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We perform the general relativistic stability analysis against adiabatic radial oscillations of unpaired
quark stars obtained using the equation of state for cold quark matter from perturbative QCD, the only free
parameter being the renormalization scale. This approach consistently incorporates the effects of
interactions and includes a built-in estimate of the inherent systematic uncertainties in the evaluation
of the equation of state. We also take into account the constraints imposed by the recent gravitational wave
event GW170817 to the compact star masses and radii, and restrict their vibrational spectrum.
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I. INTRODUCTION

Pulsar observations have shown that neutron stars (NS)
must suffer different kinds of mechanical deformations,
e.g., radial and nonradial oscillations, rotation and glitches,
along their lifetime in order to reproduce radio, x-ray,
gamma-ray and other electromagnetic signatures [1–8].
Recently, the LIGO and Virgo observatories measured
gravitational waves coming from the merger of neutron
stars, the GW170817 event, opening a new window to
probe NS responses to some of the disturbances produced
by tidal deformations in the inspiral phase [9]. Besides the
usual constraints—e.g., the existence of ∼2 M⊙ neutron
stars [10–13] and tidal deformabilities [14–17]—mechani-
cal responses could potentially provide signatures of the
presence of quark matter in their cores [18–21] or indicate
the presence of strange quark stars [22,23].
In this work we compute the radial pulsation frequencies

and periods of unpaired quark stars coming from possible
radial perturbations occurring at different stages of
the pulsar’s lifetime.1 The general relativistic radial pulsa-
tion analysis framework was designed long ago by
Chandrasekhar [26], being applied initially only to poly-
tropic equations of state (EoSs), and only much later to
more realistic nuclear EoSs [27]. Many radial oscillation
modes were calculated for modern sets of EoSs for cold NS
by Kokkotas and Ruoff [28].

For quark stars, radial pulsations were analyzed mostly
using the MIT bag model to build the equation of state for
cold quark matter [29–34], in some cases adding constant
corrections to the strange quark mass and interactions
which behave effectively only as being of long range.
Results suggested that the periods of the fundamental mode
were very low to be detected [35,36], which motivated the
search for the so-called nonradial oscillations that would
have higher periods which could be measured through
gravitational wave observations [37,38].
In the following, we adopt an equation of state for cold

quark matter extracted from perturbative quantum chromo-
dynamics (pQCD) and impose recent gravitational wave
constraints for compact star masses and radii [15,16] to
compute the fundamental and first excitedmode frequencies
(n ¼ 0, 1) of unpaired quark stars. This approach consis-
tently incorporates the effects of interactions and includes a
built-in estimate of the inherent systematic uncertainties in
the evaluation of the equation of state, so that in several cases
we present bands instead of lines. This goes beyond the
misleading precision of the MIT bag model description,
providing a more realistic range of possibilities, in a
framework that can be systematically improved.
To study the radial pulsations of quark stars, we use the

framework of Ref. [39], where the original Sturm-Liouville
form is turned into a pair of first-order coupled differential
equations. For the equation of state, we use the pressure for
cold QCDmatter of Ref. [40], which can be cast in a pocket
formula as described in Ref. [41].2
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1Compact star oscillations can happen due to several reasons,
e.g., accretion from a partner in a binary system or due to impact
of interstellar objects as asteroids or comets [24,25].

2Cold perturbative QCD has a long story [40–49] and,
although its realm of validity corresponds to much higher
densities, it is relevant in modeling the equation of state of
compact stars, since QCD short-range interactions become
important at intermediate densities, reachable in the interior of
NS [40,41,47–49].
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This work is organized as follows. In Sec. II we set up
the formalism needed to study radial pulsations of quark
stars, i.e., the cold quark matter equation of state and the
relativistic oscillation equations. In Sec. III we present our
results for the stability of quark stars. Section IV presents
our summary and final remarks.

