
 

Cold QCD at finite isospin density: Confronting effective models
with recent lattice data

Sidney S. Avancini ,1 Aritra Bandyopadhyay ,2 Dyana C. Duarte ,3 and Ricardo L. S. Farias 2

1Departamento de Física, Universidade Federal de Santa Catarina,
88040-900 Florianópolis, Santa Catarina, Brazil

2Departamento de Física, Universidade Federal de Santa Maria,
Santa Maria, Rio Grande do Sul 97105-900, Brazil

3Departamento de Física, Instituto Tecnológico de Aeronáutica,
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We compute the QCD equation of state for zero temperature and finite isospin density within the
Nambu–Jona-Lasinio model in the mean field approximation, motivated by the recently obtained lattice
QCD results for a new class of compact stars: pion stars. We have considered both the commonly used
traditional cutoff regularization scheme and the medium separation scheme, where in the latter purely
vacuum contributions are separated in such a way that one is left with ultraviolet divergent momentum
integrals depending only on vacuum quantities. We have also compared our results with the recent results
from lattice QCD and chiral perturbation theory.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the fundamental
theory of strong interactions. QCD has a remarkably rich
phase structure with multiple facets which has been vividly
explored over the years. Recently, with the imminent arrival
of relativistic heavy ion collision (HIC) experiments in
FAIR and NICA, physical systems at finite baryon densities
such as neutron stars have become the ideal subject for
scrutiny in the heavy ion community [1,2]. However,
systems with finite baryon densities are not easy to deal
with theoretically, since in this region of the QCD phase
diagram, first-principle methods such as nonperturbative
lattice calculations are not accessible due to the well-known
fermion “sign problem” [3,4]. For a recent review about the
progress of lattice QCD in dealing with the sign problem,
see Ref. [5].
Aside from the baryon chemical potential μB ¼ 3ðμu þ

μdÞ=2 (for a two-flavor system), QCD at finite density can
also be characterized by the isospin chemical potential
μI ¼ ðμu − μdÞ=2. On the contrary to what happens at finite
baryonic density, systems with finite isospin density do not
suffer from the sign problem and hence are easily acces-
sible to lattice QCD-based calculations. Initial results of

lattice QCD at finite temperature and isospin density
appeared in the early 2000s [6,7], and they were also
investigated by other available techniques, such as chiral
perturbation theory (χPT) [8–17], hard thermal loop per-
turbation theory (HTLPt) [18], the Nambu–Jona-Lasinio
(NJL) model [19–35] and its Polyakov-loop extended
version PNJL [36,37], and the quark meson model
(QMM) [38–41]. The results were also largely in qualita-
tive agreement. However, all of the early lattice QCD
calculations have been performed considering unphysical
pion masses and/or an unphysical flavor content. Recently,
this issue has been rectified by using an improved lattice
action with staggered fermions at physical quark masses,
and the modified lattice QCD results for finite isospin
density are presented in Refs. [42–45].
In this work, we focus on a new type of compact stars,

where the pion condensates are considered to be the
dominant constituents of the core under the circumstance
of vanishing neutron density. Moreover, this scenario is
easily accessible through first-principle methods unlike the
study of compact star interiors with high baryon densities.
This novel scenario was first identified as pion stars in
Ref. [11] and has recently been proposed through lattice
QCD in Ref. [46].
Though pion stars can be described as a subset of boson

stars [47–51], they are free from hypothetical beyond-
standard-model contributions usually associated with
boson stars, such as the QCD axion. Indeed, it can be
proved in the framework of a dense neutrino gas that a
Bose-Einstein condensate of positively charged pions can
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be formed [52]. Further exploration of the pion stars’
equation of state (EOS) revealed their large mass and radius
in comparison with neutron stars [46,53]. Recently, studies
along similar lines have also been done within the chiral
perturbation theory [54].
Though there are also possibilities of pion condensation

