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The lightest Higgs boson mass of the minimal supersymmetric Standard Model has been recently
computed diagrammatically at the three-loop order in the whole supersymmetric parameters space of the
SUSY-QCD sector. The code FeynHiggs combines one- and two-loop fixed order with the effective-field-
theory calculations for the same Higgs mass. The two numerical predictions agree considering the scenario
of only one SUSY-scale and vanishing stop mixing parameter below 10 TeV. For large SUSY scales above
10 TeV, sizeable numerical differences between the two predictions have been observed. Additionally, the
combined CMS/ATLAS Higgs mass value was used to derive an upper bound on the needed SUSY scale.
In the considered scenario, values above the scale 12.5� 1.2 TeV are excluded.
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I. INTRODUCTION

The discovery by the ATLAS and CMS Collaborations at
the CERN Large Hadron Collider (LHC) [1,2] of a bosonic
particle, with properties which are compatible with those
predicted for the Higgs boson of the Standard Model (SM),
represents a significant progress in our understanding of the
electroweak symmetry breaking mechanism. The SM is
theoretically consistent with the inclusion of a 125 GeV
Higgs boson, in the sense that no Landau pole emerges,
also if the model is extrapolated up to the Planck scale
(ΛP ≈ 1018 GeV), where one has to accept a metastable
vacuum and an unnatural high amount of fine-tuning (1034)
for the prediction of the Higgs boson mass at the electro-
weak scale (ΛEW ≈ 102 GeV) [3–7]. However, there are
still several puzzles that remain unsolved by the SM
dynamics. The hierarchy problem, the neutrino oscillation,
the identification of the dark matter, the baryon asymmetry,
among others, are all left unanswered and require new
physics beyond the Standard Model. The minimal super-
symmetric extension of the SM (MSSM) is the best
motivated and the most intensively studied framework of
new physics, providing a large amount of precise predic-
tions for experimental phenomena at the TeV scale [8,9].
In most scenarios that are phenomenologically relevant
[10–13], the LHC measured value, Mexp

h ¼ 125.09�
0.24 GeV [14–16], is associated with the lightest Higgs

boson mass (Mh) which is invariant under the charge
conjugation and parity transformation (CP-even) and is
theoretically predicted with great accuracy in the MSSM.
Up to now, the dominant quantum corrections to Mh have
been computed at one-loop [17–20], two-loop [21–29], and
three-loop [30–34] level using the Feynman diagrammatic
(FD) and the effective potential approaches. These MSSM
predictions can accommodate the measured Higgs mass
value of 125 GeV and are consistent with the similarities of
the measured Higgs couplings to those in the SM [14].
Effective-field-theory (EFT) methods have been also con-
sidered to resum large logarithms in case of a large mass
hierarchy between ΛEW and the SUSY scale (MSUSY)
[35–41]. In particular, for values of MSUSY above a critical
point where the fixed-order and EFT combined uncertainties
are equal, the EFT computation is more accurate and
therefore the usage of the SM [42] or a two-Higgs-
doublet-model [43] as effective theories below the SUSY
scale is preferred. Both the fixed-order and the EFT results
are implemented in several publicly available codes. For the
diagrammatic fixed-order calculations, there are the pro-
grams SoftSUSY [44], SUSPECT [45], CPSuperH [46], and
H3m [33]. Pure EFT calculations are implemented in
SUSYHD [38] and MhEFT [47]. Moreover, different hybrid
methods that combine both approaches have been recently
developed in order to take profit of the features of each one.
FlexibleSUSY [48–50], based on SARAH [51–54], imple-
ments a hybrid method called FlexibleEFTHiggs [49,50].
This approach was also included into the program SPheno
[55,56]. A hybrid method different from the one pursued
in FlexibleEFTHiggs has been implemented in FeynHiggs
[57,58]. There are also in literature detailed numerical
comparisons between the different diagrammatic, EFT,
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and hybrid codes. In [49], it is discussed in detail how the
hybrid method FlexibleEFTHiggs compares to the other
EFT and diagrammatic codes. Several numerical compar-
isons of the hybrid approach implemented in FeynHiggs to
the pure EFT calculations have been studied in [38,49,56].
Those papers reported surprising non-negligible numerical
differences between FeynHiggs and pure EFT codes for
the prediction of Mh at large SUSY scales. The observed
differences come mainly from three sources. The scheme
conversion of input parameters from OS to DR, which can
lead to large shifts due to uncontrolled higher-order terms.
Unwanted effects from incomplete cancellations with sub-
loop renormalization contributions in the determinations of
the Higgs propagator pole and different parametrizations of
nonlogarithmic terms. After performing the corresponding
corrections, FeynHiggs results are in very good agreement
with the results of SUSYHD [59]. Finally, a new hybrid
computation which includes a partial N3LL resummation
and N3LOþ N3LL hybrid QCD corrections to the light
CP-even Higgs boson mass are also available [60].
For the present study, we decided to use the fixed-order

