zk which
for Zk < 1 we expect to be larger than the scale-dependent
(pole) mass of the vector mesonm2

v;k, in particular for k→ 0

in the infrared. We will start the flow with the boundary
condition at the ultraviolet cutoff k ¼ Λ with ZΛ ¼ 1,
corresponding to the full spectral strength initially con-
tained in this single-particle contribution.
Note that the somewhat ambiguous details in the treat-

ment of the unphysical longitudinal fluctuations are irrel-
evant here: Just as the vector-meson mass parameter, the
longitudinal mass starts out at a rather large initial value of
about

ml;Λ ¼ mv;Λ ≈ 1 GeV ð28Þ

as compared to a UV cutoff for which we typically use
Λ ¼ 1.5 GeV. Because the longitudinal mass

ml;k ¼
Λ
k
mv;k ð29Þ

increases rapidly with lower k from there on, these
longitudinal fluctuations are strongly suppressed during
the flow. In principle, their suppression can be further
controlled by the initial value of the Stueckelberg parameter
λΛ. One then verifies that the results are in fact independent
of this parameter for sufficiently small λΛ. Our choice of
λΛ ¼ 1 seems rather natural but is by no means mandatory,
it simply turns out to be sufficiently small for the param-
eters used here at least at low temperatures. For higher
temperatures, e.g., for the results presented in the next
section with T ¼ 100 MeV and above, we in fact observe
that longitudinal fluctuations can occasionally still produce
small spurious contributions to capture processes during
the flow, when their initial mass is not large enough for
λΛ ¼ 1. In such cases we simply reduce λΛ further, until we
observe no noticeable dependence on λΛ anymore.

In contrast, we have been very careful in modeling the
transverse fluctuations to correctly describe the single-
particle contributions to the full (axial-)vector correlators,
including momentum- and field-independent wave function
renormalization in the form of the scale-dependent strength
Zk. This treatment of the (axial-)vector fluctuations thus in
this sense parallels what has been called the LPA truncation
for the (pseudo)scalar sector in the literature.
Choosing a transverse and longitudinal regulator func-

tions of the same form,

RT;L
μν;kðpÞ ¼ ZT;L

k ðp2Þk2rkðpÞΠT;L
μν ðpÞ; ð30Þ

with a suitable dimensionless regulator function rkðpÞ, and
using Eqs. (25)–(27) in Eq. (23), the ansatz for the scale-
dependent vector propagator with regulator becomes

DE
μν;kðpÞ≡ ðΓð2Þ;E

k ðpÞ þ RkðpÞÞ−1μν
¼ −p2

m2
0;kðp2 þ k2rkðpÞ þm2

v;kÞ
ΠT

μνðpÞ

−
p2

m2
0;kðp2 þ k2rkðpÞ þ Λ2

k2 m
2
v;kÞ

ΠL
μνðpÞ:

ð31Þ

For k → 0 we recover Eq. (24), and the transverse part
reduces to the desired single-particle contribution of a
massive vector state as in Eq. (21). The flow of the mass
parameter m2

0;k ¼ m2
v;k=Zk is in general different from that

of the LPA vector-meson mass m2
v;k, of course. As men-

tioned above, we will assume their initial values to be the
same at the UV cutoff, with ZΛ ¼ 1, i.e.,

m2
0;Λ ¼ m2

v;Λ: ð32Þ

Due to the fluctuations in the interacting theory one then
expects Zk < 1 and, with λk ¼ k2=Λ2, therefore the overall
ordering

m2
l;k > m2

0;k > m2
v;k; for k < Λ: ð33Þ

This behavior is confirmed explicitly in the numerical
calculations as described in the next section, Sec. III A.
As mentioned above, the LPA ansatz in Eq. (31) is used

to describe the fluctuations due to the single-particle
contributions of massive vectors on the right-hand side
of the FRG flow equations in Fig. 1, in our present
truncation. The result of the integrated flow on the left-
hand side yields the corresponding full two-point functions
including widths and various thresholds whose transverse
parts will have a spectral representation as in Eq. (12). In a
fully self-consistent calculation one would have to feed
these back into the flow equations, recompute and iterate
until convergence [42]. As in our previous studies
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[14,37,38] here we perform the first step in such an
approach, thus neglecting the fluctuations due to the
continuous contributions from the two-point functions
inside the flow.

III. NUMERICAL RESULTS

A. Euclidean FRG flow and mass parameters

In this section we discuss the numerical procedure for
solving the Euclidean flow equations and the resulting flow
of the Euclidean (curvature) mass parameters. Since the
setting used here in wide parts parallels that of Ref. [14] we
keep the discussion brief and refer to this reference as well
as our Appendix B for further details.
We start with solving the flow equation for the effective

potential Ukðϕ2Þ which contains scalars and pseudoscalars
as well as quarks and antiquarks as fluctuating fields.
Because the Euclidean mass parameters of the (axial-)
vector mesons are relatively heavy, of the order of the UV
cutoff Λ ¼ 1500 MeV, they are expected to contribute very
little to the Euclidean flow of the effective potential and are
therefore neglected. The flow equation for Ukðϕ2Þ is then
solved with standard procedures by discretizing its argu-
ment in field space, and using the following simple form of
the linear sigma model in the symmetric phase at the UV
scale Λ as initial condition,