in the early Universe driven by high lepton asymmetry
[52,55,56], in the current context we will consider the
setting of compact stars with zero temperature. Further,
the charged pion condensation requires accumulation of
isospin charge at zero baryon density and zero strange-
ness. QCD, with μI ≠ 0, μB ¼ μs ¼ T ¼ 0, can be and is
being realized well within lattice QCD, and this new
modified lattice result [46] in turn gives us the perfect
platform for the consistency check of the effective models
mimicking QCD, such as the NJL model. As emphasized
earlier, QCD with finite isospin chemical potential has
already been explored through the NJL model, albeit
not in the light of the new improved lattice results.
Additionally, the present study tries to rectify the regu-
larization issues within the NJL model to deal with the
ultraviolet (UV) divergent momentum integrals. In the
traditional regularization scheme (TRS), commonly used
in literature, the sharp UV cutoff Λ usually cuts important
degrees of freedom near the Fermi surface leading to
incorrect results, especially in scales of the order of Λ,
e.g., μI ∼ Λ [57,58]. On the other hand, the medium
separation scheme (MSS), coined in Refs. [59,60], is
based on a proper separation of medium effects from
divergent integrals, originally having explicit medium
dependence. This results in the disposal of all divergent
integrals into the pure vacuum part—i.e., μI ¼ 0 in the
current context, as it should be. This scheme has already
been successfully applied in the context of color super-
conductivity [57] and for quark matter with a chiral
imbalance [59]. For a proper characterization of compact
pion stars with high values of μI (∼Λ), as we will be
dealing with in this work, the role of the MSS becomes
really important in this regard.
The paper is organized as follows: In Sec. II, we discuss

the basic formalism of the two-flavor NJL model within
both the TRS and the MSS. In Sec. III, we present our
results obtained with the traditional regularization scheme
and with the medium separation scheme; thermodynamic
results are also presented and contrasted with other state-of-
the-art calculations. We conclude in Sec. IV by discussing
the aftermath.

II. FORMALISM

In this section, we revisit the well-documented formal-
ism for the two-flavor NJL model with finite isospin
chemical potential [23–35]. We start with the partition
function for the two-flavor NJL model at finite baryonic
and isospin chemical potential, given by

ZNJLðT; μB; μIÞ ¼
Z

½dψ̄ �½dψ �

× exp

�Z
β

0

dτ
Z

d3xðLNJL þ ψ̄ μ̂ γ0ψÞ
�
;

ð2:1Þ

where the quark chemical potential matrix in flavor space is

μ̂ ¼
�
μu 0

0 μd

�
; ð2:2Þ

and μu;d can be expressed in terms of the baryonic and the
isospin chemical potential as

μu ¼
μB
3
þ μI;

μd ¼
μB
3
− μI;

such that μB=3 ¼ ðμu þ μdÞ=2 and μI ¼ ðμu − μdÞ=2. LNJL
appearing in Eq. (2.1) is the NJL Lagrangian considering
scalar and pseudoscalar interactions, i.e.,

LNJL ¼ ψ̄ði=∂ −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ⃗ψÞ2�
¼ ψ̄ði=∂ −mÞψ þ G½ðψ̄ψÞ2 þ ðψ̄iγ5τ3ψÞ2
þ 2ðψ̄iγ5τþψÞðψ̄iγ5τ−ψÞ�; ð2:3Þ

where ψ and m represent the quark fields and their current
mass, respectively, and G is the scalar coupling constant
of the model. τ’s are the generator matrices for the
pseudoscalar interactions, which correspond to the pionic
excitations π1, π2, π3, or equivalently πþ, π−, π3, with
τ� ¼ ðτ1 � τ2Þ=

ffiffiffi
2

p
.

For finite isospin chemical potential, the isospin sym-
metry group SUð2Þ explicitly breaks down to a subgroup
Uð1ÞI3 , the third component of the isospin charge I3 being
the generator [24]. So within the context of the mean field
approximation, for nonzero μI, one can consider the
possibility of hψ̄iγ5τ3ψi ¼ 0 as an ansatz, which further
breaks the Uð1ÞI3 symmetry. Now we can introduce the
chiral condensate σ ¼ −2Ghψ̄ψi and pion condensates

ffiffiffi
2

p
πþ ¼ −2

ffiffiffi
2

p
Ghψ̄iγ5τþψi ¼ Δeiθ;ffiffiffi

2
p

π− ¼ −2
ffiffiffi
2

p
Ghψ̄iγ5τ−ψi ¼ Δe−iθ;

where the phase factor θ indicates the direction of the
Uð1ÞI3 symmetry breaking. Finally, for the present context
of pion stars, we consider μB¼0, such that μu ¼ −μd ¼ μI .
Collecting all of this information, one can now obtain the
thermodynamic potential within the mean field approxi-
mation as
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ΩNJLðσ;ΔÞ ¼
σ2 þ Δ2

