
 

Continuum Goldstone spectrum of two-color QCD at finite density
with staggered quarks

Jonas Wilhelm,1,2 Lukas Holicki,1 Dominik Smith ,1 Björn Wellegehausen,1 and Lorenz von Smekal1
1Institut für Theoretische Physik, Justus-Liebig-Universität, Heinrich-Buff-Ring 16,

35392 Giessen, Germany
2Institut für Kernphysik, Johannes-Gutenberg-Universität, Johann-Joachim-Becher-Weg 45,

55099, Mainz, Germany

(Received 15 October 2019; published 10 December 2019)

We carry out lattice simulations of two-color QCD and spectroscopy at finite density with two flavors of
rooted-staggered quarks and a diquark source term. As in a previous four-flavor study [J. B. Kogut, D.
Toublan, and D. K. Sinclair, The PseudoGoldstone spectrum of two color QCD at finite density, Phys. Rev.
D 68, 054507 (2003).], for small values of the inverse gauge coupling we observe a Goldstone spectrum
which reflects the symmetry-breaking pattern of a Gaussian symplectic chiral random-matrix ensemble
(GSE) with Dyson index βD ¼ 4, which corresponds to any-color QCD with adjoint quarks in the
continuum instead of QC2D with fundamental quarks. We show that this unphysical behavior occurs
only inside of the bulk phase of SUð2Þ gauge theory, where the density of Z2 monopoles is high. Using an
improved gauge action and a somewhat larger inverse coupling to suppress these monopoles, we
demonstrate that the continuum Goldstone spectrum of two-color QCD, corresponding to a Gaussian
orthogonal ensemble (GOE) with Dyson index βD ¼ 1, is recovered also with rooted-staggered quarks
once simulations are performed away from the bulk phase. We further demonstrate how this change of
random-matrix ensemble is reflected in the distribution of eigenvalues of the Dirac operator. By computing
the unfolded level spacings inside and outside of the bulk phase, we demonstrate that, starting with the low-
lying eigenmodes which determine the infrared physics, the distribution of eigenmodes continuously
changes from the GSE to the GOE one as monopoles are suppressed.

DOI: 10.1103/PhysRevD.100.114507

I. INTRODUCTION

The QCD phase diagram continues to be the subject of
intense theoretical and experimental studies. The region
of high baryon density at relatively low temperatures is of
particular relevance for the inner cores of neutron stars, and
at somewhat higher temperatures for neutron-star mergers.
It is probed experimentally in the beam-energy scan at
RHIC and the future heavy-ion programs at J-PARC, NICA
and FAIR. In this regime one usually expects a chiral first-
order transition ending a critical point, but inhomogeneous
phases or more exotic states of matter like a quarkyonic
phase have been proposed to occur as well. At even higher
densities, beyond the reach of current experiments and
astrophysical observations, asymptotic freedom and the
attractive perturbative interactions between quarks close to

the Fermi surface entail the formation of Cooper pairs and
color superconductivity.
Unfortunately, QCD at high densities remains inacces-

sible to stochastic integration methods, since the fermion
determinant becomes complex at finite chemical potential
μ. This leads to an insurmountably hard fermion-sign
problem precisely where a finite baryon density starts to
build up in the ground state. The problem does not arise on
the other hand in certain QCD-like theories, e.g., two-color
QCD (QC2D) or G2-QCD [1,2], which show chiral sym-
metry breaking, confinement and asymptotic freedom as
well. These theories can thus be approached with standard
Monte Carlo techniques on the lattice and provide therefore
interesting test beds to develop and test algorithms for QCD
at finite density.
Beside this technical aspect, QCD-like theories are inter-

esting in their own right. On the lattice, QC2D has been
studied with staggered [3–12] andWilson fermions [13–18].
In contrast to QCD, the color-singlet baryons are diquarks
and hence bosonic in two-color QCD, for example, while
fermionic baryons do not exist in its spectrum. The physics
of the bosonic diquark baryons qualitatively resembles QCD
at finite isospin density with pion condensation [19] and is

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 114507 (2019)

2470-0010=2019=100(11)=114507(14) 114507-1 Published by the American Physical Society

https://orcid.org/0000-0002-7422-1477
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.114507&domain=pdf&date_stamp=2019-12-10
https://doi.org/10.1103/PhysRevD.68.054507
https://doi.org/10.1103/PhysRevD.68.054507
https://doi.org/10.1103/PhysRevD.100.114507
https://doi.org/10.1103/PhysRevD.100.114507
https://doi.org/10.1103/PhysRevD.100.114507
https://doi.org/10.1103/PhysRevD.100.114507
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


by now fairly well understood [20–23]. There are firm
predictions for diquark condensation when μ reaches half
the pion mass mπ from chiral effective field theory and
random matrix theory [6,24–30], and model studies of the
BEC-BCS crossover inside the condensed phase [31–34].
In QC2D the lightest diquarks play a dual role as two-color
baryons and pseudo-Goldstone bosons of the dynamical
breaking of an extended chiral symmetry. When they
condense, they are expected to form a superfluid which
changes in nature from a Bose-Einstein condensate of tightly
bound diquarks to a BCS-like pairing of quarks as chiral
symmetry gets gradually restored with increasing density.
The phase diagram of the quark-meson-diquark model

for QC2D from the functional renormalization group [33] is
shown in Fig. 1. The qualitative features resemble lattice
results [16,17], especially when the Polyakov-loop variable
is included in the effective model description [34].
Evidence of the BEC-BCS crossover inside the diquark-
condensation phase was also provided from lattice simu-
lations [9] albeit still close to the bulk phase of SUð2Þ
(see below).
Antiunitary symmetries of the Dirac operators in QCD-

like theories without a fermion-sign problem are both a
blessing and a curse for the rooted-staggered fermion
formulation. On one hand, phase ambiguities when rooting
a complex determinant [35] do not occur. In fact, even for a
single staggered fermion the determinant remains positive
at finite μ, whereas this requires two flavors of continuum
Dirac fermions. This is because of the missing C2 ¼ −1
from the charge conjugation matrix C for Dirac spinors in
the antiunitary symmetries of staggered Dirac operators.
On the other hand, it implies that the corresponding
Gaussian chiral random matrix ensembles get swapped,
staggered fermions reflect the behavior of the Gaussian

