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We investigate a fundamental nonlinear process of vacuum photon emission in the presence of strong
electromagnetic fields going beyond the locally constant field approximation (LCFA), i.e., providing the
exact treatment of the spatiotemporal inhomogeneities of the external field. We examine a standing
electromagnetic wave formed by high-intensity laser pulses and benchmark the approximate predictions
against the results obtained by means of a precise approach evaluating both the tadpole (reducible) and
vertex (irreducible) contributions. It is demonstrated that the previously used approximate methods may fail
to properly describe the quantitative characteristics of each of the two terms. In the case of the tadpole
contribution, the LCFA considerably underestimates the number of photons emitted for sufficiently high
frequency of the external field. The vertex term predicts emission of a great number of soft photons whose
spectrum is no longer isotropic in contrast to the LCFA results. A notable difference among the photon
yields along different spatial directions, which is not captured by the LCFA, represents an important
signature for experimental studies of the photon emission process. Since this feature takes place unless
the Keldysh parameter is much larger than unity, it can also be used in indirect observation of the
Schwinger mechanism.
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I. INTRODUCTION

It is well known that Maxwell’s Lagrangian for electro-
dynamics leads to an inherently linear theory, and the
corresponding superposition principle does not allow one
solution of Maxwell’s equations to interact with another;
i.e., a combination of two classical light waves does not
give rise to any additional radiation. However, quantum
electrodynamics (QED) predicts a phenomenon of photon
emission due to quantum fluctuations in the presence
of strong external backgrounds [1–4]. This process is
closely related to the photon-photon scattering via fer-
mionic loops [1,5], but one assumes here that the initial
state contains no photons while the quantized electron-
positron field interacts with a classical external background
and the quantized part of the electromagnetic field whose
quanta are being emitted.
Although this phenomenon was predicted several dec-

ades ago, it has never been investigated experimentally.
Nevertheless, a rapid development of the laser technologies

significantly stimulates further attempts at finding most
favorable scenarios for practical observations of the effect.
From the theoretical viewpoint, it requires new accurate
and efficient methods be designed. In particular, the
presence of the temporal and spatial inhomogeneities of
the external fields in experimental setups demands sophis-
ticated techniques in order to provide adequate predictions
for realistic field configurations. In a recent series of studies
[6–10], the authors proposed a very productive computa-
tional approach based on the so-called locally constant
field approximation (LCFA) which locally treats the
external field as a static and spatially uniform background
and invokes the closed-form expression for the Heisenberg-
Euler effective action [2,4] (it was also utilized in
Refs. [11–14]). Within this approach, one employs an
effective interaction operator defined in the Fock space of
photon states and incorporating the one-loop corrections
(see, e.g., Ref. [15]). Since this operator does not involve
fermionic degrees of freedom, the final expressions turn
out to be much less complicated than the exact formulas
in terms of the one-particle solutions of the Dirac
equation [16]. The LCFA approach allows one to efficiently
evaluate the tadpole (reducible) contribution [see Fig. 1(a)]
to the spectra of signal photons taking into account the
spatiotemporal dependence of complex field configura-
tions. However, the validity of the LCFA in context of
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various processes is always limited. For instance, the
LCFA may fail to properly describe the photon spectra in
studies of nonlinear Compton scattering [17–19]. We also
point out that according to recent results of precise
calculations [20–27], the spatiotemporal inhomogeneities
may also play a prominent role in the process of electron-
positron pair production. In this paper, we perform exact
calculations going beyond the LCFA in order to examine
its validity.
Furthermore, it turns out that there exists also another

contribution besides the tadpole one [see Fig. 1(b)], which
appears in the same order of perturbation theory (PT) with
respect to the radiative interaction (the photon number
density ∼ α). We will refer to this term as the vertex
contribution (alternatively, the irreducible contribution
[15]). To our knowledge, it was calculated only in
Ref. [28] in the case of a spatially uniform time-dependent
electric field. According to Ref. [28], the vertex diagram
predicts production of a huge amount of soft photons,
which also opens up a possibility for studying nonlinear
effects of strong-field QED in experiments in the not-so-
distant future. Note that the vertex diagram describes the
photon-emission process accompanying creation of eþe−
pairs, so experimental measurements of the photon spectra
could also allow one to indirectly investigate the Schwinger
mechanism of pair production. Since real setups involve
external backgrounds depending not only on time but
also on the spatial coordinates, it is strongly desirable to
examine fields having multidimensional inhomogeneities.
Moreover, if the external field depends solely on time, the
photons associated with this field carry energy but do not
transfer momentum, which could misrepresent the spectra
of photons emitted.
The paper is organized as follows. In Sec. II we present

