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We implement a Monte Carlo sampling strategy to extract helicity parton densities and their uncertainties
from a reference set of longitudinally polarized scattering data, chosen to be that used in the DSSV14
global analysis. Instead of adopting the simplest possible functional forms for the helicity parton
distributions and imposing certain restrictions on their parameter space in order to constrain them, we
employ redundant, flexible parametrizations and fit them to a large number of Monte Carlo replicas of the
existing data. The optimum fit and its uncertainty estimates are then assumed to be given by the statistical
average of the obtained ensemble of replicas of helicity parton densities and their corresponding variance,
respectively. We compare our results to those obtained by the traditional fitting approach and to the
uncertainty estimates derived with the robust Lagrange multiplier method, finding good agreement. As a
first application of our new set of replicas, we discuss the impact of the recent STAR dijet data in further
constraining the elusive gluon helicity density through the reweighting method.
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I. INTRODUCTION AND MOTIVATION

The precise determination of parton distribution func-
tions (PDFs) is a key ingredient to establish the validity and
accuracy of perturbative QCD factorization and the
assumed parton density universality and, therefore, of
our current understanding of the nucleon structure and
the strong interactions at the most fundamental level as
expressed in term of quarks, antiquarks, and gluons [1].
This is especially the case for helicity PDFs that reflect the
spin alignment of quarks and gluons relative to that of their
parent nucleon spin, ever since the milestone deep-inelastic
scattering (DIS) experiment carried out by EMC at CERN
thirty years ago [2]. The outcome challenged the naive

quark model, showing that little of the proton spin is carried
by the quarks and antiquarks.
The EMC result was later on confirmed by similar

experiments at SLAC, DESY, CERN, and JLAB, and
complemented with semi-inclusive DIS (SIDIS) measure-
ments in order to pin down how the different quark and
antiquark species are polarized individually [3]. In addition,
a vigorous polarized proton-proton collision program was
carried out at the BNL Relativistic Heavy Ion Collider
(RHIC) [4] and established, among other things, that
gluons in a polarized proton themselves carry polarization
[5]. This result gives rise to new compelling questions such
as how much room, if any, is left for the quark and gluon
orbital angular momenta in the proton spin balance, and
what the actual correlation between spin and parton
flavor is.
In order to address these questions quantitatively,

increasingly refined phenomenological tools to analyze,
combine, and compare the increasing number of precise
experimental results probing the nucleon spin structure in a
single, consistent, and accurate theoretical framework are
required. This is precisely the purpose of global QCD
analyses, that, in the case of helicity parton distributions,
have matured significantly in the past five years [5–7].
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They routinely include complementary DIS, SIDIS, and pp
observables as provided by current experimental programs,
and are prepared for the challenges of a future generation of
measurements, namely those foreseen at an electron ion
collider (EIC) [8,9]. The possible realization of an EIC
within the next decade is currently under active discussion
in the U.S. [10].
The estimate of uncertainties for PDFs as obtained

through a global analysis of diverse sets of data with
different characteristics of uncertainties is in general [11]—
and particularly for helicity PDFs—a formidable task. It is
still a central, open problem that has been approached with
complementary strategies with an increasing level of
sophistication in the past ten years [12–14]. PDFs inherit
uncertainties not only from those associated with the data,
which are in most cases well accounted for, but also from
the theoretical framework used to link the PDFs with the
measured observables. The latter is necessarily based on
certain assumptions, like adopting collinear factorization,
restricting oneself to a leading-twist approximation, and
truncating any perturbative calculation at a certain order in
the strong coupling expansion. The errors associated with
these procedures are extremely difficult to quantify. In
addition, PDFs may be biased by the way in which the
analysis interpolates between the values of parton momen-
tum fraction probed by the data. Traditionally this has been
done by assuming a given functional form for each parton
flavor at some initial reference energy scale of order 1 GeV.
More recently, more elaborate procedures based on neural
networks [6,15,16] have been invoked for this task. Finally,
global analyses usually have to make certain simplifying
assumptions, such as flavor-symmetry relations between
the (anti)quark distributions, sum rules for moments, using
some model estimates for potential nuclear effects for data
taken with nuclear targets, and adopting values for heavy
quark masses and other fundamental constants and param-
eters. It is highly nontrivial how these approximations and
choices eventually propagate into the obtained set of PDFs
and into estimates for cross sections and other experimental
observables computed with them.
The assessment of uncertainties for helicity PDFs has

evolved from a mere comparison between sets based on
very simple parametrizations for their functional form and
different—albeit at that time equally plausible—simplify-
ing assumptions on the available parameter space, to a
rather sophisticated combination of Monte Carlo samplings
of the data combined with neural network techniques as a
largely unbiased interpolating strategy [6,17]. Also, the
traditional approach to determine helicity PDFs based on
more restrictive parametrizations, which allows for numeri-
cally very efficient computations of arbitrary observables in
Mellin space [18] at any desired order in perturbation
theory, has been supplemented with the improved Hessian
technique [13] and the robust Lagrange multiplier method
[12] to estimate and propagate uncertainties more reliably

[19]. Alternatively, other ideas have been pursued by
implementing iterative Monte Carlo fitting techniques, that
combineMonte Carlo sampling of the parameter space with
a resampling of data and cross validation methods [7].
A common and often controversial feature of both the

improved Hessian approach and the use of the Lagrange
multiplier method to estimate uncertainties is the necessity
to introduce a suitable tolerance criterion, usually obtained
by inspection of the quality of the fit to all the available sets
of data. This has to be done to accomplish sensible error
estimates that, for example, fulfill the naive expectation that
the majority of the data in the fit fall within the quoted
uncertainty bands. These tolerances typically imply incre-
ments Δχ2 of the effective χ2 function used to measure the
quality of the fit between theory and experiment substan-
tially larger than the textbook expectation, Δχ2 ¼ 1, for the
68% confidence level (C.L.) interval. It is quite apparent
that any global PDF fit, apart from the bias from choosing a
functional form and the often neglected correlations
between the parameters of the fit and/or within the data,
is very far from the idealized case that leads to the criterion
of Δχ2 ¼ 1. It also suffers from several sources of errors
inherent to the theory approximations that cannot be
properly accounted for, are highly non-Gaussian, and, in
any case, are usually neglected. Fitting only a single type of
observable, say, just DIS data, PDFs may effectively
compensate for or hide such defects, but this is much less
likely in any truly global fit to measurements with rather
diverse characteristics such as DIS, SIDIS, and various sets
of pp data.
Monte Carlo sampling strategies to obtain PDFs [15,16],