symplectic ensemble (GSE) when the continuum Dirac
fermions show that of the Gaussian orthogonal ensemble
(GOE) and vice versa. In particular, the staggered Dirac
operator of fundamental quarks in QC2D has the GSE
Dyson index βD ¼ 4, while for continuum or Wilson
fermions it is the GOE one, βD ¼ 1. For adjoint quarks
in any-color QCD (or fundamental quarks in G2-QCD) it is
just the other way round. This is why the sector of positive
fermion determinant of QC2D with adjoint quarks was
studied as a replacement for the continuum theory within
the correct random matrix ensemble in the early days [5].
Here we have addressed the following question: with the

full SUð4Þ taste symmetry in the continuum limit, it should
be possible to define a standard (tasteless) charge con-
jugation from that for staggered quarks [36] as well. Does
this imply that the correct symmetry breaking pattern,
corresponding to the random matrix ensemble of the
continuum two-color Dirac operator is recovered also with
staggered quarks in the continuum limit?
The answer seems to be positive. The particular evidence

for this that we provide is the behavior of the Goldstone
pion inside the diquark condensation phase which shows
the characteristic change indicative of the change of the
Dyson index as the continuum limit is approached:
In the continuum, the extended SUð2NfÞ chiral sym-

metry is dynamically broken down to the compact sym-
plectic SpðNfÞ with fundamental quarks and Dyson
index βD ¼ 1 [25].1 For Nf ¼ 2 on the bosonic level this
amounts to the simple vectorlike breaking of SOð6Þ →
SOð5Þwith coset S5 and five Goldstone bosons, three pions
and a scalar (anti)diquark pair. The exact chiral symmetry
extending the usual Uð1Þe ×Uð1Þo of the staggered action
in the two-color case is Uð2Þ on the other hand [4]. With
fundamental quarks it breaks down to Uð1ÞV . Up to the
Goldstone pion of the broken Uð1Þϵ it therefore resembles
the Nf ¼ 1 case of continuum quarks with Dyson index
βD ¼ 4 as in adjoint QCD [25] or G2-QCD [37] which
is SUð2Þ → Uð1Þ.2
The effective field theory prediction for the Goldstone

spectrum with the Uð2Þ → Uð1Þ chiral symmetry breaking
of the fundamental staggered two-color action was explic-
itly worked out in [3]. Most important for our purposes is
the behavior of the Goldstone pion inside the diquark
condensation phase at μ ≥ mπ=2 where it resembles that of
the symmetric pion branch PS of the Dyson index βD ¼ 4
case in the continuum [25], with a mass that decreases
∼m2

π=2μ, although this branch strictly speaking only exists
for Nf ≥ 2 there.

FIG. 1. Phase diagram of the quark-meson-diquark model for
QC2D from the functional renormalization group [33,34]: half-
value of the chiral condensate (red), and second-order phase
boundary for diquark condensation (solid blue) with rough
indication of the BEC-BCS crossover (dotted blue).

1For adjoint quarks in any-color QCD or fundamental quarks
in G2-QCD with Dyson index βD ¼ 4 in the continuum it breaks
down to spinð2NfÞ, the double cover of SOð2NfÞ.2For adjoint staggered quarks in QC2D one has Uð2Þ →
Spð1Þ ∼ SUð2Þ and hence only the Goldsone pion of the broken
Uð1Þϵ corresponding to having no Goldstone bosons with Dyson
index βD ¼ 1 for Nf ¼ 1 in the continuum theory.
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We will demonstrate that the behavior of this Goldstone
pion branch in the continuum limit indeed changes to that
of the symmetric PS mode in the βD ¼ 1 case of the
continuum theory which increases ∼2μ inside the diquark
condensation phase [25]. Again this mode exists in the
continuum only for Nf ≥ 2, starting with a multiplicity of 3
for the three degenerate pions in the two-flavor case. This
again indicates that the taste symmetry needs to be at least
partially restored to achieve this.
Here it is also important to note that the previous results

with staggered quarks in QC2D that led to the βD ¼ 4
Goldstone spectrum were obtained inside a so-called bulk
phase on the lattice, where the lattice spacing is almost
independent of the inverse gauge coupling. The large
effects of this on spectroscopy and thermodynamics at
vanishing chemical potential have been investigated in
Ref. [38]. The influence of bulk effects on simulations at
finite density has not yet been discussed and is thus the
main focus of our study. Indeed, we will find that inside the
bulk phase, the Goldstone spectrum for Dyson index βD ¼
4 as for adjoint continuum quarks is reproduced, while
outside the bulk phase we observe the correct Goldstone
spectrum of two-color QCD, corresponding to the Dyson
index βD ¼ 1 of the continuum Dirac operator, also with
rooted-staggered quarks. We demonstrate that this change
of Dyson index is reflected in the eigenvalue statistics of the
Dirac operator. By computing the unfolded level spacings,
we demonstrate that the distribution of eigenmodes is
completely dominated by the GSE in the bulk phase but
obtains larger contributions from the GOE as one leaves
the bulk phase. This change turns out to be continuous
and builds up starting with the low-lying eigenmodes.
As infrared physics is controlled by these lower levels, we
observe that one correctly reproduces the continuum theory
Goldstone spectrum even when the higher eigenmodes are
still dominated by the GSE.
This paper is organized as follows: In Sec. II we

introduce the lattice action, including a diquark source
term, and the simulation parameters used in this work. In
Sec. III we study the quark-number density and chiral and
diquark condensates for small values of the gauge coupling
(which turns out to be inside the bulk phase) and compare
our results to the predictions of leading order chiral
perturbation theory. Section IV explains the bulk phase
and introduces its order parameter, the Z2-monopole
density, ending with a discussion on new lattice parameters
to suppress bulk effects. In Sec. V we then repeat the study
of Sec. III with our new set of parameters and discuss lattice
discretization and finite volume effects, such as the effec-
tive quenching of the theory in the saturated regime and
problems with additive renormalization of the chiral con-
densate at finite μ. In Sec. VI after providing a detailed
description of chiral symmetry-breaking pattern of stag-
gered fermions, we present our main result, which is the
numerical measurement and comparison of the Goldstone

spectrum at nonvanishing chemical potential, inside and
outside the bulk phase. And finally, in Sec. VII we present
the unfolded level spacings of the Dirac operator and
demonstrate that change of Goldstone spectrum is accom-
panied by a change of eigenvalue distribution. We end with
our conclusion and an outlook in Sec. VIII.

