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We generalize the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–Kovner (JIMWLK) evolution
equation to include the small-x evolution of helicity distributions. To derive helicity JIMWLK, we use the
method devised by A.H. Mueller in [Phys. Lett. B 523, 243 (2001)] for the usual unpolarized JIMWLK and
apply it to the helicity evolution equations derived by Y. V. Kovchegov et al. [J. High Energy Phys. 01
(2016) 072; Phys. Rev. D 95, 014033 (2017); J. High Energy Phys. 10 (2017) 198; Phys. Rev. D 99,
054032 (2019)]. We obtain a functional evolution equation for the generalized JIMWLK weight functional.
The functional now is a sum of a helicity-independent term and a helicity-dependent term. The kernel of the
new evolution equation consists of the standard eikonal leading-order JIMWLK kernel plus new terms
containing derivatives with respect to the subeikonal quark and gluon fields. The new kernel we derive can
be used to generate the standard JIMWLK evolution and to construct small-x evolution equations for
flavor-singlet operators made of any number of light-cone Wilson lines along with one Wilson line
containing subeikonal helicity-dependent local operator insertions (a “polarized Wilson line”).

DOI: 10.1103/PhysRevD.100.114020

I. INTRODUCTION

In recent years, small-x asymptotics of transverse
momentum–dependent parton distribution functions
(TMD PDFs or TMDs for short) have received considerable
attention in the literature [1–14]. In a series of papers
[1,15–19], the small-x evolution equations for the quark
and gluon helicity distributions were constructed by finding
subeikonal corrections to the eikonal shock wave formal-
ism. The resulting equations are written for correlators of
infinite light-cone Wilson lines, along with the so-called
polarized Wilson lines, operators consisting of light-cone
Wilson lines with the subeikonal helicity-dependent local
operator insertions [16,17]. These equations are the helicity
analog of the first equations in the Balitsky hierarchy
[20,21] for the unpolarized small-x evolution. Similar to the
unpolarized case of the Balitsky-Kovchegov (BK) equation
[20–23], the helicity evolution equations of Ref. [1] close in
the large-Nc limit, where Nc is the number of quark colors.
(That is, one obtains the same correlator entering the
expressions on both sides of the equation, which can
then be solved for that correlator.) Unlike the unpolari-
zed case, the helicity evolution equations also close in the

large-Nc&Nf limit (where Nf is the number of quark
flavors), since in the case of helicity evolution quark loops
contribute already at the leading order. No closed integro-
differential equations can be obtained for helicity evolution
in the shock wave formalism in the case of arbitrary (not
large) Nc and Nf. In addition, the helicity evolution
equations were constructed in Refs. [1,16,17] for the so-
called polarized dipole operators, consisting of a trace of
one polarized and one unpolarized (standard) Wilson line.
It would be desirable to generalize this approach to the case
of any subeikonal helicity-dependent operator made out of
an arbitrary number of unpolarized Wilson lines and one
polarized Wilson line.
In the unpolarized case, the generalization of the

BK evolution to all Nc is accomplished by employing
the Jalilian-Marian–Iancu–McLerran–Weigert–Leonidov–
Kovner (JIMWLK) [24–29] functional evolution equation.
The JIMWLK prescription also allows one to write a
small-x evolution equation for an arbitrary operator made
out of light-cone Wilson lines. In addition, the JIMWLK
equation can be solved numerically [26,30,31], allowing
one to construct small-x asymptotics for a variety of
Wilson-line correlators. It appears beneficial to extend
the JIMWLK-type treatment to helicity evolution at small x.
In this paper, we construct a helicity analog of JIMWLK

evolution [24–29] or, more precisely, a generalization of the
JIMWLK evolution that includes helicity dependence. This
equation should be solvable numerically, allowing for a
numerical evaluation of the small-x asymptotics of helicity
distribution beyond previously available approxima-
tions, large Nc and large Nc&Nf [1,15–19]. The helicity
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JIMWLK equation would additionally allow one to con-
struct the small-x evolution of operators beyond the
polarized dipole case, such as the polarized color quadru-
pole, an operator consisting of a trace of one polarized
Wilson line and three standard Wilson lines.
We will use the approach developed by A.H. Mueller for

derivation of the JIMWLK equation [32], also described in
Ref. [33]. The derivation [32] is not the original way of
deriving the JIMWLK evolution. Rapidity evolution in high
energy scattering can be described by two different but
equivalent approaches. One evolves either the target weight
functional as done in the original derivation of JIMWLK
[24,25] (in general a difficult task) or the projectile wave
function [34–36] (can be done for test operators consisting
of Wilson lines [20–23,32]). This equivalence allows us to
extract the helicity JIMWLK evolution kernel from the
rapidity evolution equations we derive here for the test
operators containing polarized Wilson lines, explicit
expressions for which were constructed in Refs. [16,17].
We then convert this helicity JIMWLK kernel into the
evolution kernel for the target weight functional.
A new feature of helicity-dependent distributions, com-

pared to the unpolarized ones, is the use of Wilson lines
beyond the eikonal approximation [16,17]. In order to be
sensitive to the target helicity, the probe must interact with
the target in a subeikonal way at least once. In particular, at
the leading subeikonal approximation (order-1=s with s the
center-of-mass (c.m.) energy squared), one focuses on
exactly one or two subeikonal interaction(s) between the
probe and the target: either an exchange of a single
subeikonal t-channel gluon or two t-channel quarks
[16,17]. As a consequence, the probe is not only sensitive
to the large eikonal background gluon field generated by
the target but also to subeikonal gluon and quark back-
ground fields, one of them being the chromomagnetic
background field (the F12 component of the gluon field
strength tensor). This property will be present in the
evolution kernel acting on the test operator representing
the probe and thus will be inherited by the evolution kernel
acting on the weight functional. It will allow us to write a
helicity-dependent evolution equation for the target weight
functional depending on the eikonal gluon field along with
the subeikonal quark and gluon fields, thus generalizing the
eikonal JIMWLK evolution to include helicity-dependent
effects. This paper focuses only on the flavor-singlet
helicity evolution, while the flavor-nonsinglet case is left
for a future project.
The paper is structured as follows. In Sec. II, we briefly

review the method used in Ref. [32]. We then adapt the
method to the helicity-dependent case and derive the main
tools used in this paper. The kernel for the flavor-singlet
helicity evolution of a test operator consisting of two
Wilson lines in any irreducible representation (irrep) of
the gauge group SUðNcÞ (with one of them being polar-
ized) is constructed in Sec. III A based on the calculation of

helicity-dependent evolution of polarized dipoles carried
out in Ref. [17]. This kernel is successfully cross-checked
with the results of Bartels et al. [37] at the level of the
ladder approximation in Sec. III B. In the Sec. IV, we obtain
the helicity-dependent generalization of the JIMWLK
equation for the target weight functional. This main result
of this work is given in Eq. (74) with the kernel given by
Eq. (57). We also underline some properties expected for the
weight functional solving this equation and for the initial
condition of this evolution equation. We conclude in Sec. V
by summarizing our main results and by providing an
outlook for the all-Nc evolution of the flavor-nonsinglet
helicity TMDs (the large-Nc version of the flavor-nonsinglet
helicity evolution was constructed in Ref. [15]). Throughout
the paper, we will use the light-cone coordinates defined
by x� ¼ ðx0 � x3Þ= ffiffiffi

2
p

, while transverse vectors will be
defined by x ¼ ðx1; x2Þ with x⊥ ¼ jxj.

II. METHOD AND USEFUL RELATIONS

A. Brief overview of the method

Here, we review the method of Ref. [32] used for
rederiving the unpolarized JIMWLK evolution. Let us start
with the rapidity-dependent expectation value of an arbi-
trary operator Ôα given by [32,33]

hÔαiY ¼
R
DαÔαWY ½α�R
DαWY ½α�

ð1Þ

and agree for simplicity that the weight functionalWY ½α� is
normalized to 1, Z

DαWY ½α� ¼ 1: ð2Þ

The expectation value (1) is taken in the target state. Here,
αðx−; xÞ≡ Aþðx−; xÞ, where Aþ is the gluon field in the
Lorenz gauge ∂μAμ ¼ 0 or in the A− ¼ 0 light-cone gauge
of the projectile. (Throughout this paper, we assume that
the target proton or nucleus is moving in the light-cone plus
direction, while the projectile is moving in the minus
direction.) We have employed the classical equations of
motion for the gluon field in the Lorenz gauge,

□Aμ
a ¼ δμþρa; ð3Þ

in order to replace the usual functional integration over the
color charge density ρaðx−; xÞ by the integration over the
field αaðx−; xÞ. To construct an evolution equation for
the weight functional WY ½α�, one first has to derive the
evolution equation for the test operator

∂YhÔαiY ¼
Z

DαðK · ÔαÞWY ½α�; ð4Þ

FLORIAN COUGOULIC and YURI V. KOVCHEGOV PHYS. REV. D 100, 114020 (2019)

114020-2



where K is the evolution kernel for the test operator Ô
generating an infinitesimal step in rapidity dY. On the other
hand, the rapidity evolution for the test operator can be
obtained by simply differentiating Eq. (1) with respect
to Y [32],

∂YhÔαiY ¼
Z

DαÔα∂YWY ½α�: ð5Þ

Equating the two expressions on the right of Eqs. (4) and
(5), while making the evolution kernel K act on WY in the
former through integration by parts, yields an evolution
equation for WY [32],

∂YWY ½α� ¼ K ·WY ½α�: ð6Þ

For the unpolarized small-x evolution, Eq. (6) is the
JIMWLK equation [24–29].
Following Ref. [32], consider the test operator Ôα being

made of two light-cone Wilson lines at positions x0 and x1
in irreps R0 and R1. In order to work at finite Nc, we do not
take any contraction over the color of the two Wilson lines
and write

Ô1;0 ¼ WðR0Þ†
0 ⊗ WðR1Þ

1 : ð7Þ

In our notation, the light-cone Wilson line in an irrep R is
defined by

WðRÞ
x ½b−; a−�≡ Peig

R
b−

a−
dx−taRα

aðxþ¼0;x−;xÞ ð8Þ

with the infinite light-cone Wilson line denoted by

WðRÞ
x ≡WðRÞ

x ½∞;−∞�: ð9Þ

Here, taR are SUðNcÞ generators in representation R.
One step in the evolution of the test operator Ô1;0

involves the diagrams depicted in Fig. 1. Consider the
first diagram of the second line, generated from the
operator Ô1;0 after an infinitesimal increase of rapidity dY,

−
αs
π2

Z
d2x2

x21 · x20
x221x

2
20

Uba
2 ½WðR0Þ†

0 tbR0
⊗ WðR1Þ

1 taR1
�; ð10Þ

with U2 denoting the infinite adjoint Wilson line at the
transverse position x2. The transverse vectors are defined
by xij ¼ xi − xj with xij ¼ jxijj. There are two difficulties
we need to take care of here: (i) the color generators
involved depend on the representation of the Wilson line,
and (ii) the positions of the two gluon vertex operators with
respect to the shock wave is not the same in every diagram
of Fig. 1. The two issues are solved by introducing a
functional derivative of a Wilson line with respect to the
background field α,

δWðRÞ
x

δαaðy−; yÞ ¼ igδð2Þðy − xÞ

×WðRÞ
x ½∞; y−�taRWðRÞ

x ½y−;−∞�; ð11Þ

involving semi-infinite Wilson lines in irrep R. Anticipating
x− ordering of small-x evolution, we observe that a Wilson
line that does not cross the shock wave (placed at x− ¼ 0) is
simply an identity in the corresponding color space, while a
semi-infinite Wilson line which does cross the shock wave
can be formally completed to an infinite Wilson line
without changing its value. These considerations allow
us to simplify Eq. (11) to

δWðRÞ
x

δαaðy−; yÞ ¼ igδð2Þðy − xÞ
(
WðRÞ

x taR for y− < 0;

taRW
ðRÞ
x for y− > 0:

ð12Þ

We readily see that replacing each color generator in the
diagrams of Fig. 1 by functional derivative solves both
issues (i) and (ii). This simple treatment has several
advantages. The sum over all vertex positions with respect
to the shock wave will be automatically taken care of by the
Leibniz rule (product rule) for functional derivatives; as a
consequence, the generalization to any number of Wilson
lines used to define Ôα is already accomplished. The color
representations of the Wilson lines used to define the test
operator Ôα do not matter anymore since Eq. (12) holds for
any irrep R. This shows how the evolution kernel obtained
from the dipole evolution applies to a broad class of test
operators consisting of any number of Wilson lines in any
irreps.
For completeness, let us write down the unpolarized

small-x evolution kernel acting on Ôα in Eq. (4) we
obtained by this method,

FIG. 1. Nonexhaustive list of the diagrams contributing to the
rapidity evolution of the test operator Ô1;0. The blue (gray)
rectangle indicates the target shock wave localized at x− ¼ 0.
Within the shock wave, multiple rescattering occurs between the
test operator Ôα and the target. Remaining diagrams are easily

obtained by exchanging WðR0Þ†
0 ↔ WðR1Þ

1 .
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KJIMWLK ≡ αs
π2

Z
d2x⊥d2y⊥d2w⊥

ðx − wÞ · ðy − wÞ
jx − wj2jy − wj2

×

�
Uw −

Ux þ Uy

2

�
ba

×
ðigÞ−2δ2

δαaðx− < 0; xÞδαbðy− > 0; yÞ : ð13Þ

One can show that this kernel is equivalent to the kernels
used in Refs. [38,39] or in Refs. [32,33], while being
perhaps a little more compact. We are now in a position to
state that the JIMWLK equation for the evolution of the
target weight functional is given by Eq. (6) with the kernel
from Eq. (13). Notice that after the integration by parts in
Eq. (4) the functional derivatives do not act on the adjoint
Wilson lines in the parentheses of Eq. (13). This simply
follows from the fact that the structure constants of SUðNcÞ
are fully antisymmetric. Thus, the kernel of Eq. (13)
remains the same after the integration by parts and enters
Eq. (6) unaltered.