4G
− 2Nc

Z
Λ

d3k
ð2πÞ3 ½E

þ
k þ E−

k �; ð2:4Þ

where E�
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk � μIÞ2 þ Δ2

p
with Ek ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

p
,

M ¼ mþ σ, and the symbol
R
Λ indicates integrals that

need to be regularized.
The physical values of the condensates vis-à-vis the

ground state at finite isospin chemical potential is deter-
mined by minimizing ΩNJLðσ;ΔÞ with respect to the
condensates σ and Δ—i.e., by solving the gap equations

∂ΩNJL

∂σ
����
σ¼σm

¼ ∂ΩNJL

∂Δ
����
Δ¼Δm

¼ 0: ð2:5Þ

From these equations we obtain

σ ¼ 4GNcMIσ; ð2:6Þ

Δ ¼ 4GNcΔIΔ; ð2:7Þ

with the definitions

Iσ ¼
X
s¼�1

Z
Λ

d3k
ð2πÞ3

1

Ek

Ek þ sμIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ sμIÞ2 þ Δ2

p ; ð2:8Þ

IΔ ¼
X
s¼�1

Z
Λ

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ sμIÞ2 þ Δ2

p : ð2:9Þ

In the following subsections, we discuss in more detail
different ways of regularizing these integrals. The thermo-
dynamic quantities—i.e., the pressure, the isospin density
and the energy density of the system, are then respectively
given by

PNJL ¼ −ΩNJLðσ ¼ σm;Δ ¼ ΔmÞ; ð2:10Þ

hnIiNJL ¼ ∂PNJL

∂μI ; ð2:11Þ

εNJL ¼ −PNJL þ μIhnIiNJL: ð2:12Þ

Finally, the EOS within the two-flavor NJL model is given
by the relation between PNJL and εNJL.

A. TRS

The TRS is the most common and used regularization
scheme in the literature, as might be seen in some good
reviews of the NJL model [61]. In this case, we just perform
the integrations in Eqs. (2.8) and (2.9) up to a cutoff Λ, that
becomes a model parameter. Therefore, the gap equations
become

σ ¼ 4GNcM
Z

Λ

0

k2dk
2π2

X
j¼�1

Ek þ jμI
Ek

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ jμIÞ2 þ Δ2

p ;

ð2:13Þ

Δ ¼ 4GNcΔ
Z

Λ

0

k2dk
2π2

X
j¼�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEk þ jμIÞ2 þ Δ2

p : ð2:14Þ

This same procedure is used in ΩNJL, which becomes

ΩTRS
NJL ðσ;ΔÞ ¼

σ2 þΔ2

4G
− 2Nc

Z
Λ

0

k2dk
2π2

½Eþ
k þE−

k �; ð2:15Þ

and also in the thermodynamic quantities. Specifically, the
isospin density becomes

hnIiTRSNJL ¼ −2Nc

Z
Λ

0

k2dk
2π2

�
Ek − μI
E−
k

−
Ek þ μI
Eþ
k

�
: ð2:16Þ

B. MSS

Since NJL is nonrenormalizable, any physical quantity
will depend on the scale of the model Λ. However, it is very
important to keep in mind that cutoff-dependent medium
terms, due to a naive regularization of the integrals, may
lead to results completely different from the ones obtained
with a more careful treatment of divergences. The MSS
provides a tool to disentangle medium dependence from
divergent contributions, so that only vacuum integrals need
to be regularized. This scheme has been applied to the NJL
model and successfully shows qualitative agreement with
lattice simulations and more elaborated theories, as might
be seen in Refs. [57,59,60].
The implementation of MSS starts by rewriting, for

example, IΔ given in Eq. (2.9) as

IΔ ¼ 1

π

X
j¼�1

Z þ∞

−∞
dx

Z
Λ

d3k
ð2πÞ3

1

x2 þ ðEk þ jμIÞ2 þ Δ2
:

ð2:17Þ

Using the identity

1

x2 þ ðEk þ jμIÞ2 þ Δ2

¼ 1

x2 þ k2 þM2
0

þ M2
0 − Δ2 − μ2I −M2 − 2jμIEk

ðx2 þ k2 þM2
0Þ½x2 þ ðEk þ jμIÞ2 þ Δ2� ð2:18Þ
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(where M0 is the vacuum mass, when μI ¼ Δ ¼ 0) we
obtain, after two iterations,

X
j¼�1

1

x2 þ ðEk þ jμIÞ2 þ Δ2

¼ 2

x2 þ k2 þM2
0

þ 2M
ðx2 þ k2 þM2

0Þ2

þ 2M2 þ 8μ2IE
2
k

ðx2 þ k2 þM2
0Þ3

þ
X
j¼�1

ðM − 2jμIEkÞ3
ðx2 þ k2 þM2

0Þ3½x2 þ ðEk þ jμIÞ2 þ Δ2� ;