and EFT hybrid calculations currently included in
FeynHiggs, which seems to be in a very good agreement
with the other fixed-order and EFT codes and gives a
reliable three-loop predictions of the Higgs boson mass
for large SUSY scales, in order to provide a numerical
comparison of our three-loop fixed-order predictions of the
lightest MSSM Higgs boson mass reported in [34] with the
fixed-order and EFT hybrid results found in literature. As
the effects of the large logarithms are expected to become
relevant when MSUSY grows, it is natural to ask how large
MSUSY can be. We therefore provide in this article a
phenomenological analysis about the compatibility of the
experimental observations at the LHC for the Higgs boson

mass and the region of parameters in the specific MSSM
considered scenario to find an upper bound on the
needed MSUSY.

II. THREE-LOOP FIXED-ORDER
CALCULATION OF Mh

In contrast to the SM, the Higgs sector of the MSSM
with real parameters (rMSSM) contains two complex
doublets with opposite hypercharges

H1 ¼
�
H0

1 þ v1ffiffi
2

p

H−
1

�
and H2 ¼

� Hþ
2

H0
2 þ v2ffiffi

2
p

�
; ð1Þ

where the neutral components, H0
1;2 fluctuate around the

vacuum expectation values (vevs) v1;2. In the physical
basis, there are five Higgs bosons, three of them are neutral:
the lightest (h) and heavy (H) CP-even Higgs bosons and
the CP-odd Higgs boson (A). The other two, H�, are
charged and vev-less. Besides the SM electroweak boson
masses, the rMSSM Higgs sector is parametrized in terms
of two additional parameters: the mass of the CP-odd
Higgs boson (MA) and tan β, which is the ratio of the two
vevs, v1=v2. The masses of the CP-even Higgs boson
particles, h and H, follow as predictions.
We focus in this section on the prediction of the lightest

Higgs boson mass, Mh, at three-loop accuracy using a
fixed-order FD computation which is based on the
calculation of Higgs self-energy corrections at the given
perturbative order. In this approach, the renormalized
CP-even Higgs boson masses are obtained by finding
the zeros of the determinant of the inverse propagator
matrix (poles equation)

ðΔHÞ−1 ¼ −i

 
p2 −m2

H þP3
l¼1

Q̂ ðlÞ
HH

P
3
l¼1

Q̂ ðlÞ
hHP

3
l¼1

Q̂ ðlÞ
hH p2 −m2

h þ
P

3
l¼1

Q̂ ðlÞ
hh

!
; ð2Þ

where mh and mH denote the tree-level mass of h and H,
respectively, and

cYðlÞ
ij

¼
YðlÞ
ij

−δðlÞM2
ij; i; j ¼ h;H ð3Þ

are the corresponding l-loop renormalized self-energies.
A particular feature of the rMSSM is the large size of the
higher-order quantum corrections to masses and couplings.
They can lead to a considerably large shift on the value of
the Higgs boson mass, where the bulk of the corrections
comes from the SUSY-QCD sector of the Lagrangian.
Thus, the dominant contributions to

Q̂
ij in Eq. (3) involve

the SM parameters ht (top Yukawa coupling), Mt (top
quark mass), αs (strong coupling constant), and the MSSM

parameters Mg̃ (gluino mass), θt (stop mixing angle), m̃q1;2
(squark masses), and Aq (soft breaking parameters) where
q ¼ u; d; t; b; c; s.
Concerning the renormalization of the self-energy cor-

rections, that is to say, the determination of the mass
counterterms δðlÞM2

ij, we follow the mixed OS=DR scheme
defined in [34]. Thus, the electroweak gaugeless limit at
Oðαtα2sÞ and the approximation of zero external momentum
are assumed. As a consequence, we have avoided dealing
with the Higgs wave function renormalization and also
with the renormalization of tan β. Moreover, v1;2 are
defined as the minima of the full effective potential and
therefore the tadpoles are renormalized on shell according
to the conditions
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T tree
1;2 ¼ 0; δðlÞT1;2 ¼ −TðlÞ