B. Adapting the method to helicity-dependent scattering

In order to adapt this method to helicity dependent
scattering, let us first introduce the emission operators
involved. From Refs. [1,15–19], we see that the helicity
evolution involves the eikonal interaction vertices along
with the subeikonal helicity-dependent interaction vertices.
Those latter ones are shown in Fig. 2, in which only
subeikonal contribution is implied in the first two panels
from the left. This is denoted by the label β on the t-channel
gluon line coming from the target shock wave (from
below). It is defined by [16,17]

βðxÞ ¼ F12ðxÞ ¼ ϵij⊥∂iAjðxÞ; ð14Þ

where the latin indices are i; j ¼ 1; 2, ϵij⊥ is a two-
dimensional Levi-Civita symbol, and F12 is the gluon field
strength tensor. As shown in Refs. [16,17], the transfer of
helicity from the target shock wave to the probe in the
gluon t-channel sector is proportional to this subeikonal
operator βðxÞ. Helicity can be transferred between the target
and projectile via an (anti)quark exchange, as shown in the
right two panels of Fig. 2. This means that the subeikonal

shock wave fields should also include a quark and
antiquark ψðxÞ and ψ̄ðxÞ [in addition to βðxÞ].
The average over the target configuration in helicity-

dependent scattering is thus dependent on those additional
fields β, ψ , ψ̄ . Let us extend the weight functionalWY ½α� to
be also a functional of those fields WY ½α; β;ψ ; ψ̄ �. Then,
the expectation value of a helicity-dependent operator in the
longitudinally polarized target state is

hÔpoliY ¼
Z

DαDβDψDψ̄ÔpolWY ½α; β;ψ ; ψ̄ �: ð15Þ

It is understood that WY ½α; β;ψ ; ψ̄ � is also normalized to
1 [cf. Eq. (2)].
To apply the method described in Refs. [32,33], we first

need to introduce the definition of polarized Wilson lines.
Those will allow us to define our test operator Ôpol.
Evolving this operator in rapidity will give us the evolution
kernel Kh for small-x helicity evolution,

hÔpoliY ¼ hÔpoli0 þ
Z

DαDβDψDψ̄

×
Z

dyðKhðY; yÞ · ÔpolÞWy: ð16Þ

Note that helicity evolution equations are written as integral
equations, without the ∂Y derivative on the left-hand side,
but with an extra rapidity integral on the right [1,15–19] as
compared to the unpolarized small-x evolution. This is
largely due to the double-logarithmic nature of helicity
evolution at leading order, which makes evolution equa-
tions much easier to write in the integral form, as will be
detailed below. The evolution kernel KhðY; yÞ may depend
on rapidity, though, as will become apparent later, at the
leading order, this dependence will come in only as theta-
functions constraining the range of the integral over y. The
inhomogeneous term hÔpoli0 in Eq. (16) is given by the
initial conditions for the evolution: unlike the unpolarized
case, it may have some weak (usually at most linear)
dependence on Y [1,15,16].
One of the main tools of the derivation [32,33] is the

replacement of color generators by functional derivatives
using formulas like those in Eq. (11). For the flavor-singlet
helicity evolution the diagrammatic content is richer than
in the unpolarized case, and thus one needs to genera-
lize Eq. (11) to the case of polarized Wilson lines. This
generalization will involve functional derivatives with
respect to the subeikonal fields β, ψ , and ψ̄ in the kernel
KhðY; yÞ.
Finally, we will need to integrate the functional integrals

by parts in Eq. (16); we compare the result, with KhðY; yÞ
acting on the weight functional WY on the right-hand side
of (16), to Eq. (15). Arguing that the resulting relations
are valid for any helicity-dependent test operator Ôpol,

FIG. 2. Four types of subeikonal vertices involved in small-x
helicity evolution. Horizontal lines indicate the propagation along
the eikonal trajectory of the probe, and vertical lines indicate the
interaction with background field generated by the target within
the shock wave. Straight lines indicate quarks or antiquarks and
are either in the fundamental representation or in its conjugate.
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we should arrive at the helicity-dependent generalization of
the JIMWLK equation,

WY ¼ Wð0Þ
Y þ

Z
dyKhðY; yÞ ·Wy: ð17Þ

In obtaining Eq. (17), we have also assumed that the kernel
KhðY; yÞ does not get modified in the integration by parts.
This will be demonstrated explicitly below.

C. Functional derivatives and notations

1. Polarized Wilson lines

Those are derived in Refs. [16,17] for the (anti)quarks
and gluons scattering on a polarized target. They consist of
light-cone Wilson lines with the subeikonal operator
insertions shown in Fig. 2. We will distinguish two types
of contributions: (i) subeikonal t-channel gluon-exchange
contributions, involving one insertion of the β-field, as
shown in the left two panels of Fig. 2 for the quark and
gluon polarizedWilson lines respectively, and (ii) involving
two subeikonal t-channel quark exchanges, shown in the
right two panels of Fig. 2. The former will be indicated with
a superscript g, and the latter will be indicated with a
superscript q.
The contribution (i) involves a single subeikonal

interaction with the background field β that corresponds
to the z component of the chromomagnetic field generated
by the target (see the discussion bellow Eq. (17) in
Ref. [16]). Generalizing the infinite polarized Wilson lines
of Refs. [16,17] to the case of the finite extent we write (see
Eq. (21) in Ref. [16] or Eqs. (44) and (54) in Ref. [17])

WðRÞpol;g
x ½b−; a−�

¼ ηR
igpþ

1

s
θðb−Þθð−a−Þ

×
Z

b−

a−
dx−WðRÞ

x ½b−; x−�βðx−; xÞWðRÞ
x ½x−; a−� ð18Þ

with

ηR ¼ δR¼F þ δR¼F̄ þ 2δR¼A: ð19Þ

(Here, pþ
1 is the large light-cone momentum of the target

proton, s is the c.m. energy squared for the projectile-target
scattering, F and F̄ stand for the fundamental and anti-
fundamental representations, while A denotes the adjoint
representation.) Analogously to the unpolarized case, we
define

WðRÞpol;g
x ≡WðRÞpol;g

x ½∞;−∞�: ð20Þ

Diagrammatically, Eq. (18) can be represented as shown in
Fig. 3 (up to the prefactor and the integration measure dx−).
In our diagrammatic representation, thick straight black

lines always represent eikonal Wilson lines in a given irrep
R. Thin red (gray) lines denote only color tensors. The
center part of the Fig. 3 diagram in red (gray) is thus just the
color generator of representation R needed for the back-
ground field β to be in this representation: βðxÞ ¼ βaðxÞtaR.
This notation will soon be useful for visualizing some of
the color algebra using diagrams.
The contribution (ii) involves the interaction with the

background fields ψ and ψ̄ . Since we are only considering
the flavor-singlet case, they always contribute in pairs
[15,17]. For the fundamental representation, we have (see
Eq. (50) in Ref. [17])

Vpol;q
x ½b−;a−�¼−

g2pþ
1

s
θðb−Þθð−a−Þ×

Z
b−

a−
dx−1

Z
b−

x−
1

dx−2Vx½b−;x−2 �tbψβðx−2 ;xÞUba
x ½x−2 ;x−1 �

�
1

2
γþγ5

�
αβ

ψ̄αðx−1 ;xÞtaVx½x−1 ;a−�:

ð21Þ

In our notation, V denotes fundamental Wilson lines and fundamental polarized Wilson line operators. For the adjoint
representation, we have (see Eq. (63) in Ref. [17])

ðUpol;q
x ½b−; a−�Þab ¼ −

g2pþ
1

s
θðb−Þθð−a−Þ

×
Z

b−

a−
dx−1

Z
b−

x−
1

dx−2U
aa0 ½b−; x−2 �ψ̄ðx−2 ; xÞta

0
Vx½x−2 ; x−1 �

�
1

2
γþγ5

�
tb

0
ψðx−1 ; xÞUb0b

x ½x−1 ; a−� þ c:c: ð22Þ

FIG. 3. Contribution to the polarized Wilson line with a gluon
in the t-channel.
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The infinite polarized Wilson lines are denoted by

Vpol;q
x ≡Vpol;q

x ½∞;−∞�; Upol;q
x ≡Upol;q

x ½∞;−∞�: ð23Þ
Using the previously defined convention for the diagram-
matic representation, the complicated expressions (21) and
(22) are represented in Fig. 4.
Finally, the net polarizedWilson lines in the fundamental

and adjoint representations are given by [16,17]

Vpol
x ¼ Vpol;g

x þ Vpol;q
x ; ð24aÞ

Upol
x ¼ Upol;g

x þ Upol;q
x ð24bÞ

for both infinite and finite longitudinal extents of the lines.
A polarized Wilson line in an arbitrary representation R
[including the fundamental and adjoint ones in Eq. (24)]
is diagrammatically represented by a Wilson line with a
gray box,

2. Functional derivatives of polarized Wilson lines

In order to apply the method presented above in Secs. II
A and II B to helicity evolution, we will need relations
similar to Eqs. (11) and (12) involving polarized Wilson
lines. Using the definitions (24a) and (24b), one can show
in the polarized case that the functional derivative with
respect to the eikonal field αðxÞ reads

δWðRÞpol;g
x

δαaðy−; yÞ
¼ igδð2Þðy − xÞ

×

�
WðRÞpol;g

x ½∞; y−�taRWðRÞ
x ½y−;−∞� for y− < 0;

WðRÞ
x ½∞; y−�taRWðRÞpol;g

x ½y−;−∞� for y− > 0;

ð25Þ

in an almost direct analogy to Eq. (11). Similar to Eq. (12),
the two unpolarized Wilson lines in Eq. (25) can be
replaced by identities in color space as the shock wave
is located at x− ¼ 0.
Functional differentiation with respect to αðxÞ of the

polarized Wilson lines with superscript q is a bit more
involved. Potential complications may arise from differ-
entiating Uba

x ½x−2 ; x−1 � in Eq. (21) and Vx½x−2 ; x−1 � in Eq. (22).
However, in the leading logarithmic (and double logarith-
mic) in energy resummations, one always has an ordering
of light-cone x−-lifetimes, such that the subsequent evo-
lution after each emission is absorbed in a shock wave of a
shorter x−-extent than the lifetime of the emitted parton.
This is why we always put the unpolarized Wilson lines not
crossing the shock wave to unity after differentiation; we
simply say that the gluon field in those Wilson lines is zero,
Aþ ¼ 0, outside the shock wave, making them trivial.
Following the same logic, if we differentiate the Wilson
lines (21) and (22) in the x−1 < y− < x−2 region, we have to
either put ψ ¼ 0 or ψ̄ ¼ 0 as being outside the remaining
(next-step) shock wave. We would then get zero. Hence,
with this logarithmic approximation in mind, we do not
differentiate Uba

x ½x−2 ; x−1 � in Eq. (21) and Vx½x−2 ; x−1 �
in Eq. (22).
It is then straightforward to write

δWðRÞpol;q
x

δαaðy−; yÞ
¼ igδð2Þðy − xÞ

×

(
WðRÞpol;q

x ½∞; y−�taRWðRÞ
x ½y−;−∞� for y− < 0;

WðRÞ
x ½∞; y−�taRWðRÞpol;q

x ½y−;−∞� for y− > 0:

ð26Þ

We construct the α-derivative of the full polarized
Wilson line by summing Eqs. (25) and (26), obtaining

δWðRÞpol
x

δαaðy−;yÞ¼ igδð2Þðy−xÞ
(
WðRÞpol

x taR for y−<0;

taRW
ðRÞpol
x for y−>0;

ð27Þ

where the unpolarized Wilson lines that do not cross the
shock wave are again set to identity in the color space.
Moving on to the functional derivative with respect to

βðxÞ, one first observes that βðxÞ only appears in the
contributions with superscript g. Using the definition (18),
one finds

δWðRÞpol
x

δβaðy−; yÞ ¼ ηR
igpþ

1

s
δð2Þðy − xÞ

×WðRÞ
x ½∞; y−�taRWðRÞ

x ½y−;−∞�: ð28Þ

FIG. 4. Contributions to the fundamental and adjoint polarized
Wilson lines from the quark exchanges in the t-channel. The
dashed lines are used to indicate the contraction over the spinor
indices (as opposed to regular straight lines denoting multipli-
cation in color space).
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Notice the presence of the ηR factor on the right-hand side.
This factor is not reabsorbed into the definition of a
polarized Wilson line since the right-hand side of (28)
does not contain any, unlike the above case of the func-
tional derivatives with respect to αðxÞ.
We next need to derive the functional derivatives with

respect to the fermion background fields. For the flavor-
singlet evolution case, we are interested in the operator

δ2

δψ̄α;iðy−1 ; y1Þδψβ;jðy−2 ; y2Þ
; ð29Þ

where fα; βg subscripts indicate the spinor space and fi; jg
are color indices. To pick up the helicity-dependent part, we

will need to contract the remaining tensor with the
Brodsky-Lepage spinors χ [40]

1ffiffiffi
2

p
X
ξ¼�1

ξχαðξÞχβðξÞ ¼
1

2
ðγ5γ−Þβα; ð30Þ

which would remove the 1
2
γþγ5 matrix in Eqs. (21) and

(22), since 1
2
ðγ5γ−Þβα · 12 ðγþγ5Þαβ ¼ 1.

