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We present two new suggestions for density of states (DoS) approaches to finite density lattice QCD.
Both proposals are based on the recently developed and successfully tested DoS functional fit approach
(FFA) technique, which is a DoS approach for bosonic systems with a complex action problem. The two
different implementations of DoS FFAwe suggest for QCD make use of different representations of finite
density lattice QCD in terms of suitable pseudofermion path integrals. The first proposal is based on a
pseudofermion representation of the grand canonical QCD partition sum, while the second is a formulation
for the canonical ensemble. We work out the details of the two proposals and discuss the results of
exploratory two-dimensional test studies for free fermions at finite density, where exact reference data
allow one to verify the final results and intermediate steps.
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I. INTRODUCTION

Finding a suitable approach for Monte Carlo simulations
of finite density QCD that extends the accessible part of the
QCD phase diagram toward larger values of the chemical
potential is currently one of the great challenges for lattice
field theory. The problem is that at finite chemical potential
the fermion determinant is complex and cannot be used
as a probability in a Monte Carlo process. Among the
approaches that have been explored to solve this so-called
complex action problem is density of states (DoS) tech-
nique, introduced to lattice field theory in [1,2]. The key
challenge for a DoS approach is to compute the density
with sufficiently high accuracy, such that it can be
integrated over with fluctuating integrands that appear
when evaluating observables at finite density. A naive
determination with, e.g., simple histogram techniques
turned out to be useful only for very low densities [3–6].
Inspired by the Wang-Landau [7] approach, an interest-

ing new development was presented by Langfeld et al.
[8–14]. The idea is to use a parametrization of the density as
the exponential ρðxÞ ¼ expð−LðxÞÞ of a piecewise linear
and continuous function LðxÞ. Vacuum expectation values
restricted to the intervals where LðxÞ is linear are used to
determine ρðxÞ with very high precision. A variant of the
Langfeld-Lucini-Rago method is the DoS functional fit
approach (FFA) [15–19] and in recent years both tech-
niques were used to obtain interesting results for several

bosonic lattice field theories at finite density (see, e.g., the
review [20]).
However, no modern DoS formulation for systems with

fermions has been presented so far, and thus no clear path
toward precise DoS calculations for finite density QCD has
been outlined yet. The challenge is to formulate the DoS
approach such that it is compatible with conventional
pseudofermion Monte Carlo techniques that may be
applied to a real and positive fermion determinant.
In this paper, we discuss two proposals how to implement

the DoS FFA for finite density lattice QCD. The first of the
two is based on using a suitable pseudofermion representa-
tion of the QCD grand canonical partition sum. The
imaginary part of the action is identified, and the density
is considered as a function of that imaginary part. DoS FFA
is used to determine the corresponding density and observ-
ables are then obtained as integrals of the density.
The second proposal implements DoS FFA in a canoni-

cal setting. The canonical partition functions at fixed
net quark number are written as the Fourier moments
with respect to imaginary chemical potential μ ¼ iθ=β.
Considering θ as an additional degree of freedom (d.o.f.) in
the path integral allows one to implement the DoS FFA and
compute the density as a function of θ. Observables at fixed
net quark number are then again obtained as integrals of the
density.
In both formulations, only Monte Carlo simulations

without sign problem are needed, which furthermore can
be implemented using the well-established techniques of
standard lattice QCD simulations. We work out the details
of the two new approaches and present the results of small
exploratory two-dimensional (2D) studies of the free case
where exact results can be used to assess the results and
intermediate steps of the new proposals.
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II. GENERAL FORMULATION OF THE
DoS FFA APPROACH

Before we can discuss our two new DoS approaches to
finite density QCD, we first need to discuss the details of
the DoS formulation we use, the functional fit approach.
The FFA [15–17] is here presented for a general bosonic
theory with a complex action problem and we will later
show that with suitably chosen pseudofermion representa-
tions finite density lattice QCD can be brought into the
general form introduced in this section.

A. Partition sum and density of states

The vacuum expectation values hOi for some observable
O that we consider here can be written as bosonic path
integrals,

hOi ¼ 1

Z

Z
D½Φ�e−SR½Φ�þiαX½Φ�O½Φ�;

Z ¼
Z

D½Φ�e−SR½Φ�þiαX½Φ�; ð1Þ

where Φ denotes an arbitrary set of general bosonic lattice
fields that can be based on sites or links, and

R
D½Φ� is the

corresponding product measure. We have already separated
the exponent of the Boltzmann factor into two terms, the
real part SR½Φ� of the action and the imaginary part αX½Φ�.
We have allowed for a real-valued coupling α ∈ R multi-
plying the imaginary part, which is useful in some of the
applications we have in mind. SR½Φ�, αX½Φ�, and the
observable O½Φ� are real-valued functionals of the lattice
fields, and SR½Φ� is assumed to be bounded from below.
Obviously, the imaginary part X½Φ� gives rise to a complex
action problem.
For setting up the density of states approach, we define

the densities

ρðJ ÞðxÞ ¼
Z

D½Φ�e−SR½Φ�J ½Φ�δðx − X½Φ�Þ; ð2Þ

where J ½Φ� is an arbitrary real and positive functional of
the fields. Below we will identify J ½Φ� with some
observable, which in general can be decomposed into
pieces that obey these requirements. Note that different
choices of J ½Φ� result in different densities ρðJ ÞðxÞ, and we
use a superscript J to indicate which density we refer to.
With the densities ρðJ ÞðxÞ, vacuum expectation values

hOi of observables O can be expressed as

hOi ¼ 1

Z

Z
dx ρðOÞðxÞeiαx; Z ¼

Z
dx ρð1ÞðxÞeiαx;

hF ðXÞi ¼ 1

Z

Z
dx ρð1ÞðxÞF ðxÞeiαx; ð3Þ

where in the second line we have explicitly listed also the
particularly simple case where the observable is some
function F of the imaginary part X½Φ�.

The range of integration for the integrals
R
dx in (3)

depends on the properties of the imaginary partX½Φ�. IfX½Φ�
is bounded by some number xmax, so is the integration range.
We will see that this is the case for the canonical DoS
formulation discussed in Sec. IV. Furthermore, usually one
can identify symmetries to show that the densities ρðJ ÞðxÞ are
even or odd (depending on J ), such that the integration
interval wherewe need to determine the densities is ½0; xmax�.
In case X½Φ� is unbounded, the integration runs up to

x ¼ ∞, which is the case we will encounter in the direct
DoS approach discussed in Sec. III. Again, symmetries can
be used to show that ρðJ ÞðxÞ is even (or odd) such that the
actual integral is

R
∞
0 dx. Furthermore, we will see that

the densities ρðJ ÞðxÞ quickly decrease with x such that the
range of integration can be truncated such that also in this
second case we need to determine the densities in an
interval x ∈ ½0; xmax�.
Having defined the densities ρðJ ÞðxÞ and expressed

observables as integrals over these densities we now have
to address the problem of finding a suitable representation
of the densities and how to determine the parameters used
in the chosen representation.

