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The BESIII Collaboration recently reported the observation of the a0ð980Þ0 − f0ð980Þ mixing in the
isospin-breaking decay J=ψ → ηπ0ϕ. In the Dalitz plot for that decay with the η reconstructed from two
photons, there is a band around 1.4 GeV on the π0ϕ distribution. In general, this peak can be due to a
resonance or a kinematic effect. In this paper, we study the effects of a set of K�KK̄ triangle diagrams
and show that due to triangle singularities such diagrams can lead to a peak around 1.4 GeV in the π0ϕ
invariant mass distribution, which is a model-independent conclusion. The Dalitz plot induced by such
a mechanism has a feature consistent with the BESIII observation; namely, events along the band
accumulate at both ends close to the Dalitz plot boundary. The effects of the same mechanism on the
J=ψ → π0π0ϕ and J=ψ → ηπ0KþK− decays are also investigated. We suggest to take more data for the
J=ψ → ηπ0ϕ → ηπ0KþK− and check whether the structure around 1.4 GeV persists for the KþK−

invariant mass away from the ϕ mass region. This is crucial for understanding whether the band is due
to triangle singularities or due to a resonance. Were it the latter, the band should remain, while it would
not if it is due to the former.
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I. INTRODUCTION

The BESIII Collaboration reported observations of the
a0ð980Þ0 − f0ð980Þ mixing in the processes J=ψ →
ϕf0ð980Þ → ϕa0ð980Þ0 → ϕπ0η and χc1 → a0ð980Þ0π0 →
f0ð980Þπ0 → πþπ−π0 [1,2]. The isospin of the a0ð980Þ0 is
1 and that of the f0ð980Þ is 0, and, thus, their mixing breaks
isospin. Both of the two resonances couple strongly to the
KK̄ meson pair [3], so that the mixing can happen through
their coupling to the KK̄ intermediate states, and the mass
difference between the charged and neutral kaons gives the
isospin breaking. Then the mixing probability depends
crucially on the coupling strengths of the a0ð980Þ and
f0ð980Þ to the KK̄. Such a mixing mechanism was first
proposed in the late 1970s [4] and was suggested to contain
important information to clarify the nature of these two
mesons. That is because the effective couplings of these

mesons to the kaons can be related to their probabilities to
be KK̄ molecules (see Refs. [5–8] for discussions based on
extensions of Weinberg’s compositeness relations [9]). The
J=ψ → ηπ0ϕ reaction as a probe of the a0ð980Þ0 − f0ð980Þ
mixing was suggested in Ref. [10] and was further analyzed
using unitarized chiral approaches in Refs. [11,12].
In the Dalitz plot of the J=ψ → ηπ0ϕ processmeasured by

the BESIII Collaboration (see Fig. 1 in Ref. [2]), it is clear
that there is a peak near the KK̄ threshold on the ηπ0

distribution which can be interpreted as the a0ð980Þ0 −
f0ð980Þ mixing. In addition, there is also a clear accumu-
lation of events for the π0ϕ invariant mass being around
1.4GeV,whichwould be a peak if the Dalitz plot is projected
to the π0ϕ invariant mass distribution. In general, this peak
can be due to a resonancewith amass about 1.4GeV (isospin
I ¼ 1 or I ¼ 0) or a kinematic effect. From the first point of
view, because the S-wave π0ϕ has JPC ¼ 1þ− and this decay
breaks isospin symmetry, that peak may be related to the
isovector resonance claimed in Ref. [13] or the isoscalar
h1ð1380Þ whose mass is about 1.41 GeV [3,14,15].1 From
the second point of view, because this is an isospin-breaking
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1Some discussions on the spectrum of axial-vector mesons
with qq̄ constituents can be found in, e.g., Refs. [16,17], and a
possible description of the h1ð1380Þ as a K�K̄ molecule was
proposed in Ref. [18].
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process and that peak position about 1.4 GeV is near
the threshold of K�K̄, similar to the enhancement of the
isospin violation by triangle singularity as seen in the
ηð1405=1475Þ → π0f0ð980Þ [19–23], triangle diagrams
involving K�K̄K intermediate states can also lead to a peak
and a significant isospin-breaking enhancement here [see
also Sec. VI.A.4 in Ref. [24] and references therein for the
discussion of the possible role of triangle singularity on
the h1ð1380Þ].
Triangle singularity is the leading Landau singularity

[25] of a triangle diagram, and it depends crucially on the
kinematics. To be more specific, when all of the three
intermediate particles in a triangle diagram are on shell,
moving collinearly, and all of the interaction vertices
satisfy the energy-momentum conservation [26], the
physical amplitude has a logarithmic triangle singularity
leading to a peak in the invariant mass distributions (see
also Ref. [27] for an intuitive picture of triangle singu-
larity with a reformulation based on a diagrammatic
approach). The production of π0ϕ in the reaction π−p →
π0ϕn from the K�K̄K triangle singularity mechanism has
been studied in Ref. [28]. In the J=ψ → ηπ0ϕ reaction, we
focus on the diagrams that can lead to a peak around the
K�K̄ threshold, about 1.4 GeV, in the π0ϕ distribution,
and thus consider the triangle diagrams shown in Fig. 1.
The triangle singularity for each of these diagrams is at
the physical boundary when the kinematics is such that
the following processes happen: First, the J=ψ decays
into ηK�K̄ (the charge-conjugated K̄�K diagrams are also
included; see Fig. 1), and the K� decays into πK
subsequently; then the K moves in the same direction
with the K̄ and catches up with it, and the KK̄ pair finally
forms the ϕ. Triangle singularity effects of the K�KK̄
loops have been studied for processes with the KK̄ pair
forming an f0ð980Þ or a0ð980Þ instead of a ϕ in
Refs. [19–23,29–34].