II. SETUP

A. EoS for cold unpaired quark matter

Since we are interested in the physics of quark stars,
we adopt an EoS for cold quark matter obtained
from cold and dense perturbative QCD, satisfying
β-equilibrium and electric charge neutrality. This equa-
tion of state was computed up to second order in the
strong coupling αs by Kurkela et al. [40], including
the effects of the renormalization group on αsðΛ̄Þ and
the strange quark mass msðΛ̄Þ. As usual, the perturbative
calculation brings about an additional scale, the renorm-
alization scale Λ̄, a parameter that has to be varied
within some range, and can be constrained by the
phenomenology [47]. This provides an estimate of
the inherent systematic uncertainties in the evaluation
of the equation of state.
The full result of Ref. [40] can be cast into the following

pocket formula, [41] which we call FKV:

PQCD ¼ PSBðμBÞ
�
c1 −

aðXFKVÞ
ðμB=GeVÞ − bðXFKVÞ

�
; ð1Þ

where PSB represents the Stefan-Boltzmann gas. This
formula includes the contributions from massless up and
down quarks, a strange quark with running mass, and
massless electrons. It is in β-equilibrium and electrically

neutral. Here, μB is the baryon chemical potential and
we use the dimensionless version of the renormalization
scale, XFKV ¼ 3Λ̄=μB, which can vary between 1 and 4, as
discussed in Ref. [40]. The auxiliary functions that enter
this pressure are defined as

aðXFKVÞ ¼ d1X
−ν1
FKV; bðXFKVÞ ¼ d2X

−ν2
FKV; ð2Þ

with the following fit values (for details, see Ref. [41])

c1 ¼ 0.9008; d1 ¼ 0.5034; d2 ¼ 1.452; ð3Þ

ν1 ¼ 0.3553; ν2 ¼ 0.9101: ð4Þ

From Eq. (1) one can easily compute the perturbative
trace anomaly of QCD normalized by the Stefan-
Boltzmann gas, obtaining

tμμðμB; XFKVÞ ¼
μB
GeV

aðXFKVÞ
½ðμB=GeVÞ − bðXFKVÞ�2

; ð5Þ

which gives a measure of the role of interactions encoded in
the breaking of conformal symmetry [50]. In Fig. 1 we
show the pQCD normalized trace anomaly for different
values of XFKV, and compare it to the result obtained from
the bag model for B ¼ ð145 MeVÞ4, which vanishes very
quickly with μB. For comparison we also plot in this figure
the trace anomalies of standard nuclear matter EoSs, i.e.,
the ones from Akmal et al. [51] (dubbed APR3) and Shen
et al. [52] (dubbed TM1), to be used later. For the
perturbative case, we show a band that represents a measure

FIG. 1. Left panel: Trace anomaly for the cold pQCD result of Refs. [40,41] normalized by the Stefan-Boltzmann pressure as a
function of the baryon chemical potential for different values of XFKV (continuous) and for the bag model with B ¼ ð145 MeVÞ4
(dotted). We mark with asterisks the cases of XFKV between 3 and 4 since only within this range one obtains at least two-solar mass stars.
For comparison, we also show the behavior of the trace anomaly for two well-known nuclear matter equations of state, APR and TM1
(see text). Right panel: Equations of state, P ¼ PðϵÞ, for a few values of XFKV and the bag model B, to be discussed in the next section.
We also show the nuclear matter APR and TM1 equations of state.

3This EoS is also known as APR4 or A18þ δvþ UIX�.
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of the actual uncertainties, to be contrasted to the apparent,
misleading precision of the bag model line.
Strange stars are quark stars that are self bound by

QCD interactions and satisfy the Bodmer-Witten hypoth-
esis of strange quark matter being the true ground state of
nuclear matter in the vacuum. Strange matter configura-
tions at zero temperature and zero pressure would have
E=A ¼ ϵQCD=nB < 930 MeV, i.e., energy per baryon
lower than iron-56 [2].
The FKV formula has a broad parameter space which

allows for the existence of configurations of self-bound
matter. It was shown in Ref. [40] that this condition is
satisfied for values of XFKV ∼ 3–4. A similar conclusion
was obtained within the Nambu–Jona-Lasinio (NJL) model
for quark matter for the most common parametrizations of
the EoS [53]. In what follows, we consider only bare quark
stars, i.e., stars without a nuclear crust, which depending on
the value of XFKV will be self-bound stars or ordinary
quark stars.
A technical detail one has to keep in mind when using