Uk¼Λðϕ2
i Þ ¼ b1ϕ2

i þ b2ϕ4
i : ð34Þ

Storing the k-dependent effective potential, we solve the
flow equations for the vector-meson mass parameters m2

v;k

and m2
0;k next, see Appendix B for more details. With the

parameters listed in Table I (set 1), we obtain the following
values for the chiral order parameter σ0 and the Euclidean
mass parameters at the IR scale of k ¼ 40 MeV,

σ0 ¼ 93.0 MeV; mσ ¼ 557.1 MeV;

mπ ¼ 140.4 MeV; mψ ¼ 300.0 MeV;

mρ ¼ 868.1 MeV; ma1 ¼ 1363.1 MeV;

m0 ¼ 1294.3 MeV: ð35Þ

The first four of the UV parameters in Table I thereby
determine the infrared properties of the effective potential,
such as the pion mass and decay constant as well as the

quark and sigma meson mass parameters in the usual way.
The values of these four parameters are not adjusted when
solving the flow equations for either the Euclidean vector-
meson mass parameters or their aFRG flow equations
which do not in turn affect the effective potential. The
first four parameters of Table I are therefore the same for all
three parameter sets.
Note that the mesonic mass parameters in Eq. (35) are

not directly the physical meson masses. They are deter-
mined from the zero-momentum limit of the respective
Euclidean two-point functions Γð2Þ;EðpÞ. For the (pseudo)
scalars they agree with the corresponding curvatures in
the π and σ directions of the effective potential in our
thermodynamically consistent and symmetry-preserving
truncation scheme.
The analogous Euclidean masses of vector and axial-

vector meson, on the other hand, then essentially result
from tuning their coupling g and UV mass parameter mv;Λ
so that the corresponding pole masses mp

ρ and mp
a1 assume

the approximate mass values of the physical ρð770Þ and the
a1ð1260Þ mesons. Since the ρ and a1 are resonances, we
estimate their pole masses from the zeros of the real parts of

the respective retarded two-point functions, Γð2Þ;R
ρ=a1

ðpÞ,
which is a fairly good approximation as long as the widths

of the resonances, i.e., the imaginary parts of Γð2Þ;R
ρ=a1

in the
resonance region, are sufficiently small. In our present
qualitative study we are content with this approximation
and obtain the pole masses listed in Table II which are all
reasonably close to the physical masses of ρ and a1 for our
representative UV parameters of Table I. For a more precise
determination of masses and widths one would have to

study the analytic structure of Γð2Þ;R
ρ=a1

and look for the
resonance poles on the unphysical second Riemann sheet,
see e.g., Refs. [63,64].
The k flow of the Euclidean masses and of the mass

parameter m0;k, all evaluated at the k-dependent minimum
σ20;k of Ukðϕ2Þ, is plotted in Fig. 2. Starting at the UV scale
where chiral symmetry is restored, the masses of the chiral
partners π-σ and ρ-a1 are degenerate, the quark mass has its
very small bare value. Taking fluctuations into account by
successively lowering the scale k, the mass parameter m0;k

immediately splits from its counterpart mv;k because their

TABLE I. Different UV parameter sets resulting in roughly the
same pole masses, close to the physical ones of ρ and a1, all with
the same quark-meson model parameters.

Set No. b1ðΛ2Þ b2 cðΛ3Þ hs ¼ hv g mv;ΛðΛÞ
1 0.381 0.2 0.5401 × 10−3 3.226 11.3 0.7067
2 11.8 0.684
3 10.5 0.74

TABLE II. Pole masses of (axial-)vector mesons for the
parameter sets of Table I compared to the estimates for ρð770Þ
and a1ð1260Þ from the Review of Particle Properties in Particle
Data Group (PDG) (2019).

Set No. mp
ρ (MeV) mp

a1 (MeV)

1 776.3 1242.6
2 774.9 1266.2
3 770.2 1258.6
PDG 775.26� 0.25 1230� 40

CHRISTOPHER JUNG and LORENZ VON SMEKAL PHYS. REV. D 100, 116009 (2019)

116009-8



flow is not independent but in fact opposite in sign. In
particular, one has

∂km2
0;k

m2
0;k

¼ −
∂km2

v;k

m2
v;k

; ð36Þ

cf. Appendix B. Moreover, the relation m2
0;k ≥ m2

v;k dis-
cussed in Sec. II C with m2

0;Λ ¼ m2
v;Λ therefore holds by

construction whenever the flow of the vector-meson mass
parameter mv;k is predominantly negative as in Fig. 2.
Lowering the scale further, spontaneous chiral symmetry

breaking sets in, giving rise to an increase of the chiral
order parameter σ0;k. The quark acquires its dynamically
generated constituent mass, and the masses of the chiral
partners split up. At the IR scale we then arrive at the values
listed in Eq. (35).