1;2; ð4Þ

where TðlÞ
j is the l-loop Higgs tadpole contribution. We have

also imposed an on-shell renormalization to the A-boson
mass

δðlÞM2
AA ¼ Re

�YðlÞ
AA

ðM2
AÞ
�
: ð5Þ

The three-loop corrections of Oðαtα2sÞ also include the
OðαsÞ contributions to the one-loop counterterms coming
from the renormalization of the gluino mass, the top quark
mass, the squark masses, and the stop mixing angles in the
DR scheme, as well as the two-loop DR renormalization of
the top mass, the stop masses, and stop mixing angles
at Oðα2sÞ.
For the purposes of this article, we have chosen a

degenerate single-scale scenario where all the supersym-
metric masses are set equal to an effective scale MSUSY,

ML;R ¼ Mg̃ ¼ MA ¼ μ ¼ MSUSY: ð6Þ

Here μ is the Higgsino mass and ML;R are the soft SUSY-
breaking masses. We have also identified the lightest Higgs
boson h as the SM-like Higgs boson and therefore we have
assumed the decoupling limit, MA ¼ MSUSY ≫ Mt. This
degenerate scenario in the decoupling limit is known as the
“heavy SUSY” limit. As a consequence, the three-loop self-
energy corrections to m2

h;H can approximately be obtained
as a superposition of the 33 vacuum integrals depicted in
Fig. 1 with coefficients that are functions of the kinematic
invariants and the space-time dimension, D. In some
particular cases, the coefficients can contain poles; that
is to say, terms of the form ðD − 4Þ−1. Therefore, the basis
integrals could also require a numerical evaluation of their
evanescent terms. Each diagram of the basis in Fig. 1
represents a three-loop master integral of the form

Iv1…v6 ¼ i
e3γEε

π3D=2

Z Y3
l¼1

dDql

�Y6
j¼1

1

P
nj
j

�
; ð7Þ

where

P1 ¼ q21 −m2
1; P2 ¼ ðq1 − q2Þ2 −m2

2;

P3 ¼ ðq2 − q3Þ2 −m2
3; P4 ¼ q23 −m2

4;

P5 ¼ q22 −m2
5; P6 ¼ ðq1 − q3Þ2 −m2

6:

There are two scales involved, the electroweak scale
Mt, whose associated propagator is represented with a thin
solid line and the supersymmetric scale MSUSY repre-
sented with a thick solid line. Massless propagators are

represented with a dashed line. This basis was obtained
using the integration by parts (IBP) method implemented
in the code Reduze [61]. Main parts of the diagram shown
in Fig. 1 have been analytically evaluated in [62–69]. The
numerical evaluation of the basis integrals was done with
the programs TVID [70,71] and SecDec [72]. In particu-
lar, the integral I211100 requires a Laurent expansion up
to first order in ε. The evanescent terms of Oðε1Þ was
numerically evaluated with the help of SecDec.

III. EFT HYBRID CALCULATION OF Mh

When there is a large mass hierarchy between the
electroweak scale and the scale of the SUSY particles, the
fixed-order computations of the Higgs self-energy correc-
tions contain large logarithms that can spoil the convergence
of the perturbative expansion and yield unreliable predic-
tions of the Higgs boson masses. A fixed-order computation

FIG. 1. Basis of three-loop master integrals. The dashed line
represents a massless propagator. The thin solid line is the
propagator with a mass at the electroweak scale Mt, and the
thick solid line depicts the propagator involving the SUSY scale
MSUSY.
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is thus recommended for low values ofMSUSY not separated
too much from Mt. There is an alternative approach to
calculate Mh which yields accurate results for high SUSY
scales. This approach is based on the EFT techniques [38,73]
and allows the resummation of the large logarithmic terms
and the incorporation of higher-order contributions beyond
the order of the fixed-order diagrammatic calculations. In the
heavy SUSY limit, the low-scale EFT below MSUSY is the
SM. It requires just one EFT coupling, the effective Higgs
self coupling λ, which correlates the high scale MSUSY and
the low scale Mt through the renormalization group equa-
tions (RGEs) and captures radiative corrections of the form