The functional derivatives of interest are as follows.
Acting with Eq. (29) on the fundamental polarized Wilson
line gives

δ2ðVpol;q
x Þj0i0

δψ̄α;iðy−1 ; y1Þδψβ;jðy−2 ; y2Þ
¼ δð2Þðy

1
− xÞδð2Þðy

2
− xÞ

�
ig

ffiffiffiffiffiffiffiffiffiffiffi
pþ
1 =s

q 	2�γþγ5
2

�
αβ

× θðy−2 Þθð−y−1 ÞðVx½∞; y−2 �tbÞj0jUba
x ½y−2 ; y−1 �ðtaVx½y−1 ;−∞�Þ

ii0 : ð31Þ

The right-hand side is a rank-4 tensor in color space valued1 in V⊗2 ⊗ V̄⊗2 and, as expected, a rank-2 tensor in spinor space.
Acting with Eq. (29) on the adjoint polarized Wilson line yields

δ2ðUpol;q
x Þab

δψ̄α;iðy−1 ; y1Þδψβ;jðy−2 ; y2Þ
¼ −δð2Þðy

1
− xÞδð2Þðy

2
− xÞ

�
ig

ffiffiffiffiffiffiffiffiffiffiffi
pþ
1 =s

q 	2�γþγ5
2

�
αβ

× ½θðy−1 Þθð−y−2 ÞUaa0
x ½∞; y−1 �ðta

0
Vx½y−1 ; y−2 �tb

0 Þ
ij
Ub0b

x ½y−2 ;−∞�
þ θðy−2 Þθð−y−1 ÞUaa0

x ½∞; y−2 �ðtb
0
Vx½y−1 ; y−2 �ta

0 Þ
ij
Ub0b

x ½y−1 ;−∞��: ð32Þ

This time, the right-hand side is valued in the color space
A⊗2 ⊗ V ⊗ V̄. Notice the relative minus sign in the right-
hand side of Eq. (32) compared to Eq. (31). It follows from
the fact that the fields ψ and ψ̄ are Grassmann valued. Due
to the increasing number of indices, it is also useful to
visualize Eqs. (31) and (32) in terms of diagrams in color
space (dropping the symbols for the fermion fields to
indicate functional differentiation):

Just as before, the unpolarizedWilson lines in Eqs. (31) and
(32) not crossing the shock wave have to be put to unity in
the end.
We are now in a position to construct the evolution

kernel for a polarized test operator. However, before doing
so, let us introduce some shorthand notation for the
functional derivatives.

3. Notations

Denote an abbreviated notation for the functional deriva-
tive with respect to the field αðxÞ as

Dþ
y;a;≶ ≡ ðigÞ−1 δ

δαaðy− ≶ 0; yÞ : ð33Þ

For the βðxÞ-field, we write

D⊥
y;a;≶ ≡

�
igpþ

1

s

�−1 δ

δβaðy− ≶ 0; yÞ : ð34Þ

For the quark fields, we have

1The (complex) vector space V and its dual V̄ are associated
with the fundamental irrep and its conjugate, and the (real) vector
space A is associated to the adjoint irrep.
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Dψ
y;α;i;≶ ≡

�
ig

ffiffiffiffiffiffiffiffiffiffiffi
pþ
1 =s

q 	−1 δ

δψα;iðy− ≶ 0; yÞ ; ð35aÞ

Dψ̄
y;α;i;≶ ≡

�
ig

ffiffiffiffiffiffiffiffiffiffiffi
pþ
1 =s

q 	−1 δ

δψ̄α;iðy− ≶ 0; yÞ : ð35bÞ

III. EVOLUTION OF A POLARIZED
TEST OPERATOR

A. Evolution kernel for a test operator

Our test operator consists of two Wilson lines in an
arbitrary color representations fR1; R0g ¼ fF; Ag or
fR1; R0g ¼ fF; F̄; Ag at the transverse positions x1 and
x0.

2 The polarized line is chosen at x1 for the graphical
representation, but this consideration will not impact the
derivation of the evolution kernel in the end. We write

Ô1;0 ¼ sðWðR0Þ†
0 ⊗ WðR1Þpol

1 þ c:c:Þ: ð36Þ

The factor of the c.m. energy squared s in (36) cancels the
subeikonal factor of 1=s in the polarized Wilson lines from
Eqs. (18), (21), and (22). The factor of pþ

1 in those
equations cancels the subeikonal factors in the fields βðxÞ ∼
1=pþ

1 and ψ ∼ ψ̄ ∼ 1=
ffiffiffiffiffiffi
pþ
1

p
[16,17]. Therefore, the oper-

ator (36) has no explicit energy dependence. The energy
dependence of its expectation value hÔ1;0i will be gen-
erated by the small-x evolution we are about to construct. It
can be thought of as rapidity dependence, which would
come in as the dependence on the slope (in relation to the
light cone) of the Wilson lines comprising this operator
[5,41]. In JIMWLK formalism, the energy dependence
comes in through the weight functional WY .
The complex conjugate term is added in Eq. (36) to

single out the flavor-singlet contribution [15,17]. Thus, the
resulting helicity JIMWLK kernel we are about to construct
would apply only to evolution of such flavor-singlet
helicity operators. Generalization of our results to the
flavor-nonsinglet case is left for future work.
The operator (36) (without the complex conjugate term)

is illustrated in Fig. 5.

1. Lifetime and longitudinal momentum ordering

Helicity evolution at the leading order resums two
logarithms of Bjorken x per each power of the strong
coupling αs [1,15–17]. This type of resummation is
known as the double-logarithmic approximation (DLA)
and results in αs ln2ð1=xÞ being the resummation parameter
[37,42–49]. Note that this situation is different from the
unpolarized small-x evolution [20–29,50,51], where lead-
ing-order resummation parameter is αs lnð1=xÞ; that is, it
contains only one logarithm of x.
Double logarithmic resummation requires quark and

gluon emissions to be ordered in two kinematic parameters.
For helicity evolution, the two parameters are the light-cone
momentum fraction z and the lifetime of the fluctuation in
the x− direction. The two Wilson lines in our test operator
(36) may represent a quark and an antiquark propagator
carrying light-cone momentum fractions z0 and z1 of the
net projectile momentum respectively. That is, the two lines
carry momenta k−0 ¼ z0p− and k−1 ¼ z1p−, where p− is the
large momentum of some projectile that gave rise to the
quark and antiquark in our test operator. Alternatively, one
can say that the c.m. energies squared of each of these lines
scattering on the shock wave target are z0s and z1s.
In DLA, the expectation value of the test operator (36)
is a function of the smallest of the two z’s, hÔ1;0i ¼
hÔ1;0iðminfz0; z1gsÞ [1]. As we pointed out above, this
dependence is not explicit in Eq. (36) and would come in
through small-x evolution.
In helicity evolution, one power of lnð1=xÞ (per one αs)

arises from the ordering of the light-cone momentum
fractions z of the emitted partons,

z2 ≫ z3 ≫ z4 ≫ � � � ; ð37Þ

where the number in the subscript counts successive
emissions. The other lnð1=xÞ arises from the transverse
coordinate integration, after imposing the x−-lifetime order-
ing. For an emission of a small-z gluon or quark with
momentum kμ (such that k− ¼ zp−), the x−-lifetime is
2k−=k2 ∼ zX2, where X is the transverse space vector
Fourier-conjugate to k. The lifetime ordering giving rise
to the second power of lnð1=xÞ is (see Sec. IV of Ref. [1])

z2X2
2 ≫ z3X2

3 ≫ z4X2
4 ≫ � � � : ð38Þ

(We will explicitly define the vectors Xn below.)

FIG. 5. Test operator Ô1;0 that will be evolved in rapidity. The
shock wave is represented in blue (dark shade of gray), and the
polarized Wilson line is indicated by the light gray box.

2There are two possible conventions for the color representa-
tions one can follow here. One may use the standard convention
where the antiquarks are described by a line in the fundamental
representation F with the arrow pointing to the left (back in time)
in the Feynman diagrams for the scattering amplitude, corre-
sponding to the conjugate Wilson lines V†

x. Alternatively,
one could explicitly introduce the conjugate representation F̄
with the generators taF̄ ¼ −ðtaFÞT , and keep all Wilson lines future
pointing. We will try to keep our notation applicable to both
conventions.
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The fact that helicity evolution in DLA arises from
simultaneously imposing the light-cone momentum frac-
tion ordering (37) and the lifetime ordering (38) is
explained in detail in Appendix, which presents a new
important cross-check of the need for both orderings.
To construct helicity JIMWLK, we will work with the

light-cone momentum fractions z and z0 for the operators
before and after one step of evolution, such that Y ∼ lnðzsÞ
and y ∼ lnðz0sÞ in Eqs. (16) and (17). Since z ≫ z0, we have
Y ≫ y, whichmeans that the y-integral in (16) is cut off byY
from above. This easily imposes the light-cone momentum
fraction ordering (37) in our evolution. We will also need to
impose the x−-lifetime ordering (38). As wewill shortly see,
this implies inserting cutoffs on the transverse coordinate
integrations [1,15–17] which depend on z0 and on the
lifetime at the previous step of the evolution. This means
the cutoffswill depend on the transverse distance(s) between
some earlier emitted partons with respect to their “parent”
partons, that is, the partons off of which those earlier partons
were emitted. It appears that to impose lifetime ordering we
need to generalize Eq. (16) to have the integral kernel
explicitly depend on the transverse distances determining
x−-lifetimes at the previous step of the evolution.
Let us denote by wn the transverse position of the nth

parton emitted with the fraction of the projectile’s light-
cone “minus” momentum zn with n ¼ 2; 3;….3 As was the
case with the JIMWLK evolution, all relevant diagrams are
generated by the use of the Leibniz rule for the functional
derivatives acting on the test operator. When acting on the
left (right) of the shock wave, let us denote the correspond-
ing coordinate in the functional derivative by xðnÞ (yðnÞ).
Those dummy coordinates should be distinguished from x0
or x1 corresponding to the positions of the Wilson lines in
the test operator. It is useful to define

Xn ¼ xðnÞ − wn and Yn ¼ yðnÞ − wn: ð39Þ

Consider the diagram shown in Fig. 6, which contains two
additional partons generated by the DLA evolution com-
pared to the test operator defined in Eq. (36) or Fig. 5.
Imposing DLA orderings (37) and (38) in this diagram,
with the lifetime ordering applied separately to the left and
to the right of the shock wave [1], we arrive at

z ≫ z2 ≫ z3; ð40aÞ
zx210 ≫ z2ðw2 − x0Þ2 ≫ z3ðw3 − w2Þ2; ð40bÞ
zx210 ≫ z2ðw2 − x1Þ2 ≫ z2ðw3 − w2Þ2; ð40cÞ

where z≡minfz0; z1g and x01 ≡ jx0 − x1j. Introducing the
notations defined in (39), we easily generalize this to the
case of an arbitrary DLA diagram with two extra partons,

z ≫ z2 ≫ z3; ð41aÞ
zx210 ≫ z2X2

2 ≫ z3X2
3; ð41bÞ

zx210 ≫ z2Y2
2 ≫ z3Y2

3: ð41cÞ

It is now straightforward to write down the ordering
conditions for the (nþ 1)st emission,

zn ≫ znþ1; ð42aÞ
znX2

n ≫ znþ1X2
nþ1; ð42bÞ

znY2
n ≫ znþ1Y2

nþ1: ð42cÞ
We arrive at the following physical picture: as we increase
the available rapidity interval, extra soft partons are
emitted. Those are generated by acting with the evolution
kernel Kh on the previous state of the projectile. Because
we require the longitudinal momentum ordering (42a), the
integral evolution kernel Kh depends on the longitudinal
fraction of the new parton znþ1 but also on the longitudinal
fraction of the previously emitted parton zn as shown in
Eq. (17) via the kernel’s dependence on rapidities y and Y.
In order to also satisfy the lifetime ordering in both
Eqs. (42b) and (42c), the evolution kernel should also
depend on the transverse separations Xnþ1; Xn and
Ynþ1; Yn. In other words, due to Eqs. (42b) and (42c),
the integration range of the (nþ 1)st (“daughter”) parton’s
transverse position is limited not just by the position(s) of
the (parent) parton(s) off of which the (nþ 1)st parton was
emitted but also by the position(s) of some earlier parton(s)
relative to their respective parent parton(s), fXn; Yng, as
prescribed by the lifetime-ordering condition. This is the
essential difference of the DLA evolution compared to the
unpolarized evolution: while the standard JIMWLK kernel
(13) depends on the positions x and y of the parent partons
relative to the daughter parton w, it is independent of the
locations of the partons emitted before the parents.
We see that for helicity evolution we need to bring into

the evolution kernel the dependence on the distances

FIG. 6. A possible contribution to the evolution involving the
emission of two partons. Represented lines can be polarized or
unpolarized and can also be in any color representation allowed
by Feynman rules. The vertices involved can be eikonal or
subeikonal. This specific diagram corresponds to fxð1Þ ¼
x0; xð2Þ ¼ w2g on the left of the shock wave and fyð1Þ ¼
x1; yð2Þ ¼ w2g on the right of the shock wave.