B. Spectral functions in the vacuum

In this subsection we now explicitly demonstrate that the
formalism presented in Sec. II C yields positive and
physically meaningful contributions to the vector and
axial-vector meson spectral functions.
Based on the Euclidean k flow as input, from which all

scale-dependent parameters are determined, we employ our
standard analytic continuation procedure as outlined in
Appendix C to obtain the aFRG flow equations for the

retarded two-point functions Γð2Þ;R
ρ=a1

ðωÞ, here at vanishing
spatial momentum p⃗, for the ρ and a1 mesons from the
diagrams shown in Fig. 1.
The spectral function as a function of the external

frequency ω at vanishing external spatial momentum jp⃗j ¼
0 MeV is then given by the discontinuity along the cut as
verified explicitly for the transversally projected vector
propagator at the end of Sec. II A, which can be extracted

from the real and imaginary parts of Γð2Þ;R
ρ=a1

ðωÞ as usual by

ρðωÞ ¼ 1

π

ImΓð2Þ;RðωÞ
ðReΓð2Þ;RðωÞÞ2 þ ðImΓð2Þ;RðωÞÞ2 : ð37Þ

In Fig. 3 we show the imaginary parts of Γð2Þ;R
ρ=a1

ðωÞ for
every process separately. Since there are no in-medium
capture processes in the vacuum, all thresholds indicate
decays of off-shell (axial-)vector mesons ρ and a1 into the
particle pairs as labeled in the figure, which can also be
inferred from Fig. 1. In the present truncation, with only
the single-particle contributions on the right-hand side of
the aFRG flow equations, the positions of the thresholds are
still determined by this input, i.e., by the Euclidean mass
parameters at the IR scale. In a self-consistent solution [42]
these thresholds will eventually be determined by the
resulting physical pole masses, as they should be of course,
possibly smeared out for resonances. Decays involving σ
mesons in the final state for example will then lead to two
additional pions, such as a1 → π þ σ below which will
then contribute to the decay a1 → 3π.
In the spirit of the grid-code technique, the k-dependent

input for the aFRG flow equations for real and imaginary
parts of Γð2Þ;RðωÞ is thereby normally evaluated at the fixed
value of the σ-field variable that corresponds to the
minimum of the effective potential at σ ¼ σ0 ¼ 93 MeV
in the infrared. For the (axial-)vector mesons this results in
mass parameters mρ and ma1 that are considerably larger
than those in Eq. (35) obtained from the k-dependent
minimum σ0;k which further enhances the deviations of the
two-particle thresholds from their physically expected
values.
In the present setup, for example, an off-shell ρ meson

can decay into an a1 þ π pair, if the energy constraint is
fulfilled, i.e., forω ≥ ma1 þmπ ≈ 1925.7 MeV, here with a
large mass parameter ma1 ¼ 1785.3 MeV. Analogously,
the decay a1 → ρþ π starts ω ≥ mρ þmπ ≈ 1548.6 MeV

FIG. 2. Flow of the Euclidean mass parameters in Eq. (35) with
the RG scale k in the vacuum (parameter set 1).

FIG. 3. Imaginary parts of the retarded two-point functions of
the ρ (solid lines) and a1 meson (dashed lines) for every process
separately as a function of external frequency ω (evaluated at the
fixed infrared minimum σ ¼ σ0 using the parameters of set 2).
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with an Euclidean mass parameter mρ ¼ 1408.2 MeV that
is also much larger than the corresponding pole mass.
Because of the necessity to suppress capture processes

involving spurious longitudinal vector components at
higher temperatures, as relevant in the next subsection,
we have reduced λΛ by about an order of magnitude here
already, to further increase the longitudinal masses as
mentioned in Sec. II C. Readjusting the values of the
coupling g and UV mass parameter mv;Λ, by using set 2
instead of set 1 here, then restores the physical pole masses
of ρ and a1 again, cf. Table II. While this would not be
necessary at low temperatures, we avoid changing the UV
parameters at higher temperatures in this way.
The curvature masses of pion and sigma meson are the

same as in Eq. (35) and so is the quark mass. The decay of a
ρ into pion pair therefore starts at a reasonable threshold
of 280.8 MeV here (and a1 → σ þ π at 697.5 MeV).
The decays into quark-antiquark pairs starting at
600 MeV are not suppressed since there is no confinement
in our model (a simple Polyakov-loop enhancement of
the model will not do the job). However, all processes
give positive contributions and therefore lead to positive
(axial-)vector-meson spectral functions.
Putting all contributions for the real and imaginary parts

of Γð2Þ;R together gives the vacuum spectral functions of the
ρ and a1 mesons shown in Fig. 4. The peaks are in both
cases located at the pole masses where the possible decays
lead to rather broad structures in both spectral functions.
A rather simple improvement of the unphysically large

two-particle thresholds involving decays into ρ and a1 can
be obtained by giving up the unified treatment of (pseudo)
scalar and (axial-)vector mesons in the following way: We
use the Euclidean input evaluated at the k-dependent
minimum σ0;k of the scale-dependent effective potential
as we did for the flow of the mass parameters in the last
subsection, when solving the aFRG flow equations for the ρ

and a1 two-point functions Γ
ð2Þ;R
ρ=a1

ðωÞ. For the scale-depen-
dent effective potential itself, on the other hand, we stick to
the grid technique in the field variable ϕ2, to include the
order-parameter fluctuations due to collective excitations in
the σ-π system as we have been doing so far.
Because this changes the pole masses of ρ and a1, we

have to change their coupling g and UV mass parameter
mv;Λ once again to compensate for this, which is achieved
here by using the parameters of set 3 in Table I. The

imaginary parts of Γð2Þ;R
ρ=a1

ðωÞ and the ρ and a1 spectral
functions that result from this procedure are shown in
Figs. 5 and 6.
While there are no qualitative changes as compared to

the corresponding previous results in Figs. 3 and 4, with the
Euclidean mass parameters mρ ¼ 885.5 MeV and
ma1 ¼ 1316.2 MeV, the thresholds of a1 → ρþ π and ρ →
a1 þ π have now moved down to mρ þmπ ≈ 1025.9 MeV

FIG. 4. Vacuum spectral function of the ρ (solid blue) and a1
meson (dashed red) as a function of external frequency ω
(evaluated at fixed σ ¼ σ0, parameters of set 2).