B. Parametrization of the density

The densities ρðJ ÞðxÞ are functions of the parameter x,
and we are interested in the densities in some finite interval
½0; xmax�. For parametrizing the densities, we divide the
interval ½0; xmax� into N subintervals as follows:

½0; xmax� ¼ ⋃
N−1

j¼0

Ij; with Ij ¼ ½xj; xjþ1�; ð4Þ

where x0 ¼ 0 and xN ¼ xmax. Let Δj ≡ xjþ1 − xj denote
the length of the interval Ij, such that

xn ¼
Xn−1
j¼0

Δj: ð5Þ

The densities ρðJ ÞðxÞ are now parametrized in the form

ρðJ ÞðxÞ ¼ exp ð−LðJ ÞðxÞÞ; ð6Þ

where the LðJ ÞðxÞ are continuous functions that are piece-
wise linear on the intervals Ij. Furthermore, we require
LðJ Þð0Þ ¼ 0, such that the densities are normalized to
ρðJ Þð0Þ ¼ 1. For every interval In, we introduce a constant

aðJ Þ
n and a slope kðJ Þ

n for the linear function, i.e.,

LðJ ÞðxÞ ¼ aðJ Þ
n þ kðJ Þ

n ðx − xnÞ for x ∈ In: ð7Þ

Using the fact that the functions LðJ ÞðxÞ are required to be
continuous and are normalized with LðJ Þð0Þ ¼ 0, we can
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completely determine the constants an as functions of the
slopes kn. A simple calculation shows that LðJ ÞðxÞ can be
written in the following closed form:

LðJ ÞðxÞ ¼ dðJ Þ
n þ xkðJ Þ

n for x ∈ In

with dðJ Þ
n ¼

Xn−1
j¼0

ðkðJ Þ
j − kðJ Þ

n ÞΔj; ð8Þ

from which we obtain the explicit form of the density
ρðJ ÞðxÞ in an interval In,

ρðJ ÞðxÞ¼AðJ Þ
n e−xk

ðJ Þ
n ; AðJ Þ

n ¼ e−d
ðJ Þ
n for x∈ In: ð9Þ

Thus, our parametrized density ρðJ ÞðxÞ depends only on the
set of slopes kðJ Þ

n , one for each of the intervals In. We point
out that the parametrization allows one to work with
intervals In that have different sizes Δn. In particular, in
regions where the density ρðJ ÞðxÞ varies quickly, one
should use smaller intervals, while in regions of slow
variation, larger Δn can be used to reduce the computa-
tional cost. For a coarse scan of the density ρðJ ÞðxÞwith the
goal of determining the regions of quick variation, one can
do a first numerically cheaper determination with large Δn
which subsequently is refined with finer intervals. These
techniques are referred to as preconditioning and are
discussed in detail in [15–17].

C. Evaluation of the density parameters with FFA

To determine the density, we need to compute the slopes

kðJ Þ
n . For this purpose, we introduce the restricted expect-

ation values hXiðJ Þ
n ðλÞ, which are defined as

hXiðJ Þ
n ðλÞ≡ 1

ZðJ Þ
n ðλÞ

Z
D½Φ�e−SR½Φ�þλX½Φ�

× X½Φ�J ½Φ�ΘnðX½Φ�Þ; ð10Þ

with the corresponding restricted partition sums ZðJ Þ
n ðλÞ

given by

ZðJ Þ
n ðλÞ≡

Z
D½Φ�e−SR½Φ�þλX½Φ�J ½Φ�ΘnðX½Φ�Þ; ð11Þ

where we have introduced the support functions

ΘnðxÞ ¼
�
1 for x ∈ In;

0 for x ∉ In:
ð12Þ

In the restricted expectation values hXiðJ Þ
n ðλÞ and the

partition sums ZðJ Þ
n ðλÞ, we have introduced a free real

parameter λ which couples to the imaginary part X½Φ� and
enters in exponential form. Varying this parameter allows

one to properly explore the x dependence of the density in

the whole interval In. The expectation values hXiðJ Þ
n ðλÞ are

free of complex action problems and can be evaluated using
Monte Carlo simulations.
However, hXiðJ Þ

n ðλÞ and ZðJ Þ
n ðλÞ can be computed

also in closed form when using the parametrized density
ρðJ ÞðxÞ in the form of Eq. (9). For the partition sums, one
obtains

ZðJ Þ
n ðλÞ ¼

Z
xnþ1

xn

dx ρðJ ÞðxÞeλx ¼ e−d
ðJ Þ
n

Z
xnþ1

xn

dx e−xk
ðJ Þ
n eλx

¼ e−d
ðJ Þ
n

exn½λ−k
ðJ Þ
n �

λ − kðJ Þ
n

ðeΔn½λ−kðJ Þ
n � − 1Þ: ð13Þ

In the first step, we have rewritten the restricted partition
sum as the integral of the density ρðJ ÞðxÞ over the interval
½xn; xnþ1�. In the second step, the parametrized form (9) was
inserted for that particular interval, which gives rise to a
simple integral of an exponential that can be evaluated in
the closed form on the right-hand side.
Comparing (10) and (11), it is obvious that the restricted

vacuum expectation value hXiðJ Þ
n ðλÞ can be computed as

the derivative hXiðJ Þ
n ðλÞ ¼ d lnZðJ Þ

n ðλÞ=dλ, such that we
find the closed expression

hXiðJ Þ
n ðλÞ ¼ d lnZðJ Þ

n ðλÞ
dλ

¼ xn þ
Δn

1 − e−Δn½λ−kðJ Þ
n �

−
1

λ − kðJ Þ
n

: ð14Þ

After multiplicative and additive normalization, we

can express the result for hXiðJ Þ
n ðλÞ (which in its normal-

ized form we denote as VðJ Þ
n ðλÞ) in terms of a function

hðsÞ,

VðJ Þ
n ðλÞ≡ hXiðJ Þ

n ðλÞ − xn
Δn

−
1

2
¼ hðΔn½λ − kðJ Þ

n �Þ; ð15Þ

where hðsÞ is defined as

hðsÞ≡ 1

1 − e−s
−
1

s
−
1

2
ð16Þ

and has the properties

hð0Þ¼ 0; h0ðsÞ¼ 1=12; lim
s→�∞

hðsÞ¼�1=2: ð17Þ

The strategy for determining the slope kðJ Þ
n for an

interval In now is as follows: using a standard
Monte Carlo simulation without sign problem we compute

the restricted vacuum expectation value hXiðJ Þ
n ðλÞ for
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several values of λ. After bringing the hXiðJ Þ
n ðλÞ into the

normalized form VðJ Þ
n ðλÞ defined in (15), the data for

different λ can be fit with the function hðΔn½λ − kðJ Þ
n �Þ,

where the slope kðJ Þ
n appears as the only fit parameter. From

the set of kðJ Þ
n , the density ρðJ ÞðxÞ then is determined using

(8) and (9). Finally, vacuum expectation values of observ-
ables are computed via the integrals (3).

III. DIRECT DoS APPROACH FOR LATTICE
QCD WITH A CHEMICAL POTENTIAL

In this section, we discuss the first of our two imple-
mentations of the new DoS approach to finite density QCD.
Here we use a suitable pseudofermion representation of the
grand canonical partition sum and separate the part with the
complex action problem. For this factor, we set up the DoS
FFA formulation, discuss its properties, and present results
of a first exploratory test in the free case.