3In cases where only a few partons are involved, we will also
use a simpler notation with z0 ¼ z2, z00 ¼ z3.
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between the partons emitted in the previous step of our
evolution and their respective parent partons. To do this, we
introduce an abbreviated notation,

τ≡ fz; zX2; zY2g; τ0 ≡ fz0; z0X02; z0Y 02g; ð43Þ
and rewrite Eq. (16) as

hÔpoliτ ¼ hÔpoli0 þ
Z

DαDβDψDψ̄

×
Z

d3τ0ðKh½τ; τ0� · ÔpolÞWτ0 ; ð44Þ

where

d3τ0 ≡ dz0

z0
d2X0d2Y 0: ð45Þ

[Note that in DLA the integrals over the angles of X0 and Y 0

are trivial; this is why we write d3τ0 instead of d5τ0 in
Eq. (45). We cannot integrate these angles out from the
start, though, due to the structure of the kernel Kh, as we
will see below.]
Integration by parts in Eq. (44) should give us the

following helicity-dependent generalization of the
JIMWLK evolution [cf. Eq. (17)]:

Wτ ¼ Wð0Þ
τ þ

Z
d3τ0Kh½τ; τ0�Wτ0 : ð46Þ

The helicity evolution kernel should contain θ-functions
imposing the constraints (42). We include those by intro-
ducing another abbreviation,

θð3Þðτ − τ0Þ≡ θðz − z0ÞθðzX2 − z0X02Þ
× θðzY2 − z0Y 02Þ; ð47Þ

with θð3Þðτ − τ0Þ included in all the contributions to Kh we
consider below.
Note that for the first step of the evolution of our test

operator (36) we have X1 ¼ Y1 ¼ x10. However, as can be
seen from the example in Fig. 6, for subsequent evolution,
X2 ≠ Y2, and these two transverse distances are different in
general. Furthermore, as discussed in detail in Refs. [1,15],
there are situations where, say, in the large-Nc limit,
evolution of a color-dipole version of the test operator
(36) may depend on the size of the “neighbor” (or “sister”)
dipole, which was created by the helicity evolution at the
same step as the dipole 10, but which may have a smaller

transverse size, and, hence, dominates the lifetime bound
with a shorter lifetime. In the example of Fig. 6, the large-
Nc evolution in dipole 21 may depend on the size X2 of the
dipole 20 due to the lifetime-ordering condition (41b). It
can be shown that this situation is accounted for by the
τ-notation defined here. In Refs. [1,15], such considerations
led to the introduction of the neighbor dipole amplitude Γ
in the large-Nc and large-Nc&Nf evolution.

2. Eikonal emissions

The JIMWLK evolution kernel already includes all
the possible diagrams with eikonal emissions. To picture
those, consider the diagrams in Fig. 1, and replace the
unpolarized Wilson line at x1 by a polarized one (see also
Refs. [1,16,17]). There are two extra considerations to
include: (i) One should transform the evolution kernel into
an integral kernel, as shown in Eq. (16) or, more precisely,
in Eq. (44). (ii) The form used in Refs. [32,33] or Eq. (13)
for the evolution kernel is no longer obtainable for helicity
evolution.
To transform the JIMWLK kernel from a differential to

an integral form as per our consideration (i), we need to
replace the derivative ∂Y in Eq. (6) by the integral
dy ¼ dz0=z0, which is a part of d3τ0 in Eq. (45). The origin
and structure of the dy ¼ dz0=z0 integral are explained in
the discussion of Sec. IV in Ref. [1] (see also Eq. (69) of
Ref. [16]). The integrals d2X0d2Y 0 in Eq. (45) are a part of
the standard JIMWLK kernel; for the reasons explained
above, we will now keep them outside the kernel.
The reason for the consideration (ii) is that we cannot

“slide” the color generator across the shock wave along the
polarized Wilson line at x1 by simply adding an adjoint
Wilson line at x1. Namely, while the following holds,

ðWðRÞ
x taRÞ ¼ ðtbRWðRÞ

x ÞUba
x ; ð48Þ

the analogous relation in the polarized case does not,

ðWðRÞ;pol
x taRÞ ≠ ðtbRWðRÞ;pol

x ÞUba
x : ð49Þ

We can resolve this problem by employing the form of the
JIMWLK kernel used in Refs. [38,39]. For our test operator
(36), setting τ ¼ fz; zx210; zx210g and τ0 ¼ fz0; z0X02; z0Y 02g
with X0 ¼ x − w and Y 0 ¼ y − w, we rewrite the JIMWLK
kernel from Refs. [38,39] as

Keik½τ; τ0�≡ αs
π2

Z
d2w⊥

X0 · Y 0

X02Y 02 θ
ð3Þðτ − τ0Þθ

�
z0 −

Λ2

s

�
θ

�
X02 −

1

z0s

�
θ

�
Y 02 −

1

z0s

�

× fUba
w Dþ

x;a;<Dþ
y;b;> −

1

2
ðDþ

x;a;<Dþ
y;a;< þDþ

x;a;>Dþ
y;a;>Þg: ð50Þ
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The terms in the kernel (50) directly correspond to the
Feynman diagrams for the eikonal gluon emission and
absorption. In writing Eq. (50), we have augmented the
original kernel of Refs. [38,39] by including six θ-
functions: three in the θð3Þ defined by Eq. (47) and another
three explicitly shown in Eq. (50). Two of the three θ-
functions in Eq. (47) impose the lifetime ordering in the x−-
direction as discussed above (see also Sec. IV in Ref. [1]).
The remaining θ-function in Eq. (47) imposes the light-
cone momentum fraction ordering on the z0 integral in the
way usual for the leading-logarithmic unpolarized
JIMWLK or BK evolution, when written in an integral
form. The z0-integral also needs a lower cutoff: this is
included in Eq. (50) with the help of θðz0 − Λ2

s Þ, where Λ is
an infrared cutoff momentum scale, such that Λ2=s is the
lowest possible value of any zn in the problem. Finally, the
integrals over X0 and Y 0 need short-distance (ultraviolet)
cutoffs; the shortest available distance squared is the
inverse of the available c.m. energy squared z0s. This leads
to the last two θ-functions in Eq. (50).
Only the curly brackets in Eq. (50) will change for the

other contributions to the helicity evolution kernel Kh.
Anticipating this, we will, for brevity, denote everything
outside of the curly brackets by (x · y). Further, suppressing
the color indices and the position-dependent subscripts in
the functional derivatives, we write Eq. (50) in the follow-
ing abbreviated form:

Keik ≡ ðx · yÞfUwD
þ
<Dþ

> −
1

2
ðDþ

<Dþ
< þDþ

>Dþ
>Þg: ð51Þ

One can easily convince oneself that the above curly
brackets match Eq. (13) by using Eq. (48).
While Eq. (50) is written for τ ¼ fz; zx210; zx210g defined

specifically for the test operator (36), it is clear that it can be
generalized for an arbitrary τ defined in Eq. (43). Note also
that the transverse coordinate integrals one obtains by
inserting the kernel (50) into Eq. (44) are not logarithmic
yet; one would further need to simplify those integrals by
identifying the logarithmic region(s) to obtain the DLA
contribution along the lines of Refs. [1,16,17]. This
observation will also apply to other contributions to Kh
we will derive below.
Finally, let us point out that the lifetime-ordering

θ-functions along with θðX02 − 1
z0sÞθðY 02 − 1

z0sÞ do not
change the fact that the eikonal kernel (50) is the standard
leading-order JIMWLK kernel. The reasoning behind
this observation is that for unpolarized small-x evolution
the transverse position integrals are convergent both in
the IR and in the UV. In the leading logarithmic in
lnð1=xÞ approximation (LLA), the lifetime-ordering θ-
functions only provide a cutoff in the deep IR, while
θðX02 − 1

z0sÞθðY 02 − 1
z0sÞ provide a cutoff in deep UV; since

the integrals in the unpolarized evolution are UV and IR
convergent, such cutoffs can be safely neglected.

3. Subeikonal emissions

The β-field. Subeikonal diagrams involving the β-field
derivative are given in Fig. 7. The black bullet, indicating a
β-field insertion, appears only on the lower line, since it is
the only polarized one and thus β dependent. [We are not
illustrating the complex-conjugate (c.c.) part of the test
operator (36).] Those diagrams are generated by the
following kernel,

Kβ ≡ ðx · yÞ
�
1

2
Upol

w ðDþ
<D⊥

> þD⊥
<D

þ
>Þ


; ð52Þ

acting on the test operator (36), as can be seen by comparing
with the calculations carried out in Ref. [17].We employ the
abbreviated notation introduced in Eq. (51). It is understood

that the D⊥ derivatives in Kβ only act on WðR1Þ;pol
1 from

Fig. 7, since this is the only β-dependent part of the operator.

However, D⊥ can also be allowed to act on WðR0Þ†
0 without

changing anything, since it is an unpolarizedWilson line that
does not depend on the subeikonal background field β. This
way, Kβ is symmetric under the x ↔ y interchange; that is,
Kβ is now independent of the arbitrary choice of the
polarized Wilson line being at the position x1.
The contributions Keik and Kβ are the only two relevant

ones for the helicity evolution in the large-Nc limit. They
reproduce the helicity evolution equations derived in
Refs. [16,17,19] at large-Nc while putting Nf ¼ 0.

4. Subeikonal emissions

ψ and ψ̄ fields. The subeikonal contribution involving
derivatives of the two fields ψ and ψ̄ are pictured in Fig. 8.
The Wilson line crossing the shock wave at the transverse
position x1 is in a different color representation as com-
pared to the initial one of the line at x1 in the test operator.
Namely irreps Rl=r are given as a function of R1 by

Rl ≡ F̄δR1¼A þ AδR1¼F ð53Þ
Rr ≡ FδR1¼A þ AδR1¼F̄; ð54Þ

and the system crossing the shock wave is R0 ⊗ F ⊗ Rl

or R0 ⊗ F̄ ⊗ Rr.

FIG. 7. The four contributions involving the β-field derivative
after one step of rapidity evolution for the test operator given in
Fig. 5 and in Eq. (36). The bullet indicates the subeikonal
emission.
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We saw earlier how the action of the operator (29) on a
polarizedWilson line in the irrep R1 generates aWilson line
crossing the shock wave in a representation different from
R1. In Eqs. (31) and (32), after setting y−1 and y−2 to be on
different sides of the shock wave, the Wilson line that
crossed the shock wave was in the representations Rl or Rr,
both distinct from R1. As expected from Fig. 8, we first act
on our test operator with the double functional derivative
(29); then project out the helicity-dependent part using
Eq. (30); and, finally, contract the result of those operations
with the polarized Wilson line at the position w to recover
the evolution kernel. Fixing the overall coefficient by using
the explicit calculations in Ref. [17], we arrive at

Kψ ;ψ̄ ¼ ðx · yÞ
��

1

2
γ5γ−

�
βα

1

2

�
ðVpol

w ÞijDψ̄
j;α;<D

ψ
i;β;>

þðVpol†
w ÞijDψ̄

j;α;>D
ψ
i;β;<

�

; ð55Þ

where we again suppressed the position subscripts on the
functional derivatives for brevity.
Those functional derivatives are understood to act only

on the polarized line at x1. Just like for Kβ, one can make
the kernel Kψ ;ψ̄ symmetric under the x ↔ y interchange by
allowing those derivatives to act on both Wilson lines in
Eq. (36) since the unpolarized Wilson line at x0 does not
depend on the two quark fields fψ ; ψ̄g.