on the other hand, avoid the adoption of a tolerance
criterion and some other shortcomings in the propagation
of PDF uncertainties to experimental observables.
Schematically, one first generates a Monte Carlo ensemble
of replicas of the original data with a probability distribu-
tion derived from the reported errors within the desired
accuracy. In a second step, a PDF set is obtained for each
replica of the data. The so obtained ensemble of corre-
sponding PDF replicas is expected to contain all the
information relevant for the PDF determination: the central
value of a PDF, or any quantity derived from them, is taken
to be the average over the PDFs replicas, and the corre-
sponding uncertainty is the statistical standard deviation.
Interestingly, the uncertainty estimates for unpolarized
PDFs derived in this way are fairly consistent with those
obtained with the traditional approach when similar data
sets are fitted and theoretical approximations are made,
provided a substantially larger tolerance Δχ2 ≫ 1 is
adopted for the latter [11]. Such an agreement would
suggest that the ensemble of PDF replicas can account
for the arguments used to motivate such large tolerance
criteria, but effectively avoids the arbitrariness of defining a
specific Δχ2 and has a much clearer statistical interpreta-
tion. Notice that the set of PDF replicas obtained by
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analyzing the replicas of the data sets depends itself on the
underlying theoretical approximations and assumptions
used in the fit. Data, or, in our case, replicas of the data,
are not related directly to a set of PDFs but only in some
involved, nonlinear fashion through convolutions of the
PDFs with perturbatively calculable QCD coefficient
functions computed within some given approximations.
Among other things, the latter comprise of the chosen
truncation of the perturbative series, the way the QCD
evolution equations are solved numerically, the choice of
the initial scale μ0 and the assumptions about the PDFs
made at that particular scale, limitations due to the func-
tional form adopted for the PDFs, and so on. All these
approximations vary in magnitude, can be nonlocal in the
parton momentum fraction x and affect parton flavors and
their scale dependence differently. In a global fit of different
cross section types, theory approximations typically lead to
tensions or slight inconsistencies between the optimal
values for the PDFs preferred by each set of data alone.
Even in the case of fitting information stemming only from
a single experiment but with data points corresponding to
different energy scales, the theoretical shortcomings may
mimic an additional inconsistency between the different
data points.
In the following, we will implement a Monte Carlo

sampling strategy to determine helicity PDFs. To this end,
we study the same set of polarized scattering data utilized in
the well-known and frequently used DSSV14 analysis [5],
a global fit at next-to-leading order (NLO) accuracy of DIS
and SIDIS data together with results on the hadroproduc-
tion of jets and neutral pions in polarized proton-proton
collisions from BNL-RHIC. The DSSV14 analysis was
based on the more traditional fitting methodology, and
uncertainties were estimated with the Lagrange multiplier
technique [5] and an appropriately chosen tolerance
Δχ2 ≫ 1. In addition, we also adopt identical theory inputs
and conventions to facilitate the comparison between both
approaches and their results. As in the case of unpolarized
PDFs, and as we shall demonstrate below, we find a rather
good agreement between the central values and variances
coming from the newly derived Monte Carlo replicas and
the best fit and 68% C.L. uncertainties from the DSSV14
analysis.
Along with a detailed comparison between the two

methods, we also provide a large set of PDF replicas,
available upon request from the authors, which are repre-
sentative of the uncertainties of the original DSSV14
analysis, but much easier to apply to any desired observable
than the Lagrange multiplier method. Hence, the replicas
may be straightforwardly employed to estimate PDF
uncertainties in any new or forthcoming future measure-
ment, as well as to include information from data sets not
yet included in the original DSSV14 fit by means of a
reweighting technique [20,21]. As a first example, we shall
analyze in this way the impact of recent dijet data obtained

by the STAR experiment [22,23] on the determination of
helicity PDFs at NLO accuracy. Finally, the set of replicas
will be also particularly useful for a comparison with the
forthcoming update of the DSSV14 analysis, comprising
all the data that have become available since the original fit,
as well as new theoretical inputs such as updated unpo-
larized PDFs and fragmentation functions.
The remainder of the paper is organized as follows. In the

next section, we very briefly remind the reader of the main
aspects of the DSSV14 analysis, the data sets included in
the fit, the parametrizations assumed for the helicity PDFs,
and other relevant theoretical inputs. We also describe the
implementation of the Monte Carlo sampling of the data to
obtain our set of helicity PDF replicas based on much more
flexible functional forms. Next, in Sec. III, we discuss the
main properties of our large set of replicas and compare the
results for the individual helicity PDFs and their uncer-
tainties to those from the DSSV14 analysis based on the
Lagrange multiplier method. In Sec. IV, we present a
reweighting exercise based on recent data on dijet pro-
duction in polarized proton-proton collision obtained by the
STAR Collaboration as a first example of the usefulness of
the new approach. We summarize the main findings
in Sec. V.