the FKV pocket formula for the pressure and in obtaining
other thermodynamic quantities is that, since PQCD is a
function of μB and XFKV, when obtaining the energy
density ϵQCD one has the freedom to choose first a
fixed value of XFKV ¼ XFKVðμBÞ (e.g., XFKV ¼ 2, i.e.,
Λ̄ ¼ ð2=3ÞμB) in PQCD and then build the energy density
using the thermodynamic relation ϵQCD ¼ −PQCD þ nBμB,
or to consider XFKV an independent constant and then build
ϵQCD by taking derivatives in μB keeping XFKV constant
when computing the baryon number density nB (see, e.g.,
Ref. [54] for a similar discussion at high temperatures).
In this work, we have chosen to first fix the values
of XFKV as functions of μB, and then build the EoS,
PQCD ¼ PQCDðϵQCDÞ. Our approach differs from the other
option by a few percent for low values of μB.

B. Linear radial oscillations of quark stars

Below we summarize the main aspects concerning the
stability analysis of linear radial oscillations (pulsations) in
quark stars.4 For simplicity, we assume that the stars are
static and spherically symmetric, so that one can use the
Schwarzschild-like line element, having as nontrivial met-
ric functions eνðrÞ and eλðrÞ, for the temporal and radial
parts, respectively. Then, Einstein’s equations are solved
for stellar configurations in hydrostatic equilibrium, yield-
ing the Tolman-Oppenheimer-Volkov (TOV) equations
(using G ¼ c ¼ 1) [1,2]

dP
dr

¼ −
ϵM
r2

�
1þ P

ϵ

��
1þ 4πr3P

M

��
1 −

2M
r

�
−1
; ð6Þ

dM
dr

¼ 4πr2ϵ; ð7Þ

dν
dr

¼ −
2

Pþ ϵ

dP
dr

; ð8Þ

where P is the pressure, ϵ is the energy density, and M is
the gravitational mass inside the radius r.
To solve Eqs. (6) and (7), one needs the EoS,P ¼ PðϵÞ, as

an input. Then, one imposes that at the originMðr ¼ 0Þ ¼ 0
and Pðr ¼ 0Þ ¼ P0, and the integration must end when
Pðr ¼ RÞ ¼ 0, i.e., at the surface of the star, its total mass
being Mðr ¼ RÞ ¼ M. Additionally, in order to solve
Eq. (8) for ν we use the boundary condition νðr ¼ RÞ ¼
ln ð1 − 2M=RÞ. This ensures that this metric function νðrÞ
will match continuously the Schwarzschild metric outside
the star, in agreement with Birkhoff’s theorem [1].
In order to obtain the equations for radial pulsations of

relativistic stars, one begins by perturbing the spacetime and
fluid components while preserving the spherical symmetry
of the unperturbed star. These perturbations are introduced
into Einstein’s equations together with the energy-momen-
tum and baryon number conservation laws, neglecting
nonlinear terms. Historically, it was Chandrasekhar [26]
who first presented the second-order pulsating differential
equations in the form of a Sturm-Liouville problem, which
after being solved yields eigenvalues and eigenfunctions for
the radial perturbations.Only decades later it was realized by
Vath and Chanmugan [29] that these equations could be
transformed into a set of two first-order differential equa-
tions by choosing appropriate variables, namely Δr=r and
ΔP=P. Later, Gondek et al. [39] found convenient to rewrite
these equations for the relative radial displacementΔr=r and
the Lagrangian perturbation of the pressureΔP. This last set
of equations is well adjusted to numerical techniques since
one directly imposes the boundary condition at the star’s
surface. Moreover, these equations do not involve any
derivatives of the adiabatic index, Γ, which is sensitive to
the EoS being used.
Defining Δr=r≡ ξ and ΔP as the independent variables

(omitting their harmonic time dependence, eiωt) for the
pulsation problem, one obtains the following system of
equations (also with G ¼ c ¼ 1) [39]:

dξ
dr

¼ −
1

r

�
3ξþ ΔP

ΓP

�
−
dP
dr

ξ

ðPþ ϵÞ ; ð9Þ

dΔP
dr

¼ ξ

�
ω2eλ−νðPþ ϵÞr − 4

dP
dr

�

þ ξ

��
dP
dr

�
2 r
ðPþ ϵÞ − 8πeλðPþ ϵÞPr

�

þ ΔP
�
dP
dr

1

Pþ ϵ
− 4πðPþ ϵÞreλ

�
; ð10Þ

where ω is the oscillation frequency.