5. Result for the kernel

The full evolution kernel for the test operator Ô1;0 reads

Kh ¼ Keik þKβ þKψ ;ψ̄ ; ð56Þ

that is,

Kh½τ; τ0�≡ αs
π2

Z
d2w⊥

X0 · Y 0

X02Y 02 θ
ð3Þðτ − τ0Þθ

�
z0 −

Λ2

s

�
θ

�
X02 −

1

z0s

�
θ

�
Y 02 −

1

z0s

�

× fUba
w Dþ

x;a;<Dþ
y;b;> −

1

2
ðDþ

x;a;<Dþ
y;a;< þDþ

x;a;>Dþ
y;a;>Þ

þ 1

2
Upol;ba

w ðDþ
x;a;<D⊥

y;b;> þD⊥
x;a;<D

þ
y;b;>Þ þ

�
1

2
γ5γ−

�
βα

1

2
ððVpol

w ÞijDψ̄
x;j;α;<D

ψ
y;i;β;> þ ðVpol†

w ÞijDψ̄
x;j;α;>D

ψ
y;i;β;<Þg:

ð57Þ

It should be noted that the number of quark flavors was
suppressed here (i.e., Nf ¼ 1). To bring it back into
Eq. (57), one introduces flavor dependence for the polar-
ized quark Wilson lines,

Vpol
x → Vpol;f

x ; ð58Þ

where the only modification compared to Eq. (24a) is that
the quark-exchange contribution to Vpol;f

x is given by
Eq. (21) with flavor-specific quark fields, fψ ; ψ̄g →
fψf; ψ̄fg. The adjoint polarized Wilson line Upol

x is still
given by Eq. (24b) with the following modification: the
quark-exchange contribution to the adjoint polarized
Wilson line should be given by Eq. (22) with a sum over
exchanged quark flavors,

ψ̄…ψ →
X
f

ψ̄f…ψf: ð59Þ

Naturally, the adjoint polarized Wilson lines do not acquire
a flavor index. The kernel Kh is modified by summing the
last term in the curly brackets over flavors and introducing
the quark flavor index in the functional derivatives over
fermions fields,

ðVpol
w ÞijDψ̄

x;j;α;<D
ψ
y;i;β;> →

X
f

ðVpol;f
w ÞijDψ̄f

x;j;α;<D
ψf

y;i;β;>;

ð60aÞ

ðVpol†
w ÞijDψ̄

x;j;α;>D
ψ
y;i;β;< →

X
f

ðVpolf†
w ÞijDψ̄f

x;j;α;>D
ψf

y;i;β;<:

ð60bÞ

FIG. 8. The two relevant contributions to the helicity evolution
involving the derivatives of the ψ - and ψ̄ -fields. The dashed line
represent the propagation of a Wilson line across the shock wave
in irrep Rl (left) or Rr (right). Both Rl and Rr depend on the irrep
R1 as clarified in the text.
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This accomplishes the generalization of our formalism to
an arbitrary number of quark flavors.
In addition, as we have already pointed out above for the

eikonal contribution to the kernel, the transverse integrals
in the expression one obtains by inserting Eq. (57) into
Eq. (44) need to be simplified further to extract the
logarithmic contribution giving the second lnð1=xÞ in the
DLA, as it was done in Refs. [1,16,17].
Finally, let us note that, as was the case with the

JIMWLK kernel, this flavor-singlet helicity kernel applies
to evolution of a broad range of test flavor-singlet operators
consisting of any number of Wilson lines, with one
polarized Wilson line, in any irrep R. This is in addition
to this kernel containing the eikonal part, which generates
the standard JIMWLK or BK evolution for the operators
made out of regular light-cone Wilson lines.

B. Cross-check with BER in the ladder approximation

In this section, we cross-check our results with Eq. (64)–
(66) of Ref. [1] to verify whether, in the ladder approxi-
mation, the kernel given by Eq. (57) coincides with that
obtained by Bartels et al. (BER) [37,46].
First, we consider a test operator consisting of a doublet

of color-singlet polarized dipoles in representations F and
A. Let us fix the polarized Wilson line at the position x1.
After that, we set all unpolarized Wilson lines to be

identities in the color space; we can do this if we are only
interested in the ladder contribution [1]. As a result, the test
operator reduces to [1]

Ôpol →

 
1
KF

½trðVpol
1 Þ þ trðVpol;†

1 Þ�
1
KA

½TrðUpol
1 Þ þ TrðUpol;†

1 Þ�

!
¼ Wpol

1;0: ð61Þ

The normalization is chosen as in Eq. (64) of Ref. [1];
irrep’s dimensions are KF ¼ Nc and KA ¼ N2

c − 1. We can
obtain the DLA evolution of the operator (61) by using the
kernel Kh from Eq. (57) in Eq. (44). To truncate this
evolution to the level containing ladder diagrams only, we
will only keep emissions generating softer polarized lines.
That is, we will discard Keik from Kh [see (56)] and keep
only Kβ and Kψ ;ψ̄ . Indeed, there is no formal justification
for this ladder approximation; as stressed in Ref. [1], it is
simply a truncation needed to compare a part of our
calculation with the same part of BER.
In order to recast Eq. (44) in a form closer to Eq. (65) in

Ref. [1], we change the integration variable from w to
w − x1, integrate over the angles of w − x1, and keep the
integral over jw − x1j2.
Anticipating all derivatives to act on the polarized

Wilson lines at 1, we rewrite Eq. (44) for the modified
test operator (61) as

hWpol
1;0iτ ¼ hWpol

1;0i0 þ
αs
2π

Z
z

Λ2=s

dz0

z0

Z
x2
10
z=z0

1=z0s

djw − x1j2
jw − x1j2

Z
d2x⊥d2y⊥

×

�
2

�
1

2
Upol;ba

w ðDþ
x;a;<D⊥

y;b;> þD⊥
x;a;<D

þ
y;b;>Þ þ

�
1

2
γ5γ−

�
βα

1

2
ððVpol

w ÞijDψ̄
x;j;α;<D

ψ
y;i;β;> þ H:c:Þ



Wpol

1;0

�
: ð62Þ

The matrix M from Eq. (66) in Ref. [1] is obtained by
estimating 2f� � �g in Eq. (62) acting onWpol

1;0. The factor we
obtain when acting with the first term in the curly brackets
on the right of Eq. (62) onto a polarized Wilson line in an
arbitrary representation R is

2
ηRaRKA

KR
¼ 2CFδR¼F þ 4NcδR¼A; ð63Þ

where aR is the normalization of the trace of two color
generator in irrep R, i.e., tr½taRtbR� ¼ aRδab, such that
CRKR ¼ aRKA, and the factor ηR is defined in Eq. (19)
as ηR ¼ δR¼F þ δR¼F̄ þ 2δR¼A. The second term in the
curly brackets of Eq. (62) gives

2CFKF

KR
¼ CFδR¼F − δR¼A → CFδR¼F − NfδR¼A; ð64Þ

where we have restored the number-of-flavors factor Nf on
the right-hand side of Eq. (62).

The factors multiplying the Kronecker deltas in Eqs. (63)
and (64) give the coefficients in the matrixM (or the matrix
M0 from Eq (2.28) in Ref. [37]), thus completing the cross-
check with the ladder limit of BER.

IV. WEIGHT FUNCTIONAL
EVOLUTION EQUATION

Having obtained the evolution kernel for the test oper-
ator, one just needs to integrate Eq. (44) by parts with Kh
given by Eq. (57) to obtain the helicity-dependent version
of the JIMWLK evolution equation for the target weight
functional. That is, we now need to show that Eq. (46)
really follows from Eq. (44).

A. Acting on the weight functional
with helicity evolution kernel

The procedure will be the same for each term of the
evolution kernel Kh: (i) Fix the irrelevant fields, and
consider the average over configurations of the relevant
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fields. (ii) Perform the integration by parts over the relevant
fields. (iii) State the required constraints on the integration
boundaries.
For brevity, in the following, only the functional integrals

over relevant field are shown explicitly. We will carry out
the integration by parts term by term in Eq. (56).

1. Eikonal kernel

The integration by parts of the eikonal kernel Keik is
completely analogous to the one in the JIMWLK equation.
For a set of configurations with fixed subeikonal fields β, ψ ,
and ψ̄ , it givesZ

Dαd3τ0ÔpolðKeik½τ; τ0� ·WÞ½α�: ð65Þ

Here, we require the surface term to vanish on the
boundary, that is, at αðxÞ → �∞, thus obtaining a con-
straint that the weight functional should vanish for infinite
functions αðxÞ.

2. Subeikonal kernel

The fermion fields. Let us consider the Kψ ;ψ̄ part of the
kernel Kh. For a set of configurations with fixed α and β,
we want to integrate

Z
DψDψ̄d3τ0ðx · yÞ

�
1

2
ðVpol

w Dψ̄
<D

ψ
> þ H:c:ÞÔpol

�
W½ψ ; ψ̄ �

ð66Þ

by parts, where, for brevity, we have defined

Vpol
w Dψ̄

<D
ψ
> ≡

�
1

2
γ5γ−

�
βα

ðVpol
w ÞijDψ̄

x;j;α;<D
ψ
y;i;β;>: ð67Þ

Using the fact that for any two complex-valued functions
fðθ; θ̄Þ and gðθ; θ̄Þ of a complex Grassmann number θ
(with θ̄ denoting its complex conjugate) one has

Z
dθdθ̄f

d2g

dθ̄dθ
¼
Z

dθdθ̄
d2f

dθ̄dθ
g ð68Þ

and the fact that the functional derivative acting on Vpol
w

vanishes,

Dψ̄
j;<ðVpol

w Þij ¼ Dψ
i;>ðVpol

w Þij ¼ 0 ð69Þ

(if we put the unpolarized Wilson lines outside the shock
wave to unity), one easily obtainsZ

DψDψ̄d3τ0ÔpolðKψ ;ψ̄ ½τ; τ0� ·WÞ½ψ ; ψ̄ �: ð70Þ

There is no constraint on the boundaries here since there is
no surface term in Eq. (68).

3. Subeikonal kernel

The β-field. The remaining part of the kernel Kh in (56)
that we need to integrate by parts is Kβ. Fixing the
irrelevant fields ψ and ψ̄ , we consider the average

Z
DαDβd3τ0ðx ·yÞ

�
1

2
Upol

2 ðDþ
<D⊥

>þD⊥
<D

þ
>ÞÔpol

�
W½α;β�:

ð71Þ

Integrating by parts and using (again, after putting the
unpolarized Wilson lines outside the shock wave to unity)

Dþ;⊥
a;< ðUpolÞba ¼ Dþ;⊥

b;> ðUpolÞba ¼ 0; ð72Þ

one can writeZ
DαDβd3τ0ÔpolðKβ½τ; τ0� ·WÞ½α; β�: ð73Þ

We require that the surface terms vanish on the boundary,
that is, at αðxÞ → �∞ and βðxÞ → �∞. This gives an
additional constraint on the weight functional: it has to
vanish at βðxÞ → �∞.

4. Result

The above procedures finally yield the flavor-singlet
helicity-dependent generalization of the JIMWLK evolu-
tion equation for the target weight functional [cf. Eq. (46)],

Wτ½α; β;ψ ; ψ̄ � ¼ Wð0Þ
τ ½α; β;ψ ; ψ̄ �

þ
Z

d3τ0Kh½τ; τ0� ·Wτ0 ½α; β;ψ ; ψ̄ �; ð74Þ

with the kernel Kh given by Eq. (57). Equations (74) and
(57) are the main result of this work.

B. Properties of the solution and the initial condition

Here, we infer some properties of the weight functional
Wτ given by the solution of the helicity evolution equa-
tion (74) without solving the latter explicitly. We also
determine the properties we expect the inhomogeneous

term Wð0Þ
τ to have.

Due to the subeikonal origin of the flavor-singlet helicity
evolution equation, we expect the weight functional Wτ to
respect the following Ansatz,

Wτ ¼ Wunpol
τ þ ΣWpol

τ ; ð75Þ

where the label pol or unpol indicate whether the functional
enters Wτ with or without a factor of the target helicity Σ.
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This Ansatz is similar to how helicity evolution enters other
observables [1,15–19]. We expect the decomposition (75)
to be valid for the inhomogeneous term, too,

Wð0Þ
τ ¼ Wð0Þunpol þ ΣWð0Þpol

τ : ð76Þ

The inhomogeneous terms are calculated from the initial
conditions for the evolution.
Further, requiring that the Ansatz (75) maps back onto

the standard JIMWLK evolution after the subeikonal fields
have been integrated out yieldsZ

DβDψDψ̄Wunpol
τ ½α; β;ψ ; ψ̄ � ¼ WJIMWLK

τ ½α�; ð77aÞ
Z

DβDψDψ̄Wpol
τ ½α; β;ψ ; ψ̄ � ¼ 0; ð77bÞ

along withZ
DβDψDψ̄Wð0Þunpol½α; β;ψ ; ψ̄ � ¼ WMV ½α�; ð78aÞ
Z

DβDψDψ̄Wð0Þpol
τ ½α; β;ψ ; ψ̄ � ¼ 0; ð78bÞ

for the inhomogeneous term. Here, WJIMWLK½α� is the
standard JIMWLK-evolved weight functional [24–29],
while WMV ½α� is the Gaussian weight functional of the
McLerran-Venugopalan (MV) model [52–55].
Substituting the Ansätze (75) and (76) into Eq. (74) and

separating the target helicity Σ dependent and independent
terms, we arrive at two equations,

WJIMWLK
τ ½α� ¼ WMV ½α�

þ
Z

d3τ0Keik½τ; τ0� ·WJIMWLK
τ0 ½α�; ð79aÞ

Wpol
τ ½α; β;ψ ; ψ̄ � ¼ Wð0Þpol

τ ½α; β;ψ ; ψ̄ �

þ
Z

d3τ0Kh½τ; τ0� ·Wpol
τ0 ½α; β;ψ ; ψ̄ �;