FIG. 5. Imaginary parts of the retarded two-point functions of ρ
(solid) and a1 (dashed) over ω as in Fig. 3, but here evaluated at
the scale-dependent σ ¼ σ0;k using the parameters of set 3.

FIG. 6. Vacuum spectral functions of ρ (solid) and a1 (dashed)
over ω as in Fig. 4, but here evaluated at the scale-dependent
σ ¼ σ0;k using the parameters of set 3.
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and ma1 þmπ ≈ 1456.6 MeV, respectively. They are still
not at the corresponding sums of pole masses, but the
differences are considerably reduced by this method of
evaluating the Euclidean input for the aFRG calculations of
the ρ and a1 correlators at the scale-dependent minimum
σ0;k of the effective potential. In contrast to the decays
involving (axial) vectors, this modification has no effect on
quark-antiquark thresholds or those involving only decays
into σ and π, because the relevant (curvature) masses are the
same in the infrared.

C. In-medium results

In order to study the in-medium behavior of the ρ- and
a1-meson spectral functions across the entire phase dia-
gram of the model, the present setup is straightforwardly
extended to finite temperature and quark chemical poten-
tial. In the present subsection all calculations are based on
the scale-dependent Euclidean input evaluated at the fixed
value in field space corresponding to the infrared minimum
at σ0 ¼ 93 MeV again, and with the parameters of set 2 in
Table I.
Because the Euclidean mass parameters determine the

thresholds of all processes, we first look at their T and μ
dependencies which are qualitatively the same as in [14]
where the corresponding phase diagram is shown as well.
In Fig. 7 we show the Euclidean mass parameters as

functions of temperature at vanishing chemical potential.
The qualitative behavior roughly resembles that of the
scale-dependent mass parameters, as obtained by the
successive inclusion of quantum fluctuations, at zero
temperature in Fig. 2.
With spontaneously broken chiral symmetry in the

vacuum, the zero-temperature masses of the chiral partners
are split up, and the quarks are massive, here with a
constituent mass of 300 MeV. The T ¼ 0 values of all mass
parameters in Fig. 7 agree with those determining the
thresholds in Fig. 3. Increasing the temperature, chiral
symmetry gets gradually restored as indicated by the
melting of the order parameter σ0ðTÞ (and so of the quark
mass mψ ¼ hsσ0). At temperatures beyond the crossover

region the mass parameters of the chiral partners become
rapidly degenerate.
The chemical-potential dependence of these Euclidean

masses, at a fixed temperature of T ¼ 10 MeV which is
approximately that of the CEP with our model parameters,
is shown in Fig. 8. We observe that they remain constant
over a wide range of μ, which might seem curious at first,
just as the dog that did nothing in the nighttime in The
Adventure of Silver Blaze [65], and which is due the
temperature being so low here. At μ ≈ 298 MeV, however,
all masses except that of the pion drop abruptly. The sigma
becomes almost massless indicating the proximity of the
critical end point which represents a second-order phase
transition with Z2 universality where only the correlation
length of the σ field diverges. For very large μwe again see
the degeneracy of the masses of the chiral partners now
reflecting the gradual restoration of chiral symmetry with
density inside the high-density phase (here of self-bound
quark matter).
We are now ready to discuss the temperature and

chemical-potential dependence of the spectral functions
of ρ and a1 mesons shown in Fig. 9. In the present setup,
the following timelike decay and capture processes are
possible for an off-shell ρ� vector meson,

ρ� → ψ þ ψ̄ ; ρ� → π þ π;

ρ� → a1 þ π; ρ� þ π → a1; ð38Þ

and for an off-shell a�1 axial-vector meson,

a�1 → ψ þ ψ̄ ; a�1 þ σ → π;

a�1 → π þ σ; a�1 þ π → σ;

a�1 → ρþ π; a�1 þ π → ρ;

a�1 → a1 þ σ; a�1 þ σ → a1; ð39Þ

where each particular process is possible only if it is
energetically allowed, i.e., a decay process only for
energies ω in the off-shell meson correlator with

FIG. 7. Euclidean mass parameters over temperature at vanish-
ing chemical potential.