This paper is organized as follows. In Sec. II, we set up
the formalism for calculating the decays J=ψ → ηπ0ϕ,
J=ψ → π0π0ϕ, and J=ψ → ηπ0KK̄. For the last process,
the KK̄ can be either isovector or isoscalar, and the
isoscalar KK̄ final state interaction (FSI) is taken into
account using the inverse amplitude method. As will be
shown in Sec. III, by considering the triangle diagrams
shown in Fig. 1 for the J=ψ → ηπ0ϕ, a peak appears in
the π0ϕ invariant mass distribution around 1.4 GeV by
virtue of triangle singularity, which might be the physics
behind the band at mπ0ϕ ≃ 1.4 GeV in the Dalitz plot
measured by the BESIII Collaboration, as they have
similar gross features. The results for the π0ϕ distribution
of the J=ψ → π0π0ϕ reaction will also be shown, and the
peak induced by the triangle diagrams is much broader,
since this is an isospin symmetry-conserving reaction. A
brief summary is given in Sec. IV. Some decay ampli-
tudes and a derivation of the generic n-body phase space
are relegated in Appendixes A and B, respectively.

II. FORMALISM

A. J=ψ → ηπ0ϕ

The diagrams we consider for the J=ψ → ηπ0ϕ are
shown in Fig. 1. To obtain the decay amplitude, we use
the following effective Lagrangian for the J=ψ → ηK�K̄,
K� → πK, and KK̄ → ϕ vertices:

Lint ¼ LJVPP þ LVPP;

LJVPP ¼ g1JμhVμPPi;
LVPP ¼ −ig2hVμ½P; ∂μP�i; ð1Þ

where g1 and g2 are coupling constants and Jμ is the
field operator of the J=ψ , which as a charmonium is a
light-flavor SU(3) singlet state. The light pseudoscalar

(a) (b)

(c) (d)

FIG. 1. Triangle diagrams in the J=ψ decay into ηπ0ϕ that can produce a peak at mπ0ϕ ≃ 1.4 GeV without a resonance.
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meson octet and vector meson nonet matrices are denoted
by P and Vμ, respectively:

P ¼ 1ffiffiffi
2

p

0
BB@

π0 þ 1ffiffi
3

p η
ffiffiffi
2

p
πþ

ffiffiffi
2

p
Kþ

ffiffiffi
2

p
π− −π0 þ 1ffiffi

3
p η

ffiffiffi
2

p
K0

ffiffiffi
2

p
K−

ffiffiffi
2

p
K̄0 − 2ffiffi

3
p η

1
CCA;

Vμ ¼
1ffiffiffi
2

p

0
BB@

ρ0 þ ω
ffiffiffi
2

p
ρþ

ffiffiffi
2

p
K�þffiffiffi

2
p

ρ− −ρ0 þ ω
ffiffiffi
2

p
K�0ffiffiffi

2
p

K�− ffiffiffi
2

p
K̄�0 ffiffiffi

2
p

ϕ

1
CCA

μ

; ð2Þ

where the ideal mixing between the ω and ϕ is assumed
such that the valence quarks for them are ðuūþ dd̄Þ= ffiffiffi

2
p

and ss̄, respectively. The VPP Lagrangian2 in Eq. (1) may
be obtained in the hidden-local symmetry framework (see,
e.g., Refs. [35–37], and references therein), and the
effective Lagrangian for the J=ψVPP vertex has been used
in Refs. [38–40] to study the J=ψ decays into one vector
and two pseudoscalar mesons. A term proportional to
JμhVμihPPi involves two flavor traces; thus, it is sup-
pressed by a factor of 1=Nc, with Nc being the number of
colors, compared to Eq. (1), and will not be considered in
this calculation. Indeed, this term was considered in
Ref. [40] and was found relatively small.
The decay J=ψ → ηπ0ϕ breaks isospin symmetry. In the

mechanism considered in this study, the isospin breaking
comes from the mass differences between the charged and
neutral K and K� mesons in the triangle loops shown in
Fig. 1. From the Lagrangian given above, one can obtain
the amplitude for each vertex:

−itJ=ψ ;K�þK−η ¼ i
1ffiffiffi
6

p g1ϵ
μ
J=ψϵ

�ν
K�þgμν;

−itJ=ψ ;K�0K̄0η ¼ i
1ffiffiffi
6

p g1ϵ
μ
J=ψϵ

�ν
K�0gμν;

−itJ=ψ ;K�−Kþη ¼ i
1ffiffiffi
6

p g1ϵ
μ
J=ψϵ

�ν
K�−gμν;

−itJ=ψ ;K̄�0K0η ¼ i
1ffiffiffi
6

p g1ϵ
μ
J=ψϵ

�ν
K̄�0gμν;

−itK�þ;Kþπ0 ¼ −i
ffiffiffi
2

p

2
g2ϵ

μ
K�þðpKþ − pπ0Þμ;

−itK�−;K−π0 ¼ −i
ffiffiffi
2

p

2
g2ϵ

μ
K�−ðpπ0 − pK−Þμ;