ð2:19Þ

where we have defined M ¼ M2
0 − Δ2 − μ2I −M2. After

some manipulations and performing the integration in x
indicated in Eq. (2.17), we obtain

IMSS
Δ ¼ 2Iquad − ðM2 −M2

0 þ Δ2 − 2μ2I ÞIlog
þ
�
3ðM2 þ 4μ2IM

2Þ
4

− 3μ2IM
2
0

�
I1 þ 2I2 ð2:20Þ

with the definitions

Iquad ¼
Z

d3k
ð2πÞ3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2

0

p ; ð2:21Þ

Ilog ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

3
2

; ð2:22Þ

I1 ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

5
2

; ð2:23Þ

I2 ¼
15

32

X
j¼�1

Z
d3k
ð2πÞ3

Z
1

0

dtð1 − tÞ2

×
ðM − 2jμIEkÞ3

½ð2jμIEk −MÞtþ k2 þM2
0�

7
2

; ð2:24Þ

where, in the last line of the equation above we have used
the Feynman parametrization

1

An
1A

m
2

¼ ΓðnþmÞ
ΓðnÞΓðmÞ

Z
1

0

dt
tn−1ð1 − tÞm−1

½A1tþ A2ð1 − tÞ�nþm : ð2:25Þ

Using similar steps, one may write

IMSS
σ ¼ 2Iquad − ðM2 −M2

0 þ Δ2ÞIlog þ I3

þ 3

�
M2

4
þ μ2I ðM2 −M2

0 −MÞ
�
I1 þ 2I2; ð2:26Þ

with

I3 ¼
15

16

X
j¼�1

Z
d3k
ð2πÞ3

Z
∞

0

ð1 − tÞ2dt

×
1

Ek

jμIðM − 2jμIEkÞ3
½ðk2 þM2

0Þtþ ðEk þ jμIÞ2 þ Δ2�72 : ð2:27Þ

Using the MSS, the expression for the normalized thermo-
dynamic potential becomes

ΩMSS
NJL ðσ;ΔÞ ¼

σ2 þ Δ2

4G

− 2Nc

�
M̃Iquad −

1

4
ðM̃2 − 4μ2IΔ2ÞIlog

þ
Z

d3k
ð2πÞ3

�
M̃2 − 4μ2IΔ2

4E3
k;0

−
M̃
Ek;0

− 2Ek;0 þ Eþ
k þ E−

k

�	
; ð2:28Þ

with the definitions M̃ ¼ Δ2 þM2 −M2
0 and Ek;0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þM2
0

p
. To obtain the expression for the isospin

density, we follow the same procedure used for the
calculation of IΔ and Iσ, but due to its different divergency
structure we need to iterate the identity (2.18) once more.
The final expression is

hnIiMSS
NJL ¼ −2Nc

�
2μIδ

2Ilog þ 3μI

�
M2

4
þMðM2

0 −M2Þ

þM2μ2I þ
2μ2IM

2
0

3

�
I1

þ 2μII2 −
5μIM2

4
½3M2 þ 4μ2IM

2�I4

þ 5μI
4

ð4μ2I ðM2
0 − 2M2Þ − 3M2ÞI5 þ I6

	

ð2:29Þ

with the remaining definitions

I4 ¼
Z

d3k
ð2πÞ3

1

ðk2 þM2
0Þ

7
2

; ð2:30Þ

I5 ¼
Z

d3k
ð2πÞ3

k2

ðk2 þM2
0Þ

7
2

; ð2:31Þ
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I6 ¼
35

32

X
j¼�1

Z
d3k
ð2πÞ3

Z
∞

0

t3dtffiffiffiffiffiffiffiffiffiffi
1þ t

p

×
jEkðM − 2jμIEkÞ4

½ðk2 þM2
0Þtþ ðEk þ jμIÞ2 þ Δ2�92 : ð2:32Þ

Note that integrals I1 to I6 are all finite, and must be
performed up to infinite k. This is the fundamental differ-
ence between the TRS, where we cut the whole integral in
the cutoff Λ, and the MSS, where all finite medium
contributions are separated and performed for the whole
momentum range.