4Nonlinear radial oscillations could be important only for
stellar configurations around the maximum mass, producing
unstable modes. For more details, see Ref. [55].
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The boundary conditions are given by the following:
(i) Physical smoothness at the center of the star requires

that, when r → 0, the coefficient of the 1=r term in
Eq. (9) must vanish. Thus, we impose that

ðΔPÞcenter ¼ −3ðξΓPÞcenter: ð11Þ
(ii) Normalizing the eigenfunctions to ξð0Þ ¼ 1 and

knowing that Pðr → RÞ → 0, we see that the La-
grangian perturbation in the pressure at the surface
vanishes. Thus

ðΔPÞsurface ¼ 0: ð12Þ
In order to solve simultaneously Eqs. (9)–(12) numeri-

cally, we use the following recipe:
(i) Solve the TOV equations for the EoS to be used in

the analysis to calculate the coefficients of Eqs. (9)
and (10), i.e., combinations of ΓðrÞ, PðrÞ, ϵðrÞ, λðrÞ,
and νðrÞ for a given central pressure.

(ii) After solving the desired equations with their boun-
dary conditions and a set of trial values forω2, obtain
an oscillating behavior ofΔP and ξ as functions ofω.

(iii) Only the discrete values of the frequency that satisfy
ΔPðω2

i Þ ¼ 0 are considered eigenfrequencies of the
system.5

Although this procedure is different from the more
commonly used Sturm-Liouville eigenvalue problem,
it also examines the squared frequencies ω2

n satisfying
ω2
0 < ω2

1 < ω2
2 < …. If ω2

n > 0, the frequency is real and
the mode is stable and oscillatory. On the other hand, if
ω2
n < 0, then the frequency is purely imaginary and the

mode is unstable. For the global stability of the star, it is
sufficient to look only at the fundamental (lowest) eigen-
value, ω2

0. If ω
2
0 > 0, then all ω2

n > 0 and the star is stable.
If ω2

0 < 0, then there is at least one unstable mode and the
star becomes unstable. The transition between these two
stellar states occurs when this fundamental frequency
vanishes, i.e., ω0¼ 2πf0→ 0 [1,56]. Thus, when the fun-
damental mode reaches zero in ΔPðω2

0¼ 0Þ¼ 0, we obtain
the maximal stable mass configuration for a given equation
of state before gravitational collapse.
We now calculate the last coefficient needed to solve the

above pulsation equations, i.e., the adiabatic index Γ of the
quark matter system. Following Ref. [39], for cold matter
the chemical reactions between components (quarks and
electrons, in this case) are so slow (τreac ≫ τdyn) that after
perturbations the composition is not modified, which
allows us to write for cold, adiabatic and isentropic (zero
entropy) quark stars, the adiabatic index as

Γ≡
��

1þ ϵ

P

� ∂P
∂ϵ

�
s¼T¼0

: ð13Þ

In the case of the bag model, it is easy to find the following
analytic expression for this index:

ΓMIT ¼ 4

3

�
1þ B

P

�
: ð14Þ

In our case, though, ΓFKV ¼ ΓðXFKVÞ turns out to be very
involved analytically and must be evaluated numerically.

III. RESULTS AND DISCUSSION

We can now investigate the behavior of different eigen-
frequencies, ωn, of the fundamental and first excited modes
produced by a radial perturbation in a quark (or strange)
star making use of the framework built in Sec. II.

A. Hydrostatically equilibrated quark stars

We first solve the TOV equations for the perturbative
QCD EoS using the FKV formula for some values of the
renormalization scale XFKV. For the sake of comparison,
we also display results obtained for the nuclear matter EoSs
mentioned in Sec. II.
In Fig. 2 we show our results for the mass as a function of

the central energy densities and in the mass-radius diagram.
In both panels we indicate the astrophysical constraint on
the maximum mass of NS obtained from the gravitational
waves coming from the merger event GW170817, namely
between 2.01 and 2.16 solar masses [15] (horizontal light-
purple band). This event additionally puts a constraint on
the radius of a NS of 1.4 M⊙ to be between 12 and
13.45 km [16], which we indicate in the right panel of this
figure as a vertical gray band. From this panel it is
straightforward to see that only values of XFKV between
3 and 3.2 satisfy simultaneously the GW170817 constraints
of mass and radius, whereas the APR and TM1 EoSs nearly
satisfy the mass constraint but not the radius restriction.
To make our discussion more quantitative, we show a

few illustrative tables. In Table I we list the associated
values of minimal (at the quark star surface) and maximal
(at quark star center) baryon chemical potentials, μðmin;maxÞ