ð79bÞ

where the first equation we have also integrated over β, ψ ,
and ψ̄ using Eqs. (77a) and (78a). Equation (79a) is the
usual JIMWLK equation, written in the integral form. Note
that for this unpolarized evolution all transverse integrals
are convergent both in the infrared and in the ultraviolet;
hence, the lifetime-ordering conditions present in the kernel
of Eq. (50) are not important at the LLA and do not affect
the identification of Eq. (79a) as the standard JIMWLK
equation. It is curious, though, that these lifetime-ordering
conditions need to be present in the (generalized) leading-
order JIMWLK kernel already to give us correct helicity

evolution; it has been argued recently that such lifetime
orderings may be important at the next-to-leading loga-
rithmic (NLL) order in the unpolarized small-x BK
evolution [56,57]. Using our result (57) for Kh, one could
speculate that lifetime ordering needs to be imposed in all
shock wave evolution calculations, including the standard
JIMWLK and BK evolution, and not just for the DLA
helicity evolution we consider here. This ordering may help
one better organize calculations of the higher-order cor-
rections to the small-x evolution kernel.
Equation (79b) is the functional equation for helicity

evolution. Note that if one assumes that the inhomogeneous
term for this equation satisfies the condition (78b) then,
integrating Eq. (79b) over β, ψ , and ψ̄ one can show that
Eq. (77b) is satisfied by our evolution.
Next, imagine using the weight functional Wτ from

Eq. (75) to calculate an expectation value of some polari-
zation-dependent operator, say, the scattering amplitude of
a high-energy quark in the target field with the eikonal
and the subeikonal helicity-dependent terms included
[1,15–17],

VxðσÞ ¼ Vx þ σVpol
x : ð80Þ

Its expectation value is

hVxðσÞiτ ¼
Z

DαDβDψDψ̄Wτ½α;β;ψ ; ψ̄ �VxðσÞ

¼
Z

DαDβDψDψ̄ ½Wunpol
τ þΣWpol

τ �½Vx þ σVpol
x �:

ð81Þ

Due to PT symmetry, only the term independent of
helicities and the term proportional to σΣ should survive,

hVxðσÞiτ ¼
Z

DαDβDψDψ̄

× ½Wunpol
τ Vx þ σΣWpol

τ Vpol
x �: ð82Þ

For the terms containing either only σ or only Σ in Eq. (81)
to vanish, we need

Z
DαDβDψDψ̄Wunpol

τ ½α; β;ψ ; ψ̄ �Vpol
x ðα; β;ψ ; ψ̄Þ ¼ 0;

ð83aÞ
Z

DαDβDψDψ̄Wpol
τ ½α; β;ψ ; ψ̄ �VxðαÞ ¼ 0: ð83bÞ

While the condition (83b) easily follows from Eq. (77b),
Eq. (83a) appears to yield a new condition, likely con-
straining the dependence ofWunpol

τ on the subeikonal fields
β, ψ and ψ̄ .
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In our derivation above, we have employed the fact that
the weight functional Wτ should vanish on the boundary
αðxÞ; βðxÞ → �∞, that is,

8<
:

lim
αðxÞ→�∞

Wτ½α; β;ψ ; ψ̄ � ¼ 0; ∀ x;

lim
βðxÞ→�∞

Wτ½α; β;ψ ; ψ̄ � ¼ 0; ∀ x:
ð84Þ

The initial weight functional Wð0Þ
τ should satisfy the same

boundary conditions,

8<
:

lim
αðxÞ→�∞

Wð0Þ
τ ½α; β;ψ ; ψ̄ � ¼ 0; ∀ x;

lim
βðxÞ→�∞

Wð0Þ
τ ½α; β;ψ ; ψ̄ � ¼ 0; ∀ x:

ð85Þ

The former boundary condition is expected from the MV
model [52–54], where the weight functional has a
Gaussian form [55]. This Gaussian form is not obvious
a priori for the helicity-dependent term, and motivating
this behavior is the topic of our next paper [58].
Verification of the Ansatz (76) along with construction

of an explicit expression for Wð0Þ
τ and cross-checking that

it satisfies the boundary conditions (85) are left for the
future work [58].

V. CONCLUSIONS

In this paper, we have derived a helicity-dependent
extended version of the JIMWLK evolution equation.
The result is given by Eqs. (74) and (57) and applies for
DLA helicity evolution of the flavor-singlet operators in
addition to the LLA evolution of the standard operators
made out of light-cone Wilson lines.
As mentioned above, this equation has several practical

applications: (i) It can be used to write down evolution
equations for any subeikonal helicity-dependent flavor-
singlet operator, made out of any number of standard
Wilson lines and one polarized Wilson line. (ii) It may be
possible to solve Eq. (74) numerically (see [59] for a
possible solution method), allowing one to determine the
small-x asymptotics of any operator of the type described in
(i) beyond the large-Nc and large-Nc&Nf limits considered
in Refs. [1,15–17]. Both applications are important for
identifying the small-x asymptotics of quark and gluon
helicity distributions, to be measured in the future experi-
ments such as at the proposed Electron-Ion Collider
(EIC) [60].
To complete Eq. (74), one needs to determine the

inhomogeneous term Wð0Þ
τ in that equation. This is left

for future work [58]. The exact form of this inhomogeneous
term is not likely to affect the small-x asymptotics of
helicity distributions (see Ref. [18] where it was demon-
strated that the small-x helicity evolution in the large-Nc
limit is not very sensitive to its initial conditions given by

the inhomogeneous term). Nevertheless, the inhomo-
geneous term may be important for the comparison of
helicity evolution to data at small but finite values of x.
In the future, the JIMWLK approach can also be

applied to the case of helicity evolution for the flavor-
nonsinglet operators. It appears that to achieve this one
needs to go beyond the polarized quark and gluon Wilson
line operators in Eqs. (24a) and (24b); in addition, one
needs to introduce operators where an incoming s-channel
quark transitions into an s-channel gluon after a non-
eikonal helicity-dependent interaction (along with the
reverse process where an s-channel gluon transitions into
an s-channel quark). Diagrammatically, these operators
correspond to the right two graphs in Fig. 2, further
dressed by multiple eikonal gluon exchanges with the
target [16,17]. The resulting flavor-nonsinglet helicity
analog of JIMWLK evolution would allow one to deter-
mine the small-x asymptotics of the flavor-nonsinglet
helicity distributions beyond the large-Nc limit studied
in Ref. [15]. Similar to the flavor-singlet case, this may
have possible phenomenological applications. It would
also allow one to compare a prediction of the shock wave
formalism for this flavor-nonsinglet observable to the
results based on other approaches [46] beyond the
large-Nc limit.
Before we conclude, let us reiterate another very in-

triguing feature of our result. The kernel (57) generates
both the standard unpolarized LLA small-x evolution and
DLA helicity evolution. The eikonal part of this kernel is
the usual LLA JIMWLK kernel, which, to get the correct
DLA helicity evolution, had to be augmented by the θ-
functions imposing the lifetime ordering in the x− light-
cone direction. These θ-functions do not affect the LLA
unpolarized evolution but may become important for the
higher-order corrections to the BK evolution kernel, as was
argued in Refs. [56,57]. Their presence reduces the
magnitude of the NLL and higher-order corrections by
generating a “rapidity veto” in the BK evolution. It is quite
curious that such lifetime-ordering corrections appear in the
eikonal part of our kernel (57) due to a formal requirement
that it generates correct DLA helicity evolution; this
appears to be an independent formal argument in favor
of keeping lifetime ordering to all orders of perturbation
theory in the JIMWLK and BK kernels.
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APPENDIX: SIMULTANEOUS LIGHT-CONE
MOMENTUM FRACTION ORDERING AND

LIFETIME ORDERING IN UNPOLARIZED AND
POLARIZED SMALL-x EVOLUTION

Here, we would like to show that in the DLA helicity
evolution the emissions have to be ordered both in the light-
cone momentum fraction z and in the parton lifetime zx2⊥.
Specifically, consider emitting gluons 2 and 3 in a quark-
antiquark dipole 10, as shown by one possible contributing
diagram in Fig. 9. At this point, our discussion is quite
general, and the emissions can be either polarized or
unpolarized.
It is easy to see that in order to obtain the LLA

contribution from the gluons pictured in Fig. 9 for the
case of unpolarized evolution, or the leading DLA con-
tribution for helicity evolution, the energy denominators of
the two gluons in Fig. 9 have to be ordered. (We are using
the terminology of the light-cone perturbation theory
(LCPT) [40].) This condition leads to the lifetime ordering,

z2x221 ≫ z3x231; ðA1Þ
where, as usual, xij ¼ jxi − xjj.
In the case of unpolarized evolution [20–29] and for

helicity evolution of Refs. [1,15–17], one usually imposes
the light-cone momentum fraction ordering such that

z2 ≫ z3: ðA2Þ
For the unpolarized evolution, where one assumes that all
transverse distances are comparable, x21 ∼ x31, this second
condition (A2) appears to follow from Eq. (A1). For the
helicity evolution, the two conditions (A1) and (A2) are
separate since in helicity evolution the transverse distance
integrals lead to logarithms of energy, coming, in part, from
very small dipole sizes; hence, the x21 ∼ x31 assumption
may not always be valid.
It is, therefore, important to explore the case of the

“opposite” or “inverse” ordering of the light-cone momen-
tum fractions, z2 ≪ z3, imposed simultaneously with the
“correct" lifetime ordering (A1). That is, we should
consider the case of

z2x221 ≫ z3x231; z2 ≪ z3: ðA3Þ
Both the unpolarized [20–29] and helicity [1,15–17]
evolutions assume the “correct” ordering (A2), with the

resulting evolution equations summing up only the dia-
grams satisfying such ordering. At the same time, the
phase-space integral over the region defined by Eq. (A3) is
DLA for both the helicity and unpolarized evolutions, as
one can easily check explicitly. Hence, for both the
unpolarized [20–29] and helicity [1,15–17] evolutions to
be valid, the inverse ordering (A3) should not contribute.
Below, we will clarify how various diagrammatic cancel-
lations prevent the inverse-ordering region in Eq. (A3) from
contributing to both the unpolarized and helicity evolu-
tions, thus confirming that the LLA and DLA evolutions
should follow the standard ordering of Eqs. (A1) and (A2).
Note that our analysis here corrects an omission at the

end of Sec. II. D. 2 in Ref. [15], where, in the second-to-last
paragraph, the region (A3) was incorrectly identified as
contributing to helicity evolution (and thus included in the
equations derived in Ref. [1]); the equations derived in
Ref. [1] do not contain this region, and we provide a
justification for this below.

1. Unpolarized evolution

For the case of the unpolarized BK/JIMWLK evolution,
the cancellation of the region (A3) is rather straightforward.
Note that the conditions (A3) imply that

x231 ≪
z2
z3
x221 ≪ x221; ðA4Þ

such that the distance x31 is very small. In addition, since
z3 ≫ z2, the gluon 3 cannot be emitted off of the gluon 2.
The diagrams contributing in the region (A3) are shown in
Fig. 10. For simplicity, we are only analyzing the diagrams
in the large-Nc limit; we believe that generalization of our
argument beyond the large-Nc limit is straightforward.
Similarly, we only consider diagrams where the antiquark
at 0 is a spectator; generalization to the case of interacting
antiquark 0 can also be done easily.
Since the dipole 31 is small, its interaction with the target

can be neglected. This way, the numerators of different
diagrams in Fig. 10 are all identical. The difference and,
hence, the relative weights of the diagrams come from the
energy denominators in LCPT notation. Concentrating on
the energy denominators only (cf. Ref. [61]), we obtain

A ∝
1

E2
2E

2
3

; ðA5aÞ

B ¼ C ∝ −
1

E2
2E

2
3

; ðA5bÞ

D ¼ E ∝
1

E2
2E

2
3

; ðA5cÞ

F ¼ G ¼ H ¼ I ∝ −
1

2E2
2E

2
3

; ðA5dÞFIG. 9. Emission of two gluons in a dipole as considered in the
text.
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J ∝
3

4E2
2E

2
3

; ðA5eÞ

K ∝ −
1

4E2
2E

2
3

; ðA5fÞ

where E2 ¼ k22=ð2k−2 Þ and E3 ¼ k23=ð2k−3 Þ with k2 and k3
the momenta of the two gluons. Note that the kinematics
of (A3) implies that k3⊥ ≫ k2⊥ and k−3 ≫ k−2 . In arriving
at Eqs. (A5), we have also added diagrams with the
instantaneous terms. For the virtual diagrams, we have
only shown the two diagrams (J and K), which, along with
their complex conjugate counterparts, give nonzero LLA
contributions.
With the help of Eqs. (A5), we see that all the diagrams

in Fig. 10 cancel:

Aþ 1

2
Bþ 1

2
C ¼ 0; ðA6aÞ

Eþ 1

2
Cþ G ¼ 0; ðA6bÞ

Dþ 1

2
Bþ F ¼ 0; ðA6cÞ

H þ I þ J þ K þ other virtual diagrams ¼ 0: ðA6dÞ

The grouping of diagram contributions into the individual
equations in Eqs. (A6) is done to establish resemblance to
how the unpolarized small-x evolution emerges from similar
cancellations in the standard ordering case (A1) and (A2).
We have thus established that, for the unpolarized BK

and JIMWLK evolution, the emissions in the kinematics
of Eq. (A3) do not contribute at the LLA level. This
conclusion is in line with the conventional wisdom. The
same cancellation was observed previously in Ref. [56] (see
Fig. 3 there along with the discussion near that figure).