−itK�0;K0π0 ¼ −i
ffiffiffi
2

p

2
g2ϵ

μ
K�0ðpπ0 − pK0Þμ;

−itK̄�0;K̄0π0 ¼ −i
ffiffiffi
2

p

2
g2ϵ

μ
K̄�0ðpK̄0 − pπ0Þμ;

−itϕ;KþK− ¼ −ig2ϵ
μ
ϕðpKþ − pK−Þμ;

−itϕ;K0K̄0 ¼ −ig2ϵ
μ
ϕðpK0 − pK̄0Þμ: ð3Þ

The coupling constant g2 for the coupling of ϕ → KK̄,
K� → πK, and K̄� → πK̄ can be fixed from reproducing the
observed ϕ andK� widths [3]: g2 ≃ 4.5. The parameter g1 is
unknown. However, since we care only about the shape and
relative size of the invariant mass distributions, we may
set g1 ¼ 1.3

With Eq. (3), the amplitude for a given diagram in Fig. 1
can be written as follows:

−iMid ¼ −
g1g22
2

ffiffiffi
3

p ϵμJ=ψϵ
ν
ϕ

Z
d4q
ð2πÞ4

½−gμλ þ ðqþ k1Þμðqþ k1Þλ=m2
K�

id
�ðqþ 2k2 − k1Þλð2qþ k2Þν

ðq2 −m2
Kid

þ iϵÞ½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ�≡ −

g1g22
2

ffiffiffi
3

p ϵμJ=ψϵ
ν
ϕM

id
μν;

ð4Þ

where the index id ¼ CðNÞ corresponds to the process with
charged (neutral) intermediate particles. The details ofMμν

id
are given in Appendix A. Adding these charged and neutral
loop amplitudes with appropriate phases, the total ampli-
tude is given by

MJ=ψ→ηπ0ϕ ¼ 2ðMC −MNÞ: ð5Þ

The factor 2 is to take account of the charge-conjugated
contributions; i.e., the amplitudes for Figs. 1(a) and 1(c)
give the same contribution as those for Figs. 1(b) and 1(d).

As one can see from Eq. (4), the amplitudes MC and MN
differ only by the masses of the intermediate mesons K and
K�, and in the isospin limit, which is realized by using
identical masses for the mesons in the same isospin
multiplet, MC and MN in Eq. (5) would exactly cancel
each other. We calculate this amplitude in the center-of-
mass (c.m.) frame of the π0 and ϕ pair and choose the π0

momentum direction as the z direction.
The differential width of this process can be written as

(see Appendix B for details of the phase-space factor)

2One can check that this VPP Lagrangian is phenomenologi-
cally good at explaining the strong interaction decay width of
light vector mesons.

3In fact, the value of g2 is also irrelevant for the characteristic
feature of the nontrivial structures in question.

TRIANGLE SINGULARITIES IN … PHYS. REV. D 100, 114010 (2019)

114010-3



dΓ ¼ 1

ð2πÞ524m2
J=ψ

1

3

X
spin

jMj2jp1jjp�
2jdΩ1dΩ�

2dm23; ð6Þ

where the quantities marked with � are evaluated in the
c.m. frame of particle 2 and particle 3 in the final states and
the momentum ðjp1j;Ω1Þ is the momentum of particle 1 in
the rest frame of the decay particle. Since we are interested
in the invariant mass distribution of π0ϕ, we choose η as
particle 1, π0 as particle 2, and ϕ as particle 3. Then the
differential width is given by

dΓJ=ψ→ηπ0ϕ

dmπ0ϕ
¼ jpηjjp�

π0
j

ð2πÞ524m2
J=ψ

1

3

Z
dΩηdΩ�

π0

X
spin

jMJ=ψ→ηπ0ϕj2;

ð7Þ

with
P

spin summing over polarizations of J=ψ and ϕ and
the amplitude MJ=ψ→ηπ0ϕ given in Eq. (5).

B. J=ψ → ηπ0KK̄

In the experimental measurement, the ϕ is reconstructed
from its decays into the KþK− final states with the KþK−

invariantmass in the region ½mϕ − 10 MeV; mϕ þ 10 MeV�.
For a direct comparison with the experimental data, we need
to take into account the subsequential decay of the ϕ into
KþK−, which means the ηπ0KþK− in the final state. In this
case, since the K� decay into Kπ with an almost 100%
branching fraction, tree diagrams should be included in
addition to the triangle loop ones. The diagrams for this
process considered here are shown in Fig. 2. The triangle
diagrams involve the KK̄ → KK̄ final state interaction. We
consider theP-waveKK̄ scattering amplitude with quantum
numbers ðI; JÞ ¼ ð0; 1Þ and (1, 1). For simplicity, only the
contribution of the ϕ meson is considered in the (0,1)

channel. For the KK̄ ðI; JÞ ¼ ð1; 1Þ amplitude, we employ
the inverse amplitude method as developed in Ref. [41],
which is a unitary extension of the chiral perturbation theory
and can describe the meson-meson scattering data up to
1.2 GeV. In this approach, the unitarized T matrix for a given
partial wave can be written as

T ¼ T2ðT2 − T4 − T2GT2Þ−1T2; ð8Þ

where T2 is the partial wave scattering amplitude from the
leading-order chiral Lagrangian, T4 is the polynomial tree-
level amplitude from the next-to-leading-order chiral
Lagrangian, and G is a diagonal matrix given by the loop
integrals with two meson propagators. One can find the
specific form of the T matrix in Ref. [41]. Here, we use the
isospin symmetric KK̄ → KK̄ amplitude to concentrate on
the effect of triangle singularities. The amplitudes for the
KK̄ → KK̄ FSI with quantum numbers ðI; JÞ ¼ ð0; 1Þ and
(1, 1) are written as