FIG. 8. Euclidean mass parameters over chemical potential at
T ¼ 10 MeV, approximately across the CEP.
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FIG. 9. In-medium spectral functions of the ρ (solid blue) and a1 meson (dashed red) as a function of external frequency ω for
increasing temperature at μ ¼ 0 MeV (left column) and for increasing chemical potential close to the CEP at T ¼ 10 MeV (right
column) plotted in logarithmic scales.
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ω ≥ mα þmβ, and a capture process for ωþmα ≤ mβ

which requiresmβ > mα in addition. We have therefore not
listed here the capture processes ρ� þ a1 → π, a�1 þ ρ → π
and a�1 þ a1 → σ where this never occurs, while it does
happen that mσ < mπ very close to the critical end point as
seen in Fig. 8.
In the vacuum only the decay processes contribute,

cf. Fig. 3, and thus the starting thresholds are given by
the decays into the light (pseudo)scalar mesons in both
spectral functions. Here, essentially the only new feature as
compared to the previous study in [14] is the decay a1 →
ρþ π as discussed in the previous subsection. Since the
decays into quark-antiquark pairs yield rather large con-
tributions, cf. Ref. [14], both spectral function always
broaden in all T and μ cases for ω ≥ 2mψ. However, with
increasing temperature (from top to bottom in the left
column of Fig. 9) we see that the various capture processes
start to contribute, giving rise to an increase in both spectral
functions especially at low external frequencies, where in
the a1 spectral function the van Hove peak appears that was
already observed in [14]. At T ¼ 300 MeV the masses of
the chiral partners are degenerate and the quarks become
the lightest degrees of freedom leading to broad and fully
degenerate spectral functions of ρ and a1 mesons as
expected in the chirally restored phase.
The most noticeable differences with respect to the

previous results in [14] are the new capture processes
involving vector mesons, i.e., ρ� þ π → a1, a�1 þ π → ρ
and a�1 þ σ → a1 which fill up the gap between capture and
decay processes when only the light (pseudo)scalars are
involved. This is demonstrated in Figs. 10 and 11 where we
plot the individual imaginary parts of the ρ and the a1 two-
point function separately that altogether contribute to their
spectral functions at T ¼ 150 MeV as an example.
Turning on the chemical potential (as done in the right

column of Fig. 9), when the low-temperature system at

T ¼ 10 MeV eventually starts to react, beyond
μ ≃ 290 MeV, we observe modifications in the a1-meson
spectral function close to the critical end point located at
μCEP ≈ 298 MeV. While the ρ-meson spectral function
remains qualitatively unchanged, the dropping threshold
for a�1 → π þ σ and the related peak in the a1 spectral
function are due to the dropping sigma mass in this critical
region and can thus serve as a signature for the CEP. As
compared to the previous study in [14] this signal got
somewhat washed out by the additionally possible proc-
esses, unfortunately, but the fact that it is robust enough to
still be visible seems at least encouraging for further
studies. At large μ we again observe the full degeneracy
of both spectral functions with gradual chiral symmetry
restoration inside the high-density phase.
To summarize, the modifications in the thermal medium

are once more exemplified in Fig. 12 where the spectral

FIG. 10. Imaginary parts of the retarded two-point function of
the ρ meson for every process separately as a function of external
frequency ω at T ¼ 150 MeV (evaluated at fixed IR minimum
σ ¼ σ0 with the parameters of set 2).

FIG. 11. Imaginary parts of the retarded two-point function of
the a1 meson for every process separately as a function of external
frequency ω at T ¼ 150 MeV (evaluated at fixed IR minimum
σ ¼ σ0 with parameters of set 2).

FIG. 12. Spectral functions of the ρ (solid blue) and a1 meson
(dashed red) as a function of external frequency ω for T ¼
0 MeV (dark) and T ¼ 150 MeV (light).
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functions at T ¼ 0 MeV and T ¼ 150 MeV are compared
to one another in a linear plot. The increasing temperature
leads to a decreasing a1 pole mass, whereas the peak of the
ρ meson stays put as it melts down with temperature. This
effect continues by further increasing the temperature until
both spectral functions are fully degenerate.
As in the previous study of Ref. [14] this is once again in

line with the melting-ρ scenario [8,12,13,31]. That the
position of the ρ-meson resonance is even less temperature
dependent here than in the previous study in [14] is seen
in Fig. 13 where we plot our estimates of the real parts
of the positions of the corresponding poles on the unphys-
ical Riemann sheet as the physical pole masses of ρ
and a1 mesons over the chiral crossover with increasing
temperature.
The corresponding dependence of the same physical

pole masses of ρ and a1 on the chemical potential at the
constant temperature of T ¼ 10 MeV across the critical
end point is shown in Fig. 14. The pole mass of the a1 also

drops considerably in the critical region whereas that of the
ρ meson hardly shows much change here either.

IV. SUMMARY AND CONCLUSION

In this paper we have presented our results from
computing in-medium vector and axial-vector meson
spectral functions within an effective chirally gauged
low-energy theory. Extending the previous study of
Ref. [14] we have thereby for the first time also included
the fluctuations due to these vector and axial-vector mesons
themselves in this nonperturbative computational frame-
work based on the FRG. More specifically, the originally
Euclidean FRG flow equations for two-point correlation
functions at finite temperature and density are first ana-
lytically continued, before they are solved to directly
compute retarded Green’s functions within this analytically
continued aFRG framework.
In order to include the (axial-)vector meson fluctuations