B ,
corresponding to the star with maximum mass. We also
present values of the associated central energy densities
ϵmax
c and radii Rmax. Notice that the maximal values of μB
for the APR and TM1 EoSs lie slightly above the quark
analogues. However, the APR EoS violates the causal limit
before reaching its maximum mass configuration listed in
Table I. Moreover, it was estimated in Ref. [57] that the
maximal value of baryon chemical potential at the center of
NS would be 2.1 GeV.

B. Dynamically stable quark stars

The necessary condition for stability of compact
stars requires that the stellar configurations, obtained
after solving the TOV equations, satisfy the condition
∂M=∂ϵc ≥ 0. The behavior for the quark stars obtained

5Our code reproduces the pulsation frequencies of Kokkotas
and Ruoff [28].
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from pQCD is shown in the left panel of Fig. 2.
However, one still has to solve the pulsation equations
to guarantee their stability, so we must study their
associated eigenfrequencies.
For simplicity, in the following we write the eigenfre-

quencies, ωn, in terms of the linear frequency defined as
fn ≡ ωn=2π. In particular, the fundamental and first excited
oscillation modes, i.e., n ¼ 0, 1, are very relevant since they
are the easiest to be excited by external (radial) perturba-
tions. Besides, they will turn out to be very sensitive to the
interactions encoded in the EoS from high-density pertur-
bative QCD. Higher eigenfrequencies (n ¼ 2; 3;…) can
also be calculated being apparently interesting for potential
observations since they have larger numerical values.
However, they are too difficult to be excited in realistic

situations and thus we do not exhibit their values in
this work.
From Figs. 3–5, we can see that the fundamental

(n ¼ 0) and first-excited (n ¼ 1) mode frequencies, fn¼0

and fn¼1 respectively, behave differently for different
values of XFKV, producing a large band of possibilities.
As expected, their behavior is quite different from the
nuclear matter EoSs (APR and TM1) which we plot
only for comparison. It is clear from these figures that
different renormalization scales affect qualitative fea-
tures for these radial oscillation frequencies. Moreover,
the scaling law for the periods of the bag model (and
some of its modified versions), τ̄n ¼ ðB=B̄Þ1=2 × τn [30],
is not realized in the case of the equation of state
coming from cold and dense perturbative QCD since
conformal invariance is broken by interactions via the
running of the strong coupling and quark masses. In
Fig. 5) we show the dependence of frequencies and
periods on redshift parameter Z ¼ ð1 − 2M=RÞ−1=2 − 1
[2]. This can be useful since allows us to compare two
observable quantities in astronomical measurements.
Let us now turn our attention to the dependence of the

frequencies and periods on the central energy density,
gravitational mass and redshift.

1. Dependence on the energy density

Figure 3, shows that, although the quantitative behavior
of the fundamental and first excited (n ¼ 0, 1) vibrational
modes (as functions of ϵc) of for quark stars are very
sensitive to XFKV, their qualitative behavior is similar to the
bag model (B1=4 ¼ 145 MeV) for all values of central
energy density. As expected, nuclear matter stars (APR and
TM1) behave quite differently. In Table II we list values of

TABLE I. Equations of state from pQCD (for which we only
show the value of XFKV), the bag model, and nuclear matter (APR
and TM1); minimal and maximal baryon chemical potentials;
central energy densities for the maximum mass configurations;
maximal masses; and corresponding radii.