−itð0;1Þ ¼−ig22
ð−gμνþpμ

ϕp
ν
ϕ=m

2
ϕÞ

m2
KK̄ −m2

ϕþ imϕΓϕ
ðpin

K −pin
K̄Þμðpout

K −pout
K̄ Þν

¼ i
g22

m2
KK̄ −m2

ϕþ imϕΓϕ
ðpin

K −pin
K̄Þμðpout

K −pout
K̄ Þμ

≡−it̃ð0;1Þðpin
K −pin

K̄Þμðpout
K −pout

K̄ Þμ; ð9Þ

−itð1;1Þ ¼ −i3ðT11Þ22 cos θ

¼ −i3ðT11Þ22
ðpin

K − pin
K̄Þμðpout

K − pout
K̄ Þμ

4qinqout

≡ −it̃ð1;1Þðpin
K − pin

K̄Þμðpout
K − pout

K̄ Þμ; ð10Þ

where mϕ ¼ 1019.5 MeV and Γϕ ¼ 4.2 MeV are the mass
andwidth of theϕmeson, respectively [3],pϕ ¼ pout

K þ pout
K̄ ,

FIG. 2. Feynman diagrams for the J=ψ decay into ηπ0KþK− considered in this work. In the triangle diagrams, both the charged and
neutral K and K� mesons are taken into account as in Fig. 1. In the second line, ðT01Þ22 and ðT11Þ22 refer to the P-wave KK̄ → KK̄
scattering amplitudes with isospin I ¼ 0 and I ¼ 1, respectively.
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and θ is the angle between the 3-momenta ofKmesons in the
loop and final state in the KK̄ c.m. frame. The momenta pin

K
andpout

K (pin
K̄ andpout

K̄ ) denote theK (K̄) momenta in the loop
and final state, respectively, and qin and qout are the
magnitudes of the corresponding c.m. momenta. The T
matrix T11 is a two-channel matrix with the quantum
numbers ðI ¼ 1; J ¼ 1Þ, whose elements ðT11Þ11, ðT11Þ12,
and ðT11Þ22 correspond to the P-wave scattering amplitudes
for ππ → ππ, ππ → KK̄, and KK̄ → KK̄, respectively. The
purpose of our calculation is to study the influence of triangle
singularity on the π0KK̄ invariant mass distribution, so we
focus on the kinematic region where triangle singularity
occurs, i.e., for all the intermediate particles being on shell.
We approximate the momentum qin in the denominator of
Eq. (10) for the KK̄ scattering vertex with the on-shell

momentum qc:m: ¼ qout ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

KK̄=4 −m2
K

q
.4 Before we

apply this formula, we need to transform the particle basis
from the isospin space to the charged space:

jKK̄iI¼0 ¼ −
1ffiffiffi
2

p jKþK−i − 1ffiffiffi
2

p jK0K̄0i;

jKK̄iI¼1;I3¼0 ¼ −
1ffiffiffi
2

p jKþK−i þ 1ffiffiffi
2

p jK0K̄0i; ð11Þ

where the phase convention jK−i ¼ −jI ¼ 1=2; Iz ¼
−1=2i, the same as that in Ref. [41], is used. Then, the
J=ψ → ηπ0KþK− amplitudes of the tree and triangle loop
diagrams shown in Fig. 2 can be written as follows:

−iMtree ¼ −i
1

2
ffiffiffi
3

p g1g2ϵ
μ
J=ψ

�−ðpπ0 − pKÞμ þ ðpπ0 þ pKÞμðm2
π0
−m2

KÞ=m2
K�

m2
π0KK̄ − 2mπ0KK̄EK̄ þm2

K −m2
K� þ iϵ

þ −ðpπ0 − pK̄Þμ þ ðpπ0 þ pK̄Þμðm2
π0
−m2

KÞ=m2
K�

m2
π0KK̄ − 2mπ0KK̄EK þm2

K −m2
K� þ iϵ

�
;

−iMI¼0
loop ¼ −

1

2
ffiffiffi
3

p g1g2ϵ
μ
J=ψðMC

μν −MN
μνÞt̃ð0;1ÞðpK̄ − pKÞν;

−iMI¼1
loop ¼ −

1

2
ffiffiffi
3

p g1g2ϵ
μ
J=ψðMC

μν þMN
μνÞt̃ð1;1ÞðpK̄ − pKÞν;

Mtot ¼ Mtree þMI¼0
loop þMI¼1

loop: ð12Þ

Finally, as shown in Appendix B, the differential width
of this four-body decay process can be written as

dΓ ¼ 1

ð2πÞ825m2
J=ψ

1

3

X
spin

jMtotj2jp1jjp0
2jjp00

3jdΩ1dΩ0
2

× dΩ00
3dm234dm34; ð13Þ

where the momenta ðjp1j;Ω1Þ, ðjp0
2j;Ω0

2Þ, and ðjp00
3j;Ω00

3Þ
are evaluated in the rest frame of the decaying particle,
particles 2þ 3þ 4, and particles 3þ 4, respectively. We

choose η as particle 1, π0 as particle 2, K as particle 3, and
K̄ as particle 4. Then the double differential distribution is
given by

d2ΓJ=ψ→ηπ0KK̄

dmπ0KK̄dmKK̄
¼ jpηjjp0

π0
jjp00

Kj
ð2πÞ825m2

J=ψ

1

3

Z
dΩηdΩ0

π0
dΩ00

K

X
spin

jMtotj2:

ð14Þ

C. J=ψ → π0π0ϕ

Furthermore, we can consider the J=ψ → π0π0ϕ
process with little additional effort, because we need only
to replace the η by the π0 in Fig. 1. The difference is that the
J=ψ → ηπ0ϕ breaks isospin symmetry, while this process
is isospin conserving. The J=ψ → ππϕ reaction has been
studied in Refs. [38,39,42,43] using the S-wave ππ final
state interactions to explain the structures in the ππ
invariant mass distributions of the J=ψ → ϕππ and J=ψ →
ωππ [44–46].
From the Lagrangian in Eq. (1), we can obtain the

following J=ψ → π0K�K̄ amplitudes:

4Because the triangle singularity appears when the internal
particles are on shell, the off-shell contribution that is neglected
here just gives nonsingular contributions that are smooth in
invariant mass distributions. Then, the structure around 1.4 GeV
to be discussed later would not be changed by this approximation.
Particularly, in the isospin-violating J=ψ → ηπ0ϕ reaction, the
process is driven by the triangle singularities, and the nonsingular
contribution from the off-shell part would have a large cancella-
tion between the charged and neutral meson loops due to the
isospin symmetry.
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−itJ=ψ ;K�þK−π0 ¼ i

ffiffiffi
2

p

2
g1ϵ

μ
J=ψϵ

�ν
K�þgμν;

−itJ=ψ ;K�0K̄0π0 ¼ −i
ffiffiffi
2

p

2
g1ϵ

μ
J=ψϵ

�ν
K�0gμν;

−itJ=ψ ;K�−Kþπ0 ¼ i

ffiffiffi
2

p

2
g1ϵ

μ
J=ψϵ

�ν
K�−gμν;

−itJ=ψ ;K̄�0K0π0 ¼ −i
ffiffiffi
2

p

2
g1ϵ

μ
J=ψϵ

�ν
K̄�0gμν: ð15Þ

Because of the difference of the signs from those in Eq. (3)
for the J=ψ → ηK�K̄ case, the total amplitude of the
J=ψ → π0π0ϕ is given by

MJ=ψ→π0π0ϕ ¼ 2ðMC þMNÞ: ð16Þ
One sees that the charged and neutral intermediate states
give the same contributions in the isospin limit as expected,
since the transition preserves isospin symmetry.
The π0ϕ mass distribution is obtained from Eq. (7)

by replacing η with π0 and multiplying an additional
factor 1=2! due to the identical two neutral pions in
the J=ψ → π0π0ϕ.

III. RESULTS

A. General discussion

Triangle singularity at the physical boundary can be
easily obtained by solving the equation derived in Ref. [27],
which reads (see Fig. 3 for the particle assignment)

qonþ ¼ qa−;

with qonþ ¼ 1

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2; m2

1; m
2
2Þ

q
;

qa− ¼ γðβE�
2 − p�

2Þ; ð17Þ
where λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy − 2yz − 2zx is the
Källén triangle function, E�

2 ¼ ðm2
23 þm2

2 −m2
3Þ=ð2m23Þ

and p�
2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

23; m
2
2; m

2
3Þ

p
=ð2m23Þ are the energy and the

magnitude, respectively, of the 3-momentum of particle m2

in the c.m. frame of ðm2; m3Þ, β is the magnitude of the
velocity of ðm2; m3Þ system in the c.m. frame of ðm1; m2Þ,
and γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
is the Lorentz boost factor from the

ðm2; m3Þ c.m. frame to the ðm1; m2Þ c.m. frame.

For the triangle singularity to be on the physical boundary,
the physical conditions of which are given by the Coleman-
Norton theorem [26], the above equation needs to have a real
solution, and all the arguments of the involved square root
functions need to be positive. Physically, this means that all
the intermediate particles go on shell, moving collinearly, the
m3 particle from the decay of m1 should be fast enough to
catch up with them2 from the decay ofM, and then particles
m2 andm3 interact like a classical process producing external
particle(s) with an invariant massm23. For more discussions,
we refer to, e.g., Refs. [47,48].
If we fix the masses of the intermediate states and the

invariant mass m13 (corresponding to the π0 mass for the
question under study), then to have a physical region
singularity requires the lower bound for the invariant mass
m23 to be the m2 þm3 threshold, and the upper bound can
be obtained by solving Eq. (17) withM ¼ m1 þm2, i.e., at
the boundary that m1 and m2 can be on shell. As a result,
the region of m23 for having a triangle singularity in the
invariant mass distribution ofM at the physical boundary is

m23∈
h
m2þm3;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðm1þm2Þðm2

3þm1m2Þ−m2m2
13�=m1

q i
:

ð18Þ

B. J=ψ → ηπ0ϕ

We can compute where the logarithmic singularities
of the charged and neutral K�KK̄ triangle loops in
Figs. 1 and 2 are located using Eq. (17). For the J=ψ →
ηπ0ϕ reaction, let us fix the KK̄ invariant mass to the ϕ
meson mass first. Neglecting the K� width, the triangle
singularities for diagrams with the charged [Figs. 1(a)
and 1(b)] and neutral [Figs. 1(c) and 1(d)] intermediate
states are located at 1385.7 and 1395.6 MeV, respectively.
The former is slightly above the K�þK− threshold at
1385.3 MeV (we take the central values in Ref. [3] for
the masses), and the latter is 2 MeV above the K�0K̄0

threshold at 1393.6 MeV. Therefore, we will see two sharp
peaks in the π0ϕ invariant mass distribution,5 and each of
the peaks has a cusp at the K�K̄ threshold on its left
shoulder. When the K� width is taken into account, the
sharp peaks will be smeared to a smooth and much broader
peak with a width dictated by the K� width. For a detailed
study of the width effects on triangle singularity, we refer to
Refs. [23,49].
In Fig. 4, we show the π0ϕ invariant mass distribution

given by Eq. (7) with and without considering theK� width.
The behavior of the curves is exactly as expected in

FIG. 3. Triangle diagram with the intermediate particles with
masses m1;2;3. M, m13, and m23 are the invariant masses of
external particles. The two vertical dashed lines denote two cuts.

5In this case, the singularities are at the physical boundary,
which means that the triangle loop amplitudes have logarithmic
singularities in the physical region. This, of course, will not
happen in the real physical case, because, for all the particles
being on shell, the K� must be able to decay so that the
singularities move to the complex plane.
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the above. The red solid line is the π0ϕ invariant mass
distribution of J=ψ → ηπ0ϕ without the K� width. Two
singularities emerging from the charged and neutral
K�K̄K loops show up at around 1386 and 1396 MeV,
respectively.6 The dashed curve in the figure is obtained
by using a complex mass mK� − iΓK�=2 for the K� with
ΓK� ¼ 50 MeV.With the formula for the triangle singularity
in Eq. (17), the two triangle singularities for the charged
and neutral intermediate states are now located at
1385.6 − i25.5 and 1395.5 − i26.1 MeV, where the imagi-
nary parts are introduced by the finite width ofK�. Since the
difference between the two real parts is much smaller than
twice the imaginary part, the two singularities lead to only a
single broad peak shown as the dashed curve. Thus, the two
peaks from the charged and neutralK�K̄K loopswith isospin
mass splitting turn into a single peak in the π0ϕ distribution
with the inclusion of the K� width.
The BESIII Collaboration reported the Dalitz plot dis-

tribution for the decay J=ψ → ηπ0ϕ in the ðm2
ηπ0

; m2
π0ϕ

Þ
plane [2]. Here, let us discuss the triangle singularity
contribution to the Dalitz plot. Note that the a0ð980Þ=
f0ð980Þ resonances seen in the Dalitz plot (along the π0η
direction) in Ref. [2], as well as other resonances listed in the
Review of Particle Physics [3], are not considered here,
because they cannot produce any nontrivial narrow structure
in the π0ϕ invariant mass distribution (as can be anticipated
from the Dalitz plot projection), which is the focus here. The
mechanism discussed here is important only in a small
energy region formπ0ϕ not far from the K�K̄ threshold. This
means that the extension of our calculation to thewhole phase

spacewould not be adequate. However, as we discuss below,
themain feature of the triangle singularity contribution to the
Dalitz plot is consistent with what was observed by the
BESIII Collaboration.
With Eq. (7), the Dalitz plot distribution is given by

d2Γ
dm2

ηπ0
dm2

π0ϕ

¼ 1

2jpηjjpπ0 j
d2Γ

dm2
π0ϕ

d cos θ
∝ jMJ=ψ→ηπ0ϕj2

ð19Þ

with the amplitude MJ=ψ→ηπ0ϕ given in Eq. (5).
Considering the K� width, the resulting Dalitz plot is
shown in Fig. 5. One can see that the peak shown as the
dashed line in Fig. 4 in fact shows up as an accumulation of
events at both ends of the phase-space-allowed region for
mηπ0 . The reason for such a behavior is that triangle
singularity happens when all the particles move collinearly
(see, e.g., discussions in Ref. [27]), which corresponds to
the boundary of the Dalitz plot. Therefore, the effects
should show up most prominently at mπ0ϕ ∼ 1.39 GeV and
at the two ends of the physical mπ0η region. In the Dalitz
plot given by the BESIII Collaboration with the η recon-
structed from two photons [2], there is a clear band at
mπ0ϕ ∼ 1.4 GeV, and the events along the band accumulate
around the two ends. Except that in the low mπ0η region
there is a large contribution from the f0ð980Þ and a0ð980Þ
resonances, which are not considered here, the gross feature
of the band is consistent with what is shown in Fig. 5. Data
with higher statistics are called for in order to make a firm
conclusion on whether the band is due to the triangle
singularities discussed here or due to a resonance.
The loop integrals in the decay amplitudes are ultraviolet

(UV) divergent, and we use dimensional regularization with
the MS subtraction scheme to regularize the UV divergence

1.36 1.37 1.38 1.39 1.40 1.41 1.42
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. The π0ϕ invariant mass distribution in arbitrary units
(a.u.) for the decay J=ψ → ηπ0ϕ from the mechanism shown in
Fig. 1. The red solid line shows dΓJ=ψ→ηπ0ϕ=dmπ0ϕ in Eq. (7)
obtained by switching off theK� width, and the blue dashed curve
corresponds to the result including the width of K�. The π0ϕ
distribution with the K� width is multiplied by a factor of 500 in
order to have a size comparable to the red solid line.
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FIG. 5. Dalitz plot of the J=ψ → ηπ0ϕ in the ðm2
ηπ0

; m2
π0ϕ

Þ plane
from the triangle loop amplitude given in Eq. (5).