II. LATTICE SETUP

For the low-temperature scan of the Goldstone spectrum
of two-color QCD, we use standard rooted staggered
fermions, with the Dirac operator,

Dx;yðμÞ ¼ amδx;y þ
X4
ν¼1

ηνðxÞ
2a

ðeaμδν;4UνðxÞδxþν̂;y

−e−aμδν;4U†
νðx − ν̂Þδx−ν̂;yÞ; ð1Þ

at nonvanishing baryon chemical potential μ. To study
spontaneous symmetry breaking and competing order on a
finite lattice, we add a diquark source λ corresponding to a
Majorana mass term in the Lagrangian, which explicitly
breaks the chiral Uð2Þ symmetry of the massless staggered
action down to a Uð1Þ as well but in a direction different
from that of the Dirac mass term [4–7],

Sf ¼ χ̄DðμÞχ þ λ

2
ðχTτ2 χ þ χ̄τ2 χ̄

TÞ: ð2Þ

Physical results are then retrieved in the λ → 0 limit. The
diquark condensate is obtained from

hqqi ¼ hχTτ2 χi ∝
∂ lnZ
∂λ

����
λ→0

: ð3Þ

The staggered fermion action is conveniently expressed in a
Nambu-Gorkov basis,

Sf ¼
1

2
ð χ̄; χTτ2ÞA

�
τ2 χ̄

T

χ

�
; ð4Þ

with an inverse Nambu-Gorkov propagator,

A ¼
�

λ DðμÞ
−D†ðμÞ λ

�
: ð5Þ

Grassmann integration produces the square root of the
determinant of A in the path integral measure. This is seen
most easily when considering ðχ; χ̄TÞ as a set of indepen-
dent real Grassmann variables, whose Gaussian integral
results in a (positive) Pfaffian which agrees with

ffiffiffiffiffiffiffiffiffiffi
detA

p
,

where

detA ¼ det ðD†ðμÞDðμÞ þ λ2Þ: ð6Þ
In fact, a direct use of hybrid Monte Carlo (HMC) based on
a Gaussian pseudofermion integral over ðAA†Þ−1 would
even produce ðdetAÞ2 in the measure. However, because

CONTINUUM GOLDSTONE SPECTRUM OF TWO-COLOR QCD AT … PHYS. REV. D 100, 114507 (2019)

114507-3



A†A ¼ AA† ¼
�
DðμÞDðμÞ† þ λ2 0

0 D†ðμÞDðμÞ þ λ2

�

is block diagonal with both blocks having the same
determinant, we can use size-half pseudofermion fields
(in the Nambu-Gorkov space) to remove this further
doubling. On the other hand, we can not use size-half
fields in the even-odd staggered lattice at finite μ. This
means that without any rooting, we compute detA and
describe eight fermion species instead of the usual four
staggered tastes. Therefore we use standard rooting tech-
niques to compute ðdetAÞNf=8 for each continuum flavor;
i.e., we take the fourth root to simulate with Nf ¼ 2 as in
Ref. [9]. The rooting is achieved by a rational approxima-
tion of the fermion matrix in the pseudofermion action of
the HMC algorithm.
The diquark source explicitly breaks baryon number

conservation, or more precisely the Uð1ÞV of the staggered
action, and hence in addition to the usual hψψ̄i contractions
in the calculation of the correlation functions, we now also
have hψψi and hψ̄ ψ̄i contractions. These correspond to the
diagonal terms of the propagator G ¼ A−1 obtained from
Eq. (5),

G ¼
� ðDD† þ λ2Þ−1λ −ðDD† þ λ2Þ−1D
ðD†Dþ λ2Þ−1D† ðD†Dþ λ2Þ−1λ

�
: ð7Þ

In this paper we compare results with Nf ¼ 2 staggered
flavors at β ¼ 1.5 on a 123 × 24 lattice with am ¼ 0.025,
which turns out to be deep inside the bulk phase, to Nf ¼ 2

staggered flavors at β ¼ 1.7 on a 163 × 32 lattice with
am ¼ 0.01 and an improved gauge action so that this is just
outside the bulk phase. The parameters of the simulations at
β ¼ 1.5 with the unimproved gauge action correspond to
those used in Ref. [3] for Nf ¼ 4.

III. EFFECTIVE FIELD THEORY PREDICTIONS

Kogut et al. have studied the symmetries of QCD-like
theories at finite baryon density with pseudoreal quarks in
the fundamental representation using chiral effective
Lagrangians [3,25]. A linear sigma model for the sym-
metry-breaking pattern and Goldstone spectrum of the
staggered two-color action was used to describe the data
in [3]. For the purpose of illustrating the basic features of
the diquark-condensation transition at μ ¼ μc ¼ mπ=2 here
we fit our data to the somewhat simpler form of the leading-
order chiral perturbation theory (χPT) predictions from the
nonlinear sigma model [25]. This describes the rotation of
the vacuum alignment from the chiral hq̄qi into the diquark
hqqi condensate at a fixed

Σc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq̄qi2 þ hqqi2

q
≡ 2NfG: ð8Þ

With explicit diquark source λ, the rotation angle αðμÞ is
obtained from

μ2 cos α sin α ¼ μ2c

�
sin α −

λ

m
cos α

�
; ð9Þ

such that a nonzero value α0 is obtained already at μ ¼ 0
which depends on the relative size of the Majorana and
Dirac quark masses, i.e., tan α0 ¼ λ=m. Chiral and diquark
condensate, and quark-number density n as functions of μ
are then given by

hq̄qi ¼ 2NfG cos α;

hqqi ¼ 2NfG sin α;

n ¼ 8NfF2μ sin2α: ð10Þ

As a first test we have performed simulations with the
parameters of Ref. [3], i.e., a lattice gauge coupling of
β ¼ 1.5, quark mass am ¼ 0.025, and diquark source aλ ¼
0.0025 on a 123 × 24 lattice and the standard Wilson
plaquette action, so as to reproduce their results with the
square root of the determinant in (6) for Nf ¼ 4.
With the fourth root for Nf ¼ 2 continuum flavors and

the same lattice parameters we have then obtained the
results shown in Fig. 2. They are fitted to the leading-order
forms from chiral perturbation theory in Eq. (10) with (9)
for the vacuum alignment angle αðμÞ. From these fits we
obtain the fit parameters F, G, and the critical chemical
potential, which results as aμc ¼ 0.1889ð5Þ. Within the
errors this agrees with our spectroscopic result from the
pion correlator at λ ¼ 0.0025, μ ¼ 0 which yields
amπ=2 ¼ 0.1887ð6Þ. The agreement between fits and data
in Fig. 2 is nearly perfect up to aμ ∼ 0.3.
The deviations at larger chemical potentials were attrib-