αnþm−1
j lognðMSUSY=MtÞ; j ¼ λ; ht; gs;… ð8Þ

for n ≥ 1, by using the m-loop beta functions of αj, into the
running coupling λðQÞ. In order to get a SM running Higgs
mass in the MS scheme at the scale Mt, one has to multiply
λðMtÞ by 2v2ðMtÞ, where vðMtÞ ≈ 246 GeV is the MS vev
evaluated at Mt. The physical Higgs mass requires to solve
the pole equation

p2 − 2λðMtÞv2ðMtÞ þ fYSM

hh
ðp2Þ ¼ 0; ð9Þ

with the SM Higgs boson self-energy,

fYSM

hh
ðp2Þ ¼

�YSM
hh

ðp2Þ − 1ffiffiffi
2

p
v
TSM
h

�
fin

; ð10Þ

renormalized in the MS scheme but with the Higgs tadpoles
renormalized to zero, i.e., δTSM

h ¼ −TSM
h . As higher dimen-

sional operators are not included into the effective
Lagrangian, the contributions suppressed by the heavy scale
MSUSY are not considered. Consequently, the EFT calcu-
lation is less accurate than the fixed-order one for low SUSY
scales. The fixed-order calculation is more accurate below a
critical SUSY mass scale, estimated to be about MC

SUSY ≈
1.2 TeV in [42], whereas above that scale the EFT calcu-
lation is more accurate.
In the version 2.14.3 of FeynHiggs [74], both approaches

are combined in order to supplement the full one-loop,
leading, and subleading two-loop diagrammatic results
with a resummation of the leadingþ next to leading
(LLþ NLL) [75] and next to next to leading (NNLL)
[76] logarithmic contributions coming from the top/stop
sector. For the resummation of large logarithms up to NLL
two-loop RGEs and one-loop matching conditions are
needed, accordingly, the resummation up to NNLL
requires three-loop RGEs and two-loop matching con-
ditions. The hybrid results obtained from the combination
of the two approaches are added into the pole equation of
the full MSSM

p2 −m2
h þ

Ỹ
hh
ðp2Þ þ Δlog

hh ¼ 0 ð11Þ

through the shift Δlog
hh which contains the resummed large

logarithms from the EFT as well as the logarithmic terms
already present in the fixed-order Higgs self-energies

Δlog
hh ¼ −½2λðMtÞv2ðMtÞ�log −

�Ỹ
hh
ðm2

hÞ
�
log
: ð12Þ

The subscript log means that only logarithmic terms are
considered. The logarithms in the Higgs self-energy appear
explicitly only after expanding in v=MSUSY. This subtraction
term ensures that the one- and two-loop logarithms, already
contained in the fixed-order FD computation, are not
counted twice. In general, the higher-order logarithms
obtained from the EFT and the hybrid approaches are not
the same because the determination of the poles of the
propagators [Eqs. (9) and (11)] are performed in different
models. However, this difference, which comes from the
momentum dependence of the two-loop order non-SM
contributions to the Higgs self-energy, cancels out with
contributions coming from the subloop renormalization in
the heavy SUSY limit, as was explicitly shown in [59].
Besides the unwanted effects from incomplete cancellations
in the determination of the Higgs propagator pole, the effects
due to nonlogarithmic terms and its parametrization as well
as the higher-order terms coming from the scheme con-
version betweenOS and DR parameters are all included into
FeynHiggs 2.14 [74].