A. Grand canonical partition sum and
pseudofermion representation

We consider lattice QCD with Nf mass-degenerate
flavors of Wilson fermions. After integrating out the
fermions, the corresponding grand canonical partition
sum with quark chemical potential μ is given by

ZðμÞ ¼
Z

D½U�e−Sg½U� det D½U; μ�Nf : ð18Þ

We consider the theory in d ¼ 2 and d ¼ 4 dimensions
using lattices of size V ¼ Nd−1

s × Nt. The SU(3)-valued
gauge variables UνðxÞ live on the links (x, ν) of the lattice
and obey periodic boundary conditions. Their path-integral
measure is the product of Haar measures

R
D½U� ¼Q

x;ν

R
SUð3Þ dUνðxÞ. SG½U� is the Wilson gauge action

(we dropped the constant additive term),

Sg½U�¼−
βg
3
P½U�;

P½U�¼
X
x;ν<ρ

ReTrUνðxÞUρðxþ ν̂ÞUνðxþ ρ̂Þ†UρðxÞ†: ð19Þ

βg is the inverse gauge coupling and P½U� the sum over the
real parts of the traced plaquettes.
By D½U; μ� we denote the Wilson Dirac operator with

chemical potential μ in the background of a gauge field
configuration U. We write the Dirac operator in the form

D½U;μ� ¼ 1−κH½U;μ�; H½U;μ� ¼
Xd
ν¼1

Hν½U;μ�; ð20Þ

with the matrix elements of the hopping terms given by

Hν½U; μ�x;y ¼ ½1 − γν�eμδν;dUνðxÞδxþν̂;y

þ ½1þ γν�e−μδν;dUνðx − ν̂Þ†δx−ν̂;y: ð21Þ

By γν, we denote the Euclidean γ-matrices in d ¼ 2 or d ¼
4 dimensions, and κ is the hopping parameter κ ¼ 1=ð2dþ
2mÞ with m the bare quark mass. To be specific, we use a
representation of the Euclidean γ-matrices where γd is
symmetric, which in d ¼ 4 is, e.g., the chiral representation
and in d ¼ 2 the choice γ1 ¼ σ2, γ2 ¼ σ1 with γ5 ¼ σ3. In
(21), we use matrix/vector notation for the d Dirac indices
of the γ-matrices and the three color indices of the link
variables UνðxÞ. The chemical potential gives different
weight for hopping in forward and backward temporal
direction, i.e., the ν ¼ d direction. The fermions obey
periodic boundary conditions in the spatial direction(s)
and antiperiodic boundary conditions in time, i.e., the terms
in (21) that connect sites with xd ¼ Nt − 1 and xd ¼ 0 have
an additional minus sign.
In order to introduce a pseudofermion representation

that is suitable for the DoS FFA, we write the fermion
determinant as

det D½U; μ� ¼ det D½U; μ�† det D½U; μ�
det D½U; μ�†

¼ det ðD½U; μ�†D½U; μ�ÞC
Z

D½Φ�e−Φ†D½U;μ�†Φ

¼ det ðD½U; μ�†D½U; μ�ÞC
Z

D½Φ�e−Φ†A½U;μ�ΦþiΦ†B½U;μ�Φ

¼ det ðD½U; μ�†D½U; μ�ÞC
Z

D½Φ�e−SR½Φ;U�þiX½Φ;U�: ð22Þ

In the second step, we have written 1= det D½U; μ�† as a
bosonic integral over a complex-valued scalar field ΦðxÞ
with 3D components for Dirac and color d.o.f., and in
the exponent we use vector/matrix notation for all indices.

The constant C is given by C ¼ ð1=2πÞ3dV. In the third
step, we have organized the exponent into real and
imaginary parts such that the pseudofermion integral
matches the general form introduced in (1), where here
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we set α ¼ 1. The corresponding real and imaginary parts
are given by

SR½Φ;U� ¼Φ†A½U;μ�Φ; X½Φ;U� ¼Φ†B½U;μ�Φ; ð23Þ
where we also write the gauge field U as an argument in
SR½Φ; U� and X½Φ; U� since the real and the imaginary parts
depend on U via the kernels A½U; μ� and B½U; μ�. These
two matrices are defined as

A½U; μ� ¼ D½U; μ� þD½U; μ�†
2

;

B½U; μ� ¼ D½U; μ� −D½U; μ�†
2i

: ð24Þ

A straightforward evaluation gives the matrix elements

A½U; μ�x;y ¼ 1δx;y − κ
Xd
ν¼1

ΓνðμÞðUνðxÞδxþν̂;y

þ Uνðx − ν̂Þ†δx−ν̂;yÞ;

B½U; μ�x;y ¼ −iκ
Xd
ν¼1

ΓνðμÞγνðUνðxÞδxþν̂;y

−Uνðx − ν̂Þ†δx−ν̂;yÞ; ð25Þ
where

ΓνðμÞ ¼ 1 coshðμδν;dÞ − γd sinhðμδν;dÞ ¼ e−γdμδν;d : ð26Þ
These explicit forms of A½U; μ� and B½U; μ� will be useful
when discussing properties of the DoS FFA below.
Obviously, A½U; μ� and B½U; μ� are Hermitian, such that

the two quadratic forms for SR½Φ; U� and X½Φ; U� defined
in (23) are real. Thus, the pseudofermion integral in (22)
has the form that allows one to use DoS FFA to evaluate
that integral. This will be discussed in more detail in the
next section.
Let us add a few comments on the first factor in (22),

i.e., the determinant detðD½U; μ�†D½U; μ�Þ. Using the well-
known generalized γ5-hermiticity property D½U; μ�† ¼
γ5D½U;−μ�γ5, we find

detðD½U;μ�†D½U;μ�Þ ¼ detðD½U;−μ�ÞdetðD½U;μ�Þ; ð27Þ

which shows that detðD½U; μ�†D½U; μ�Þ corresponds to the
fermion determinant of two mass-degenerate quark flavors
with an isospin chemical potential which is free of complex
action problems. We stress, however, that this isospin
determinant is of course only a part of the weight and
its coupling to the pseudofermion factor in (22) generates
the full dynamics (see also the comments below).
The matrix D½U; μ�†D½U; μ� is obviously Hermitian

and has real and non-negative spectrum, such that it is
directly accessible with pseudofermion methods. Possible
approaches are a direct pseudofermion representation

(below χ and χj denote bosonic complex-valued pseudo-
fermion fields),

detðD½U; μ�†D½U; μ�Þ ∝
Z

D½χ�e−χ†ðD½U;μ�†D½U;μ�Þ−1χ ð28Þ

or an order-n Chebychev multiboson representation [21,22]
of the form

detðD½U; μ�†D½U; μ�Þ

∝
Yn
j¼1

1

detðuj − κH½U; μ�Þ†
1

detðuj − κH½U; μ�Þ

∝
Yn
j¼1

Z
D½χj�e−χ

†
j ðuj−κH½U;μ�Þ†ðuj−κH½U;μ�Þχj ; ð29Þ

where uj ¼ ei2πj=ðnþ1Þ are the coefficients for the
Chebychev factorization and we have used (20) to write
the Dirac operator using the hopping matrix H½U; μ�.
For both pseudofermion representations (28) and (29),

a necessary condition is that the spectrum of D½U; μ� ¼
1 − κH½U; μ� does not touch the origin. Obviously, a
sufficient condition for this to hold is kH½U; μ�k < κ−1 ¼
2dþ 2m, where we use the matrix norm kMk ¼
supfv⃗∶kv⃗k¼1g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v⃗†M†Mv⃗

p
. A simple crude estimate for the

norm kH½U; μ�k can be obtained as follows: using the
triangle inequality, one finds

kH½U; μ�k ≤
Xd
ν¼1

kHν½U; μ�k

¼
Xd
ν¼1

sup
fv⃗∶kv⃗k¼1g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v⃗†Hν½U; μ�†Hν½U; μ�v⃗

q
: ð30Þ

Using the definition (21) of the hopping matrices Hν½U; μ�
and the projector properties ½1� γν�½1 ∓ γν� ¼ 0 and
½1� γν�2 ¼ 2½1� γν�, one finds in a few lines of algebra

Hν½U;μ�†Hν½U;μ� ¼
�

41; ν ¼ 1;…d − 1;

4 coshð2μÞ1− 4 sinhð2μÞγd; ν ¼ d:

ð31Þ

The matrix 4 coshð2μÞ1 − 4 sinhð2μÞγd has eigenvalues e2μ

ande−2μ (twice degenerate ford¼4) such thatkHν½U;μ�k¼2
for ν ¼ 1;…d − 1 and kHd½U; μ�k ¼ 2eμ. Consequently,
kH½U; μ�k ≤ 2ðd − 1Þ þ 2eμ and the sufficient condition
for the spectrum of D½U; μ� to not touch the origin reads