uted to a μ-dependence of the total condensate Σc in

FIG. 2. Fit of lattice data to leading-order χPT form of chiral
(purple) and diquark (orange) condensates, and quark-number
density (brown) from Eqs. (9) and (10), with Nf ¼ 2, β ¼ 1.5,
am ¼ 0.025, aλ ¼ 0.0025 on a 123 × 24 lattice with unimproved
Wilson gauge action.
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Ref. [3] where linear sigma model fits were therefore used
instead. These imply hqqi ∼ μ and hence n ∼ μ3 at large μ,
as predicted for a BCS-like pairing in QCD at large isospin
density already in [19]. The corresponding rise in the
isospin density beyond the χPT prediction was observed in
lattice QCD simulations [20], and it was traced to the BEC-
BCS crossover in a functional renormalization group study
of the quark-meson model as an effective theory with
linearly realized chiral symmetry and order-parameter
fluctuations beyond mean field [21].
The same interpretation of this rise in the diquark density,

beyond the χPT prediction, as an indication of theBEC-BCS
crossover in QC2D, was also adopted in Ref. [9]. Because
these results were obtained on rather coarse lattices, it is
therefore important to verify that they are not qualitatively
affected by strong discretization artifacts such as the Z2

monopoles in the bulk phase of SUð2Þ.

IV. THE BULK TRANSITION

Most lattice gauge theories, as for instance SUð2Þ,
SUð3Þ or G2 gauge theory, exhibit a bulk phase in the
strong-coupling regime, characterized by the presence of
unphysical lattice artifacts such as electric vortices and
magnetic monopoles [39–44]. These dominate the ultra-
violet behavior, such that the lattice spacing is nearly
independent of the coupling constant, and taking a con-
tinuum limit is not possible. In the physical weak-coupling
regime the short distance physics is governed by asymp-
totic freedom and the continuum limit is approached by
β → ∞. Depending on which gauge group and which
representation, both regions are either separated by a true
phase boundary or a crossover, the later being the case
for the fundamental representation of SUð2Þ considered
here (cf. Fig. 1 in Ref. [43]). The bulk transition is almost
independent of the lattice size and persists also in the
presence of fermions [45,46].
An order parameter for the strong-coupling to weak-

coupling transition is the Z2 monopole density [41],

hzi ¼ 1 −
1

NC

X
C

Y
P∈∂C

sgn trP; ð11Þ

where
P

C runs over all elementary cubes of the lattice. hzi
is sensitive to preferred signs of the plaquettes on the faces
of these cubes, which are aligned below the bulk transition:
In the bulk phase hzi is nonvanishing, while it vanishes in
the physical weak-coupling regime.
With β ¼ 1.5 and the unimproved Wilson gauge action,

we have found the Z2 monopole density at aμ ¼ 0 to be
hzi ¼ 0.884040ð95Þ, and thus we expect bulk effects to be
dominant in this regime. We have also confirmed that hzi is
only very weakly affected by the inclusion of dynamical
quarks. For a fixed inverse gauge coupling β, the monopole
density can be significantly reduced with Symanzik’s
gauge action [47] (we employ the tree-level improved

variant here). This is illustrated in Fig. 3, which shows the
β-dependence of hzi for the improved and unimproved
actions, with and without dynamical fermions in each case.
In principle, one would like to suppress Z2 monopoles as

much as possible. In practice, finite volume effects become
increasingly severe at larger β due to a smaller physical
lattice spacing a, and one is forced to make a compromise.
This is illustrated in Fig. 4, which shows the β-dependence
of various meson masses obtained in a previous study [38].
For small physical volumes ðaNÞ4 (larger β) the meson
masses degenerate, signaling an explicit breaking of chiral-
symmetry by the finite system size, while for small inverse
couplings β bulk effects are dominant. For our simulations
of the continuum physics we therefore chose β ¼ 1.7 with
Ns ¼ 16 and Nt ¼ 32, as a compromise between small a

FIG. 3. Comparison of the Z2 monopole density on a Ns ¼ 12,
Nt ¼ 8 lattice for Wilson and tree-level improved Symanzik
gauge action in pure Yang-Mills theory and with standard
staggered fermions for am ¼ 0.01 as a function of the inverse
gauge coupling β.

FIG. 4. β-dependence of meson masses, obtained with standard
staggered fermions and tree-level improved Symanzik gauge
action. Figure taken from [38].
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and small β, where mπ=mρ ¼ 0.58ð5Þ. Using the improved
action the Z2 monopole density at β ¼ 1.7 and aμ ¼ 0 is
hzi ¼ 0.27340ð66Þ. Although there is still a substantial
amount of monopoles on the lattice, this choice of
parameters pushes the simulations on the weak-coupling
side of the bulk crossover, as our spectroscopic results
discussed below clearly demonstrate.

V. LEAVING THE BULK PHASE

Simulating at finite μ with the improved action and our
new choice of lattice parameters (β ¼ 1.7, am ¼ 0.01,
163 × 32), we carry out a study of the μ dependence of
different observables outside of the bulk phase. We first
observe that we can again fit the quark-number density and
diquark condensate to leading-order χPT predictions from
Eqs. (9) and (10) (note here that the same expressions are
predicted by χPT for both the Gaussian orthogonal and
Gaussian symplectic ensembles [3,25]). We simulate with
three different values of the explicit diquark source
aλ ¼ 0.0050; 0.0025; 0.0010 and apply the fits directly
at finite λ. Results are shown in Fig. 5, together with
extrapolations to λ → 0.
We find that our results for aλ ¼ 0.0010 already agree

within one standard deviation with the limit of vanishing
diquark source. Attempting to extract the critical chemical
potential for diquark condensation from fits to aλ ¼ 0.0010
yields aμc ¼ 0.172ð21Þ however, which is slightly over-
estimated compared to our spectroscopic result [aμc ¼
0.1456ð28Þ] from the pion correlator at aλ ¼ 0.0010,
μ ¼ 0. We find that a consistent value [aμc ¼ 0.1356ð86Þ]
is obtained froma χPT fit to the λ → 0 extrapolation of hqqi.3
We also observe significant deviations from the χPT pre-
dictions at around aμ ∼ 0.3, which we interpret as signaling
the onset of the BEC-BCS crossover. We thus conclude that
the behavior of hqqi and hni is not qualitatively different
outside of the bulk phase.
On the other hand, from an observed decrease of the

chiral condensate above μc (shown in Fig. 6), which we
did not observe at β ¼ 1.5, we infer the presence of
UV-divergence, such that renormalization is required.
As discussed in Ref. [48], it is possible to renormalize
the chiral condensate at finite temperature using the chiral
susceptibility χmq

, as both contain the same UV-divergent
term cUV, viz.

hq̄qimq
¼ hq̄qi0 þ c2mq þ

cUV
a2

mq þOðm2
qÞ;

χmq
¼ c2 þ

cUV
a2

þOðm2
qÞ: ð12Þ

Since the UV divergence originates mainly from the con-
nected chiral susceptibility χcon (also shown in Fig. 6, we
neglect λ-dependent contributions here), a renormalized
condensate can be defined as Σ ¼ hq̄qimq

−mq χ
con. We

observe that both the condensate and χcon exhibit a similar
decrease at large μ and thus conclude that the UV-divergence
cUV is μ-dependent.