IV. NUMERICAL RESULTS

In this section, we present a numerical comparison of our
three-loop fixed-order predictions of Mh to the numerical
predictions coming from the version 2.14.3 of FeynHiggs.
We have chosen a DR renormalization of the stop sector
with the renormalization scale set to μr ¼ MSUSY, which is
equivalent to setQt ¼ −1 in FeynHiggs. In the DR scheme,
the two-loop anomalous dimension of the stop mass
contains a nonphysical dependence on the ε-scalar mass,
mε. At order αtα

2
s, a one-loop renormalization of mε is

required. In order to decouple the ε-scalar mass from the
physical observables, we have renormalized mε in the on-
shell scheme [77] and we have imposed mOS

ε → 0 at the
given perturbative order. Strictly speaking, this procedure
does not coincide with a DR renormalization due to mε is
not renormalized minimally. However, as all the other
parameters entering the two-loop counterterm of the stop
mass are DR parameters and the Oðαtα2sÞ correction to Mh
is independent from mε, we maintain the nomenclature
“DR scheme.” The one-/two-loop fixed-order and the EFT-
hybrid FeynHiggs predictions are fixed such that the full
MSSM is considered (mssmpart ¼ 4) in its real version
(higgsmix ¼ 2, tlCplxApprox ¼ 0), no approximation is
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taken for the one-loop result (p2approx ¼ 4), and the
OðtannβÞ corrections are resummed (botResum ¼ 1).
In particular, when the resummation of the large logarithms
is included, we use the full LL, NLL, and NNLL resum-
mation (looplevel ¼ 2, loglevel ¼ 3). The top quark mass
is renormalized in the SM MS scheme at NNLO
(runningMT ¼ 1) since for loglevel different from zero a
DR renormalization is not allowed. To obtain the pole mass
Mh at three-loop level in the fixed-order approach, we have
introduced the Oðαtα2sÞ corrections as constant shifts in
the FeynHiggs 1-loopþ 2-loop Higgs renormalized self-
energies (looplevel ¼ 2 and loglevel ¼ 0) with the help
of the function FHAddSelf, but in this case we have used a
DR renormalization of the top quark mass. In order to
assure a correct evaluation of the parameters αs and Mt in
the DR scheme at the desired perturbative order, we have
used the code decSUSY which is a supersymmetric
extension of the program RunDec [78–80]. We start by
considering the FeynHiggs fixed-order, FeynHiggs NNLL
hybrid and three-loop Oðαtα2sÞ predictions. The upper plot
of Fig. 2 shows the dependence of Mh on MSUSY for a
vanishing stop mixing, Xt=MSUSY ¼ 0, at the kinematic
point Ae;μ;τ;u;d;c;s;b ¼ 0 and tan β ¼ 10, whereas the lower
plot shows the numerical differences between all the
considered FeynHiggs results and the Oðαtα2sÞ prediction
of Mh. In order to draw these plots, we have adopted
the heavy SUSY limit [Eq. (6)] and we have followed
the next conventions. The one- and two-loop fixed-
order results of FeynHiggs are represented with the dot-
dashed and the dashed lines, respectively. The blue dotted
line contains, in addition, the resummation of the large
logarithms up to NNLL order. The blue band corresponds
to the uncertainty in the NNLL prediction computed with
the help of the FeynHiggs function FHUncertainties for the
flag choice: mssmpart ¼ 4, looplevel ¼ 2, loglevel ¼ 3,
runningMT ¼ 1. In principle, three effects are taken into
account: (i) the variation of the renormalization scale from
Mt=2 to 2Mt, (ii) the use of Mpole

t instead of Mrun
t in the

two-loop corrections, and (iii) the exclusion of higher-order
resummation effects in Mb. The brown band is the
experimental Higgs boson mass and its corresponding
uncertainty; we have adopted the combined CMS/
ATLAS result of the RUN 1 at the LHC, Mexp

h ¼ 125.09�
0.24 GeV [14], since there is not yet an official combined
result for RUN 2 [15,16] observations. Finally, the red solid
line contains our three-loop fixed-order corrections.
The first thing to note here (and also in Fig. 3) is that

the higher-order large logarithms coming from the EFT
hybrid approach at NNLL level produce a growing positive
shift on the two-loop predictions reaching a size of about
20 GeV for MSUSY ¼ 40 TeV. Additionally, the NNLL
predictions are in a very good agreement with the three-
loop Oðαtα2sÞ results for MSUSY less than the value
MSUSY ≲ 10 TeV. On the lower graph of Fig. 2, one can

see that in the region 2.2 TeV≲MSUSY ≲ 7.4 TeV there is
an approximately constant difference of about 0.2 GeV
between the red solid and the blue dotted line which is
within the theoretical uncertainty (blue band) estimated to
be about 0.6 GeV. Below this region the agreement is still
good with a numerical difference of at most 1 GeV.
However, for scales above 10 TeV, the effects of the large
logarithms in the red curve start to be relevant; the differ-
ence between the two results rapidly increases up to
∼21 GeV when MSUSY grows to up to 20 TeV and grows
monotonically reaching 78 GeV at MSUSY ¼ 40 TeV. This
pronounced behavior depends crucially on our election of
the input parameters μr,Mg̃, and Xt. The presence of n-loop
logarithms of the form lognðMSUSY=MtÞ in the master
integrals of Fig. 1 can introduce additional large contribu-
tions in the three-loop predictions of Mh.
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180