2ðd− 1Þþ 2eμ < 2dþ 2m⇔ μ< lnð1þmÞ ¼mþOðm2Þ:
ð32Þ

Thus, we find that there is a finite range of μ where the factor
detðD½U; μ�†D½U; μ�Þ, which is free of the complex action
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problem, can be treated with conventional pseudofermion
techniques. We stress again that the estimate (32) is only a
crude nonexhaustive bound that essentially reflects the sit-
uation of the free case, where condensation sets in at μ ¼ m.
For a dynamical background gauge configuration U, the
spectrumofH½U; μ� is known to contract such that values of μ
that exceed the bare quark mass parameter m become
accessible. To precisely delimit the range where the pseudo-
fermion treatment of detðD½U; μ�†D½U; μ�Þ is possible beyond
the bound (32) obviously is a dynamical question that has to
take into account the emerging finite density physics aswell as
possible numerical instabilities of the hybrid Monte Carlo
algorithm that can only be assessed in a full QCD simulation,
which clearly goes beyond the scope of this presentation.
However, already with the simple bound (32), we have
established an interesting minimal region where the direct
DoS approach is applicable in principle.

B. Implementation of the DoS FFA

To set up the density of states approach and to define the
corresponding densities as outlined in the general presen-
tation in Sec. II, we need to write the grand canonical
definition with the pseudofermion representation. Since we
consider the general case of Nf flavors, we need Nf copies
of the pseudofermion fields, Φj; j ¼ 1;…Nf, where by
fΦg we denote the set of all these fields. Based on the
discussion of the previous section, we thus write the grand
canonical partition sum of QCD in the form that matches
Eq. (1) with α ¼ 1 (irrelevant overall constants were
dropped), i.e.,

ZðμÞ ¼
Z

D½U�e−Seff ½U�
Z

D½fΦg�e−SR½fΦg;U�þiX½fΦg;U�;

ð33Þ

where the real and imaginary parts of the pseudofermion
action, as well as the path integral measure, were gener-
alized to Nf flavors,

SR½fΦg; U� ¼
XNf

j¼1

SR½Φj; U� ¼
XNf

j¼1

Φ†
jA½U; μ�Φj;

X½fΦg; U� ¼
XNf

j¼1

X½Φj; U� ¼
XNf

j¼1

Φ†
jB½U; μ�Φj;

Z
D½fΦg� ¼

YNf

j¼1

Z
D½Φj�: ð34Þ

As we have outlined in the previous section, the term
detðD½U; μ�†D½U; μ�Þ in (22) can be treated with conven-
tional pseudofermion techniques and we combined the
corresponding factor for Nf flavors together with the gauge
field action Sg½U� into the effective action Seff ½U�,

e−Seff ½U� ¼ e−Sg½U� detðD½U; μ�†D½U; μ�ÞNf : ð35Þ

Following the general DoS FFA strategy outlined in
Sec. II A, we now define the densities as

ρðJ ÞðxÞ ¼
Z

D½U�
Z

D½fΦg�e−Seff ½U�−SR½fΦg;U�

× J ½fΦg; U�δðx − X½fΦg; U�Þ; ð36Þ

where we allow for general observables J ½fΦg; U� that can
be functionals of both, the set fΦg of pseudofermion fields
Φj, as well as the gauge fields U.
In the general outline of the method in Sec. II, we have

already announced that symmetries can be used to establish
that the densities ρðJ ÞðxÞ are either even or odd functions,
depending on the observables J , which we assume
themselves to be even or odd (general J may be decom-
posed into even and odd pieces). As an example, we briefly
discuss the simplest case of J ¼ 1 and show that ρð1ÞðxÞ is
even. The symmetry transformation we consider is charge
conjugation that for the gauge links and the pseudofermion
fields is implemented as

UνðxÞ → UνðxÞ0 ¼ UνðxÞ� ≡ ðUνðxÞ†ÞT;
ΦjðxÞ → ΦjðxÞ0 ¼ ΦjðxÞ� ≡ ðΦjðxÞ†ÞT; ð37Þ

where � denotes complex conjugation and T transposition.
It is straightforward to show that

SR½Φ0
j; U

0� ¼ Φ0
j
†A½U0; μ�Φ0

j ¼ SR½Φj; U�;
X½Φ0

j; U
0� ¼ Φ0

j
†B½U0; μ�Φ0

j ¼ −X½Φj; U�: ð38Þ

Equally straightforward is to show that the gauge action
Sg½U� defined in (19) is invariant under the charge con-
jugation transformation (37), i.e., Sg½U0� ¼ Sg½U�.
The invariance of the factor detðD½U; μ�†D½U; μ�Þ can be

shown using the representation (27) and charge conjuga-
tion: denote by C the charge conjugation matrix that obeys
C−1γνC ¼ −γTν . Then,

detðD½U0; μ�†D½U0; μ�Þ
¼ detðD½U0;−μ�Þ detðD½U0; μ�Þ
¼ detðC−1D½U0;−μ�CÞ detðC−1D½U0; μ�CÞ
¼ detðD½U; μ�TÞ detðD½U;−μ�TÞ
¼ detðD½U; μ�†D½U; μ�Þ; ð39Þ

where in the first step we used (27), then inserted the charge
conjugation matrix C, and finally exploited the relation
C−1D½U0; μ�C ¼ D½U;−μ�T which is easy to show for the
explicit form (20), (21) of D½U; μ�.
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Finally, using the invariance of the path integral mea-
sures

R
D½U0� ¼ R

D½U� and
R
D½fΦ0g� ¼ R

D½fΦg�, we
conclude

ρð1ÞðxÞ ¼
Z

D½U0�
Z

D½fΦ0g�e−Seff ½U0�−SR½fΦ0g;U0�

× δðx − X½fΦ0g; U0�Þ

¼
Z

D½U�
Z

D½fΦg�e−Seff ½U�−SR½fΦg;U�

× δðxþ X½fΦg; U�Þ ¼ ρð1Þð−xÞ: ð40Þ

Thus, we have established that ρð1ÞðxÞ is an even function
and in a similar way one may analyze the symmetry
properties for the general densities ρðJ ÞðxÞ that contain
the insertion of some observable J .
As the final step for the implementation of the DoS FFA,

we need to identify the restricted expectation values as
defined in the general description of the method in Sec. II.
Comparing with the general form (2), (10), we can read off
from the densities (36) the necessary restricted expectation
values for full QCD,

hXiðJ Þ
n ðλÞ

¼ 1

ZðJ Þ
n ðλÞ

Z
D½U�

Z
D½fΦg�e−Seff ½U�−SR½fΦg;U�þλX½fΦg;U�

× X½fΦg; U�J ½fΦg; U�ΘnðX½fΦg; U�Þ

¼ 1

ZðJ Þ
n ðλÞ

Z
D½U�

Z
D½fΦg�e−Seff ½U�−

P
j
Φ†

jM½U;λ�Φj

× X½fΦg; U�J ½fΦg; U�ΘnðX½fΦg; U�Þ; ð41Þ

where in the second step we have written the combination
SR½fΦg; U� − λX½fΦg; U� as a sum of quadratic forms
SR½fΦg;U�−λX½fΦg;U�¼P