a short derivation of the necessary expressions for the
tadpole and vertex contributions to the number density of

signal photons. In Sec. III we discuss how these general
expressions can be evaluated in the case of a standing
electromagnetic wave and what the LCFA predictions
are. In Sec. IV we present the results of our numerical
computations revealing new patterns beyond the LCFA.
Finally, in Sec. V we draw a conclusion.
Throughout the article, we use the units ℏ ¼ c ¼ 1. The

electron charge is e ¼ −jej.

II. GENERAL EXPRESSIONS

Our calculations are based on the formalism of the Furry-
picture quantization of the electron-positron field in the
presence of a classical electromagnetic background [16].
In order to incorporate photons into this approach, one has
to take into account the interaction between the eþe− field
and the quantized part of the electromagnetic field, whose
quanta are being emitted in the process under consider-
ation. We turn to the interaction picture taking into account
the interaction operator Hint ¼ jμðxÞÂμðxÞ within PT
[x ¼ ðt; xÞ]. Here jμðxÞ is the current operator of the
electron-positron field, and ÂμðxÞ is the quantized part
of the electromagnetic field. The corresponding S operator
reads

S ¼ T exp

 
−i
Z

tout

tin

HintðtÞdt
!
: ð1Þ

We assume that the external field vanishes outside the
interval t ∈ ½tin; tout�. The operator (1) has the following PT
series [S ¼ Sð0Þ þ Sð1Þ þ…]:

Sð0Þ ¼ 1; ð2Þ

Sð1Þ ¼ −i
Z

tout

tin

dtHintðtÞ; ð3Þ

Sð2Þ ¼ ð−iÞ2
2

Z
tout

tin

dt1

Z
tout

tin

dt2T½Hintðt1ÞHintðt2Þ�; ð4Þ
..
.

The quantized part of the electromagnetic field is decom-
posed according to

ÂμðxÞ ¼
X3
λ¼0

Z
dk½ck;λfk;λ;μðxÞ þ c†k;λf

�
k;λ;μðxÞ�; ð5Þ

where c†k;λ and ck;λ are the photon creation and annihilation
operators, respectively, and fk;λ;μðxÞ ¼ ð2πÞ−3=2ð2k0Þ−1=2
e−ikxεμðk; λÞ is the photon wave function corresponding
to momentum k (k0 ¼ jkj) and polarization λ. The
electron-positron field operator can be expanded either

(c)

(b)(a)

FIG. 1. Nonperturbative tadpole (a) and vertex (b) diagrams
describing two independent channels of photon emission in a
strong external field and giving rise to nontrivial photon number
density to first order in the fine-structure constant α ¼ e2=ð4πÞ.
The double line (c) represents the exact electron propagator (or
solution) in the presence of the external field. To calculate the
number density of signal photons, one should square the absolute
values of the corresponding amplitudes and sum over the final
fermionic states in the case of the vertex diagram (b).
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in terms of the so-called in one-particle solutions �φnðxÞ or
in terms of the out solutions �φnðxÞ. The in (out) functions
are determined by their form at the time instant t ¼ tin
(t ¼ tout), where each of them has a certain sign of energy
denoted by�. Quantum number n incorporates momentum
and spin. In what follows, we will need the expansion of the
electron-positron field operator in terms of the in solutions
of the Dirac equation,

ψðxÞ ¼
X
n

½an þφnðxÞ þ b†n −φnðxÞ�; ð6Þ

where we have introduced the electron (positron) creation
and annihilation operators a†n (b

†
n) and an (bn), respectively.