II. DSSV ANALYSIS, PARAMETER SPACE, AND
MONTE CARLO SAMPLING OF REPLICAS

The DSSV14 analysis [5] is a traditional NLO extraction
of helicity parton distributions obtained from inclusive and
semi-inclusive lepton-proton, lepton-deuteron and lepton-
helium DIS data [3], together with single-inclusive, high
transverse momentum jet and neutral pion production
measurements in polarized proton-proton collisions at
RHIC [4]. DSSV14 is actually an upgrade to DSSV08
[19,24], the first truly global NLO QCD analysis of spin-
dependent PDFs that combined DIS and SIDIS data with
early results from RHIC, conceived to incorporate crucial,
new experimental information that appeared after 2008.
Most importantly, the DSSV14 analysis revealed for the
first time evidence of a nonvanishing polarization of the
gluons in the proton [5] at medium momentum fractions, a
result that was later on confirmed in an independent
analysis [6] based on the neural network approach and
the reweighting technique.
The main features of the DSSVanalyses, the selection of

data sets, details on the computation of the observables
using the numerically efficient Mellin transform tech-
niques, the minimization strategy, and the uncertainty
estimates utilizing both the improved Hessian approach
and the Lagrange multiplier technique have been discussed
at length in the literature and can be found in [5,19,24] and
references therein. Here, we just briefly remind the reader
of the aspects that are most essential for the present analysis
and that will be altered as we proceed.
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All DSSV analyses so far have adopted the traditional
approach at NLO accuracy outlined in the Introduction and
set out by assuming a flexible functional form to para-
metrize the helicity PDFs as functions of the parton
momentum fraction x at an initial scale of μ0 ¼ 1 GeV,

xΔfiðx; μ0Þ ¼ Nixαið1 − xÞβið1þ γi
ffiffiffi
x

p þ ηixκiÞ; ð1Þ

where the label i denotes different flavor combinations
Δuþ Δū, Δdþ Δd, Δū, Δd, Δs̄≡ Δs, and the gluon
density Δg. As usual, Δfi represents the difference of
densities with parton spins aligned and antialigned with the
longitudinal parent proton’s spin. The optimization of the
fit to data is carried out by varying the set of fit parameters
faig ¼ fNi; αi; βi; γi; ηi; κig iteratively as long as a mini-
mum in the effective χ2 function is reached. In each
iteration the PDFs are evolved to the scales μ > μ0 relevant
in experiment and used to compute the corresponding
observables and the effective χ2 function to be minimized.
As in our previous analyses [5,19,24], we use the simplest
approximation for the effective χ2 function, namely,

χ2ðfaigÞ ¼
XNexp

n¼1

XNðnÞ
data

j¼1

�
Dj − TjðfaigÞ

δDj

�
2

; ð2Þ

whereNexp counts the individual experimental data sets and

NðnÞ
data the corresponding number of data points in each set.

Each data value Dj is compared to the corresponding
theoretical estimate Tj, which depends in general non-
linearly on the Npar parameters faig, weighted with the
estimated uncertainties combined in δDj.
In practice, the currently available data do not fully

constrain the entire x-dependence allowed by the para-
metrizations in Eq. (1). A whole range of values for the fit
parameters faig leads to equally good fits. Therefore, in the
standard minimization approach, some restrictions on the
parameter space have to be imposed such that a unique and
stable minimum in χ2 can be found, provided that the
obtained optimum value for χ2 per degree of freedom,
χ2=d:o:f, does not deteriorate significantly. For instance, in
the DSSV analyses no improvement in the quality of the
best fit is found by allowing the parameter γi to be different
from zero for both the sea quarks and the gluon. Also, κi
different from unity only has some impact for the gluon
density Δg but not for any of the quark flavors. Along the
same lines, the parameters βi¼ū;d̄;s̄, that determine the large-
x behavior of sea quark helicity distributions, are only very
weakly constrained by the existing data and are mostly
affected by the positivity condition, jΔfij ≤ fi, relative to a
chosen set of unpolarized PDFs fi. Hence, they are set to a
common, fixed value within the positivity constraint.
Finally, the small-x behaviors of Δū and Δd̄, controlled
by αi¼ū;d̄ in Eq. (1), can be tied to those of Δū and Δd̄,

respectively, with no detrimental effects on the obtained
χ2=d:o:f. Likewise, no improvement of the fit is found by
allowing αs̄ to be different from αd̄.
Although the restrictions on the parameter space listed in

the preceding paragraph do not undermine the quality of the
best fit as measured in terms of χ2=d:o:f, they certainly
restrict the possible range of variation of the distributions
away from the best fit in some uncontrolled fashion. To
explore uncertainties of helicity PDFs reliably, any such
restriction on the parameter space has to be released, for
instance, in the implementation of the Lagrange multiplier
method or when obtaining an ensemble of replicas of the
PDFs. This is precisely what we do in the following. Since
the replicas will be determined by fitting corresponding
replications of the data that individually could show
features different from those that were found in the
DSSV analyses of the actual data sets, the extra freedom
of an unrestricted parameter space in Eq. (1) could also
matter.
Of particular interest in the quest of understanding the

proton spin structure quantitatively is the gluon helicity
density Δg, which, however, turns out to be the least known
distribution. It is constrained mainly by RHIC data, in a
restricted range of momentum fractions x [5] though and, to
a much lesser extent, by relatively suppressed NLO
corrections to the DIS and SIDIS cross sections and,
indirectly, through the scale dependence of the parton
distributions. In face of that, in our present analysis we
allow for an even more redundant functional form for Δg
than Eq. (1), in order to maximize the decoupling between
the so far weakly constrained low and high-x regions,

xΔgðx; μ0Þ ¼ Ngxαgð1 − xÞβg
× ð1þ ηgxκgÞ½1þ δgxρgð1 − xÞθg �: ð3Þ

Such a proliferation of fit parameters faig in Eqs. (1) and
(3) requires a very exhaustive sampling strategy of the
parameter space to obtain the replicas reliably. Our
Monte Carlo sample of replicas of the experimental data
is generated as a multi-Gaussian distribution. For each data

point for a measured spin asymmetry AðexpÞ
i corresponding

to a specific observable and kinematics, we generate 1000
replicas, labeled by a superscript (k), as follows [20]:

AðrepÞðkÞ
i ¼ ð1þ rðkÞN σNÞ×

�
AðexpÞ
i þ

XNsys

p¼1

rðkÞp σi;p þ rðkÞi σi;s

�
;