jΦ
†
jM½U;λ�Φj with kernel

M½U; λ�x;y ¼ 1δx;y − κ
Xd
ν¼1

ΓνðμÞð½1 − iλγν�UνðxÞδxþν̂;y

þ ½1þ iλγν�Uνðx − ν̂Þ†δx−ν̂;yÞ: ð42Þ

Note thatM½U; λ� is a Hermitian matrix and for sufficiently
small λ its eigenvalues are positive (see the discussion
below). Thus, the restricted expectation values do not have
a sign problem and can be computed with Monte Carlo
simulations. After suitable normalization to the form (15),

the corresponding functions VðJ Þ
n ðλÞ can then be fit with the

function hðΔj½λ − kðJ Þ
j �Þ. The results are the slopes kðJ Þ

j

which via (8) and (9) determine the densities ρðJ ÞðxÞ.
Observables are then computed according to (3).
We stress that the ensemble considered in the restricted

vacuum expectation values (41) is not simply QCD with

isospin chemical potential reweighted to quark chemical
potential, where a serious overlap problem would emerge.
Instead the exponent of the Boltzmann factor in (41) is
given by Seff ½U� þ SR½fΦg; U� − λX½fΦg; U� where the
isospin contribution that is hidden in Seff ½U� is augmented
with the contributions SR½fΦg; U� − λX½fΦg; U� of the
pseudofermion terms, which contribute the dynamics of
the quark chemical potential.

C. First tests for the free case

For a first exploratory study of the new DoS approach,
we analyze the free case in two dimensions. Note that due
to the restricted expectation values that need to be evalu-
ated, this analysis already requires Monte Carlo simulations
also for the free case and indeed provides a nontrivial test of
the method. Insight about suitable sizesΔn for the intervals,
the numerical cost, the accuracy that is needed for the
density, etc., can be obtained. Furthermore, the free case
allows for a systematical comparison of the final results and
the intermediate steps against analytical results that may be
computed with Fourier transformation.
For the free case, the density ρð1ÞðxÞ defined in (36) with

the help of the pseudofermion representation simplifies to
(we consider the case of Nf ¼ 1 flavor)

ρð1ÞðxÞ ¼
Z

D½Φ�e−SR½Φ�δðx − X½Φ�Þ: ð43Þ

The gauge field integration has been dropped for the free
case and also the Boltzmann factor (35) for the effective
action since it is independent of x, such that it only would
affect the overall normalization of the density which is set
by requiring ρð1Þð0Þ ¼ 1.
Following the steps of the implementation of DoS FFA

in the previous section, for determining the parameters kð1Þj ,
we need to evaluate the restricted expectation values
defined in (41) which for the free case reduce to

hXið1Þn ðλÞ¼ 1

Zð1Þ
n ðλÞ

Z
D½Φ�e−Φ†M½λ�ΦX½Φ�ΘnðX½Φ�Þ: ð44Þ

The imaginary part X½Φ� can be obtained from (23) and
(25) (drop the link variables UνðxÞ there) as

X½Φ� ¼ −iκ
Xd
ν¼1

X
x

ΦðxÞ†ΓνðμÞγνðΦðxþ ν̂Þ −Φðx − ν̂ÞÞ;

ð45Þ
and the kernel M½λ� in the Boltzmann factor of (44) is
given by [see (42)]

M½λ�x;y ¼ 1δx;y − κ
Xd
ν¼1

ΓνðμÞð½1 − iλγν�δxþν̂;y

þ ½1þ iλγν�δx−ν̂;yÞ: ð46Þ
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This matrix is obviously Hermitian such that its eigenvalues
are real. However, for the existence of the path integral
needed for the evaluation of the restricted vacuum expect-
ation values (44), the eigenvalues also have to be positive,
and we now address this issue that has been neglected
previously. It is easy to see that eigenvalues can become
negative for large values of the parameter λ. For the
application of DoS FFA, we thus need to establish that
in the interesting region of the couplings m and μ there is
indeed a finite range of values of λ such that in this range all
eigenvalues are positive.
The eigenvalues ofM½μ; λ� can easily be computed using

Fourier transformation. From this exact result, one finds that
the spectrum is invariant under the reflection λ → −λ. Thus,
for given couplings,m and μ the range of values λ, where all
eigenvalues of M½μ; λ� are positive, must be a symmetrical
interval ð−λmax;þλmaxÞ. It is straightforward to determine
this interval by analyzing the λ-dependence of the spectrum
obtained from Fourier transformation.
The result for such an analysis is shown in Fig. 1, wherewe

plot the value λmax as a function of μ=m and compare our
results for different masses m and lattice sizes L × L. The
valueofμ=mwhere λmax becomes zero signals thebreakdown
of themethod.We remark that the polygonlike behavior of the
curves for the smaller volumes reflects the fact that for small
volumes the momenta populate the interval ½−π; π�with only
a few values such that also a “sparse” spectrum emerges, and
the different sections of the “polygon” correspond to a
different eigenvalue becoming negative.
The data in Fig. 1 are organized in groups where in each

group we consider a sequence of values L → ∞ andm → 0
at a fixed value of mL, i.e., we study the fixed volume
continuum limit of the free theory. The dotted curves are for
mL ¼ 0.64, the dashed curves for mL ¼ 1.28, and the full

curves correspond to mL ¼ 2.56. Note that the curves for
different mL cluster according to the respective values of
m. The figure shows that with increasing μ=m the values for
λmax decrease and at a critical value of μ=m the boundary
λmax becomes zero, signaling the breakdown of the method.
We observe that for all three values of mL we study, the
critical value of μ=m converges from above to a critical
value of μ=m ¼ 1, which is the value of the chemical
potential where condensation sets in. Thus, we expect that
we can use DoS FFA all the way to the condensation point.
For the dynamical case, one expects a similar behavior:

For nontrivial gauge links, the spectrum of the Dirac
operator is known to contract, giving rise to an additive
renormalization of the mass and a critical κ that is larger
than the free value κ ¼ 1=2d. Qualitatively, one finds that
for a larger critical κ a larger value of μ is accessible, and
one may expect that also for the full case the critical value
of μ coincides with the point where condensation sets in.
We stress, however, that obviously this is only a very
qualitative discussion of the situation in the fully dynamical
case and future explicit Monte Carlo calculations will be
necessary for a detailed analysis.
Having identified nonvanishing windows of λ where we

can safely evaluate the restricted vacuum expectation values

hXið1Þn ðλÞ defined in (44), we show some of these results for
illustration in Fig. 2. We plot the restricted vacuum expect-

ations hXið1Þn ðλÞ normalized to the form Vð1Þ
n ðλÞ defined in

(15) as a function of λ. The symbols represent the data
that we determined in a small Monte Carlo simulation on a
16 × 16 lattice using m ¼ 0.1 and μ ¼ 0.05. For x, we use
intervals of length Δn ¼ 1 ∀ n, such that the intervals are
given by In ¼ ½n; nþ 1�. The symbols shown in Fig. 2 are

0.0 0.5 1.0 1.5
μ/m

0.0

0.1

0.2

0.3

0.4

0.5

λ m
ax

m = 0.040, 16 x 16
m = 0.020, 32 x 32
m = 0.010, 64 x 64
m = 0.005, 128 x 128
m = 0.080, 16 x 16
m = 0.040, 32 x 32
m = 0.020, 64 x 64
m = 0.010, 128 x 128
m = 0.005, 256 x 256
m = 0.080, 32 x 32
m = 0.040, 64 x 64
m = 0.020, 128 x 128
m = 0.010, 256 x 256
m = 0.005, 512 x 512

FIG. 1. The value λmax as a function of μ=m. We compare the
results for different values of the massm and different lattice sizes
L × L. The dotted curves correspond to fixed mL ¼ 0.64, the
dashed curves to mL ¼ 1.28, and the full curves to mL ¼ 2.56.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
λ