These operators satisfy the usual anticommutation rela-
tions. The corresponding vacuum state will be denoted
by j0; ini.
In Ref. [16] the authors presented a detailed derivation

of transition amplitudes, i.e. S-matrix elements, describing
the process of photon emission from the vacuum state in the
presence of a strong classical external field. Although the
corresponding expressions give essentially the leading-
order contributions to the photon number density, we will
utilize here an alternative approach based on direct calcu-
lation of the mean value of the photon number operator
(some general aspects and other examples of computing
mean values are also discussed in Ref. [16]). The exact
expression for this quantity [nk;λ ¼ dNk;λ=dk] reads

nk;λ ¼ h0; injS†c†k;λck;λSj0; ini: ð7Þ

To zeroth order, the field does not generate any photons.
Since the interaction Hamiltonian contains terms with only
one photon creation/annihilation operator, it is clear that
the first-order contribution to the number density (7) also
vanishes. So the main task is to calculate the second-order
term given by

nð2Þk;λ ¼ h0; injSð1Þ†c†k;λck;λSð1Þj0; ini: ð8Þ

In order to perform these calculations, one should
express the current operator jμðxÞ ¼ ðe=2Þ½ψ̄ðxÞγμ;ψðxÞ�
in terms of the in operators. This can be done by means of
Eq. (6), so one receives

jμðxÞ ¼ e
X
l;s

½ðþφ̄lγ
μþφsÞa†l as þ ðþφ̄lγ

μ
−φsÞa†l b†s

− ð−φ̄sγ
μþφlÞalbs − ð−φ̄sγ

μ
−φlÞb†l bs�

þ e
2

X
l

½ð−φ̄lγ
μ
−φlÞ − ðþφ̄lγ

μþφlÞ�; ð9Þ

where the one-particle functions depend on x. The term
displayed in the third line of Eq. (9) represents the
in-vacuum expectation value jμinðxÞ≡ h0; injjμðxÞj0; ini
(vacuum current). The corresponding contribution will
be referred to as the tadpole (reducible) one, while the
rest part of jμðxÞ in Eq. (9) will give rise to the vertex
(irreducible) term. After some straightforward calculations,
one obtains

nð2Þk;λ ¼ nðtadpoleÞk;λ þ nðvertexÞk;λ ; ð10Þ

where

nðtadpoleÞk;λ ¼
����
Z

d4xjμinðxÞf�k;λ;μðxÞ
����2

¼ e2

4

����X
n

Z
d4x½þφ̄nðxÞγμþφnðxÞ

− −φ̄nðxÞγμ−φnðxÞ�f�k;λ;μðxÞ
����2; ð11Þ

nðvertexÞk;λ ¼ e2
X
n;m

����
Z

d4xþφ̄nðxÞγμf�k;λ;μðxÞ−φmðxÞ
����2: ð12Þ

These are the leading-order contributions which appear in
the first order in α. They can be represented by means of the
Feynman diagrams depicted in Fig. 1.
The expression (12) for the vertex contribution in the

case of a spatially uniform field can also be found in
Ref. [28]. Although this term can be evaluated directly
by means of Eq. (12), the tadpole diagram requires
renormalization. In Fig. 2 we display its PT expansion
where it is indicated that one should renormalize the term
with one interaction vertex, which possesses a quadratical
divergence. However, it turns out that it does not contribute
if proper renormalization of the electron charge is per-
formed. We note indeed that the amplitude contains the

FIG. 2. PT expansion of the renormalized tadpole diagram. The dashed lines with crosses denote the interaction with the external field.
The renormalized diagram with two external legs does not contribute (see the main text). The diagrams with an odd number of external
legs do not appear due to Furry’s theorem.
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renormalized polarization tensor ΠμνðkÞ ∼ ðkμkν − k2gμνÞ,
where k2 ¼ 0 since the signal photon is real. The term
with kμkν also vanishes because it is contracted with the
photon polarization function, kμεμðk; λÞ ¼ 0. Accordingly,
the leading contribution is determined by the diagram
with four external legs, which can be approximately calcu-
lated within the LCFA approach developed in Refs. [6–10].
The leading term is proportional to ðE0=EcÞ3, where Ec

is the Schwinger critical value [Ec ¼ m2c3=ðjejℏÞ ¼
1.3 × 1016 V=cm, where m is the electron mass], while
the full tadpole diagram displayed in Fig. 1(a) includes also
the higher-order terms∼ðE0=EcÞ5, ðE0=EcÞ7, etc. Since the
condition ðE0=EcÞ2 ≪ 1 seems completely realistic, there is
no need to evaluate the higher-order terms.