6The structure at 1393.6 MeV is the K�0K̄0 threshold
cusp, and the K�þK− threshold cusp is invisible in the plot,
because it is too close to (only 0.4 MeV below) the triangle
singularity.
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(see Appendix A). It is worthwhile to mention that triangle
singularity happens when all three intermediate particles go
on shell and, thus, is an infrared singularity. Thus, the UV
divergence does not affect the presence of triangle singularity
but requires introducing a counterterm to absorb the diver-
gence. Here, since we do not intend to construct a full model
for the decay and focus only on the triangle singularity
effects, we refrain from introducing the counterterm and
simply take the dimensional regularization scale to be μ ¼
1.2 GeV in the calculation of the Dalitz plot.
The mπ0ϕ distribution for the J=ψ → ηπ0ϕ including the

K�width is shown in the left panel inFig. 6,which is the same
as Fig. 4 with the K� width up to an overall normalization
factor. One can see a clear peak around 1.39 GeV with a
width about 50 MeV. Because of the isospin breaking, the
charged and neutral loops largely cancel each other in the
region outside the peak, making the peak a prominent
structure. The dependence on the scale μ which appears in
the regularization of the UV divergence is also checked: The
results with μ ¼ 0.2, 1.2, and 2.2 GeV for J=ψ → ηπ0ϕ are
shown as dashed, solid, and dot-dashed lines, respectively, in
the left panel in Fig. 6. As one can see, the peak in the case of
J=ψ → ηπ0ϕ is affected little by changing μ. This is because
the decay breaks isospin, and the UV divergence part gets
largely canceled in the difference between the contributions
of the charged and neutral meson loops; see Eq. (5). Such a
cancellation has been discussed in Ref. [50] studying the
charmed-meson loop contribution to the isospin-breaking
decayψ 0 → J=ψπ0: it is shown that at the leadingorder of the
nonrelativistic effective field theory, theUVdivergence in the
neutral and charge meson loops cancel with each other,
leaving a finite piece depending on the masses of inter-
mediate particles.

C. J=ψ → π0π0ϕ

Differently, the J=ψ → π0π0ϕ reaction is isospin-
symmetry allowed, and the charged and neutral loops
add up to give the final result. Thus, one would expect the
peak in the π0ϕ invariant mass distribution due to triangle

singularities to be much more modest than that in the
J=ψ → π0ηϕ case, and the result should have a large scale
dependence. This is indeed the case as can be seen from
the right panel in Fig. 6. Nonetheless, the triangle
singularities in this process have the same origin as the
prominent one for the J=ψ → π0ηϕ and deserve to be
studied in more detail to reveal another aspect of the
J=ψ → π0π0ϕ process in addition to the ππ distribution
that has been extensively studied both experimentally [46]
and theoretically [38,39,42,43].

D. J=ψ → ηπ0KK̄

One important feature of triangle singularity is that its
effect is very sensitive to the kinematical variables such as
masses of the intermediate particles and external energies.7

Using Eq. (18), the triangle singularity is at the physical
boundary (neglecting the K� width) only when the KK̄
invariant mass is in the range of [987.4, 1025.9] and [995.2,
1033.7] MeV for the charged and neutral intermediate
states, respectively. The ϕ mass is just right in the range.
When the KK̄ invariant mass is pushing away from this
range, the effects caused by the singularities will damp
quickly.
Therefore, in order to reveal the origin of the band in the

Dalitz plot at mπ0ϕ ∼ 1.4 GeV in the BESIII data [2], i.e.,
whether it is indeed due to triangle singularities, we can
study the J=ψ → ηπ0KK̄ reaction and investigate the
correlation between the KK̄ invariant mass and the triangle
singularity effects. In Fig. 7, we show the ðmπ0KK̄; mKK̄Þ
distribution of the J=ψ → ηπ0KK̄ reaction considering
only the loop diagrams shown in Fig. 2 with (lower line)
and without (upper line) considering the K� width. The
upper two plots show clearly the two triangle singularities

FIG. 6. Dependence of the π0ϕ distribution of J=ψ → ηπ0ϕ and J=ψ → π0π0ϕ on the scale (μ) in dimensional regularization with the
MS subtraction scheme used in evaluating the loop integrals. The red dashed, black solid, and blue dot-dashed lines correspond to
μ ¼ 0.2, 1.2, and 2.2 GeV, respectively.

7It was recently proposed that this sensitivity can be used to
make a very precise determination of the binding energy of the
Xð3872Þ by measuring the line shape of the Xð3872Þγ produced
from a short-distance D�0D̄�0 source [51].
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in the charge and neutral loops.8 The structures get smeared
by the K� width in the lower two plots, while the one with
I ¼ 0 KK̄ still shows a clear peak at mπ0KþK− ∼ 1.4 GeV
due to isospin breaking, which is most prominent at
mKþK− ≃ 1.02 GeV due to the presence of the ϕ resonance.
When the KK̄ invariant mass is away from the ϕ resonant
region, the peak along mπ0KþK− also becomes much less
evident in the lower left plot. Were the band at mπ0ϕ ∼
1.4 GeV in the Dalitz plot observed by the BESIII
Collaboration due to a resonance decaying into π0ϕ, the
same resonance would also be able to decay into π0KþK−,
and its signal should always be there no matter what
value the KþK− invariant mass takes (as long as there are
enough data).