-0.04

-0.02

0.00

0.02

0.04

V
n(λ

)

n = 0
n = 20
n = 50
n = 80
n = 120

FIG. 2. The restricted vacuum expectation values hXið1Þn ðλÞ
defined in (44) normalized to the form Vð1Þ

n ðλÞ defined in (15) as a
function of λ. The symbols represent the results for different

intervals In and the curves show the fits with hðΔn½λ − kð1Þn �Þ. The
data are for V ¼ 16 × 16,m ¼ 0.1, and μ ¼ 0.05 with an interval
length of Δn ¼ 1.
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the data for the intervals In with n ¼ 0, n ¼ 10, n ¼ 20,
n ¼ 50, n ¼ 80, and n ¼ 120. The lines are the fits of

Vð1Þ
n ðλÞ with hðΔn½λ − kð1Þn �Þ where hðsÞ is defined in (17).
From the fits of the restricted vacuum expectation value

data with hðΔn½λ − kð1Þn �Þ, we can determine all slopes kð1Þn ,
and from those compute the density ρð1ÞðxÞ using the closed
expressions (9). In Fig. 3, we show our results for ln ρð1ÞðxÞ
as a function of x, again using the DoS FFA data for
V ¼ 16 × 16,m ¼ 0.1, andμ ¼ 0.05. Note that this now is a
quantity where for the free case we can compute analytical
reference results. These are also shown in Fig. 3, andwe find
excellent agreement between the DoS FFA data and the
analytic results and stress at this point that we use a
logarithmic scale on the vertical axis in Fig. 3.
We point out that further smoothening of the density with

suitable fits will be part of a final strategy for DoS
techniques—see, e.g., the recent systematic comparison
of such techniques in [14].
We conclude this section with commenting on how the

analytic reference results shown in Fig. 3 were obtained:
starting from the definition (43) of the density ρð1ÞðxÞ, we
may use the integral representation of theDirac delta and find

ρð1ÞðxÞ ¼
Z

D½Φ�e−SR½Φ�δðx − X½Φ�Þ

¼
Z

∞

−∞

dq
2π

Z
D½Φ�e−SR½Φ�e−iqðx−X½Φ�Þ

¼
Z

∞

−∞

dq
2π

e−iqx
Z

D½Φ�e−SR½Φ�þiqX½Φ�

¼
Z

∞

−∞

dq
2π

e−iqx
Z

D½Φ�e−Φ†½A−iqB�Φ

∝
Z

∞

−∞
dq

e−iqx

det½A − iqB� ; ð47Þ

where A, B are obtained from the matrices A½U; μ� and
B½U; μ� defined in (25) by setting all links toUνðxÞ ¼ 1. The
determinant det½A − iqB� can be computed with Fourier
transformation and according to the last expression in (47)
the density ρð1ÞðxÞ is then obtained as the Fourier transform
of 1= det½A − iqB�.

IV. DoS FFA FOR THE CANONICAL
FORMULATION OF LATTICE QCD

In this section, we present the second new DoS approach
to finite density lattice QCD, now working with the
canonical ensemble. The canonical partition sums at differ-
ent net-quark numbers are expressed as Fourier moments of
the grand canonical partition sum at imaginary chemical
potential μ ¼ iθ=β and then θ is considered as an additional
d.o.f. in the path integral. In this form, we may implement
the DoS FFA and compute the density ρðθÞ.

A. Canonical ensemble and density of states

The setting is as in the previous section, i.e., we study
lattice QCD in d dimensions with Nf degenerate flavors of
quarks, and the grand canonical partition sum ZðμÞ is
defined in (18)–(21). The canonical partition sums ZN at a
fixed net quark number N can be obtained as Fourier
integrals over an imaginary chemical potential μ ¼ iθ0=β,
where β is the inverse temperature in lattice units, i.e.,
β ¼ Nd, with Nd being the number of lattice points in time
direction (¼ d-direction),

ZN¼
Z

π

−π

dθ0

2π
ZðμÞjμ¼iθ

0
β
e−iθ

0N

¼
Z

π

−π

dθ0

2π

Z
D½U�e−Sg½U�detD½U;μ�Nf jμ¼iθ

0
β
e−iθ

0N: ð48Þ

The corresponding free energy density at fixed N is
defined as fN ¼ − lnZN=V, V ¼ Nd−1

s Nd. Simple bulk
observables can be obtained as derivatives of fN with
respect to couplings of the theory. An example is the
vacuum expectation value of the scalar fermion bilinear,
hψ̄ðxÞψðxÞiN ¼ ∂fN=∂m,

hψ̄ðxÞψðxÞiN ¼ −
Nf

V
1

ZN

Z
π

−π

dθ0

2π

Z
D½U�e−Sg½U�

× det D½U; μ�NfTrD−1½U; μ�jμ¼iθ
0
β
e−iθ

0N:

ð49Þ

The derivative generates the insertion of TrD−1½U; μ�, i.e.,
the traced inverse Dirac operator (quark propagator) as an
additional factor in the path integral. Note that also in the
quark propagator the chemical potential μ appears and is set
to the complex value μ ¼ iθ0=β, used for projecting to fixed
net quark number N. General vacuum expectation values at
fixed N have the form

0 1 2 3 4 5 6 7 8 9 10
x/L

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

ρ(1
) (x

)

exact
DoS FFA

FIG. 3. ρð1ÞðxÞ as a function of x=L, where L ¼ 16 is the spatial
extent of the lattice. We compare the results from the DoS FFA
calculation to the exact analytic solution. The data are for
V ¼ 16 × 16, m ¼ 0.1, and μ ¼ 0.05. Note that we use a
logarithmic scale for the vertical axis.
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hOiN ¼ 1

ZN

Z
π

−π

dθ0

2π

Z
D½U�e−Sg½U�

× det D½U; μ�NfO½U; μ�jμ¼iθ
0
β
e−iθ

0N: ð50Þ

The expressions for the observables at fixed net quark
numberN can be rewritten with the help of densities ρðJÞðθÞ
defined as (again normalization is ignored here)

ρðJ ÞðθÞ ¼
Z

D½U�e−Sg½U� det D½U; μ�NfJ ½U; μ�jμ¼iθβ
: ð51Þ

J ½U; μ� is an arbitrary functional of the gauge fields,
which, if it contains the quark propagator, may also depend
on the chemical potential μ. Note that again different
choices of J ½U; μ� result in different densities ρðJ ÞðθÞ
and as before we use a superscript J to make clear which
density we refer to.
With the densities ρðJ ÞðθÞ, vacuum expectation values

hOiN at fixed net quark number can be expressed as

hOiN ¼ 1

ZN

Z
π

−π
dθ ρðOÞðθÞe−iθN;

ZN ¼
Z

π

−π
dθ ρð1ÞðθÞe−iθN: ð52Þ

It is important to note that the densities ρðJ ÞðθÞ have
symmetries that should be identified, because this allows
one to reduce the range of θ that one needs to integrate over.
Thus, also the ρðJ ÞðθÞ needs to be determined only in the
reduced range of θ which lowers the numerical cost. In the
previous section, we have used charge conjugation sym-
metry to show that the density ρð1ÞðxÞ for the imaginary part
x≡ X½U;Φ� is even in x. Also, here it is straightforward to
establish that ρð1ÞðθÞ is even. As before we invoke the
transformation property C−1D½U0; μ�C ¼ D½U;−μ�T of
the Dirac operatorD½U; μ� under charge conjugation, where
C is the charge conjugation matrix and U0 denotes the
charge conjugate gauge links defined in (37). Thus, we find
detD½U0;μ�¼detD½U;−μ�. Using the invariance Sg½U0� ¼
Sg½U� and R