in our aFRG flows it was first necessary to understand how
off-shell fluctuations due to these massive (axial) vectors
are described correctly by elementary fields in an effective
theory. Unphysical positivity-violating contributions from
longitudinal fluctuations need to be suppressed, and spu-
rious massless single-particle contributions to the trans-
verse fluctuations avoided. Our description is based on the
known spectral representations for commutators and causal
Green’s functions of the corresponding conserved currents,
including seagull and Schwinger terms, which are then
translated to the (axial-)vector fields of the effective theory
via the current-field identities of vector-meson dominance
models. This uniquely fixes the form of the transverse
single-particle contributions from the massive (axial-)vec-
tor fields inside the loops on the right-hand side of the
aFRG flow equations. We have implemented these trans-
verse forms, which most importantly do not contain any
massless single-particle contributions, together with match-
ing longitudinal components to the (axial-)vector two-point
functions which are constructed in a way such that they turn
themselves off in the regularized propagators during the
flow, as one approaches the limit k → 0 in the infrared. The
procedure of dealing with the longitudinal fluctuations is
inspired by the modified Ward identities of FRG flows with
current conservation being recovered in the infrared.
Within an effective theory based on the gauged linear

sigma model with quarks, we have solved the Euclidean
FRG flow for the effective average action in our truncation,
as a first step, which is used to determine the thermody-
namic potential and the other input needed for the aFRG
flows in the second step. For the (axial-)vector fluctuations
this input includes scale-dependent mass parameters mv;k

and residues Zk ≡m2
v;k=m

2
0;k, i.e., the strengths of the

single-particle contributions, in the spirit of an LPA
truncation. We have explicitly verified the expected order-
ing m2

v;k ≤ m2
0;k of these mass parameters together with the

FIG. 13. Temperature dependence of the pole masses of ρ (solid
blue) and a1 (dashed red) meson at μ ¼ 0.

FIG. 14. Chemical potential dependence of the pole masses of ρ
(solid blue) and a1 (dashed red) mesons at T ¼ 10 MeV.
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chiral symmetry breaking pattern in the hierarchy of all
Euclidean mass parameters emerging at a typical scale of
k ∼ 600 MeV during the flow.
For comparison, we have computed the spectral func-

tions of ρ and a1 from the corresponding aFRG flows for
the same combinations of temperature and chemical poten-
tial as in Ref. [14]. While we observe a similar qualitative
overall behavior, with the (axial-)vector fluctuations
included, there are now additional processes possible which
involve the ρ and a1 mesons inside the loops. We have
disentangled these various contributions to the spectral
functions: For increasing temperature we observe various
new capture processes such as ρ� þ π → a1, a�1 þ π → ρ
and a�1 þ σ → a1 to dominate the regime between capture
and decay processes involving only (pseudo)scalars. The
corresponding new decay channels on the other hand
produce additional, although subdominant structure in the
high frequency domain. As before, at about T ≃ 300 MeV
both spectral functions become completely degenerate.
As a function of chemical potential, the previously

observed peak in the critical region, of the a1 spectral
function at the dropping a�1 → σ þ π threshold, is still
visible on top of all the additional new structure. Perhaps
most importantly for further studies, this thus appears to be
a robust signature of the critical end point.
In summary, we have developed and tested a successful

effective description of (axial-)vector fluctuations due to
off-shell single-particle contributions from ρ and a1 mesons
in agreement with the general spectral properties of the
corresponding conserved (axial-)vector currents. From a
phenomenological point of view, an important next step
will be to implement not only such single-particle con-
tributions in the aFRG flows, but an enhanced ansatz which
reflects the full nontrivial spectral properties of a given
correlation function, or even a completely self-consistent
solution where the nontrivial spectral functions are fed back
into the aFRG flows, e.g., via suitable spectral representa-
tions. In our present effective theory description, for
example, this should lead to the specific peak of the a1
spectral function in the critical region to become observable
also in the ρ-meson spectral function. From there on, this
signature can then mix into the electromagnetic spectral
function as described in Ref. [40], and hence eventually
become an observable feature of thermal dilepton spectra.
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APPENDIX A: MASSIVE SPIN-1 PARTICLES
FROM ANTISYMMETRIC RANK-2

TENSOR FIELDS

Gasser and Leutwyler have proposed to describe the ρ
meson in terms of an antisymmetric rank-2 tensor field ρμν
when constructing an effective Lagrangian [45] starting
with a free kinetic Lagrangian plus mass term of the form

Lρ
0 ¼ −

1

2
ð∂μρμνÞ∂σρσν þ

1

4
m2

vρμνρμν: ðA1Þ

We are considering just a single flavor component without
gauging for simplicity. All we want to point out here is that
this Lagrangian, when the components of ρμν are reex-
pressed in terms of a conserved four-vector field, leads to a
transverse tree-level two-point function for this vector field
in momentum space of the form

Γð2ÞT
μν ðpÞ ¼ −

m2
v

p4
ðp2 þm2

vÞðp2δμν − pμpνÞ; ðA2Þ

corresponding to the transverse propagator in Eq. (21) or
the corresponding Feynman propagator in Eq. (8).
The essential step to see how this form arises is based on

Hodge decomposition and inversion of the de Rham–
Laplace operator. We therefore sketch it here using the
language of de Rham cohomology for brevity. We thus
describe classically conserved left- and right-handed J� or
(axial-)vector JV=A currents in terms of one-forms with

J� ¼ 1

2
ðJV � JAÞ; and δJ� ¼ δJV=A ¼ 0: ðA3Þ

We do not include anomalies in the discussion. By the
Poincaré lemma on convex regions of spacetime (we use
the Euclidean signature here) these are then coexact, i.e.,
expressed as exterior coderivatives of (anti-)self-dual two-
forms F�, with �F� ¼ �F�,