III. RESULTS

The parameter set used for the purpose of the
present study is m ¼ 4.76 MeV, Λ ¼ 659 MeV, and

G ¼ 4.78 GeV−2, which we have obtained by fitting the
same value of the pion mass as used by lattice QCD [62],
i.e., mπ ¼ 131.7 MeV, and other parameters as fπ ¼
92.4 MeV and hψ̄ψi1=3 ¼ −250 MeV. These values cor-
respond to a vacuum mass M0 ≃ 303.5 MeV.
Figure 1 shows the variation of the pion condensate Δ

with μI , scaled by the pion mass value. As might be seen
from the plot, higher values of μI (starting from
μI ∼ 1.5mπ) draw the differences between the two regu-
larization processes. Notice that the values of Δ are
increasingly larger for the TRS than for the MSS when
μI grows. At μI ∼ Λ (i.e., μI ∼ 5mπ), the difference between
the TRS and MSS goes up to 30–35 MeV. This difference
in Δ at higher values of μI also justifies the use of the
medium separation scheme, especially since we are work-
ing at the zero-temperature limit.
In the following part of this section, we shall discuss our

results for different relevant thermodynamic quantities
within the two-flavor NJL model, comparing each one
with the corresponding recent lattice QCD results [46]
and chiral perturbation theory [54] results for both leading
order (LO) and next-to-leading Order (NLO). It is impor-
tant to mention that in the present study we are using
datasets collected through private communications [63].
In the χPT results used in this study, the authors have
used the Particle Data Group (PDG) value of the fπ , i.e.,ffiffiffi
2

p
fπ ¼ 130.2ð�1.7Þ MeV, and for the pion mass

mπ ¼ 135 MeV. Due to the uncertainty in the values of
the low-energy constants [54,63], the uncertainty for the
χPT-NLO results has also been presented. In Figs. 2, 3,
and 4, respectively, the variations of normalized pressure,
isospin density, and energy density are shown with respect
to the isospin chemical potential scaled by mπ. These plots
have mainly focused on the region where mπ ≲ μI ≲ 2mπ

as the region of interest, throughout which lattice QCD data

0 1 2 3 4 5
μ

I
 / mπ

0

0.1

0.2

0.3

0.4

Δ  
[G

eV
]

NJL, MSS
NJL, TRS

FIG. 1. Variation of the amplitude of the pion condensateΔ as a
function of the normalized isospin chemical potential μI=mπ ,
using both the TRS and the MSS.

1 1.2 1.4 1.6 1.8 2
μ

I
 / mπ

0

0.1

0.2

0.3

0.4

0.5

P
 / 

m
π4

NJL, MSS
NJL, TRS
LQCD

1 1.2 1.4 1.6 1.8 2
μ

I
 / mπ

0

0.1

0.2

0.3

0.4

0.5

P
 / 

m
π4

ChPT (NLO)
ChPT (LO)
LQCD

FIG. 2. Variations of the normalized pressure (P=m4
π) as a function of the normalized isospin chemical potential μI=mπ . The LQCD

results [46] have been compared with the behavior of the MSS and TRS within the NJL model (left panel) and with up-to-NLO
results within χPT [63] (right panel). Both the plots are specifically zoomed into the region of interest, up to the value of μI for which
LQCD data are available. The three lines for χPT-NLO depict the uncertainty in the result due to the uncertainty in the low-energy
constants [54,63].
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were available.1 In this range of μI , the difference in results
for the TRS and MSS is relatively small, as is evident from
the plots. Comparing NJL results, we can observe that the
TRS has an infinitesimally better agreement with current
LQCD than the MSS. LO and NLO results within χPT have
also been compared, among others. Figure 2 distinctively
shows the comparability between the NJL and LQCD
results, especially in comparison with χPT results up to
NLO. Note that for the χPT datasets used here, the value of
the pion mass used was taken as 135 MeV (particle data
group). Using instead a pion mass closer to the value

adopted by LQCD—i.e., mπ ¼ 131� 3 MeV and
ffiffiffi
2

p
fπ ¼

128� 3 MeV, as it is made in the published version of
Ref. [54]—the agreement between LQCD and χPT has
been improved. Figures 3 and 4 show a typical behavior of
LQCD data, which cross over the NJL TRS and MSS
results around μI ∼ 1.5mπ , though overall being largely in
agreement. This crossover could be due to the current
unavailability of a larger number of lattice data for isospin
density.
The normalized EOS is presented in Fig. 5, where we

can notice the reflection of the behavior of Figs. 3 and 4
regarding the comparability of NJL and LQCD results. As
can be seen, within the limit of their uncertainties NLO χPT
results are in better agreement with the LQCD results for