200
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FIG. 2. Comparison of the Mh predictions of FeynHiggs with
the three-loop fixed-order computation of Mh at Oðαtα2sÞ in the
heavy SUSY limit. The dot-dashed and the dashed lines are the
fixed-order results of FeynHiggs at one and two-loop level,
respectively. The blue dotted line contains the NNLL resumma-
tion of the large logarithms in FeynHiggs. The blue band
corresponds to the uncertainty in the NNLL prediction taken
from FeynHiggs. The brown band is the CMS/ATLAS Higgs
boson mass, Mexp

h ¼ 125.09� 0.24 GeV. The red solid line
represents our three-loop fixed-order predictions. Up: depend-
ence of Mh on the supersymmetric scale MSUSY for a vanishing
stop mixing, Xt=MSUSY ¼ 0. Down: numerical differences be-
tween the FeynHiggs predictions and the three-loop fixed-order
predictions of Mh.
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In Fig. 3, we show the numerical comparison between
two results. (i) Our three-loop Oðαtα2sÞ predictions of Mh
(red curve), where the heavy SUSY limit has been
smoothed to include an additional SUSY scale, the gluino
mass Mg̃. (ii) The FeynHiggs prediction of Mh including
the resummation of the large logarithms up to NNLL order
(blue dashed curve). The effects of a gluino threshold are
not included in the NNLL resummation procedure since
three-loop RGEs for an appropriate extension of the
Standard Model with the gluino as additional fermion,
for instance, as a singlet of the gauge group, are not
included in FeynHiggs. The NNLL resummation is thus
restricted to the caseMg̃ ¼ MSUSY. However, the numerical
effects due to a gluino threshold in the EFT computation of
Mh are numerically small, about 0.2 GeV [76], and there-
fore can be safely neglected. The fixed-order corrections
instead capture almost the entire effect of varying Mg̃. In
[76] was shown that the diagrammatic two-loop correction
to Mh gives a sizable contribution of up to ∼2 GeV for the
case of maximal stop mixing. The three-loop fixed-order
corrections with the added gluino can also be sizeable,
specially for large SUSY scales. We have considered a

gluino mass of Mg̃ ¼ 1.5 TeV. The inclusion of this
additional scale produces significant differences between
the Oðαtα2sÞ and the NNLL results. Note that the red curve
includes not only the gluino effects but the complete
dynamics, that is to say, the large logarithms of the form
lnðMSUSY=MtÞ and lnðMSUSY=Mg̃Þ are included. For small
SUSY scales below ∼3.5 TeV, the difference is always less
than 1.3 GeV. For large SUSY scales (MSUSY > 3.5 TeV),
this difference grows to a maximum value of 4 GeV when
MSUSY ¼ 20 TeV. Nevertheless, the numerical effect of the
large logarithms in the red curve is reduced by a factor of
around 5 regarding the results shown in Fig. 2.
Finally, we have studied the dependence of the NNLL

and three-loop Mh predictions on the stop mixing param-
eter Xt in the heavy SUSY limit.
In Fig. 4, we have increased the value of Xt=MSUSY from

0.2 (thin curves) to 2.4 (thick curves). We observe a good
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FIG. 3. Numerical comparison of the Mh predictions in a
scenario where Mg̃ ¼ 1.5 TeV and Xt=MSUSY ¼ 0. These plots
follow the same conventions as in the Fig. 2. Up: evolution ofMh
as a function of MSUSY. Down: differences between the three-
loop fixed-order and the FeynHiggs predictions.
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FIG. 4. Numerical comparison of the Mh predictions for a
nonvanishing stop mixing in the heavy SUSY limit. The blue
dashed lines are the NNLL predictions of FeynHiggs, and the red
solid lines represent our three-loop fixed-order predictions. The
brown band is the CMS/ATLAS Higgs boson mass, Mexp