FIG. 5. Fit of lattice data to leading-order χPT form of diquark
condensate (top) and quark-number density (bottom) from
Eqs. (9) and (10), with Nf ¼ 2, β ¼ 1.7, am ¼ 0.01, aλ ¼
0.0050; 0.0025; 0.0010 on a 163 × 32 lattice with tree-level
improved Symanzik gauge action. Points for aλ ¼ 0.0 obtained
by extrapolation.

FIG. 6. Chiral condensate and connected susceptibility,
163 × 32, am ¼ 0.01, β ¼ 1.7, aλ ¼ 0.005 with a zoom to the
singular contribution to χcon.

3In Ref. [23] it was shown how λ → 0 extrapolations can be
improved using singular values of the Dirac operator. We did not
pursue this however, as a simple fitting procedure turns out to be
sufficient for our purpose.
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At the chiral transition the disconnected susceptibility χdis

contains a singular contribution.At the diquark condensation
transition, we find that χcon has a singular part as well, as its
peak height is bounded from above by a finite volume (see
Fig. 7). This singularity will dominate over cUV=a at finite a
in the infinite volume limit. The chiral condensate on the
other hand, at zero temperature, must remain independent of
μ for μ < μc. It does not have such a singular contribution,
and it would be unphysical to introduce one with the
connected susceptibility subtraction. At any rate, this would
introduce a μ-dependence below μc and hence a Silver-Blaze
problem. Therefore, a different (μ-dependent) subtraction
of the chiral condensate is required. Likewise, it is impossible
to remove the UV-divergence by subtracting a heavy quark
condensate like hq̄qimq

− mq

m0
q
hq̄qim0

q
, since the pion mass and

thus the position of the diquark onset strongly depend on the
quark mass.
Measuring the μ dependence of the Z2 monopole density

and the quark number density, we observe that both
quantities saturate at large μ (see Figs. 8 and 9). In these
figures, μ has been normalized with the critical chemical
potential μc ¼ mπ=2. With increasing μ the Z2 monopole
density approaches its quenched value, while at the same

point the quark number density saturates. We conclude that
in this high chemical potential regime the lattice is fully
occupied with fermions, such that the system effectively
becomes quenched.
Finally, we observe that the Polyakov loop is rather

insensitive to the chemical potential with staggered quarks
and in fact coincides with its value in the quenched limit
(see Fig. 9). This is in contrast to lattice simulations of
two-color QCD with Wilson fermion [10,16] and G2-QCD
with Wilson fermions [1], where the Polyakov loop shows
a peak around half filling. Also, in a previous effective
Polyakov loop model study for QCD-like theories [49,50]
with heavy Wilson quarks it has been seen that the
Polyakov loop expectation value has a peak at the inflection
point of the quark number density.
To explain this discrepancy, we consider that in two-

dimensional two-color QCD, where large temporal extends
of the lattice are feasible, the peak vanishes in the limit of
Nt → ∞ [51], suggesting that the nonvanishing Polyakov
loopmight be an effect of the residual temperature due to the
finite lattice volume. This is also in agreement with recent
lattice simulations with staggered fermions at zero temper-
ature but larger inverse gauge coupling, leading to a larger
residual temperature [52]. Here the Polyakov loop also
increases with increasing chemical potential. For Wilson
fermions, a larger lattice spacingmight lead to the excitement
of heavy doublers beyond some aμ, such that the free energy
becomes finite. As these heavy doublers are not present in
the staggered formalism, this behavior is not observed here
at comparable lattice spacings.

VI. CHIRAL SYMMETRY BREAKING PATTERN
AND THE GOLDSTONE SPECTRUM

Having established a set of parameters (β ¼ 1.7,
163 × 32, am ¼ 0.01) with which we expect to reproduce
the continuum physics, we now turn to the primary focus of
this work which is to study the Goldstone spectrum. We
begin by reviewing the symmetry-breaking channels of the
staggered action of two-color lattice QCD and discussing

FIG. 7. Volume dependence of the connected chiral suscep-
tibility for 163 × 32, am ¼ 0.01, β ¼ 1.7, aλ ¼ 0.005.

FIG. 8. Z2 monopole density for staggered quarks with
jΛj ¼ 163 × 32, am ¼ 0.01, aλ ¼ 0.001 and β ¼ 1.7.

FIG. 9. Quark number density and Polyakov loop for staggered
quarks with jΛj ¼ 163 × 32, am ¼ 0.01, aλ ¼ 0.001 and β ¼ 1.7.
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the associated Goldstone modes and correlation functions,
which will then be compared inside and outside of the bulk
phase. These issues were previously discussed in Ref. [4].
We present a compact summary here to keep this paper
self-contained.
For this purpose, it is convenient to introduce a new basis

for the fermion fields, given by

X̄e ¼ ð χ̄e −χTe τ2 Þ; Xo ¼
�

χo

−τ2 χ̄To

�
; ð13Þ

which separates even and odd sites. The kinetic part of the
staggered action (4) then reads [4]

Skin ¼
X
n∈Λ0;ν

ηνðnÞ
2

�
X̄eðnÞ

�
eμδν;4 0

0 e−μδν;4

�
UνðnÞXoðnþ ν̂Þ

− X̄eðnÞ
�
e−μδν;4 0

0 eμδν;4

�
Uνðn− ν̂Þ†Xoðn− ν̂Þ

�
;

ð14Þ

where the sum runs over even sites only. It follows that in
the limit m ¼ λ ¼ μ ¼ 0 the fermion action is invariant
under