ð4Þ

with rðkÞ denoting independent, univariate Gaussian ran-
dom numbers for each independent source of errors [15].
σN stands for the global normalization error of a data set,
while σi;p and σi;p are of systematical and statistical origin,
respectively. These errors include the statistical and
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systematic errors of the measurements reported by the
experiments and could in principle also include estimates of
those stemming from the theoretical inputs used to compute
the observables, such as the fragmentation functions
needed for SIDIS spin asymmetries and the choice for
the unpolarized PDFs appearing in the denominators of the
spin asymmetries. In practice, the latter are usually con-
sidered subdominant and neglected [25]. However, we
include an estimate of the uncertainty related to the input
FFs as a further (theoretical) error when computing the
contribution of the SIDIS data to χ2 and when generating
the replicas. Technically, we do this with the help of the
Hessian uncertainty sets of Refs. [26], [27], computing the
variations induced by these Hessian sets in the SIDIS
asymmetries for each SIDIS data point. In these estimates
we use DSSV14 helicity distributions as input. Of course,
the most appropriate treatment of uncertainties would be in
a combined PDFs, FFs and helicity parton densities global
analysis, which beyond the scope of the present study. First
attempts in that direction have been explored for example in
[28]. Any other theoretical errors associated with the
truncation of the perturbative expansion at NLO accuracy,
the value of the strong coupling, potential nuclear correc-
tions or higher twist contributions, and possible departures
from the collinear approximation are ignored.
One should recall that the data included in the fit [5], and,

consequently, their replicas, span amuchmore limited range
of parton momentum fractions x than in the case of
unpolarized PDFs. In fact, only a handful of DIS data points
reach below x ∼ 10−2, albeit in a very restricted range of
photon virtualities (1.1 ≤ Q2 ≤ 2.1 GeV2) which sets the
relevant energy scale of theDISprocess. Similarly,RHICpp
data are only sensitive to momentum fractions x≳ 5 × 10−3

but at somewhat higher energy scales set by the transverse
momentum of the observed pion or jet. This leads to an
extremely poor constraint on the helicity PDFs in general,
and Δg in particular, in the range 10−3 ≲ x≲ 10−2, and
leaves them completely undetermined below, despite some
indirect constraints from the positivity requirement, i.e.,
through the steep rise of unpolarized PDFs at small-x, and
the integrability condition. The latter states that the first
moments of helicity PDFs,

R
1
0 Δfiðx;Q2Þdx, must not

diverge, as they express the net contribution of a given
parton flavor to the spin of the proton.
At variance with an implementation of the Monte Carlo

sampling of data combined with a neutral network descrip-
tion of the momentum dependence of PDFs [6,17], that
largely avoids any potential cross talk between different
regions of x, our implementation based on a very flexible
but fixed functional form typically fails outside the kin-
ematical region covered by the data, i.e., at low momentum
fractions x≲ 10−3 in case of helicity PDFs. This neces-
sarily happens because the data in the measured x-range
induce a fictitious behavior of the PDF replicas in the
unmeasured region through the limited flexibility of the

selected functional form. In this way, the potential range of
functional variations of the PDFs at low x can be artificially
reduced, which in turn invalidates uncertainty estimates
based on such PDF replicas in this region. For instance, the
improvement in the quality of the fit to data at some higher
values of x can be infinitesimally small (in terms of χ2) but
it might still drive the behavior of PDFs in the unmeasured
low x-regime due to some residual rigidity of the chosen
functional form. Therefore, any results at low-x obtained in
such a way should not be considered as faithful or
stemming from any existing experimental result. On the
other hand, the Lagrange multiplier approach to estimate
uncertainties scans efficiently any kinematical region
regardless of data covering it. This will allow us to
complement our Monte Carlo sampling strategy at low x
with additional information from the robust Lagrange
multiplier technique to extend its range of applicability.
Since many current feasibility and impact studies for a

future EIC [10], see, for instance, Refs. [9,29] are highly
interested in exploring the uncharted low-x domain of
helicity PDFs, we will provide extrapolations of our
ensemble of replicas beyond the kinematic region where
data faithfully constrain them. To this end, we supplement
the Monte Carlo sampling approach with information
coming from the Lagrange multiplier method. The latter
allows one to estimate the uncertainty of any observable
dependent on the PDFs or of the PDFs themselves within
any given confidence level limit and under the assumption
of a given functional form. We use this extra information to
generate a set of ten pseudodata points uniformly distrib-
uted in logarithmic scale between x ¼ 10−6 and x ¼ 10−3,
i.e., outside the range spanned by actual data, with a
Gaussian error distribution around the result of the
DSSV14 best fit for the gluon helicity distribution, with
variances corresponding to the 68% C.L. limit estimated in
the Lagrange multiplier method as discussed below. We
have checked, of course, that this addition does not modify
the results in the region of validity of the Monte Carlo
sampling method. One should always keep in mind that the
so obtained low-x extrapolations of the helicity PDF
replicas have some explicit parametrization bias and are
solely provided for the purpose of feasibility and impact
studies for a future EIC.
Thegist of theLagrangemultipliermethod [12] is to study

the behavior of the effective χ2 measure used to quantify the
goodness of a global fit as a function of the fit parameters
faig or, alternatively, for any observableOðfaigÞ of interest
depending on them. Most importantly, there is no need to
assume anything about the χ2 function in the vicinity of
its minimum or any relations between the fit parameters and
observables. Schematically, the method is implemented
in practice by minimizing an auxiliary function,

Ψðfaig; fλigÞ ¼ χ2ðfaigÞ þ
X
j

λjOjðfaigÞ; ð5Þ
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with respect to the set of fit parameters faig for fixed values
of the Lagrange multipliers fλjg. Each multiplier is related
to a specific observable Oj, and the choice λj ¼ 0 corre-
sponds to the best fit. By repeating the minimization
procedure multiple times with respect to Ψðfaig; fλigÞ
for different, fixed values of fλjg one can map out precisely
how the fit to data deteriorates when the expectation for the
observable Oj is forced to change from its optimum value.
The procedure also determines the range of variation of the
observable within a given choice of tolerance criterion.
Finally, in order to make comparisons with the Lagrange

multiplier method in the following, and also to supplement
the Monte Carlo data sampling with low-x pseudodata as
described above, we adopt the procedure described in
Ref. [14] for defining our 68% C.L. interval. More
specifically, we choose the maximal variation of any
quantity of interest that keeps the increase of the partial
contribution to the effective χ2 function of every experi-
ment included in the fit, χ2n, at most proportional to the
increase expected for a χ2-distribution with N degrees of
freedom from the most probable value ξ50 to the 68th

percentile ξ68; i.e., we demand that

χ2n ≤
�
χ2n;0
ξ50

�
ξ68: ð6Þ

Here, χ2n;0 is the best fit value for χ
2
n, and ξ68 is defined by

Z
ξ68

0

dχ2PNðχ2Þ ¼ 0.68; ð7Þ

with

PNðχ2Þ ¼
ðχ2ÞN2−1e−χ2=2

2
N
2ΓðN

2
Þ ; ð8Þ

and where N denotes the number of data points in the nth
data set under consideration.