h ¼
125.09� 0.24 GeV. Up:Mh as a function ofMSUSY for different
stop mixing values, Xt=MSUSY ¼ 0.2, 0.5, 0.7, 1.0, 1.5, and 2.4.
Down: absolute numerical differences between the three-loop
fixed-order predictions and the NNLO results of FeynHiggs
plotted in the upper figure.
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agreement between the two predictions for small SUSY
scales up to MSUSY ¼ 10 TeV, which is in accordance
with previous comparisons of fixed-order and EFT calcu-
lations [40,60]. However, for high energy scales above
MSUSY ≳ 10 TeV, there is a large variation of the three-
loop fixed-order curves which is observed neither in the
NNLL FeynHiggs curves nor in the three-loop EFT and
hybrid results presented in [33,40,60] where the resumma-
tion of the large logarithmic contributions is included. In
particular, when Xt=MSUSY is equal to 1.5, which is an
inflexion point where the curvature of MhðXtÞ changes its
sign, the numerical differences between the red and the blue
curves remain lesser than 3 GeVup toMSUSY ¼ 20 TeV. In
the case of maximal stop mixing, Xt=MSUSY ¼ 2.4, where
the prediction ofMh takes its higher value (thickest lines in
Fig. 4), the difference between the two results is almost
constant for large SUSY scales amounting a size of about
10 GeV. The other considered Xt values show a numerical
difference that grows without boundary as a function of
MSUSY. Due to the large variation in the red and green
curves, it is not possible to observe a systematic improve-
ment of the effect of the large logarithms in the three-loop
fixed-order results when Xt is changed.
We further explore the dependence of the Higgs boson

mass on the SUSY input parametersMSUSY, Xt, and tan β in
the heavy SUSY limit. Figures 2–4 show that the predicted
value of Mh grows when MSUSY increases and reaches a
maximum value at the critical point Xt=MSUSY ¼ 2.4,
whose location is independent of MSUSY. It suggests that
one can find boundaries for the region of rMSSM param-
eters which put further constraints on Mh. Figure 5 shows
the numerical values of Xt=MSUSY and MSUSY which
produce the same Higgs mass prediction (gray curves).
We have considered values ofMh from 115 to 131 GeVand
set tan β ¼ 10. We observed here that there is a minimum
value ofMSUSY, located at the maximal point Xt=MSUSY ¼
2.4, which is compatible with some election of the Higgs
boson mass. Moreover, in the case of nonstop mixing
(Xt ¼ 0), one can find the higher value of MSUSY com-
patible with a given Mh. These extrema values grow when
we consider higher values ofMh. This behavior can also be
seen at the intersection of the brown band with the blue
dashed lines in Fig. 4 for a 125 GeV Higgs mass. If we use
the combined CMS/ATLAS measured Higgs boson mass
within the actual combined uncertainties,Mexp

h ¼ 125.09�
0.24 GeV, we will be able to fix upper and lower bounds
on the SUSY scale MSUSY in the benchmark scenario
considered in this work.
Figure 6 shows the 125.09 GeV contours (gray lines) as a

function ofMSUSY, tan β (up: for values of Xt=MSUSY from
0 to 2.4) and Xt=MSUSY (down: for values of tan β from
4 to 30). The blue and the brown regions refer to the SUSY
parameters compatible with Mexp

h . The purple lines re-
present the combined uncertainty for the cases enclosed
inside. Notice that if tan β ≤ 10 then MSUSY strongly

depends on tan β; moreover, the parameter region of
tan β ≲ 3 is incompatible with the LHC observations of
the Higgs boson mass if one considers SUSY scales below
20 TeV. For values above 10, the dependence is marginal
and the curves flatten. In general, it is not possible to find
a global upper bound on the required SUSY scale, from
the CMS/ATLAS Higgs mass value, which is independent
of the election of the parameters Xt and tan β. However,
for large tan β values (tan β ≳ 10), owing to the curves are
almost constant, one can identify a lower bound for
Xt=MSUSY ¼ 2.4 and an upper bound for a vanishing
stop mixing parameter (Xt ¼ 0). When tan β ¼ 10, which
is the point considered in all the above plots of this
section, we find that MSUSY must be at most 12.5�
1.2 TeV (see purple line in the upper plot) in order to be in
agreement with the CMS/ATLAS experimental results.
MSUSY can be reduced up to 9.6 TeV for tan β ¼ 30 and
Xt ¼ 0. One can significantly lower the required value of
MSUSY to 1.2 TeV when jXt=MSUSYj increases up to 2.4
and for tan β ¼ 30.
There is still the possibility to use the vacuum stability