Xo → VXo; X̄e → X̄eV†; V ∈ Uð2Þ: ð15Þ

The original Uð1Þe ×Uð1Þo symmetry of the Nf ¼ 1

staggered action for two-color QCD is therefore enlarged
to Uð2Þ in this limit [3,4,7].
Applying the same basis transformation to the mass and

the diquark source terms one obtains

χ̄ χ ¼ 1

2
½X̄eσ1τ2X̄T

e þ XT
oσ1τ2Xo�; ð16Þ

χ χ ¼ 1

2
½X̄eσ3τ2X̄T

e þ XT
oσ3τ2Xo�; ð17Þ

where we understand Pauli matrices σi to act in the basis
(13) and τi to act on color indices. Hence, the condensates
are indistinguishable at μ ¼ 0 as they are connected by V ¼
iffiffi
2

p ð1þ iσ2Þ ∈ Uð2Þ [4]. The Goldstone modes are derived

by applying infinitesimal Uð2Þ rotations,

Vδ ¼ 1þ iδλ; λ ∈ f1; τig ð18Þ

to χ̄ χ and χ χ, where the coefficient ofOðδÞ is then identified
as the Goldstone mode [4]. The results are shown in Table I.
Both condensates leave one generator of Uð2Þ unbroken

and hence induce the same symmetry-breaking pattern
Uð2Þ → Uð1Þ at μ ¼ 0. Since at μ ≠ 0 the symmetry is
reduced from Uð2Þ to Uð1Þe ×Uð1Þo, one is left with two
generators f1; σ3g of Uð2Þ, which correspond to the

staggered Uð1Þϵ and baryon number conservation,
respectively.
The above can be generalized to Nf > 1 staggered

fermions. There one has a Uð1Þ ×Uð1Þ symmetry for each
flavor, leading to UðNfÞ × UðNfÞ, which is extended to
Uð2NfÞ at μ ¼ 0. The same Goldstone modes listed in
Table I appear also for Nf > 1 (and in particular for the
Nf ¼ 2 case considered in this paper), but with different
multiplicities. The full symmetry-breaking pattern is sum-
marized in Fig. 10. It can be seen that any-color QCD with
quarks in the adjoint representation in the continuum
exhibits the same pattern of symmetry breaking, with an
additional breaking ofUð1ÞA due to the axial anomaly [25].
The Goldstone spectrum consists of two meson modes,

the (pseudoscalar) pion π and the scalar meson f0, and two
diquark modes, a scalar diquark qq and a pseudoscalar
diquark ϵqq. In Table II, we show the employed interpolat-
ing operators for the f0 and π modes taken from Ref. [53].
It is important to realize that channel 1 not only contains the
desired scalar meson, but also an excited pion. However,
these two states can be separated during the fitting procedure
as they have opposite parity. The ground state pion is
exclusively contained in channel 2. The interpolating oper-
ators from [3] are employed for the (pseudo)scalar diquark
modes, shown in Table III These modes furthermore contain
contributions from their corresponding antidiquarks.
Nevertheless, the antidiquark modes become less important
with increasing chemical potential as the propagation of

FIG. 10. Symmetry-breaking pattern of staggered action for
two-color QCD at Nf ≥ 1.

TABLE I. The Goldstone modes for Nf ¼ 1 according to the
generators of Uð2Þ, where ϵ corresponds to ϵðnÞ ¼ η5ðnÞ ¼
ð−1Þn1þn2þn3þn4 .

hq̄qi hqqi
1 χ̄ϵχ χTτ2ϵχ þ χ̄τ2ϵ χ̄

T

τ1 χTτ2 χ − χ̄τ2 χ̄
T � � �

τ2 χTτ2 χ þ χ̄τ2 χ̄
T χ̄ χ

τ3 � � � χTτ2 χ − χ̄τ2 χ̄
T
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particles is favored (eaμ) over the propagation of antiparticles
(e−aμ) at nonvanishing chemical potential.
To extract the ground state masses of the particle states,

we employ the zero-momentum projected correlations
functions of the form,

CðtÞ ¼
X
x⃗

h0jOðx⃗; tÞŌð0⃗; 0Þj0i: ð19Þ

Note that only the connected contributions are considered
here. For the different channels shown in Tables II and III
we obtain:

(i) Channel 1—scalar meson

CðtÞ ¼ −
X
x⃗

η5ðx⃗; tÞtr½G†½−μ�ðx⃗; t; 0ÞG½μ�ðx⃗; t; 0Þ�

ð20Þ
(ii) Channel 2—pion / pseudoscalar meson

CðtÞ ¼ −ð−1Þt
X
x⃗

tr½G†½−μ�ðx⃗; t; 0ÞG½μ�ðx⃗; t; 0Þ�

ð21Þ
(iii) Channel 3—scalar diquark

CðtÞ ¼ 1

2

X
x⃗

ftr½GT ½μ�ðx⃗; t; 0Þτ2G½μ�ðx⃗; t; 0Þτ2�

þtr½G†½−μ�ðx⃗; t; 0Þτ2ðG†ÞT ½−μ�ðx⃗; t; 0Þτ2�g
ð22Þ

(iv) Channel 4—pseudoscalar diquark

CðtÞ¼ 1

2

X
x⃗

η5ðx⃗; tÞftr½GT ½μ�ðx⃗; t;0Þτ2G½μ�ðx⃗; t;0Þτ2�

þtr½G†½−μ�ðx⃗; t;0Þτ2ðG†ÞT ½−μ�ðx⃗; t;0Þτ2�g:
ð23Þ

We used the notation G ¼ ðD†Dþ λ2Þ−1D† here, which
corresponds to only the off diagonal terms in Eq. (7). The
diagonal terms produce corrections of order Oðλ2Þ, which
we refrain from listing here explicitly as their contributions
are negligibly small for the values of λ considered in this
work. We did in fact include these corrections for the
results shown in Figs. 11 and 13. The results in Fig. 12 were
obtained without them.

TABLE II. The interpolating operators for f0 and π modes.

Channel Operator JPC States

1 χ̄ χ 0þþ f0
0−þ π

2 η4 χ̄ χ 0þ− � � �
0−þ π

TABLE III. The interpolating operators for the (pseudo) scalar
diquark modes.

Channel Operator States

3 1
2
ðχTτ2 χ − χ̄τ2 χ̄

TÞ qq=q̄ q̄

4 η5
1
2
ðχTτ2 χ þ χ̄τ2 χ̄

TÞ εqq=εq̄ q̄

FIG. 11. The (pseudo) Goldstone spectrum on a 123 × 24
lattice at β ¼ 1.5 with quark mass am ¼ 0.025 and diquark
source λ ¼ 0.0025.