2. Helicity evolution

Now, we consider potential contribution of the inverse
light-cone fraction ordering region (A3) to the case of
helicity evolution constructed in Refs. [1,15–17].

a. Classical approximation

Before analyzing the diagrams similar to Fig. 10
above, let us note that, for the case of helicity, the issue
of inverse momentum ordering arises already after one
step of evolution due to the dependence of the Born-level
initial conditions for the evolution on the c.m. energy.
This is a simple exercise which would allow us to make a
more general conjecture in the operator language, to be
verified below.

(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

(k)(j)

FIG. 10. The large-Nc diagrams contributing to emission of two gluons (2,3) in a dipole 10 in the kinematics of Eq. (A3) for the
unpolarized evolution.
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Consider a polarized dipole 10, in which we emit one
unpolarized gluon 2, such that z2 ≪ z1 ≈ z0. Instead of
emitting another gluon 3, let us allow the resulting quark-
antiquark-gluon system to interact with the target, which is
taken to be a single polarized quark. The corresponding
diagrams are shown in Fig. 11, where, for simplicity, we
consider only the case where the quark at 1 is polarized, and
the large-Nc limit is applied again.
The difference between the diagrams in Fig. 11 is due to

different interactions with the target and due to the gluon 2
being emitted and absorbed at different times. The helicity-
dependent interaction with the target is indeed energy
suppressed. This energy suppression is removed by the
energy rescaling factor z1s [cf. Eq. (36)]. The remaining
integral over the transverse momenta of the t-channel
gluons is logarithmic [1,15], with the c.m. energy squared
s providing the UV cutoff. Indeed, the transverse momen-
tum l⊥ ≡ jlj of the t-channel gluons cannot exceed the
c.m. energy of the scattering of the s-channel partons
on the target. That is, for the diagram α in Fig. 11, we
have l2⊥ ≪ z1s, while for the diagram β, we have
l2⊥ ≪ minfz1s; z2sg ¼ z2s. We have a mismatch, some-
what akin to the opposite ordering problem of Eq. (A3); the
interaction of dipole 21 with the target in diagram α
“knows” about the larger momentum fraction z1 and does
not seem to know of the smaller momentum fraction z2 in
the dipole 21. At the same time, in the diagram β, the
interaction of the dipole 21 with the target knows about z2.
If this conclusion is correct, then further evolution in the
dipole 21 in diagram α may also depend on z1, which is
much larger than z2. This is similar to the emission of the
(longitudinally) harder gluon 3 after gluon 2 in Fig. 9; this
never happens in the standard small-x evolution.
Luckily, we can show that this dangerous contribution

cancels. To see this, let us consider the contributions of the
graphs in Fig. 11, concentrating only on the l⊥-integral, the
overall sign, and the Fourier exponentials for the transform
into transverse coordinate space. We write

α ∝
Z

z1s d2l⊥
l2⊥

; ðA7aÞ

β ∝ −
Z

z2s d2l⊥
l2⊥

eil·x21 ; ðA7bÞ

γ þ γ� ∝ −
Z

z1s d2l⊥
l2⊥

; ðA7cÞ

δþ δ� ∝
Z

z1s d2l⊥
l2⊥

eil·x01 ; ðA7dÞ

with the upper limit of the integral applying to the l2⊥
integration only and the asterisk denoting complex con-
jugation. The Fourier factor makes diagrams β and δ
insensitive to the c.m. energy, since 1=x221 ≪ z2s and
1=x201 ≪ z1s. Hence, we can replace z1 → z2 in the upper
limit of the integral in δþ δ�. The remaining z1 dependence
in α and γ cancels since αþ γ þ γ� ¼ 0. We thus arrive at
the following conclusion:

αþ β þ γ þ γ� þ δþ δ�

∝
Z

z2s d2l⊥
l2⊥

½ð1 − eil·x21Þ − ð1 − eil·x01Þ�

∝ Gð0Þðx221; z2Þ −Gð0Þðx201; z2Þ: ðA8Þ

(In the last line, we have introduced the Born-level
polarized dipole amplitude [1,15]

Gð0Þðx201; z2Þ ¼ −α2s
CF

Nc

Z
z2s d2l⊥

l2⊥
ð1 − eil·x01Þ

¼ −α2s
CF

Nc
π lnðz2sx201Þ; ðA9Þ

representing the contribution of the helicity-dependent part
of the two t-channel gluons exchange.)
We observe that z1 dependence disappeared from (A8).

Therefore, the interaction of the dipole 21 with the target
does not depend on z1 and can be thought of as governed by
the smaller momentum fraction z2.

4 While this conclusion
is derived here in the “quasiclassical” case; that is, for
Born-level t-channel gluon exchanges instead of further
small-x evolution (following the emission of gluon 2), our

FIG. 11. The large-Nc diagrams illustrating emission of unpolarized gluon 2 followed by a Born-level helicity-dependent interaction
with the target.

4Note that the dependence on z2 also cancels out in Eq. (A8).
This does not affect our conclusion that further evolution can be
though of as depending on z2 only, even if this z2 dependence
vanishes at the low order of diagrams considered here in Fig. 11.
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experience and conventional wisdom in small-x physics
suggest that such quasiclassical conclusions about oper-
ators usually continue to apply when small-x evolution
corrections are included. Therefore, we make the following
conjecture, which we believe to be valid beyond the
specific case of Fig. 11, applying to the general helicity
evolution case pictured in Fig. 12: after emitting the soft
gluon 2, the Wilson line of quark 1, when interacting with
the shock wave, should be replaced by the same Wilson
line, but dependent on z2,

WðRÞ
1 ðz1 − z2Þ → WðRÞ

1 ðz2Þ: ðA10Þ

The dependence of Wilson lines on the light-cone
momentum fractions comes in through the cutoffs on the

appropriate integrals, which can be implemented in a
variety of different ways [41]. We have used WðRÞ to
denote the Wilson line at x1, to stress that our conjecture
should be valid for a line in any irrep R.

b. Two steps of evolution: The s-channel diagrams

Now, let us test the above-stated conjecture by con-
sidering small-x evolution corrections. The DLA diagrams
contributing to emission of gluons 2 and 3 in the polari-
zed dipole 10, in the kinematics of Eq. (A3), are shown
in Fig. 13. We again assume the large-Nc limit for
simplicity. Once more, not all the virtual diagrams are
shown explicitly; we show only the virtual diagrams which
are DLA (along with their counterparts obtained by
complex conjugation). While the gluon 2 is again assumed
to be unpolarized, the gluon 3 may or may not be
polarized. To simplify our analysis, we did not include
the splittings leading to creation of a soft quark and a hard
gluon [1]; these can be considered separately (or the quark
lines in Fig. 13 can be thought of as originating in the
gluon lines of an adjoint polarized dipole 10 in the large-
Nc limit).

0

1

2

0

1

2 c.c.

FIG. 12. A step of the polarized dipole evolution due to
emission of a soft unpolarized gluon.

(a) (b) (c) (d)

(e) (f) (h)(g)

(j)(i) (k) (l) 

(m) (p)(o)(n)

(q)

0

1

0

1

1

0

1

0

1

0

23 2
3 3

2
2

3

2
3

2

3
2 3 2 3

3 2

2

3

2

3
2 3

2 3 3 2 23 3
2

2

3
other virtual diagrams

FIG. 13. The large-Nc diagrams contributing to emission of two gluons (2,3) in a polarized dipole 10 in the kinematics of Eq. (A3) for
helicity evolution.
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Throughout this subsection, we will be interested in
helicity-dependent contributions only; when evaluating
diagrams, it will be understood that only such contributions
are included.
Employing a similar analysis to what was done for the

diagrams in Fig. 10, we observe the following cancellations
among the diagrams in Fig. 13:

aþ bþ 1

2
c ¼ 0; ðA11aÞ

1

2
eþ f þ g ¼ 0; ðA11bÞ

hþ iþ d ¼ 0: ðA11cÞ

We are left with the diagrams j through q, along with 1
2
c

and 1
2
e. To find their contribution, we remember that

emission of a polarized gluon comes with an addition
factor of 1

2
compared to the emission of an eikonal gluon

[compare Eqs. (51) and (52)]. In addition, the polarized
Wilson line in the adjoint representation comes with the
factor ηA ¼ 2, while the polarized Wilson line in the
fundamental representation has ηF ¼ 1 [see Eq. (19)].
With this in mind, one can show that

jþ kþ � � � þ qþ p� þ q� þ 1

2
ðcþ eÞ

∝ 2G31 þ 2G32 − 2G31 − 2G30 −G12 þ G10

≈G12 − G10; ðA12Þ
where, in the last step, we have used the fact that x3 ≈ x1 in
the kinematics of Eq. (A3) [see Eq. (A4)].
In Eq. (A12), we have used the definition of the polarized

dipole amplitude [17]

G10ðzÞ ¼
zpols

Nc
RehTtr½V0V

pol†
1 � þ Ttr½Vpol

1 V†
0�i; ðA13Þ

where zpol is the light-cone momentum fraction of the
polarized line, while z is the smaller one of the momentum
fractions of the two lines. The object in Eq. (A9) is the
impact-parameter integrated polarized dipole amplitude,

Gðx210; zÞ≡
Z

d2x1G10ðzÞ: ðA14Þ

We see that, unlike the unpolarized case considered in
the previous section, the s-channel shock wave diagrams do
not cancel in the inverse-ordering regime of Eq. (A3). In
retrospect, this may seem natural. In the unpolarized
evolution, the result (A6) was due to real-virtual cancella-
tion combined with the observation that if a quark emits a
collinear gluon, forming a very close quark-gluon pair, the
whole pair still interacts with the shock wave as a single
quark. This is because, in the unpolarized eikonal case, the

shock wave only couples to the net color of the compact
object. In the helicity evolution case, the shock wave, at the
subeikonal level, couples to the helicity of objects scatter-
ing on it. Helicity is not conserved (unlike the net angular
momentum), which does not allow for the same real-virtual
cancellations as in Eq. (A6). In addition, virtual polarized
gluon correction is not DLA [1], which also prevents the
real-virtual cancellations from taking place. In the unpo-
larized evolution, the real-virtual cancellations ensure that
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [50,51], BK,
and JIMWLK evolution equations are UV finite. In the case
of helicity evolution [1], the real-virtual noncancellation
makes the transverse position integrals logarithmically
divergent in the UV, and this divergence is regularized
by the (inverse) c.m. energy, thus creating the DLA
resummation parameter αs ln2ð1=xÞ, which is absent in
the unpolarized evolution. Hence, the noncancellation we
see in Eq. (A12) appears to be intimately tied to the
generation of the DLA resummation parameter employed
in helicity evolution. Still, for the calculation at hand, this
noncancellation presents a problem. Since the noncancel-
lation (A12) appears to take place due to the more
“sophisticated” noneikonal interactions with the shock
wave, it seems reasonable to try to see whether shock
wave corrections may arise to cancel the contribution of the
undesirable region (A3).
To verify this hypothesis, let us consider a specific

contribution where the interaction with the shock wave in
Fig. 13 is due to the Born-level two-gluon exchange only.
Reinstating the (x · y) factors from Eqs. (51) and (52), we
rewrite Eq. (A12) as an equality (in the large-Nc limit),

jþ kþ � � � þ qþ p� þ q� þ 1

2
ðcþ eÞ

¼
�
αsNc

2π

�
2
Z

1

Λ2=s

dz2
z2

Z
1

z2

dz3
z3

Z
x2
10

1=z2s

dx221
x221

Z ðz2=z3Þx221
1=z3s

dx231
x231

× ½Gð0Þðx212; z2Þ −Gð0Þðx210; z2Þ�: ðA15Þ
In arriving at Eq. (A15), we have also integrated over
impact parameters (e.g., over x1). The explicit expression
for Gð0Þ is given in Eq. (A9).
The IR cutoff of x210 on the x221 integral results from

summing diagrams with the gluon 2 emitted or absorbed by
the antiquark at 0 as well. This cutoff is not essential for the
calculations below.

c. Two steps of evolution: Shock wave corrections

We will work in the A− ¼ 0 light-cone gauge of the
projectile. In this gauge, the shock wave correction dia-
grams potentially giving DLA contributions can be
obtained from the graphs in Fig. 11 by including another
gluon connecting the projectile and the target. The shock
wave corrections giving DLA contributions in the large-Nc
limit are shown in Fig. 14. We do not show the non-DLA
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shock wave corrections diagrams explicitly, since there are
more of these diagrams than the DLA shock wave
correction ones.
Once again, the quark line at 1 is polarized. However, we

do not show explicitly which quark-gluon vertices are
subeikonal (and, hence, transfer polarization), since in each
diagram it could be either the two vertices attached to the k3
or to the k3 þ l gluon lines—both contributions are
included in the calculation. Since the target is taken to
be a single quark, and the polarized line at 1 is a quark, the
large-Nc diagrams of Fig. 14 do not appear to be planar.
The quark at 1 and the quark in the target enter the

scattering process with large momenta p−
1 and pþ

2 (see the
diagram r in Fig. 14 for these momenta labels). We perform
the calculation in the following approximation:

p−
1 ; p

þ
2 ≫ kþ3 ; k

−
3 ; k3⊥; kþ2 ; k−2 ; k2⊥; lþ; l−; l⊥ ≫ pþ

1 ; p
−
2 :

ðA16Þ

In addition, we impose the kinematics of Eq. (A3),

k−3 ≫ k−2 ;
k23
2k−3

≫
k22
2k−2

: ðA17Þ

Among other things, this prevents the k3 and k3 þ l gluon
lines from connecting to the k2 gluon line, thus limiting the
number of diagrams.
The momentum labeling in the diagrams of Fig. 14 is not

random and demonstrates the diagrammatic phase space
which generates the DLA contributions. For instance, while
all kinematic assumptions are shown above in Eqs. (A16)
and (A17), the triple gluon vertex in, say, diagrams r and s
is eikonal only for k−2 ≫ jl−j, resulting in the k−3 ≫ k−2 ≫
jl−j ordering of light-cone momenta. In other diagrams of
Fig. 14, the k−2 ≫ jl−j-ordering results from the poles in the
calculation after the k−3 ≫ jl−j assumption was imposed.