III. STANDING ELECTROMAGNETIC WAVE

In the present study, we evaluate both the tadpole and
vertex contributions considering a standing electromagnetic
wave with peak electric-field strength E0 and frequency ω.
The vector potential is chosen in the following form:

Axðt; zÞ ¼
E0

ω
FðtÞ sinωt cosωz; ð13Þ

where FðtÞ is a smooth envelope function which vanishes
unless tin ≤ t ≤ tout. The other components of Aμ equal zero.
We always use a large number of cycles (N ≫ 1). The field
configuration chosen has several important advantages. First,
this background can be viewed as an approximation for the
resulting field of two laser pulses propagating along and
opposite the z direction, respectively, and polarized along
the x axis [the photons carry momentum �K, where
K ¼ ð0; 0;ωÞ]. Although this field configuration is infinite
in space and does not depend on x and y, it is a reasonable
approximation for a combination of two counterpropagating
laser pulses since N ≫ 1 and Eq. (13) takes into account the
spatiotemporal dependence of the carrier neglecting only
slowly varying spatial parts pertaining to the envelope.
Second, as N ≫ 1, the external field frequency related to
the temporal oscillations is well defined and coincides with
that regarding the spatial dependence in accordance with
Maxwell’s equations. Finally, the spatial periodicity of the
external field allows us to efficiently solve the Dirac equation
in the momentum representation, which is necessary for
evaluating the number density of signal photons within our
approach (see below).
Taking into account the periodicity of the external

field (13), one can represent the in one-particle solutions
of the Dirac equation in the following form (see, e.g.,
Refs. [29–31]):

ζφp;s
ðxÞ ¼ ð2πÞ−3=2eiζpx

Xþ∞

j¼−∞
ζw

j
p;s
ðtÞeiζωjz; ð14Þ

where ζ ¼ � and the time-dependent functions ζw
j
p;s
ðtÞ are

determined by their asymptotic behavior for t ≤ tin. One
can then demonstrate that the photon number density has
the following form:

ð2πÞ3
V

nðtadpoleÞk;λ ¼ e2

ð2πÞ3
X
l

δðk − lKÞjAl;λj2; ð15Þ

where V is the volume of the system and Al;λ are the
amplitudes which can, in principle, be calculated to all
orders in E0=Ec. The delta-function in Eq. (15) reflects the
momentum conservation law and indicates that the signal
photon can be produced after absorbing an integer number
of the external-field photons. The energy conservation law
does not appear explicitly as we cannot analytically carry
out integration over temporal variables. Our calculations
revealed that the signal photon is always polarized along
the x axis (λ ¼ x). Moreover, the photon yield is substan-
tially suppressed once l ≠ 1 as the higher-order harmonics
appear only in the higher-order terms of PTwith respect to
ðE0=EcÞ2 [12,13]. These points are also predicted by the
LCFA, which results in the following expression for the
leading-order contribution to the photon number density in
terms of the function Al;λ for l ¼ 1 and λ ¼ x:

AðLCFAÞ
l¼1;x ¼ π

180

ðeE0Þ3
m6

m2
ffiffiffiffiffiffiffi
2k0

p Z
dte−ik

0t

×

�
3iQ3 −Q2

_Q
ω
− iQ

_Q2

ω2
þ 3

_Q3

ω3

�
; ð16Þ

where k0 ¼ jkj ¼ ω and QðtÞ≡ FðtÞ sinωt. To simplify
the computations, we consider an infinite laser pulse
[FðtÞ ¼ 1, tin=out →∓ ∞], so the exact result for the
leading-order term reads

AðexactÞ
l¼1;x ¼ 2πδðk0 − ωÞI ðexactÞ; ð17Þ

where

I ðexactÞ ¼ 1

128

ðeE0Þ3
m6

m4

ω4
m2

ffiffiffiffiffiffi
2ω

p X
ηi;ξi

Z
dω̃
2π

Z
dpε�μðK; xÞ

× Tr½γμSðω̃; pÞγ1Sðω̃ − ξ1ω; p − η1KÞγ1
× Sðω̃ − ðξ1 þ ξ2Þω; p − ðη1 þ η2ÞKÞγ1
× Sðω̃ − ω; p − KÞ�; ð18Þ

Sðω̃; pÞ≡ ðω̃γ0 − γpþmÞ=ðm2 þ p2 − ω̃2Þ is the electron
propagator, and the summations run over ηi, ξi ¼ �1
(i ¼ 1, 2, 3) satisfying