FIG. 12. The scalar diquark mass (top) and the pion mass
(bottom) on a 163 × 32 lattice at β ¼ 1.7 with quark mass am ¼
0.01 for different diquark sources λ.
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A. Goldstone spectrum in the bulk phase

We now study the (pseudo) Goldstone spectrum on a
123 × 24 lattice at β ¼ 1.5 with quark mass am ¼ 0.025
and diquark source λ ¼ 0.0025. As the combined con-
densate

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hq̄qi2 þ hqqi2

p
rotates from a chiral to a diquark

condensate with increasing chemical potential, we assume
that the Goldstone modes corresponding to a given Uð2Þ
generator mix in a similar way, i.e., rotate into each other
with the same rotation angle αðμÞ, as described by Eq. (9).
Hence, we introduce the two combined modes,

q̄ q̄ =f0:
1
2
ðχTτ2 χ þ χ̄τ2 χ̄

TÞ cos αþ χ̄ χ sin α
π=ϵqq: χ̄ϵχ cos αþ 1

2
ðχTτ2ϵχ þ χ̄τ2ϵχ̄

TÞ sin α.
Note that this simplemodemixing holds only to leading order
χPT. Note also that in addition to the terms of order Oðλ2Þ
discussed above, the correlators of the combined modes
q̄ q̄ =f0 and π=ϵqq contain additional terms of order OðλÞ
from themixedparts (i.e., the terms∼ sin α cosαÞ, as diagonal
elements of the full propagator in Nambu-Gorkov space (7)
contribute to these. We again refrain from listing these terms
here explicitly but included them in our simulations.
To obtain the masses of the (pseudo) Goldstone modes,

we measure the zero-momentum projected connected
correlation functions and extract their masses from fits
to coshð·Þ, which combines exponential decays forwards
and backwards in Euclidean time.4 For π=ϵqq a factor
ð−1Þt is inserted to account for negative parity. In the case
of the q̄ q̄ =f0 mode we have to use the fitting function,

CðtÞ ¼ A cosh
�
mqq

�
t −

Nt

2

��

þ B cosh

�
mq̄ q̄ =f0

�
t −

Nt

2

��
ð24Þ

as the correlator contains a contribution from the scalar
diquark mode qq in addition to the mixing of the scalar
antidiquark q̄ q̄ with the scalar meson f0.
At μ ≠ 0 the combined mode q̄ q̄ =f0 is a massive pseudo

Goldstone mode for all values of μ. Including a non-
vanishing quark mass m ≠ 0, also the combined mode
π=ϵqq becomes a pseudo Goldstone mode as the Uð1ÞA
symmetry gets broken. The only true Goldstone mode is
given by the scalar diquark mode qq in the limit λ → 0 and
for μ > μc. Generally for μ < μc and λ → 0, the pion mass
mπ stays constant as the pion does not carry a net Baryon
number, whereas the scalar diquark mass mqq decreases
likemπ − 2μ and the scalar antidiquark massmq̄ q̄ increases
like mπ þ 2μ.
We compare our obtained masses of the (pseudo)

Goldstone modes to the corresponding χPT predictions
for two color QCDwith staggered quarks [3], using μc from

the fit of the condensates in Sec. III (see Fig. 11) and the
lattice parameters aλ and am as input. The large error of the
combined mode q̄ q̄ =f0 mainly comes from the systematic
error as the double-cosh fit is more sensitive to the fitting
interval than the single-cosh fits of the other modes.
We find a general agreement of the scalar diquark mode

qq and the π=ϵqq mode to their predictions. Deviations
become notable at large chemical potential, where also the
quark number density in Fig. 2 deviates largely. The large
discrepancy of the q̄ q̄ =f0 mode for μ ≥ μc might be due
to omitting disconnected contributions, as at large chemi-
cal potential the scalar meson mode f0 dominates this
combined mode. Note that the scalar diquark mode qq has
disconnected contributions of order Oðλ2Þ, which we
expect to have a small effect. Hence, we obtain similar
results as in the previous study [3] for Nf ¼ 4. However,
in Ref. [3] disconnected contributions have not been
omitted, and thus their obtained q̄ q̄ =f0 mode coincides
better with the χPT prediction. In conclusion, we find
that within the bulk phase fundamental staggered quarks
resemble the chiral symmetry breaking pattern of adjoint
QCD or G2-QCD in the continuum as most notably
seen in the behavior of the pion branch above the onset
at aμc.

B. Goldstone spectrum outside bulk phase

Continuum two-color QCD with quarks in the funda-
mental representation obeys the pattern of symmetry break-
ing SUð2NfÞ → Spð2NfÞ. Applying χPT, it was found that
the mass of the pion mode increases for μ > μc [25] in this
case, due to a swapping of the PS and PA branches when
compared to the staggered action [3]. We now wish to test
whether the pattern of symmetry breaking on the lattice
will change to the continuum pattern in the limit a → 0.
Thus, we calculate the spectrum again at a larger inverse
gauge coupling and using an improved gauge action.
With the new parameters (β ¼ 1.7, Ns¼16 and

Nt ¼ 32), where monopoles are strongly suppressed, we
find a quite different behavior of the (pseudo) Goldstone
modes than in Sec. VI A. We observe that the combined
modes q̄ q̄ =f0 and π=ϵqq do not give any meaningful
results. Instead, we therefore study the scalar diquark mode
qq and the pion mode π individually, and additionally we
extract the mass of the scalar antidiquark q̄ q̄ from the
operator χTτ2 χ − χ̄τ2 χ̄

T for μ < μc. In the correlation
function of the pionmodewe find an additional contribution
from an opposite parity state, which we filter out by
applying a double cosh-fit of the form,

CðtÞ ¼ A cosh

�
mπ

�
t −

Nt

2

��

þ ð−1ÞtB cosh

�
mπ⋆

�
t −

Nt

2

��
: ð25Þ

4We can use coshð·Þ also for the diquark channels (3 and 4), as
time-reversal asymmetric contributions to the correlators cancel
due to mixing with antidiquarks.
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We first study the λ-dependence pion mass and the
scalar diquark mass (see Fig. 12). Here we neglected
Oðλ2Þ contributions from the diagonal terms in Eq. (7) in
the calculation of the correlation functions. We compare
the results to χPT predictions for from continuum two-
color QCD with quarks in the fundamental representation,
for which we use the lattice parameters λ and m, and also
μc as obtained from measuring the pion mass at μ ¼ 0, as
input. For the smallest diquark source λ ¼ 0.001 we find
excellent agreement with χPT up to μ ∼ 1.7μc where
leading order χPT is not reliable anymore. We conclude
that the diagonal terms are negligible for this choice of
diquark source.
At β ¼ 1.7 the pion mass stays constant for μ ≤ μc, but it

starts to increase for μ > μc. This differs profoundly from
the behavior at β ¼ 1.5 (cf. Fig 11). Again, the large error
of the pion mode π for μ > μc mainly comes from the
sensitivity of the double-cosh fit to the fitting interval.
We interpret the increasing pion mass for μ > μc as strong
evidence that the pattern of symmetry breaking changed to
its continuum counterpart outside of the bulk phase.
Figure 13 combines the results for all the considered
meson channels, for λ ¼ 0.001 where the agreement with
χPT is nearly perfect. In this figure the Oðλ2Þ diagonal
terms were in fact included, but their contribution is of
similar magnitude as the statistical error.