J� ¼ δF�: ðA4Þ

The self-dual and anti-self-dual antisymmetric rank-2
tensors transform in the (1,0) and (0,1) representations
of the Euclidean Oð4Þ [or also the proper orthochronous
Lorentz group with ð1; 0Þ ↔ ð0; 1Þ under parity, so that
ð1; 0Þ ⊕ ð0; 1Þ is used for massive spin-1 particles].
Upon exterior derivation, we thus obtain from Eq. (A4),

dJ� ¼ dδF�; and � dJ� ¼ �dδF� ¼ �δdF�: ðA5Þ

It is now a simple matter of combining the two and
inverting the de Rham–Laplace operator Δ ¼ dδþ δd to
express the field strengths in terms of the conserved
currents as
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F� ¼ Δ−1ðdJ� � �dJ�Þ: ðA6Þ

If we want the canonical dimensions of all tensors here to
agree with the degree of the corresponding differential
form, we identify Fþ

μν þ F−
μν ¼ mvρμν in Eq. (A1) to write

the corresponding actions for the (anti-)self-dual F� of
dimension 2 as

S�0 ¼
Z

d4x

�
1

4
F�
μνF�

μν −
1

2m2
v
ð∂μF�

μνÞ∂σF�
σν

�

¼ 1

4
ðF�; F�Þ − 1

2m2
v
ðδF�; δF�Þ; ðA7Þ

in the last line also expressed in terms of the Hodge inner
product for p-forms, e.g.,

ðF;FÞ ¼
Z
M
F ∧ �F ¼

Z
d4xFμνFμν ðA8Þ

for our two-forms F in R4. The last step now is to likewise
rescale our conserved currents, i.e., the coexact one-forms
J� ¼ δF�, which are originally of dimension 3 (they are
actually dual to three-forms), with a current-field identity,
J� ¼ m2

vV�, to express them in terms of one-forms V� of
dimension 1. In terms of these conserved vector fields we
then finally obtain from Eq. (A6),

1

4
ðF�; F�Þ ¼ m4

v

2
ðV�; δΔ−2dV�Þ; ðA9Þ

1

2m2
v
ðδF�; δF�Þ ¼ m2

v

2
ðV�; δΔ−1dV�Þ: ðA10Þ

The corresponding two-point functions for the vector fields
V� are transverse as they must be, and can now be read off
from Eq. (A7) with these relations: The mass term from
Eq. (A9) produces in momentum space the transverse
masslike term in Eq. (A2), i.e., the second one proportional
tom4

v=p2, and the kinetic term from Eq. (A10) produces the
first term in Eq. (A2), now actually proportional to m2

v.

APPENDIX B: FRG FLOW EQUATIONS

In this Appendix we provide further details on the
derivation of the FRG flow equations within our present
truncations.
The flow equation for the effective potential Ukðϕ2Þ is

given by

∂kUk ¼
k4

12π2

�
1þ 2nBðEσ;kÞ

Eσ;k
þ 3ð1þ 2nBðEπ;kÞÞ

Eπ;k

−
4NfNc

Eψ ;k
ð1 − nFðEψ ;k − μÞ − nFðEψ ;k þ μÞÞ

�
;

ðB1Þ

where nB and nF are the bosonic and fermionic occupation
numbers, and the scale-dependent quasiparticle energies
are defined by

Eα;k ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

α;k

q
; α ∈ fπ; σ; ρ; a1;ψg: ðB2Þ

The corresponding mass parameters are given by

m2
π;k ¼ 2U0

kðϕ2Þ; ðB3Þ

m2
σ;k ¼ 2U0

kðϕ2Þ þ 4ϕ2U00
kðϕ2Þ; ðB4Þ

m2
ρ;k ¼ m2

v;k; ðB5Þ

m2
a1;k

¼ m2
v;k þ g2ϕ2; ðB6Þ

m2
ψ ;k ¼ h2sϕ2; ðB7Þ

where the derivatives of the scale-dependent effective
potential denote derivatives with respect to the chirally
invariant ϕ2 ¼ π⃗2 þ σ2 which are evaluated on the grid in
field space when integrating the flow equation for the
effective potential.
Evaluated at the scale-dependent minimum ϕ2

0;k ¼ σ20;k
of Ukðϕ2Þ these mass parameters at the same time yield the
scale-dependent Euclidean curvature masses as determined

from the respective two-point functions Γð2Þ;E
α;k ðpÞ in the

limit p2 → 0 which are shown in Fig. 2.
The flow equations for the transverse Euclidean two-

point functions of ρ and a1 are given by the projections

∂kΓ
ð2Þ;T
k ðpÞ ¼ 1

3ðN2
f − 1ÞΠ

T
μνðpÞtrð∂kΓ

ð2Þ
μν;kðpÞÞ; ðB8Þ

where these equations are evaluated at fixed value in field
space, the minimum at the IR scale σ0. The structure of the

flow of Γð2Þ
ρ=a1;k

is illustrated in Fig. 1 and contains regulator

derivatives ∂kRk, vertices Γð3Þ
k and Γð4Þ

k and regulated
Euclidean propagators DE

k ðqÞ.
The regulated propagator of particle species α is

defined as

DE
α;kðqÞ≡ ðΓð2Þ

α;kðqÞ þ Rα;kðqÞÞ−1; ðB9Þ
where we choose three-dimensional analogs of optimized
Litim-regulator functions Rα;kðqÞ [66],