EoS
μmin
B

[GeV]
μmax
B

[GeV]
ϵmax
c

½GeV=fm3�
Mmax

½M⊙�
Rmax

[km]

1 2.01 3.091 26.29 0.404 087 2.212
2 1.21 1.8376 3.1 1.143 63 6.475 48
3 0.912 48 1.39 0.982 2.038 09 11.7532
3.2 0.872 51 1.323 0.8 2.235 51 12.9284
4 0.752 67 1.13 0.416 3.042 24 17.757
B 0.8285 1.2981 1.0977 2.02 10.99
APR 0.9268 2.269 1.5337 2.2 10
TM1 0.932 276 1.628 1.02 2.2 13.5

FIG. 2. Left panel: Total gravitational mass M (in solar mass units) vs central energy density, ϵc, for the same EoSs of
Fig. 1. The horizontal light-purple band represents the astrophysical constraint coming the gravitational wave signal GW170817
[15]. The horizontal gray dashed line represents stellar configurations with M ¼ 1.4 M⊙. Right panel: Mass-radius diagram for EoSs
from pQCD for a few values of XFKV, the bag model B, and nuclear matter EoSs APR and TM1 (see text). The vertical light-gray band
represents the maximum (13.45 km) and minimal (12 km) radii for a NS withM ¼ 1.4 M⊙ when using the gravitational wave constraint
of Ref. [16].
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central energy densities, frequencies and periods for the
modes n ¼ 0, 1 for a canonical neutron star of M ¼
1.4 M⊙ for the EoSs we use along this work. The choice
of mass follows from the fact that most of the observed
pulsars tend to have masses near this value. Notice that
although the bag model surpasses the two-solar mass
constraint only for high central energy densities, the EoS
obtained from the FKV formula requires relatively low-
energy central densities to produce heavy stars.

2. Dependence on the gravitational mass

It is clear from Figs. 2 and 4 that choosing XFKV ≳ 1
yields very compact quark stars with higher (lower) values
of frequencies (periods), in contrast to the ones provided by
the bag model (the opposite happening for larger values of
XFKV). For instance, the fundamental period of XFKV ¼ 1
takes a maximum value of approximately 0.1 milliseconds
before it diverges at its maximum mass configuration.
Notice also that for XFKV approximately between 3 and 4,
although producing heavy strange quark stars, satisfying
the two-solar mass constraint straightforwardly, their sector
of low-mass strange quark stars have lower values of
frequency signalling that strong interactions may play a

role in making those stars less deformable, i.e., less
compact, against external radial perturbations.6

Taking into account the recent gravitational wave con-
straint from the GW170817 event on the maximum
gravitational mass of neutron stars as being in the range
2.01 M⊙ ≤ Mmax ≲ 2.16 M⊙ [15,16], we can extract addi-
tional limits on the values of oscillation frequencies and
periods. We list the values of fundamental (first-excited)
oscillation frequencies and corresponding periods in
Table III (IV) for stellar configurations within this range
of maximum mass, indicating the values corresponding to
the lower and upper limits in the previous inequality.
Strange stars with masses around the 2 M⊙ limit have

periods that tend to be higher than 1 ms, whereas low-mass
strange stars tend to have periods that are smaller and
smaller, making them difficult to detect by modern tech-
niques including drifting subpulses and micropulses [35].
The value of XFKV is then constrained to be in the range of
∼3–3.2. The period for the case of quark stars tend to be in
the range of ∼0.4–2.9 ms, which is something new from
pQCD that the bagmodelB cannot reproduce since although

FIG. 3. Upper panels: Fundamental mode, fn¼0, and first mode, fn¼1, frequencies as functions of the central energy density. Lower
panels: Same for the periods. We show results using EoSs from pQCD, the bag model (B) and nuclear matter (APR and TM1).

6The frequencies and periods were calculated forXFKV ∼ 3ð3.2Þ
that generate maximum masses of ∼2ð2.2ÞM⊙, respectively.
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it can reach two solar masses, it cannot go above this
limit without violating the Bodmer-Witten hypothesis
unless effective interaction terms are added to the equation
of state [58].

3. Dependence on the redshift

The dependence of the frequencies and periods of quark
stars on the gravitational redshift parameter Z are displayed
in Fig. 5. From this figure, it becomes clear that, independ-
ently of the particular EoS used (for different values ofXFKV
in pQCD, B and TM1) and their maximum masses, the
maximumgravitational redshiftZ tends to accumulate in the
region between 0.42 and 0.48, which can be used to restrict
the behavior of the EoS for dense matter when compared to
current astronomical observations of Z. Although the APR
case lies outside this region, one should recall that at high
densities (before reaching itsmaximalmass configuration) it
becomes superluminal. Notice that the first-excited mode
displayed in Fig. 5 seems to distinguish low-mass quark stars
from purely hadronic stars.