P
ηi ¼

P
ξi ¼ 1. The LCFA

prediction (16) takes the form

I ðLCFAÞ ¼ π

90

ðeE0Þ3
m6

m2
ffiffiffiffiffiffi
2ω

p
; ð19Þ
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which is to be directly compared with Eq. (18). We also
point out that as l ¼ 1 and λ ¼ x, the photons emitted are
indistinguishable from those constituting the external laser
field (traveling along the z axis). However, our calculations
of the tadpole contribution are supposed to examine the
accuracy of the LCFA and to survey its justification, which
is now possible since Eqs. (18) and (19) relate to the same
physical quantity.
Finally, we note that the leading-order contribution

corresponding to the diagram with four external legs
(see Fig. 2) could contain gauge-dependent (spurious)
terms. In atomic physics, where the Coulomb potential
of the nucleus is conventionally described by means of

the scalar component A0 of the electromagnetic potential,
it is a well-elaborated issue. It was demonstrated (see
Refs. [32–35]) that Pauli-Villars regularization [36]
uncovers a nontrivial contribution even when the electron
mass tends to infinity. This term is gauge-dependent and
should be subtracted from the diagram. Nevertheless, in
the gauge (13) there is no spurious term (the proof can be
found in the Appendix), which was also confirmed by our
numerical computations.
As the vertex contribution does not require renormaliza-

tion, it can be evaluated by means of Eq. (12). In the case of
a standing wave, plugging the series (6) into Eq. (12) yields

ð2πÞ3
V

nðvertexÞk;λ ¼ e2

ð2πÞ3
1

2k0
X
s;s0

Z
dp

����X
j;l

Z
dtþw̄j

−p;sðtÞγμε�μðk; λÞ−wl−j
p−k−lK;s0 ðtÞeik

0t

����2: ð20Þ

When integrating over t ∈ ð−∞; tin� and t ∈ ½tout;þ∞Þ,
one should introduce a standard factor e−εjtj (ε → 0) and
calculate the integral over these rays analytically (see
Ref. [28] for more detail). Note that a crucial difference
between the tadpole and vertex contributions lies in the
conservation laws. Whereas the tadpole term describes the
process of photon production by absorption/emission
of the external-field photons, the vertex diagram contains
also an eþe− pair whose energy can continuously vary.
It explains why in the former case the signal photons tend
to have the same quantum numbers as the external-
background photons (e.g., k0 ≈ ω), while in the latter case
they are likely to have a very small energy, k0 ≪ ω, no
matter which external-field configuration is chosen. It
means first that these two contributions can be analyzed
separately. Second, since for a spatially uniform field,
Eq. (20) becomes much less complicated and the momen-
tum conservation law does not appear to play a vital role
here, it seems sensible to perform the calculations replacing
the external field (13) with a time-dependent background
corresponding to a given position z and to average the
results over the spatial period of the standing wave. We will
also refer to this approximate technique as the LCFA
although the locality is now associated only with spatial
coordinates. The predictions of this approach will be
benchmarked against those obtained by means of the exact
expression (20). As was demonstrated in Ref. [28], for
small values of k0, the integral over t ∈ ½tout;þ∞Þ in
Eq. (20) scales as 1=k0, which leads to

ð2πÞ3
V

nðvertexÞk;λ ¼ e2

ð2πÞ3
Cλ

ðk0Þ3 þO
�

1

ðk0Þ2
�

ð21Þ

for k0 → 0. Our calculations proved this asymptotic
behavior to remain valid also in the presence of spatial

inhomogeneities. In what follows, we will compare the
exact results with the LCFA predictions in terms of
the coefficient C ¼Pλ Cλ depending on E0, ω, and the
direction of k. Since dk ¼ k20dΩdk0, the coefficient C
represents the energy density of photons emitted, which
turns out to be almost independent of k0, provided k0 is
sufficiently small.
To perform exact calculations in the case of a standing

wave, we numerically evolve the necessary Fourier com-
ponents ζw

j
p;s
ðtÞ and evaluate then the expression (20). Our

numerical procedures propagating solutions of the Dirac
equation were already successfully employed in several
studies concerning eþe− pair production [20,21,27,31,37].
To make sure that we receive reliable data, we first
reproduced the results of Otto and Kämpfer [28] and
conducted our computations in two different coordinate
systems; i.e., we employed Eq. (13) and a similar expres-
sion with the substitution x ↔ z.