D½U0� ¼ R
D½U� of gauge action and measure,

we conclude

ρð1Þð−θÞ ¼
Z

D½U0�e−Sg½U0� det D½U0; μ�Nf

���
μ¼−iθβ

¼
Z

D½U�e−Sg½U� det D½U;−μ�Nf

���
μ¼−iθβ

¼ ρð1ÞðθÞ:

ð53Þ
In a similar way, as in (53), one can show that also the
general densities ρðJ ÞðθÞ are either even or odd functions,
depending on the symmetry of the insertion J ½U; μ� (after
decomposition into C-even and C-odd parts if necessary).
Thus, the integrals (52) for evaluating observables only run

from 0 to π and exploring charge conjugation symmetry
cuts the numerical cost in half.
We conclude this subsection with discussing another

interesting symmetry property of the density, which cannot
be used necessarily to reduce the numerical cost, but
reflects an important aspect of the underlying physics: if
QCD is in a purely hadronic phase, this is equivalent to
ρð1ÞðθÞ being 2π=3 periodic. This property corresponds to
the Roberge-Weiss symmetry and can be seen as follows:
the statement that QCD is in a purely hadronic phase means
that ZN ¼ 0 for all net quark numbers N that are not
multiples of 3. We first assume that ρð1ÞðθÞ is 2π=3-
periodic. Then, we find

ZN ¼
Z

π

−π

dθ
2π

ρð1ÞðθÞe−iθN ¼
X1
j¼−1

Z ð2jþ1Þπ=3

ð2j−1Þπ=3

dθ
2π

ρð1ÞðθÞe−iθN

¼
X1
j¼−1

Z
π=3

−π=3

dθ
2π

ρð1Þ
�
θþ2jπ

3

�
e−iðθþ

2jπ
3
ÞN

¼
X1
j¼−1

e−i
2jπ
3
N

Z
π=3

−π=3

dθ
2π

ρð1ÞðθÞe−iθN

¼ δNmod 3;0 3

Z
π=3

−π=3

dθ
2π

ρð1ÞðθÞe−iθN; ð54Þ

which shows that a 2π=3-periodic density ρð1ÞðθÞ implies
that only ZN where N is a multiple of 3 are nonvanishing.
For the inverse statement, we can use the completeness

and orthogonality of the Fourier factors eiθN and sum over
N the ZN in the form (52) with factors eiθN and find

ρðθÞ ¼
X
N∈Z

ZNeiθN ¼ Z0 þ
X∞
N¼1

ZN2 cosðθNÞ; ð55Þ

where in the second step we used that ρð1ÞðθÞ is even which
in turn leads to ZN ¼ Z−N . The relation (55) implies that if
the ZN vanishes for values ofN which are not multiples of 3
the density ρð1ÞðθÞ is 2π=3-periodic.
We remark that the representation (55) of course holds in

both the hadronic and a possible nonhadronic phase, and in
our small numerical test below, we will use the form (55) to
determine the canonical partition sums ZN from a fit of the
density according to (55).

B. Implementation of DoS FFA

Having discussed the densities ρðJ ÞðθÞ and their
symmetries we can now start the implementation of DoS
FFA. For convenience, we introduce the notation
det D½U; θ0�≡ det D½U; μ�jμ¼iθ0=β. For imaginary chemical
potential, γ5-hermiticity guarantees that det D½U; θ0� is real,
such that the factor det D½U; θ0�Nf is real and positive for
even Nf (or sufficiently large mass in case Nf is odd), and
we may write
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e−Sg½U� det D½U; θ0�Nf ¼ e−SR½U;θ0�; ð56Þ

with SR½U; θ0�≡ Sg½U� − Nf ln det D½U; θ0� such that
SR½U; θ0� is real [23]. Using (56), we may write the
canonical partition sum as

ZN ¼
Z

π

−π

dθ0

2π

Z
D½U�e−SR½U;θ0�−iθ0N: ð57Þ

It is interesting to note that the gauge fields UνðxÞ and the
phase variable θ0 enter the path integral in the same way,
i.e., both are integrated over in the path integral and appear
in the exponent of the Boltzmann factor. Thus, one may
view θ0 as 1 more d.o.f. in the path integral and compare
(57) with the generic form (1) used in the general
discussion of the DoS FFA in Sec. II. The exponent in
the integral is the action S½U; θ0� for all d.o.f., and we have
already identified the real part of the action as SR½U; θ0�.
The imaginary part, which only depends on θ0, may be
identified as X½θ0� ¼ θ0, and the parameter α in (1) is
identified with the negative of the net quark number,
i.e., α ¼ −N.
Having found a form of the problem that matches the

generic form discussed in Sec. II, we may identify the
restricted vacuum expectation values needed for the deter-
mination of the densities ρðJ ÞðθÞ. They are given by

hθiðJ Þ
n ðλÞ ¼ 1

ZðJ Þ
n ðλÞ

Z
π

−π
dθ0

Z
D½U�e−SR½U;θ0�þλθ0θ0Θnðθ0Þ

¼ 1

ZðJ Þ
n ðλÞ

Z
θnþ1

θn

dθ0
Z

D½U�e−Sg½U�

× det D½U; θ0�Nfθ0eλθ0 ; ð58Þ

where, as mentioned before, the fermion determinant may
be represented using pseudofermions. The restricted vac-
uum expectation values (58) do not have a complex action
problem and may be computed with standard Monte Carlo
techniques. Note that the imaginary chemical potential θ0 is
an additional d.o.f. that is restricted to the interval In ¼
½θn; θnþ1� and needs to be updated as well.
After evaluating the restricted vacuum expectation values

hθiðJ Þ
n ðλÞ, they need to be brought into the normalized form

VðJ Þ
n ðλÞ [in (15) replace hXiðJ Þ

n ðλÞ by hθiðJ Þ
n ðλÞ and xn by

θn], such that they can be fit with hðΔn½λ − kðJ Þ
n �Þ, which

leads to the slopes kðJ Þ
n . From the slopes, the densities

ρðJ ÞðθÞ are computed using (8), (9), and finally observables
in the canonical picture at fixed net quark number N are
obtained from the densities via (52).

C. Tests of the canonical DoS FFA in the free case

Again, we use 2D free fermions at finite density for a
first test also in the canonical formulation of the DoS FFA.

For the free case, the density (51) for the choice J ¼ 1
reduces to the particularly simple expression (we set
Nf ¼ 2)

ρð1ÞðθÞ ¼ det D½μ�2jμ¼iθβ
; ð59Þ

where D½μ� denotes the Wilson Dirac operator (20), (21) in
d ¼ 2 with all link variables set to UμðxÞ ¼ 1. It is
straightforward to evaluate this quantity using Fourier
transformation and the reference data used in Fig. 5 below
for verification were computed in this way.
The restricted vacuum expectation values hθið1Þn ðλÞ

defined in (58) reduce to

hθið1Þn ðλÞ ¼ 1

Zð1Þ
n ðλÞ

Z
θnþ1

θn

dθ0 det D½U; θ0�2θ0eλθ0 : ð60Þ

For a test of the canonical DoS FFA formulation, we
evaluated the restricted expectation values in a small
Monte Carlo simulation on 16 × 16 lattices with mass
m ¼ 0.1. Although we could use the symmetry of the
density ρð1ÞðθÞ and restrict the determination of ρð1ÞðθÞ to
the interval θ ∈ ½0; π�, we here determine the density for the
full range θ ∈ ½−π; π�. The symmetry of ρð1ÞðθÞ should
emerge and serves as a consistency check for the calcu-
lation. The interval ½−π; π� was divided into 100 equal size
intervals In of length Δn ¼ 2π=100 ∀ n. The Monte Carlo
simulation for sampling the restricted θ-integral in each
interval In uses a statistics of 106 sweeps of local
metropolis updates separated by 20 sweeps for decorrela-
tion and 105 sweeps for initial equilibration. The determi-
nant in the acceptance step was computed with Fourier
transformation, and we typically use 10 values of λ for the
evaluation of the restricted vacuum expectation val-

ues hθið1Þn ðλÞ.
In Fig. 4, we show the results for the restricted vacuum

expectation values hθið1Þn ðλÞ already in their normalized

form Vð1Þ
n ðλÞ according to (15). The symbols represent the

data from the Monte Carlo simulation and the full curves

are the fits with hðΔn½λ − kð1Þn �Þ according to (17). The

values of λ where the curves cross 0 are the slopes kð1Þn .
These crossing points start near 0 for the smallest n (i.e.,
intervals In near −π) become negative, then revert back to
0, move to positive values, and finally revert again back to 0
for intervals In near þπ. This full oscillation of the

corresponding slopes kð1Þn reflects the 2π-periodicity of
the density ρð1ÞðθÞ (compare Fig. 5).