FIG. 14. Shock wave correction diagrams in the large-Nc limit. The c.c. operation applies to the diagrams with the virtual gluon 2 only.
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Employing the same proportionality factor as in
Eq. (A12), after a rather tedious calculation, one arrives
at the following results in the DLA and in the large-Nc
limit,

r ¼ s ∝ −
1

2
½Gð0Þðx232; z2Þ − Gð0Þð1=Λ2; z2Þ�; ðA18aÞ

t ¼ u ∝
1

2
½Gð0Þðx231; z2Þ −Gð0Þð1=Λ2; z2Þ�; ðA18bÞ

v ¼ w ∝
1

4
½Gð0Þðx230; z2Þ −Gð0Þð1=Λ2; z2Þ�; ðA18cÞ

x ¼ y ∝ −
1

4
½Gð0Þðx231; z2Þ −Gð0Þð1=Λ2; z2Þ�; ðA18dÞ

with Λ an IR cutoff, as before. Once again, we stress that
only the helicity-dependent part of the diagrams is con-
sidered here; that is, the part proportions to σ1Σ with σ1 the
helicity of quark 1 and Σ the helicity of the target.
Combining all the shock wave correction diagrams, we
arrive at

rþ sþ � � � þ yþ v� þ w� þ x� þ y�

∝ −Gð0Þðx232; z2Þ þGð0Þðx230; z2Þ
≈ −Gð0Þðx212; z2Þ þ Gð0Þðx210; z2Þ: ðA19Þ

Inserting all the missing integrations and prefactors, we
rewrite Eq. (A19) as an equality,

rþsþ���þyþv�þw�þx�þy�

¼−
�
αsNc

2π

�
2
Z

1

Λ2=s

dz2
z2

Z
1

z2

dz3
z3

Z
x2
10

1=z2s

dx221
x221

Z ðz2=z3Þx221
1=z3s

dx231
x231

× ½Gð0Þðx212;z2Þ−Gð0Þðx210;z2Þ�: ðA20Þ

We see that, indeed, the shock wave corrections cancel the
inverse-ordering contribution (A15),

jþ kþ � � � þ qþ p� þ q� þ 1

2
ðcþ eÞ

þ rþ sþ � � � þ yþ v� þ w� þ x� þ y� ¼ 0: ðA21Þ

We conclude that the diagrams in the kinematics of
Eq. (A3) cancel. Hence, the inverse-ordering diagrams
do not contribute to our helicity evolution.

d. Early emission of the polarized gluon

For completeness, we should also consider the case when
the gluon 2 is polarized in the inverse-ordering kinematics
(A3). Our discussion here will be brief, following the steps
outlined above. The s-channel diagrams contributing to
the emission of gluons 2 and 3 in the polarized dipole 10 in
the large-Nc limit with the kinematics of (A3) and with the
gluon 2 being polarized are shown in Fig. 15.

I’

0

1

0

1

23

II’

2
3

III’

3
2

I III IV

0

1

0

1

23 2
3 3

2

VIII’

2 3

VII’

2

3

VI’

2

3

V’

2
3

VI

2
3

VII

2

3

II

2
3

VIII

2 3

V

IV’

2

3

2

3

FIG. 15. The large-Nc diagrams contributing to emission of two gluons (2 and 3) in a polarized dipole 10 in the kinematics of Eq. (A3)
for helicity evolution, now with the gluon 2 polarized.
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By analogy to Eq. (A6), we observe the following
cancellations:

1

2
VI þ VII þ VIII ¼ 0; ðA22aÞ

I0 þ II0 þ 1

2
III0 ¼ 0; ðA22bÞ

1

2
IV þ V þ 1

2
VI ¼ 0; ðA22cÞ

1

2
III0 þ IV 0 þ 1

2
V 0 ¼ 0; ðA22dÞ

I þ III þ 1

2
IV ¼ 0; ðA22eÞ

1

2
V 0 þ VI0 þ VIII0 ¼ 0: ðA22fÞ

We are left with the diagrams II and VII0. Their contri-
bution is

IIþVII0

¼
�
αsNc

2π

�
2
Z

1

Λ2=s

dz2
z2

Z
1

z2

dz3
z3

Z
x2
10

1=z2s

dx221
x221

Z ðz2=z3Þx221
1=z3s

dx231
x231

× 2½Gð0Þðx212; z2Þ þGð0Þðx220; z2Þ�: ðA23Þ

Again, we assume that the interaction with the shock wave
in Fig. 15 is a Born-level exchange of two t-channel gluons.
Based on the above calculations, we expect the remain-

ing diagrams II and VII’ from Fig. 15 to be canceled by the
diagrams of the type shown in Fig. 16 in the kinematics
of (A3).

e. Remaining shock wave corrections

The above conclusion that shock wave corrections could
be DLA may still be troubling; one may worry whether
similar shock wave corrections could affect the evolution in
the standard ordering (A2). This is a legitimate concern;
above, the inverse-ordering condition k−3 ≫ k−2 was impor-
tant for the selection of the shock wave correction diagrams
that contribute (e.g., line k3 does not connect to k2 in
Fig. 14) but was not important in the actual diagram eva-
luation. If we instead consider the standard momentum-
ordering condition k−2 ≫ k−3 , the shock wave corrections in
Fig. 14 appear to still contribute, while the diagrams in
Fig. 16 become impossible and can be discarded. The issue
of persistence of the shock wave correction diagrams in
Fig. 14 can be already seen at one step of the polarized
dipole evolution, as illustrated in Fig. 17. The diagrams in
Fig. 17 can be obtained by considering the diagrams in
Fig. 14 and removing the gluon 2 in the latter. Permutations
in Fig. 17 label the diagrams where either the gluon k2 or

the gluon k2 þ l connects to line 0. The diagrams in Fig. 17,
along with the permutations, combine to give (in the large-
Nc limit)

αsNc

2π

Z
z

1=ðsx2
10
Þ

dz2
z2

Z
x2
10

1=z2s

dx221
x221

½Gð0Þðx212; z2Þ −Gð0Þðx220; z2Þ�:

ðA24Þ

It appears that this contribution is not canceled by any other
shock wave correction diagram (or by any other diagram
not included in one step of evolution). Hence, it has to be
included in the final answer. Below, we present a way this
contribution can be incorporated in helicity evolution based
on the existing calculations; our results below are tentative
and will have to be verified by a detailed calculation of the
shock wave corrections with the standard momentum
ordering (A2) in the future.
The diagrams in Fig. 17 can be redrawn as being due to

emissions of the long-lived (in the x− direction) gluons k2

FIG. 16. The types of shock wave diagrams that should cancel
the contributions of the diagrams II and VII’ in Eq. (A23).

FIG. 17. Shock wave corrections to the dipole amplitude at one
step of DLA evolution.
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and k2 þ l, the emission of which can be described by the
kernel Kβ. Since factorization of the diagrams in Fig. 17
into the long-lived gluons k2 and k2 þ l and a quick
interaction with the target is possible, it appears that the
contribution of the diagrams in Fig. 17 can be included into
helicity evolution by modifying the initial conditions.
Compare the contribution (A24) to one step of the large-
Nc evolution for the polarized dipole amplitude, where the
evolution is generated only by the emission of the polarized
gluon (that is, by the application ofKβ kernel from (52); see
also the first line of Eq. (80) in Ref. [1])

αsNc

2π

Z
z

1=ðsx2
10
Þ

dz2
z2

Z
x2
10

1=z2s

dx221
x221

½2G12ðz2Þ þ 2Γ20;21ðz2Þ�:

ðA25Þ

Here, we have employed the neighbor polarized dipole
amplitude Γ20;21ðz2Þ, the definition of which can be found
in Refs. [1,15–17]. We see that the contribution (A24) can

be generated by the evolution (A25) ifG12ðz2Þ ¼ 1
2
Gð0Þ

12 ðz2Þ
and Γ20;21ðz2Þ ¼ − 1

2
Gð0Þ

20 ðz2Þ. [Note that Eq. (A24) is
integrated over impact parameters, while Eq. (A25) is
written for the fixed impact parameter.] It appears that
we need to add the following corrections to the inhomo-
geneous terms of the equations for G and Γ:

δGð0Þ
12 ðz2Þ ¼

1

2
Gð0Þ

12 ðz2Þ; δΓ20;21ðz2Þ ¼ −
1

2
Gð0Þ

20 ðz2Þ:
ðA26Þ

For completeness, let us quote the resulting large-Nc
helicity evolution equations:

G10ðzÞ ¼
3

2
Gð0Þ

10 ðzÞ þQð0Þ
10 ðzÞ

þ αsNc

2π

Z
z

1

sx2
10

dz0

z0

Z
x2
10

1

z0s

dx221
x221

½Γ10;21ðz0Þ þ 3G21ðz0Þ�;

ðA27aÞ

Γ10;21ðz0Þ ¼
1

2
Gð0Þ

10 ðzÞ þQð0Þ
10 ðz0Þ

þ αsNc

2π

Z
z0

minfΛ2; 1

x2
10

g=s

dz00

z00

×
Z

minfx2
10
;x2

21
z0=z00g

1

z00s

dx232
x232

½Γ10;32ðz00Þ þ 3G32ðz00Þ�:

ðA27bÞ

Here, Qð0Þ
10 ðzÞ is the contribution to the inhomogeneous

term due to Born-level exchange of t-channel quarks. (A
more detailed calculation may be needed to determine
whether this quark exchange contribution also gets modi-
fied by some diagrams analogous to those in Fig. 17.) Note
that the small-x asymptotics is unaffected by the exact form
of the inhomogeneous terms in Eq. (A27) [18]; hence, the
modifications of the inhomogeneous terms in Eq. (A27)
would not change the small-x asymptotics of helicity
distributions derived in Refs. [16,18,19]. The inhomo-
geneous terms in the large-Nc&Nf equations [1,17] have
to be modified accordingly as well. The diagrams in Fig. 17
should also be taken into consideration when constructing

the inhomogeneous term Wð0Þpol
τ for the helicity JIMWLK

derived in the main text (to be further detailed in Ref. [58]).
Since we did not perform a full calculation of the shock
wave corrections for the standard momentum ordering
(k−2 ≫ k−3 ), our conclusions in this subsection on how
the inhomogeneous terms get modified are only tentative.
Finally, let us make the following observation: in the

A− ¼ 0 gauge, the interaction with the target always
struggles to be eikonal. Eikonal quark-gluon vertices in
the “þ”-moving target come in with γþ, which couples to
the A− component of the gluon field, which is zero in the
A− ¼ 0 gauge. The leading gluon field component in this
gauge is the transverse field, AðxÞ. Unpolarized interaction
of two A⊥ gluons with the target is eikonal due to pinching
of the 1=l− pole in the gluon propagators. Note that after
this pole pinching the l− integration is already carried out
and cannot give us a logarithm of energy. Interaction of
three A⊥ gluons with the target, as pictured in Fig. 17,
includes the pinching of the 1=l− pole, along with the
unpinched integral over k−2 , which gives a logarithm of
energy. Due to the absence of pinching in the k−2 integral,
the contribution is subeikonal, as expected for helicity. We
see that the direct interaction of the gluons with the target
can be of two types: it can either be eikonal due to pinching
(but not logarithmic), or it can be energy suppressed and
bring in a logarithm of energy. Therefore, if we are doing
our calculation at the subeikonal level, we can only have
one k−2 -type gluon interacting with the target, bringing in
energy suppression and a logarithm of energy; more than
three exchanges of such logarithm-generating gluons with
the target are further suppressed in energy and are sub-
subeikonal and beyond. Additional exchanges of pinched
gluons, beyond those at the leading order, do not bring
logarithms of energy and are not DLA. Hence, at the
subeikonal level of this helicity calculation, and at DLA, we
cannot have more than three A⊥ gluons interacting with the
target directly. This means that the diagrams in Fig. 17 are
the only types of direct interaction of more than two A⊥
gluons with the target possible in our subeikonal helicity
calculation. By including them in the modification of the
initial conditions for our evolution, we accounted for all
such target-interaction contributions.
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We conclude this Appendix by summarizing one more
time that we have observed cancellations between the s-
channel diagrams and shock wave corrections in the
inverse-ordering kinematics (A3) for helicity evolution.
In the standard small-x evolution ordering of lifetimes
(A1) and light-cone momentum fractions (A2), the shock

wave corrections appear to contribute and can be
absorbed into the inhomogeneous terms for the evolu-
tion. These results present one of the most stringent
cross-checks to date of the helicity evolution equations
derived in Refs. [1,15–17] and employed in the main
text here.
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