IV. NUMERICAL RESULTS

In Fig. 3 we draw a comparison between the exact
results and the LCFA predictions for the leading-order
contribution to the tadpole diagram in terms of jI j2
[see Eqs. (18) and (19)] for various values of the carrier
frequency ω. The factor m6=ðeE0Þ3 is introduced to make
the results independent of E0. We observe that for
ðω=mÞ2 ≲ 0.3 the LCFA accurately reproduces the exact
results, whereas for larger values of ω it considerably
underestimates the photon yield. Although the condition
ðω=mÞ2 ≪ 1 justifying the LCFA was already discussed
in the literature (see, e.g., Ref. [38]), the deviation
between the LCFA predictions and the exact results
was unknown as the latter data has been unavailable
until now.
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With regard to the vertex contribution, we first underline
the fact that the asymptotic behavior (21) holds even if one
performs the exact computations according to Eq. (20).
Note also that within the LCFA the y and z axes are
completely equivalent, while beyond this approximation all
of the three spatial directions are different due to the
presence of the magnetic field component. The correspond-
ing C coefficients will be denoted by Cx, Cy, and Cz, e.g.,
Cx relates to k ¼ ðk0; 0; 0Þ in Eq. (21). Within the LCFAwe
have Cx ¼ Ck and Cy ¼ Cz ¼ C⊥.
In Fig. 4 we depict the values of the C coefficients

obtained by means of the LCFA. The results reveal two
important features. First, one can easily establish the
scaling law CðE0Þ ∼ E2

0 for sufficiently small E0.

Moreover, the corresponding threshold value of E0

increases with decreasing ω, so the Keldysh parameter
γ ¼ mω=jeE0j decreases; e.g., for ω ¼ 0.5m it amounts to
γ ¼ 1.2, whereas for ω ¼ 0.25m it is γ ¼ 0.44. It means
that for ω≲ 0.1m, i.e., more realistic frequencies, the
scaling law is always valid once the pair-production
process, which accompanies photon emission in the vertex
diagram, reflects nonperturbative nature, γ ≲ 1. This is a
very important point because the nonperturbative regime is
of particular interest. Second, the function CðE0Þ becomes
independent of the direction of the photons emitted, i.e.,
Ck ≈ C⊥. Accordingly, the LCFA predicts a great number
of soft photons that are emitted isotropically and whose
energy density is proportional to E2

0 as long as γ is
comparable to or larger than unity.
The results obtained beyond the LCFA are displayed in

Fig. 5 for each of the three spatial directions (ω=m ¼ 0.25,
N ¼ 10). The scaling law CðE0Þ ∼ E2

0 remains valid, but
the emission process is no longer isotropic. Although the
curve corresponding to the magnetic field direction y
almost coincides with that of CkðE0Þ ≈ C⊥ðE0Þ, for the
x and z axes the results are different. While in the former
case the coefficient mC=jeE0j2 amounts to 3 × 10−6, in the
latter case it is two times larger, 6 × 10−6. These quanti-
tative characteristics predict a notable anisotropy which is
expected to be observable in experiment providing a
distinctive feature which is not described by the LCFA.
The findings discussed above were also confirmed by our
computations with other values of ω.

V. CONCLUSION

We performed exact calculations of both the tadpole
and vertex contributions to the number density of signal
photons in the presence of a standing electromagnetic

FIG. 4. Vertex contribution in terms of the C coefficient
evaluated within the LCFA with respect to the parallel direction
(Ck) and perpendicular one (C⊥) as a function of E0 for various
values of ω (N ¼ 10).

FIG. 5. Exact values of the C coefficients corresponding to the
three spatial directions x, y, and z and the LCFA results forCk and
C⊥ as a function of E0 (ω=m ¼ 0.25, N ¼ 10).