III. RESULTS

In this section we present and discuss the results of our
Monte Carlo sampling strategy for helicity PDFs and their
uncertainties and compare them to those obtained in the
DSSV14 analysis based on traditional fitting.
We start with the phenomenologically most interesting

quantity, the helicity gluon density Δgðx;Q2Þ at NLO
accuracy, which is shown in Fig. 1 as a function of x at a
representative scale of Q2 ¼ 10 GeV2. Given is our newly
obtained ensemble of replicas along with its statistical
average (solid blue line) and variance (dot-dashed blue
lines), representing the best fit Δg and the 1-σ uncertainty
interval, respectively. The result of the original DSSV14
best fit and the contour covering the corresponding
68% C.L. interval, computed with the Lagrange multiplier

technique and tolerance criterion outlined at the end of
Sec. II, are illustrated for comparison by the solid and
dashed black lines, respectively.
As can be noticed, most of the replicas resemble closely

the DSSV14 best fit down to about x ≃ 0.05 where a large
number of them starts to diverge ever more rapidly for
decreasing momentum fractions, resulting in a significant
broadening of the uncertainty band. This noticeable change
in the behavior of the replicas is closely related to the range
of x predominantly probed by RHIC pp data, which deliver
the most stringent and direct constraints on the gluon
polarization to date. The statistical average of the ensemble
of our 1000 replicas closely matches the DSSV14 best fit,
but, as has to be expected, the agreement is not perfect due
to the increased flexibility in the functional form (3)
adopted in the present analysis. It is interesting to notice
that also the 1-σ variance of the replicas, defined by

σ2 ¼ 1

Nrep − 1

XNrep

i¼1

ðΔfi − hΔfiÞ2; ð9Þ

where

hΔfi ¼ 1

Nrep

XNrep

i¼1

Δfi ð10Þ

with i labeling the replicas and Nrep the total number of
PDFs replicas, approximates rather closely the 68% C.L.
uncertainties coming from the Lagrange multiplier method.
This is a nontrivial, and perhaps even unexpected result in
view of the large tolerances Δχ2 of the order of 10 to 15

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.001  0.003  0.01  0.03  0.1  0.3  0.5  1

x

and 1-σ contours

and 68% C.L. contours

NNPDFpol1.1

MC-replicas
MC-average

DSSV14

xΔg(x,Q2=10 GeV2)

FIG. 1. The ensemble of replicas (dotted blue lines) for the
NLO gluon helicity density Δgðx;Q2Þ at Q2 ¼ 10 GeV2 shown
along with its statistical average (solid blue line) and variance
(dot-dashed blue lines). The corresponding results from the
DSSV14 fit (black lines) and the NNPDFpol1.1 analysis (green
lines) are shown for comparison; see text.
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units that are allowed for in the uncertainty estimates for
DSSV14 based on Lagrange multipliers.
As a further comparison, Fig. 1 also incorporates the

results (green lines) from the NNPDFpol1.1 analysis [6]
which is based on a Monte Carlo sampling of spin-
dependent DIS data and a largely unbiased interpolation
of the x-dependence of helicity PDFs by a neural network.
It also includes information on inclusive jet and W-boson
production from RHIC, but neither SIDIS data nor spin
asymmetries for inclusive neutral pion production at RHIC
are used so far, both of which play an important role in the
DSSV14 global analysis. Nevertheless, the results are very
much compatible and show a remarkable agreement for
both the central values and uncertainty estimates in the
x-range constrained by jet and DIS data. At lower values of
x, the uncertainties in Δgðx;Q2Þ are largest for the
NNPDFpol1.1 analysis. This observation can be explained
at least in part by the missing information from neutral pion
production at RHIC, which constrains Δg down to some-
what lower values of x than jet data alone [5].
Similar observations can be made about the quark and

antiquark helicity distributions, which can be found in
Fig. 2. As in Fig. 1, we show the newly obtained ensembles
of replicas for Δuþ Δū and Δdþ Δd̄ (left-hand panels)
and Δū, Δd̄, Δs̄≡ Δs (right-hand panels), their statistical
averages and variances. Again, for comparison, results

stemming from the analyses by DSSV14 and
NNPDFpol1.1 are presented as well.
As can be inferred from the left-hand panels, the flavor

combination Δuþ Δū in particular, but also Δdþ Δd̄,
both of which are probed by DIS data, exhibit the smallest
uncertainties of all helicity densities. Most of the replicas
are closely concentrated around their average in the
medium-to-large x region where the valence quark con-
tributions to Δqþ Δq̄, q ¼ u, d, are dominant. Here, the
relative errors amount to about 5% and 20% for Δuþ Δū
and Δdþ Δd̄, respectively. The dispersions of replicas
become more pronounced for smaller momentum fractions,
where sea quarks rule, with relative uncertainties increasing
to about 100%, which is still significantly smaller than for
Δg shown in Fig. 1. In general, the constraints on the sea
quark distributions are rather weak in the entire range of x
probed by the data as can be gathered from the right-hand
panels of Fig. 2. They receive their constraints mainly from
SIDIS data that are less precise than fully inclusive
measurements and suffer from additional theoretical ambi-
guities from fragmentation functions.
As for Δg, the agreement with the results from the

traditional global analysis of the DSSV group is very good
for all quark flavors both for the average, i.e., best fit,
and the uncertainty bands. Again, the latter are obtained
with the Lagrange multiplier method assuming inflated

-0.05

 0.05

 0.15

 0.25

 0.35 x(Δu+Δu)

Q2=10 GeV2

-0.04

-0.02

 0

 0.02

 0.04xΔu

-0.25

-0.15

-0.05

0.05 x(Δd+Δd)

and 1-σ contours

and 68% C.L. contours

NNPDFpol1.1
MC-average
MC-replicas

DSSV14

x
0.001 0.01 0.1 1

-0.04

-0.02

 0

 0.02

 0.04xΔd

-0.04

-0.02

 0

 0.02

 0.04

x
0.01 0.1 1

xΔs

FIG. 2. Same as Fig. 1 but now showing our results for the quark and antiquark helicity PDFs at Q2 ¼ 10 GeV2 in comparison to the
analyses of DSSV14 and NNPDFpol1.1.