IV. SUMMARY AND FINAL REMARKS

In this paper we have investigated the relativistic
radial oscillations of unpaired bare quark stars and

strange stars using an equation of state from perturbative
QCD, including up, down, and strange quarks in a cold,
dense medium in β-equilibrium and electrically neutral.
For the best of our knowledge, similar studies of the
radial oscillation stability were only performed within
the MIT bag model framework (occasionally including
minor modifications). Our results contains a natural
estimate of the inherent systematic uncertainties in the
evaluation of the equation of state, and therefore of all
observables that follow, and might bring new insights
into the phenomenology of quark stars and their possible
observational searches.
Comparing the nucleonic and quark star results obtained

in this work, one finds that their fundamental and first
excited modes are quite distinguishable for low-mass stars.
On the other hand, heavy stars become numerically indis-
tinguishable in the region near the two-solar mass limit.
Nevertheless, their curves are different and this could be
important to map their vibrational behavior. In fact, this
could be used to discriminate between hadronic and
quark stars by comparing their nonradial pulsation modes
(which are correlated to the radial modes in gravitational
waves [59,60]), especially in the case of heavy compact
stars, close to the current constraint on their maximum
mass [37,38].

FIG. 4. Same as in Fig. 5 but now the frequencies and periods are functions of the total gravitational mass M.
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Our results represent an initial step toward the more
realistic case of hybrid star pulsations (see, e.g., Ref. [61]),
where a hadronic mantle and crust effects should be
included [62]. They might also shed light onto the
phenomenology of strange dwarfs, which seem to be
unstable under radial perturbations [63,64], or more exotic
forms including the existence of condensed dark matter in
neutron stars [65] and strange stars [66].

FIG. 5. Same as in Fig. 5 but now the frequencies and periods are functions of the redshift parameter Z.

TABLE II. Values of central energy densities (ϵc), fundamental
(fn¼0) and first-excited (fn¼1) mode frequencies, and their
associated periods (τn¼0 and τn¼1, respectively) for stars with
mass M ¼ 1.4 M⊙, obtained from equations of state from the
FKV formula (for different values of XFKV), for nuclear matter
and the bag model (see text).

EoS ϵc ½GeV=fm3� f0 [kHz] τ0 [ms] f1 [kHz] τ1 [ms]

3 ≈0.30 ≈3.5 ≈0.29 ≈9 ≈0.11
3.2 ≈0.26 ≈3.5 ≈0.29 ≈9 ≈0.11
4 ≈0.10 ≈3.3 ≈0.30 ≈8 ≈0.13
B ≈0.40 ≈4.0 ≈0.25 ≈10 ≈0.10
APR ≈0.56 ≈3.5 ≈0.29 ≈8 ≈0.13
TM1 ≈0.29 ≈2.0 ≈0.50 ≈6 ≈0.17

TABLE III. Frequencies and periods of the fundamental mode
for stellar configurations satisfying the gravitational wave event
GW170817 on compact stars as having masses betweenMlower

max ¼
2.01 M⊙ and Mupper

max ¼ 2.16 M⊙. The period marked with (*) is
notably different from the ones for other stellar configurations
because it is very close to the maximum mass where the
fundamental period diverges.

EoS flower0 [kHz] τlower0 [ms] fupper0 [kHz] τupper0 [ms]

3 ≈1.0 ≈1.0 � � � � � �
3.2 ≈2.0 ≈0.5 ≈1.0 ≈1.0
B ≈1.0 ≈6.0ð�Þ � � � � � �
APR ≈3 ≈0.33 ≈2.0 ≈0.5
TM1 ≈2.0 ≈0.5 ≈1.0 ≈1.0

TABLE IV. Same as Table III but for frequencies and periods of
the first-excited mode of oscillation for the mentioned EoSs.

EoS flower1 [kHz] τlower1 [ms] fupper1 [kHz] τupper1 [ms]

3 ≈6.0 ≈0.17 � � � � � �
3.2 ≈6.0 ≈0.17 ≈5.0 ≈0.20
B ≈6.0 ≈0.17 � � � � � �
APR ≈8.0 ≈0.13 ≈8.0 ≈0.13
TM1 ≈5.0 ≈0.20 ≈5.0 ≈0.20
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