VII. UNFOLDED LEVEL SPACINGS

The low energy features of QCD are dominated by its
global symmetries. In this limit, QCD is well described
with only the two lightest quarks. Low-energy QCD can be
approximated with a random matrix theory very well,
where all interactions among the degrees of freedoms of
the theory are equally likely and completely determined
by the global symmetries. In a random matrix theory
(RMT), the matrix elements of the Dirac operator are
replaced with uncorrelated random numbers, in a way such

that the global symmetries of the operator prevail [54].
Any observable is then an average over random matrix
elements and depends only on universal features of the
theory, and not on microscopic interactions.
RMT has found wide application for studying the

eigenvalue statistics in nuclear resonances [55]. The
distribution of level spacings is cleared off of any micro-
scopic interactions by rescaling the spacings such that
their average is unity and removing the fluctuating part of
the cumulative spectral function. This procedure is called
unfolding. We wish to demonstrate here that the change of
the Goldstone spectrum of two color QCD with staggered
fermions when leaving the bulk phase is accompanied by a
change of the unfolded level spacing distribution (ULSD)
of the Dirac operator.
For different randommatrix ensembles different forms of

ULSD have been predicted [56,57]. For the Gaussian
orthogonal ensemble (GOE), where the matrix elements
are real and the Dyson index is βD ¼ 1, the ULSD is

PβD¼1ðsÞ ¼
π

2
se−

π
4
s2 : ð26Þ

For the Gaussian symplectic ensemble (GSE) the matrix
elements are quaternion real and the Dyson index is
βD ¼ 4. The ULSD of the GSE is given by

PβD¼4ðsÞ ¼
�
8

3

�
6 1

π3
s4e−ð83Þ21πs2 : ð27Þ

FIG. 13. The (pseudo) Goldstone spectrum on a 163 × 32
lattice at β ¼ 1.7 with quark mass am ¼ 0.01 and diquark source
λ ¼ 0.001.

FIG. 14. The unfolded level spacing distribution of the stag-
gered Dirac operator spectrum inside the bulk phase (unimproved
action, 123 × 24, β ¼ 1.5). The level spacings are entirely
distributed according to the RMT prediction for the chiral
symplectic ensemble.
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Using the implicitly restarted Arnoldi algorithm, we have
measured the ULSD both with the parameters from Ref. [3]
(123 × 24, am ¼ 0.025, β ¼ 1.5, Wilson action) within the
bulk phase, as well as with our improved parameters
(163 × 32, am ¼ 0.01 β ¼ 1.7, Symanzik action) on the
weak-coupling side of the bulk crossover transition.
The ULSD within the bulk phase are shown in Fig. 14.

We find that the entire spectral range is well described by
Eq. (27); i.e., the distributions resembles the symplectic
ensemble very well. Inside the bulk phase, the ULSD does
not seem to contain any component distributed according to
the orthogonal ensemble.
In the continuum limit the spectrum is expected to

resemble the Gaussian orthogonal ensemble. With our
improved parameters, we find however that neither
Eq. (27) nor Eq. (26), fully describe the ULSD. In fact,
our numerical data (seen in Fig. 15) indicate some sort
of intermediate state. When separating the low-lying
(aλ ¼ 0.000–0.036) from the high-lying eigenmodes
(aλ ¼ 0.040–0.160) it becomes clear that a large part
of the low eigenmodes are now distributed according to
the GOE, while the higher eigenmodes remain distrib-
uted according to the GSE (see Fig. 16). Since the low
eigenmodes govern the Goldstone modes, it is clear that
our spectroscopic results should reflect the chiral-
symmetry breaking pattern of the GOE. We suspect that
in the continuum limit the symplectic part will vanish
entirely.

VIII. CONCLUSION AND OUTLOOK

In this work we investigated the influence of bulk effects
in QC2D with staggered fermions on the Goldstone
spectrum and the unfolded level spacing distribution of
the Dirac operator at finite density. We compared the

FIG. 16. The unfolded level spacing distribution of the stag-
gered Dirac operator outside the bulk phase (Symanzik action,
163 × 32, β ¼ 1.7). Low and high modes shown separately. High-
lying modes (top) are described by GSE while low-lying modes
(bottom) are described by GOE.

FIG. 15. The unfolded level spacing distribution of the stag-
gered Dirac operator outside the bulk phase (Symanzik action,
163 × 32, β ¼ 1.7). Neither GSE nor GOE describe the distri-
bution entirely.
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Goldstone spectrum to predictions from leading order
chiral perturbation theory for two sets of lattice parameters:

(i) A 123 × 24 lattice with β ¼ 1.5 and bare mass am ¼
0.025 using a standard Wilson gauge action. The
density of Z2 monopoles at μ ¼ 0 is hzi ∼ 0.88 in
this case.

(ii) A 163 × 32 lattice with β ¼ 1.7 and bare mass am ¼
0.01 using a treelevel improved Symanzik gauge
action. The density of Z2 monopoles at μ ¼ 0 is
hzi ∼ 0.27 in this case.

Our main result is that the Goldstone spectrum switches
from that of any-color QCD with adjoint fermions in the
bulk phase to that of two color QCD with fundamental
quarks on the physical weak-coupling side of the bulk
crossover, as most notably visible in a change of the pion
branch. We show that this change is reflected in the
unfolded level spacing distribution, which appears to obtain
a larger and larger contribution from the Gaussian orthogo-
nal random-matrix ensemble, starting with the low-lying
eigenmodes, as one moves from strong to weak compling,

while deeply in the bulk phase the distribution is com-
pletely dominated by the Gaussian symplectic ensemble.
We conclude that a continuum limit leading to two color
QCD with the correct chiral symmetry-breaking pattern is
possible with rooted staggered quarks.
We also observed that the standard connected suscep-

tibility subtraction to obtain a renormalized chiral con-
densate cannot be used at finite μ, since the connected
susceptibility contains a singular contribution at the diquark
condensation transition and that a renormalization using a
heavy quark condensate is also rendered unfeasible.
Developing a proper μ-dependent renormalization scheme
might be possible using gradient flow techniques, but is left
for future work.
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