From the slopes kð1Þn obtained with the fits of the
restricted vacuum expectation values, we determined the
density ρð1ÞðθÞ using (8) and (9). In Fig. 5, we compare
the density determined in this way with the analytic result
from Fourier transformation. The analytic result is repre-
sented by the thick magenta curve on top of which we plot
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the DoS result (thin blue curve). We stress again that the
density ρð1ÞðθÞ was determined with DoS FFA for the full
range θ ∈ ½−π; π�, and the fact that ρð1ÞðθÞ indeed comes
out as an even function is a consistency check of the
method. Anyway, the much more stringent test is the
comparison with the analytic result where the plot shows
that the DoS FFA curve perfectly falls on top of the exact
curve determined as discussed above.
We complete our first test of the canonical DoS formu-

lation with FFA by evaluating the canonical partition sums
ZN from the density ρð1ÞðθÞ via the integrals (52) and
comparing these Monte Carlo based results to the exact

calculation based on a direct evaluation of (48) with Fourier
transformation techniques.
In Fig. 6, we show the corresponding results for ZN

normalized with Z0 as a function of N. The blue diamonds
represent the exact results and the red dots the DoS FFA
data obtained with the integrals (52). The distribution
resembles a Gaussian, rapidly decreasing with increasing
jNj (which is of course a volume dependent statement). We
find that the DoS FFA data based on (52) match the exact
results very well.
We have already pointed out in the discussion of the direct

DoS FFA approach that fitting the density with a suitable
function will be an important part of future DoS strategies.
Usually, a large polynomial would be used for such a fit (see,
e.g., [14,16,17] for related discussions), but for the canonical
DoS approach the representation (55) of the density suggests
another option for a fit, namely using a superposition of
cosines (sines for odd densities). For the particular case of
the density ρð1ÞðθÞ, the fit parameters are the canonical
partition sum ZN . In order to test this possibility, we
determined the ZN also from a fit of ρð1ÞðθÞ with (55).
The corresponding results are shown as black circles in
Fig. 6, and again we find a very good agreement with the
analytical results. This demonstrates that smoothening
techniques based on periodic representations of the type
(55) should be an interesting option to be explored in future
development of canonical DoS techniques.
Also, for the CanDos we would like to stress that the

tests presented here constitute merely a very first assess-
ment of the new approach and only the implementation in a
full QCD simulation will show how well the numerical
challenges can be brought under control in a calculation
that includes the full gauge field dynamics.
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ρ(1
) (θ

)

exact
DoS FFA

FIG. 5. The density ρð1ÞðθÞ as a function of θ. We compare the
DoS FFA result (thin blue curve) with the exact result (thick
magenta curve). Note that we did not use the fact that the density
is known to be an even function and for evaluation purposes
numerically determined ρð1ÞðθÞ in the full range θ ∈ ½−π; π�.
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FIG. 6. Distribution of the canonical partition sums ZN . We
normalize the ZN by Z0 and plot them as a function of N. The
blue diamonds are the reference data from an exact evaluation,
and we show the results from two types of DoS FFA determi-
nations: the red circles are from the integrals (52), while the black
crosses were determined from a fit of ρð1ÞðθÞ with the form (55).
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FIG. 4. The restricted vacuum expectation values hθið1Þn ðλÞ
defined in (58) normalized to the form Vð1Þ

n ðλÞ defined in (15),
plotted as a function of λ. The symbols represent the results for
different intervals In ⊂ ½−π; π� (see the labels next to the data) and
the curves fit with hðΔn½λ − kð1Þn �Þ. The data are for V ¼ 16 × 16,
m ¼ 0.1, and μ ¼ 0.05 with an interval length of Δn ¼ 2π=100.
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V. SUMMARY, DISCUSSION, AND OUTLOOK

In this article, we have discussed two proposals for a
modern DoS approach to finite density lattice QCD based
on representations of the theory with pseudofermions. In
the direct grand canonical approach, the fermion determi-
nant is represented with pseudofermions and subsequently
their effective action is separated into real and imaginary
parts such that the latter can then directly be treated with
DoS FFA. We worked out the details of the formulation and
provided some bounds on the involved kernels of the
pseudofermion bilinears, showing that the method is
applicable in an interesting range of values of the chemical
potential μ. We presented very preliminary tests in the free
case where a comparison to exact results allows one to
assess the new approach. The direct DoS formulation in the
grand canonical picture is rather straightforward, but has
the disadvantage that also the densities depend on the
chemical potential μ. As a consequence, the densities have
to be recalculated when changing μ. Whether this approach
can beat our second suggestion, the canonical version of
DoS FFA has to be seen in future with more detailed tests.
In the canonical formulation, observables at a fixed net

quark numberN are obtained as the Fourier moments of the
partition sum at imaginary chemical potential μ ¼ iθ=β. In
this setting, we promote the angle θ to a new dynamical
variable and interpret the exponent of the Fourier factors
e−iθN as the imaginary part of the action. Again, we treat this
imaginary part with the DoS FFA approach and compute the
density ρðθÞ as a function of θ. Observables at different net
particle numbersN are then obtained by integrating the same
density ρðθÞwith different Fourier factors e−iθN . Obviously,
here the resulting density ρðθÞ can be used for different net
particle numbers N, but of course the accuracy of the
determination of ρðθÞ has to be higher for larger N. Also,
here further tests that go beyond the first numerical checks
we have presented here will be necessary to assess whether

this formulation will be able to compete with other
approaches to finite density QCD.
Both formulations we have suggested here for the first

time implement DoS techniques directly in a pseudofer-
mion representation. This has the advantage that these well-
established techniques can be used in the framework of a
modern DoS setting (here the DoS FFA is used, but it is also
straightforward to implement the ideas proposed here in
the linear logarithmic relaxation framework). Obviously,
the simple exploratory numerical tests we have presented in
this paper only serve to check the plausibility of the two
new formulations and a much more detailed assessment
will be necessary to explore their potential. Such further
numerical tests are currently in preparation.
We conclude with remarking that the techniques devel-

oped here go beyond applications to finite density QCD.
The two approaches are general and can be applied to any
lattice field theory with fermions where the interaction can
be written with the help of a bosonic field such that the
fermion action has a bilinear form and a fermion determi-
nant emerges when integrating out the fermions. The
bosonic fields do not have to be gauge fields, but also
auxiliary fields of a Hubbard-Stratonovich transformation
of quartic fermion interactions are a suitable option. We
have begun to explore also these possible applications of
the newly proposed DoS FFA techniques. Finally, we
remark that very recently [24] we presented a first test
of the new approaches, now for the case of lattice QCD
formulated with staggered fermions.
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