FIG. 3. Leading-order contribution to the tadpole diagram
evaluated by means of Eq. (18) (exact) and Eq. (19) (LCFA)
as a function of ω.
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wave. By rigorously treating the temporal and spatial
inhomogeneities, we made a first step beyond the previ-
ously used approximation. In particular, the results
obtained for the tadpole diagram uncovered a substantial
underestimation of the photon yield which takes place
within the LCFA for sufficiently high frequency of the
external field. Concerning the vertex contribution, the exact
computations predict a large amount of soft photons whose
energy density is proportional to E2

0. More important, the
additional radiation is, in fact, anisotropic in contrast to the
LCFA results: the number of photons emitted along the y
direction is twice as small as the analogous quantity
regarding the x and z axes. This fact represents a new
important signature which can allow one not only to
advance the experimental studies of this phenomenon
but also to validate more accurate theoretical approaches
going beyond the LCFA. We also emphasize that this
finding holds true as long as γ ≲ 1, which corresponds to
the nonperturbative domain of pair production where
detection of photons may open up a possibility of indirect
experimental observation of the Schwinger effect. The
results of this study are expected to broaden our under-
standing of nonlinear QED effects supporting further
improvement of our knowledge and of the necessary
theoretical techniques in pursuit of practical investigations
of strong-field QED phenomena.
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APPENDIX: SPURIOUS TERMS OF THE
TADPOLE DIAGRAM

As was indicated in the main text, the diagram contain-
ing four vertices (see Fig. 6) could lead to gauge-dependent
contributions which should be subtracted. A recipe for
extracting these spurious terms is based on the Pauli-Villars
regularization procedure [36]. One should replace the
electron mass with some mass M and evaluate the diagram
assuming M → ∞ [32–35]. The photon wave function
corresponding to the external photon line in Fig. 6 is

contracted with the current operator jð3Þμin ðxÞ which has the
following form:

jð3Þμin ðxÞ ¼ −ie4
Z

dz1

Z
dz2

Z
dz3Tr½γμSMðx; z1ÞγνAνðz1ÞSMðz1; z2ÞγρAρðz2ÞSMðz2; z3ÞγσAσðz3ÞSMðz3; xÞ�; ðA1Þ

where the subscript M indicates that the propagators
contain now large mass M. Since M → ∞, the integrals
in (A1) receive nonzero contributions only from the vicinity
of z1 ¼ z2 ¼ z3 ¼ x, which allows one to replace the
arguments of A with x. We will also employ the following
representation:

SMðx; yÞ ¼
Z
CF

dω
2π

e−iωðx0−y0Þgðx; y;ωÞ; ðA2Þ

where CF denotes the usual contour corresponding to the
Feynman propagator,

gðx; y;ωÞ ¼
Z

dp
ð2πÞ3 e

ipðx−yÞ ωγ
0 − γpþM
p2
0 − ω2

; ðA3Þ

and p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p
. Using Eqs. (A2) and (A3) and

integrating over zi in Eq. (A1), one obtains

jð3Þμin ðxÞ ¼ −ie4AνðxÞAρðxÞAσðxÞ
Z

dω
2π

Z
dp

ð2πÞ3
1

ðp2
0 − ω2Þ4 Tr½γ

μΓðp;ωÞγνΓðp;ωÞγρΓðp;ωÞγσΓðp;ωÞ�; ðA4Þ

where Γðp;ωÞ≡ ωγ0 − γpþM. In the case of a nontrivial
scalar potential (A0 ≠ 0, A ¼ 0), this expression yields

jð3Þ0in ðxÞ ¼ −
e4A3

0ðxÞ
3π2

ðA5Þ

in accordance with Refs. [32–35].
If we assume that Aμ has one nontrivial spatial compo-

nent, e.g., A0 ¼ Ax ¼ Ay ¼ 0 and Az ≠ 0, then the trace in

FIG. 6. Feynman diagram providing a leading-order term of the
tadpole contribution. The solid (fermionic) lines correspond now
to the electron propagator involving large mass M.
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Eq. (A4) gives us odd functions of pz for each μ ¼ 0, 1, 2.
Accordingly, integration over pz yields zero. For μ ¼ 3,
one obtains Tr½…� ¼ 4ðp4

z − 6ap2
z þ a2Þ, where a≡

M2 þ p2
x þ p2

y − ω2. In this case, the integral over pz also
vanishes:

Z þ∞

−∞
dpz

p4
z − 6ap2

z þ a2

ðaþ p2
zÞ4

¼ 0: ðA6Þ

Therefore, there is no spurious contribution for the field
configuration and gauge chosen.
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