0.8 1 1.2 1.4 1.6 1.8 2
μ

I
 / mπ

0

0.2

0.4

0.6

0.8

1

n I / 
m

π3
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NJL, TRS
LQCD
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μ

I
 / mπ

0

0.2

0.4

0.6

0.8

1

n I / 
m

π3

ChPT (NLO)
ChPT (LO)
LQCD

FIG. 3. Variations of the normalized isospin density (nI=m3
π) as a function of the normalized isospin chemical potential μI=mπ . The

LQCD results [46] have been compared with the behavior of the MSS and TRS within the NJL model (left panel) and with up-to-NLO
results within χPT [63] (right panel). The plots are specifically zoomed into the region of interest, up to the value of μI for which LQCD
data are available. The three lines for χPT-NLO depict the uncertainty in the result due to the uncertainty in the low-energy constants
[54,63]. Unlike the other thermodynamic quantities, here relatively fewer lattice data points are shown with respective error bars. The
dotted line represents the first-order interpolation of the latter.
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FIG. 4. Variations of the normalized energy density (ε=m4
π) as a function of the normalized isospin chemical potential μI=mπ . The

LQCD results [46] have been compared with the behavior of the MSS and TRS within the NJL model (left panel) and with up-to-
NLO results within χPT [63] (right panel). The plots are specifically zoomed into the region of interest, up to the value of μI for
which LQCD data are available. The three lines for χPT-NLO depict the uncertainty in the result due to the uncertainty in the
low-energy constants [54,63].

1In general, within lattice QCD calculations, the maximum
value of μI is constrained by the value of the lattice spacing.
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(lower-right panel). This plot shows the different behaviors of the MSS and TRS within the NJL model over the full spectrum of μI up to
Λ. χPT results up to NLO have also been presented up to μI ¼ 0.6Λ. The three lines for χPT-NLO depict the uncertainty in the result due
to the uncertainty in the low-energy constants [63].
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NJL model (left panel) and with up-to-NLO results within χPT [63] (right panel). The plots are specifically zoomed into the region of
interest, up to the value of μI for which LQCD data are available. The three lines for χPT-NLO depict the uncertainty in the result due to
the uncertainty in the low-energy constants [54,63].
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the region P > 0.2m4
π , whereas NJL (TRS and MSS)

results are in better agreement in the lower region
of P < 0.2m4

π .
Finally, in Fig. 6, we consider the full spectrum of

μI—i.e., < 0 ≤ μI ≤ Λ—to emphasize the effect of the
medium separation at higher values of μI on the normalized
thermodynamic quantities PNJL, hnIiNJL, and εNJL, as well
as the EOS. We interpret the parameter Λ as the scale of the
model, trusting in results restricted by Λ. In general, we
use thisΛ as an upper limit for the other relevant variables—
e.g., temperature, external fields, chemical potentials, etc.—
and the same idea was applied for μI in this work. Though it
is true that for μI ¼ Λ the regime of validity of our model
ends, we can see in Fig. 6 that the MSS results are different
from the TRS even for μI < Λ. We have also plotted χPT
results up to NLO in Fig. 6, but only up to μI ¼ 0.6Λ
(∼3mπ). This is to emphasize the fact that those results
cannot be trusted beyond μI ∼ 3mπ due to constraints on
their validity [63].

IV. CONCLUSIONS

In conclusion, we would like to emphasize the fact that
both the TRS and the MSS regularization schemes within
the NJL model show promising results in the front of
thermodynamic quantities describing systems similar to
pion stars, being largely in agreement with the LQCD
results. For regions with higher values of μI , where LQCD
results are not available, we have predicted the pressure,
isospin density, energy density, and EOS within both the
TRS and the MSS, highlighting the fact that the MSS is
more reliable in those regions due to its unique way of

separating vacuum divergent effects from medium terms.
In comparison with other effective theory results—i.e.,
χPT—our results within the mean-field NJL model show a
better agreement with LQCD results, which prompts us to
further investigate the phase diagram for the region with
finite μB and μI which is inaccessible by LQCD due to the
sign problem. Also, as mentioned in Sec. I, the possibility
of pion condensation in light of the early Universe dictates
further exploration in the T − μI plane of the QCD phase
diagram. Furthermore, χPT calculations for SUð3Þ at finite
isospin have also appeared very recently in Ref. [64],
which shows excellent agreement with lattice data for small
values of μI . Works in these directions within the NJL
model are in progress.
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