of the Higgs potential to find a global upper bound on
MSUSY including small tan β values, as was discussed in
[42]. The estimated bound obtained in this work is of the
order of 3.7 × 1011 GeV; however, this result is not
conclusive because it was derived only for tan β ¼ 1 with-
out including the full MSSMHiggs potential and is valid in
the DR0 scheme, where mε is minimally renormalized and
its dependence is decoupled from the observables through
appropriated shifts of the physical parameters [81,82].
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FIG. 5. Dependence ofMh onMSUSY and Xt in the heavy SUSY
limit. We have used tan β ¼ 10. The gray lines represent the values
ofMSUSY and Xt which produce the same Higgs boson mass. The
predicted value of Mh increases monotonically with MSUSY.
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A complete phenomenological analysis in the DR scheme
including small tan β values and the full MSSM Higgs
potential is missing and is beyond the scope of this paper.

The region MSUSY > 12.5� 1.2 TeV, where the three-
loop fixed-order results blow up, is excluded by the
combined CMS/ATLAS Higgs mass value in the simple
scenario consider here. The coming combined result for
RUN 2 by ATLAS and CMS will reduce the current
uncertainty, and therefore the upper bound on the SUSY
scale (for higher values of tan β) could be reduced even
more.

V. CONCLUSIONS

We have recently presented a fixed-order computation of
the lightest rMSSM Higgs boson mass which extends the
validity of the leading three-loop corrections to the whole
parameter space of the rMSSM [34]. This computation is
in a very good agreement with the results of H3m [33] for
low SUSY scales (MSUSY ≲ 1.2 TeV). However, for large
MSUSY, a numerical comparison with the available codes is
missing. We have decided to fill this gap by checking our
computation ofMh with the three-loop results coming from
the EFT hybrid approach implemented in FeynHiggs
2.14 [74] for the same observable. FeynHiggs includes
the resummation of the large logarithms at high SUSY
scales and is in a very good agreement with the other fixed-
order and EFT codes. This allowed us to compare our
results with a reliable three-loop Mh prediction for MSUSY
up to 20 TeV. We focused on a single SUSY scale scenario
in the decoupling limit (heavy SUSY limit) where the SM
is the low energy EFT. We specifically compared our
Oðαtα2sÞ and the FeynHiggs NNLL predictions of Mh at
the kinematical point Ae;μ;τ;u;d;c;s;b ¼ 0, tan β ¼ 10 and
μr ¼ MSUSY. We find a very good agreement between
the two results for SUSY scales below 10 TeV in the case of
vanishing stop mixing (Xt ¼ 0). The difference is estimated
to be in the range 0.2 GeV≲ ΔMh ≲ 1 GeV for the region
MSUSY ≲ 10 TeV. Above MSUSY ¼ 10 TeV we have
observed significant differences that increase monotoni-
cally with MSUSY. Such a behavior is expected for high
SUSY scales since the Oðαtα2sÞ computation contain the
effects of the large logarithmic contributions. The numeri-
cal differences can be reduced through the introduction
of an additional SUSY scale, the gluino mass Mg̃. The
variation of the stop mixing parameter Xt does not produce
a systematic improvement of the large logarithm effects
in the three-loop fixed-order corrections. Nevertheless, the
region where the contributions of the large logarithms blow
up is excluded by the combined CMS/ATLAS Higgs mass,
Mexp

h ¼ 125.09� 0.24 GeV. This exclusion is valid just
for large tan β values, tan β ≳ 10, where we have derived an
upper bound on the needed SUSY scale. For values above
tan β ¼ 10, the region MSUSY > 12.5� 1.2 TeV is ruled
out. For small tan β values, upper bounds of MSUSY could
not be found in the SUSY parameter region considered in
this work.
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125.09� 0.24 GeV. Up: gray lines represent the points (MSUSY,
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points compatible with the combined uncertainty for the lowest
value of tan β considered.
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