MONTE CARLO SAMPLING VARIANT OF THE DSSV14 SET OF … PHYS. REV. D 100, 114027 (2019)

114027-7



tolerance criteria for Δχ2. The results from NNPDFpol1.1
compare less favorably to our results except for Δuþ Δū
and, perhaps, Δd̄. However, here it should be kept in mind
that the NNPDF group so far does not include any SIDIS
data in their analysis. On the other hand, they achieve some
flavor discrimination through reweighting their replicas
with recent results on W�-boson single-spin asymmetries
from RHIC [30–32], which are included neither in
DSSV14 nor in the present analysis. This likely explains
the differences observed for Δdþ Δd̄ and Δū. Our results
for Δs are largely driven by SIDIS data with observed
charged kaons in the final-state [5,19,24] while for
NNPDFpol1.1 the only constraint is derived from the
baryonic semileptonic β-decay parameters, to which we
turn next, which prefer a negative Δs.
The often adopted constraints on the first moments of the

total quark helicity densities from baryonic semileptonic β-
decay parameters F andD, i.e., SU(2) and SU(3) symmetry
arguments, deserve some further scrutiny and discussion.
Clearly, violations of SU(3) symmetry are expected at some
level; see, e.g., Refs. [33–35] and references therein. Rather
than imposing the symmetry constraints at face value,
deviations were allowed and measured in terms of two
additional fit parameters εSUð2Þ and εSUð3Þ in all previous
DSSV analyses [5,19,24]. More specifically, the F and D
values were related to the first moments by

ΔΣu − ΔΣd ¼ ðF þDÞ½1þ εSUð2Þ�; ð11Þ
ΔΣu þ ΔΣd − 2ΔΣs ¼ð3F −DÞ½1þ εSUð3Þ�; ð12Þ

where

ΔΣf ≡
Z

1

0

½Δfi þ Δf̄i�ðx; μ0Þdx; ð13Þ

with F þD ¼ 1.269� 0.003 and 3F −D ¼ 0.586�
0.031 (see, e.g., Ref. [36]) at the input scale μ0 ¼
1 GeV of the DSSV analysis. Note that both relations
(11) and (12) are renormalization group invariants, i.e., are
scale independent. In practice, the free fit parameters εSUð2Þ
and εSUð3Þ substitute the normalizations Nuþū and Ndþd̄ of
the corresponding quark distributions in Eq. (1), which
otherwise could have been fixed by F and D.
Also in our present analysis, the two combinations (11)

and (12) including the F and D constants are taken as two
additional data points, i.e., are included in the effective χ2

function and shifted around their central values as any other
measurement when determining the ensemble of data and
PDF replicas. Consequently, each PDF replica inherits its
own values for εSUð2Þ and εSUð3Þ that quantify the departure
from SU(2) and SU(3) symmetry, respectively.
Figure 3 illustrates the distribution of the two sym-

metry breaking parameters for our ensemble of replicas.
We obtain εSUð2Þ ¼ 0.000� 0.056 and εSUð3Þ ¼ 0.000�
0.311. The average values are compatible with zero, which

mostly reflects the fact that large departures from SU(3)
symmetry come with a penalty in χ2 in our approach.
Interestingly, the variances are somewhat larger than ex-
pected from the experimental uncertainties of the F þD
and 3F −D values alone, which shows the influence of the
DIS and, especially, the SIDIS data. In this way, our
ensemble of helicity PDFs replicas and, most importantly,
any uncertainties for observables obtained with them,
explore a fairly wide range of symmetry breaking pos-
sibilities. We note that in Ref. [28] a simultaneous
determination of helicity parton densities and fragmenta-
tion function was performed, in which the values for the
triplet and octet axial charges were freely fitted. Our
replicas necessarily have a larger octet charge than that
found in [28], although their spread is not too different from
the uncertainty quoted there. The full set of DSSV14
Monte Carlo replicas can be obtained from the authors
in LHAPDF format [37] and were produced with
APFEL [38].
Finally, in Fig. 4 we illustrate the effect of comple-

menting our MC sampling approach based on a given
functional form with the additional information at low-x
stemming from the Lagrange multiplier scan as discussed
in Sec. II. We show the set of MC replicas for the helicity
gluon density at Q2 ¼ 10 GeV2 obtained with (left-hand
side) and without (right-hand side) supplementing the fit
with the ten additional pseudodata points at low-x. These
pseudodata points are smeared according to the uncertainty
estimates obtained the robust Lagrange multiplier tech-
nique and force the replicas to vary at low-x more than the
residual rigidity effect. Also given are the respective
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FIG. 3. The SU(2) and SU(3) symmetry breaking para-
meters in Eqs. (11) and (12) for our ensemble of helicity PDF
replicas.
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statistical average and variance of each set of replicas. As
can be seen, the main effect of including the extra
information at low-x is to enhance the spread of the replicas
in the unmeasured region, where one expects them to be
mostly unconstrained, but without inducing any significant
impact in the x-region that is already well covered and
constrained by experimental data.