Rσ=π;kðqÞ ¼ ðk2 − q⃗2ÞΘðk2 − q⃗2Þ; ðB10Þ

Rψ ;kðqÞ ¼ iq⃗ð
ffiffiffiffiffiffiffiffiffiffiffiffi
k2=q⃗2

q
− 1ÞΘðk2 − q⃗2Þ; ðB11Þ

RT;L
ρ=a1;k

ðpÞ ¼ −m2
0;k

p2
ðk2 − p⃗2ÞΠT;L

μν ðpÞΘðk2 − q⃗2Þ; ðB12Þ
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mostly as in previous studies. The vector-meson regulator
in Eq. (B12) is chosen in a way so that it acts like a scale-
and momentum-dependent mass term which is added to the
vector-meson two-point function.
The vertices Γð3Þ

k and Γð4Þ
k are extracted from the ansatz

for the effective average action equation (14) and basically
contain the couplings hv, g as well as the derivatives of the
effective potential. To keep things simple in this qualitative
study, the couplings hs, hv and g are chosen to be scale
independent as in [14].
We are left with flow equations for the vector-meson

masses m2
v;k and m

2
0;k. The flow of the mass parameter m2

0;k
is obtained by projecting the transverse part of the vector-
meson two-point function

Γð2Þ;T
ρ;k ðpÞ ¼ −m2

0;k

p2
ðp2 þm2

v;kÞ; ðB13Þ

where the flow equation for m2
0;k is obtained from

∂km2
0;k ¼ −

1

3ðN2
f − 1Þ

× lim
p→0

∂
∂p⃗2

ðp2ΠT
μνðpÞtrð∂kΓ

ð2Þ
ρ;kðpÞÞμνÞ: ðB14Þ

For the flow of m2
v;k we first notice that the transverse flow

∂kΓ
ð2Þ;T
ρ;k ðpÞ of the vector two-point function is regular for

p → 0 and hence

∂kðm2
v;km

2
0;kÞ¼−

1

3ðN2
f−1Þ

× lim
p→0

p2ΠT
μνðpÞtrð∂kΓ

ð2Þ
ρ;kðpÞÞμν¼0: ðB15Þ

Therefore, one has the simple relation here that

∂km2
v;k ¼ −

m2
v;k

m2
0;k

∂km2
0;k: ðB16Þ

These flow equations for m2
v;k and m2

0;k are usually
evaluated at the IR minimum σ0, i.e., when solving the
flow equations for the two-point functions in the spirit of
our grid-code techniques. The notable exception are the k
dependencies of these masses as shown in Fig. 2 where we
have evaluated their flow equations at the k-dependent
minima σ0;k in order to illustrate the scale dependence of
the corresponding Euclidean curvature masses.

The flow equations are manipulated and traced using the
Mathematica tool FormTracer [67].

APPENDIX C: ANALYTIC CONTINUATION
AND SPECTRAL FUNCTIONS

To obtain flow equations for retarded two-point func-
tions from their Euclidean counterparts we use the same
analytic continuation procedure on the level of the flow
equations that was developed and also used already for
example in [14,34,37,38].
In a first step we exploit the periodicity of the occupation

numbers arising in the equations with respect to imaginary
and discrete Matsubara modes ip0;n,

nBðE� ip0;nÞ → nBðEÞ; ðC1Þ

nFðE� ip0;nÞ → nFðEÞ; ðC2Þ

and then replace this Euclidean energy p0 with a real
continuous frequency ω

Γð2Þ;RðωÞ ¼ −lim
ϵ→0

Γð2Þ;Eðp0 ¼ −iðωþ iϵÞÞ: ðC3Þ

For the imaginary part of Γð2Þ;R the limit ϵ → 0 can be taken
analytically (described in detail in [14]), for the real part of
Γð2Þ;R we use ϵ ¼ 0.1 or ϵ ¼ 1, the ϵ dependence here is
almost negligible. Starting with the following initial values
at the UV cutoff scale Λ ¼ 1500 MeV,

Γð2Þ;R
ρ;Λ ðωÞ ¼ m2

0;Λ

�
1 −

m2
ρ;Λ

ðωþ iϵÞ2
�
; ðC4Þ

Γð2Þ;R
a1;Λ ðωÞ ¼ m2

0;Λ

�
1 −

m2
a1;Λ

ðωþ iϵÞ2
�
; ðC5Þ

the flow equations for Γð2Þ;R
ρ;k and Γð2Þ;R

a1;k
are solved for the

real and imaginary parts separately until arriving at the IR
scale k ¼ 0 MeV. The spectral functions are then given by
the imaginary parts of the retarded propagators,

ρðωÞ ¼ −
1

π
ImDRðωÞ; ðC6Þ

which can be expressed in terms of the real and imaginary
parts of the retarded two-point functions,

ρðωÞ ¼ 1

π

ImΓð2Þ;RðωÞ
ðReΓð2Þ;RðωÞÞ2 þ ðImΓð2Þ;RðωÞÞ2 : ðC7Þ
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