IV. REWEIGHTING APPLIED TO DIJET DATA

As a first application to our newly generated set of
helicity PDF replicas, we apply the reweighting technique
[20,21] to estimate the impact of recent STAR data for
dijets measured in polarized pp collisions at a center-of-
mass system energy of

ffiffiffi
S

p ¼ 200 GeV and for central and
forward pseudorapidity configurations of the two jets
[22,23]. The corresponding double-spin asymmetry ALL
will be evaluated at NLO accuracy adopting the calculation
in Ref. [39]. At variance with the largely analytical results
available for single-inclusive observables such as the high-
transverse momentum production of pions [40] and jets
[41], that are already routinely used in fits, calculations for
dijet production incorporate time-consuming, numerical
phase-space integrations making their practical implemen-
tation in a global analysis more cumbersome. As in all
DSSV-type global analyses, exact NLO expressions are
implemented most efficiently in Mellin moment space; see
Ref. [19] for an outline of the method. This also works very
well for dijet production.
We note that the full set of STAR dijet data [22,23] has

not been used in any global analysis of helicity PDFs so far,
although the central data set [22] was included by
reweighting in Ref. [25]. Exploring the relevance of both
data sets in constraining helicity PDFs further is, we
believe, a timely and important exercise. Dijet data receive
their potential relevance for PDF determinations from

probing parton momentum fractions in a more controlled
way than single-inclusive probes, for which the information
on x is integrated over a large range. This is achieved by
selecting distinctly different dijet topologies, defined by the
pseudorapidities of the two observed jets. It is expected that
dijet data will complement especially the information
available on the gluon helicity density, coming so far
mainly from single-inclusive jet and neutral pion produc-
tion measurements at RHIC. This is particularly relevant in
order to check to which extent the new dijet data corrobo-
rate and perhaps ameliorate the evidence for a sizable
positive gluon polarization at medium-to-large values of x
based on single-inclusive measurements and reported in
Refs. [5,6].
The reweighting technique [20,21] allows one to incor-

porate consistently the information provided by a new set
of data into an existing ensemble of PDF replicas without
the need of refitting them, but preserving the statistical rigor
of its extraction. The usefulness of the method in the
context of PDF determinations has already been success-
fully demonstrated in different applications; see, for in-
stance, Refs. [6,42–44].
Using Bayesian inference, it is possible to update the

original probability distribution of an ensemble of PDF
replicas to one that accounts for the information contained
in a new measurement [20]. To this end, one assigns a new
weight wk < 1 to each replica which measures its agree-
ment with the new data. The Bayesian reweighting is fully
equivalent to a refit including the additional set of data as
long as the impact of the new experimental information is
not too significant, for instance, by constraining some
aspect of the PDFs that was largely undetermined before.
Such a scenario would lead to a very large number of
replicas with essentially vanishing weights wk, making a
full refit inevitable. Next, we present the effect of reweight-
ing our ensemble of helicity PDFs replicas with data sets
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from the STAR Collaboration [22,23] corresponding to
different dijet rapidity configurations, using them both one-
by-one and combined into a single data set.
We start by showing in Fig. 5 the impact on Δgðx;Q2Þ

from reweighting our Monte Carlo replicas with the STAR
2009 results [22] for midcentral (”barrel” detector) pseu-
dorapidity configurations of the two jets, −0.8 ≤ η ≤ 0.8,
in the relevant range of x predominantly probed by the data.
The experimental results are provided separately for two
topologies where both observed jets are either recon-
structed in the same or in opposite hemispheres, henceforth
labeled as ”same-sign” and ”opposite-sign” configurations,
respectively. We perform an independent reweighting for
each of these two subsets of data and show the resulting
averages and variances normalized to the statistical average
of Δg replicas before reweighting. To facilitate the com-
parison to the results shown in Fig. 1, the reweighted Δg is
presented at a common scale of Q2 ¼ 10 GeV, but the
NLO calculations for dijets [39] are performed at the scale
of the respective dijet invariant mass for each point,
including all relevant kinematical cuts made in experiment
[22]. The uncertainty estimates do not include contributions
coming from the factorization scale dependence or those
associated with the choice of unpolarized PDFs used to
normalize the asymmetries. As a reference, the shaded band
in Fig. 5 gives the 1-σ uncertainty for the ensemble of Δg
replicas before reweighting, normalized to the average.
As can inferred from comparing the uncertainty bands in

Fig. 5 before and after reweighting, the most significant
effect is found around x ≃ 0.15 with a noticeable reduction
of the width of the band. In addition, an approximately 10%

increase in the average Δgðx;Q2Þ as compared to the
original distribution is found here after reweighting. Both
sets of data show a very similar trend for x≲ 0.15, but the
opposite-sign configuration prefers somewhat less polari-
zation towards larger values of x. At the lower end of the
x-range shown in Fig. 5, i.e., for x≲ 0.05, the reweighted
averages start to drop below the original Δgðx;Q2Þ, but at
the same time the uncertainty bands remain essentially
unchanged. This suggests, as one can anticipate already
from kinematical considerations, that the dijet data sets do
not lead to any further constraints in this region. The
behavior at small x is most likely induced by the original
data in the fit to compensate for the slight increase around
x ≃ 0.15 in order to keep the first moment roughly constant.
Here, a complete reanalysis without resorting to the
reweighting method might shed more light on this
observation.
It should be noted that the number of replicas with a non-

negligible weight after reweighting, see Ref. [20] for details
on this criterion, is large for both sets of data, amounting to
783 and 749 members for same-sign and opposite-sign
configurations, respectively. This also underpins the general
observation that the information on helicity PDFs, in par-
ticular, on Δg, contained in the dijet data is fully consistent
with what has been obtained already in the DSSV14 global
analysis based on single-inclusive RHIC data.
A second set of STAR dijet data [23] contains configu-

rations with at least one jet reconstructed at forward
pseudorapidities (“end cap” detector), covering the range
0.8 ≤ η ≤ 1.8. Together with the possibility that one of the
jets is detected in the barrel detector, i.e., at mid rapidity
jηj ≤ 0.8, this gives us three additional data sets for a
reweighting exercise, which we label as “west barrel-end
cap”, “east-barrel-end cap”, and “end cap-end cap”, where
“west” denotes the hemisphere with η > 0.
The results of the reweighting can be found in Fig. 6.

Compared to the data with two jets at mid rapidity shown in
Fig. 5, the impact of the forward jets in the reweighting
procedure is considerably less pronounced. While the two
dijet topologies west barrel-end cap and end cap-end cap
produce almost no effect on the reweighted averages and
variances, the data on the east-barrel-end cap configuration
show some trend towards a smaller average gluon polari-
zation for x≳ 0.1 but at the same time with almost no
changes in the width of the corresponding uncertainty band,
making it inconclusive. In general, the much weaker impact
of the forward dijet configurations can be associated with
the comparatively larger experimental uncertainties of these
sets of data. This is also reflected in the large number of
replicas with a non-negligible weight after reweighting:
857, 964, and 956 for the east-barrel-end cap, west barrel-
end cap and end cap-end cap configurations, respectively,
close to the 1000 original replicas we started from. Upon
closer inspection, the central values of the measured
double-spin asymmetries for the west barrel-end cap and
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the end cap-end cap dijet configurations suggest a trend for
a larger gluon polarization at x ∼ 0.1, but the sizable
experimental errors undermine their impact in the reweight-
ing process. We have explicitly verified that scaling the
experimental errors artificially down in the computation of
the new weights wk results in an increase of the gluon
polarization.
The combined impact of all STAR 2009 dijet data sets on

the gluon helicity distribution Δgðx;Q2Þ can be found in
Fig. 7 in the relevant range of x for Q2 ¼ 10 GeV2. Shown
are the average and variance before (blue lines) and after
(red lines) reweighting. For reference, we also give the five

average gluon helicity densities (black lines) from the
individual reweighting exercises discussed in Figs. 5
and 6. As can be seen, the overall impact of the combined
set of dijet data is a very moderate increase of the gluon
polarization in the range 0.05≲ x≲ 0.2, well within the
uncertainty of the DSSV14 replicas, and a sizable reduction
of the width of the 1-σ uncertainty band, most noticeable
for x≳ 0.2. This nicely confirms both the evidence for a
positive gluon polarization at intermediate values of x first
demonstrated in Ref. [5] and the anticipated impact of the
dijet probe on Δgðx;Q2Þ.
For future reference and to illustrate again the impact and

consistency of the dijet data, we quote here some repre-
sentative values and 1-σ uncertainties for truncated
moments of the gluon helicity density,

R
1
xmin

Δgðx;Q2Þdx,
at Q2 ¼ 10 GeV2. For xmin ¼ 0.01 we obtain 0.309�
0.109 and 0.296� 0.108 before and after reweighting,
respectively. Likewise, for xmin ¼ 0.1 the corresponding
numbers read 0.133� 0.035 and 0.126� 0.023. It should
be noted that the values before reweighting are fully
consistent with those obtained from the Lagrange multiplier
method in the original DSSV14 analysis.
Finally, in Figs. 8 and 9 we compare the actually

measured double-spin asymmetries ALL from the STAR
Collaboration for the midcentral and forward dijet con-
figurations [22,23], respectively, as a function of the
invariant mass of the jet pair with the averages of
the original and reweighted ensemble of our replicas.
The shaded bands illustrate the corresponding 1-σ
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uncertainty bands. As is expected, the changes in the
central values for ALL before and after reweighting are
rather moderate and both results are compatible with the
data. However, there is a quite noticeable reduction in the
width of the uncertainty bands for all sets of dijet data after
the reweighting procedure. Note that the data points at
lower invariant mass have the smallest uncertainties and
hence the biggest impact in the reweighting procedure. For
comparison, Figs. 8 and 9 also contain the result of a NLO
calculation of ALL utilizing the set of replicas from
NNPDFpol1.1. In general, the use of NNPDFpol1.1 yields
smaller double-spin asymmetries but still consistent with
the STAR data within their larger uncertainty estimates.
Interestingly, the description of the data set with both jets
forward remains overall poor within the present theoretical
calculations. It may be especially interesting here to explore
the uncertainties related to the choice of factorization or
renormalization scales, as well as the influence of the spin-
averaged PDFs in the denominator of the spin asymmetry.

V. CONCLUSIONS

In this paper we have explored the feasibility of
combining a Monte Carlo sampling strategy with the
traditional fitting approach adopted by the DSSV group
to extract helicity parton densities from a global QCD
analysis at NLO accuracy. To facilitate the comparison
between the two methods, the data sets analyzed, as well as

other fit inputs were chosen to be identical to those of the
DSSV14 analysis.
The main advantages of the Monte Carlo approach are,

on the one hand, the availability of a large set of PDF
replicas that allows one to straightforwardly estimate and
propagate the PDF uncertainties to other observables solely
by statistical means, i.e., by computing the average and
variance, without the need of an effective χ2 function to
assess the agreement with data. On the other hand, the
standard interpolation for the dependence of PDFs on the
momentum fraction x with fixed but flexible functional
forms for each parton flavor allows for the use of numeri-
cally efficient calculational tools, for instance, based on
Mellin moment space, to compute NLO QCD cross
sections without the need of approximations. Having
explicit parametrizations for each of the replicas at hand
might also be convenient in understanding the observed
features imprinted on them by the data. In addition, the
availability of replicas of PDFs opens up the possibility of
quickly implementing new sets of data with the reweighting
technique to study the impact on the PDFs without the need
of refitting them.
The results obtained with our combined approach based

on Monte Carlo replicas agree fairly well with those from
the standard DSSV14 global analysis both for the optimum
fit and the uncertainty estimates. While calculating the
variance of the replicas avoids the adoption of a tolerance
criterion, the DSSV14 approach is based on some inflated
Δχ2 to account for sources of uncertainties that are not
necessarily included in the effective χ2 function but which
become apparent when judging the agreement of the fit to
the various sets of data adopted in the analysis.
As a first application of our new set of helicity PDF

replicas, we have invoked the reweighting procedure to
reveal the impact of the recent STAR dijet data for different
jet topologies on the determination of the momentum
fraction dependence of the gluon helicity distribution.
We find that, with the exception of data with two forward
jets, which have comparatively large uncertainties, the
double-spin asymmetries for all dijet topologies are in
very good agreement with previous RHIC measurements
and corroborate and strengthen the evidence for a sizable
positive gluon polarization at medium-to-large values of x
discussed in the literature.
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