In the left panel in Fig. 8, we show themKK̄ distribution at
mπ0KK̄ ¼ 1.39 GeV in a window of the KK̄ invariant mass
containing the ϕ resonance, i.e., mKK̄ ∈ ½1010; 1030� MeV
as that taken in the BESIII paper [2], given by Eq. (14) with
both tree and loop amplitudes in Eq. (12) with theK� width.
One clearly sees the ϕ peak. In the BESIII measurement,
the ϕ events are selected in a KþK− invariant mass window
of ½mϕ − 10 MeV; mϕ þ 10 MeV�, and a sideband subtrac-
tion is made so as to remove the background events that are
not from theϕ. Here, similarly wemake a linear interpolation
between the two ends of the ϕ window to take the sideband
subtraction; see the caption of Fig. 8. The right panel shows
the π0KþK− invariant mass distribution by integrating
Eq. (14) overmKK̄ inϕwindow, and the sideband subtraction
has been made. A clear peak shows up at around 1.39 GeV
with little background.
At last, we make a brief comment on the Schmid theorem

[52] that can matter when the external and internal particles
are the same in the triangle diagram (i.e., when the
rescattering of particles m2 and m3 in Fig. 3 is elastic).

FIG. 7. Differential width for the J=ψ → ηπ0KK̄ as a function of invariant masses of KK̄ and π0KK̄ in arbitrary units, by considering
only triangle loop diagrams shown in Fig. 2. The left (right) two plots show results considering triangle diagrams with I ¼ 0 (I ¼ 1) KK̄
FSI. The K� width is considered in the lower-line plots but not in the upper-line ones.

8Notice that there should always be K�þK− and K�0K̄0

threshold cusps, which get smeared by the K� width and would
produce a mild bump if there is no enhancement due to nearby
triangle singularities or due to possible nearby resonances.
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The Schmid theorem claims that the triangle singularity
contribution does not show up in the invariant mass
distribution which is obtained by projecting the Dalitz
plot into one invariant mass. The validity and limitations
of the Schmid theorem has been studied in Refs. [49,
53–55]. It is pointed out that the theorem holds only for
the single-channel case and in the case of a very small
width of the intermediate particles such that the triangle
diagram can be well approximated by solely the singu-
larity contribution. In such a situation, the sum of the tree-
level and triangle diagrams is approximately given by the
tree-level amplitude multiplied by a phase factor with the
phase given by the scattering phase shift of the two
particles that rescatter. As a result, the invariant mass
distribution does not have a sharp peak but behaves as that
of the tree-level t-channel exchange diagram. One sees
that the Schmid theorem is not applicable here for two
reasons: (i) the K� meson has a width of about 50 MeV;
(ii) for the reaction of interest J=ψ → ηπ0KþK−, only the
KþK− pair appears in the final state, while both the KþK−

and K0K̄0 appear in the loops.

IV. SUMMARY

In summary, by considering the triangle diagrams with
K�KK̄ intermediate particles for the isospin-breaking
process J=ψ → ηπ0ϕ shown in Fig. 1, we show that there
appears a band in the Dalitz plot which is located at the π0ϕ
invariant mass of around 1.4 GeV by virtue of triangle
singularities. Events along the band accumulate around the
two ends close to the Dalitz plot boundary. Such a feature is
consistent with what was observed by the BESIII
Collaboration with the η reconstructed from two photons
in Ref. [2].
In order to check whether this is the genuine mechanism

behind the experimental observation, we further study
the processes J=ψ → π0π0ϕ and J=ψ → ηπ0KþK−. These
processes are dominated by the isospin-conserving
contribution. It is shown that the triangle singularity

mechanism has a much more modest effect for the
J=ψ → π0π0ϕ and leads to a broader bump. As for the
J=ψ → ηπ0KþK−, our results show that the triangle
singularity effect is most evident with the KþK− invariant
mass in the ϕ resonance mass region, where isospin
breaking plays an important role. Thus, by taking events
with mKþK− away from that region, we expect that the
band at mπ0KþK− ∼ 1.4 GeV in the Dalitz plot would
become weaker and eventually invisible if KþK− is
sufficiently away from the ϕ mass region. On the other
hand, if the band in the Dalitz plot is due to a resonance,
which should also be able to decay into π0KþK−, one
expects the band to remain independent of the KþK−

invariant mass.
Therefore, in order to reveal the physics behind the band

at mπ0ϕ ∼ 1.4 GeV observed by the BESIII Collaboration,
we suggest experimentalists to take more data for the
J=ψ → ηπ0ϕ to make the Dalitz plot more clear and to
check whether the structure persists in other KþK−

invariant mass regions.

ACKNOWLEDGMENTS

We are grateful to Eulogio Oset for useful comments.
This work is supported in part by the National Natural
Science Foundation of China (NSFC) and the Deutsche
Forschungsgemeinschaft (DFG) through the funds pro-
vided to the Sino-German Collaborative Research Center
“Symmetries and the Emergence of Structure in QCD”
(NSFC Grant No. 11621131001 and DFG Grant
No. TRR110), by the NSFC under Grants No. 11847612
and No. 11835015, by the Chinese Academy of Sciences
(CAS) under Grants No. QYZDB-SSW-SYS013 and
No. XDPB09, and by the CAS Center for Excellence in
Particle Physics (CCEPP). S. S. is also supported by the
International Postdoctoral Exchange Program and the CAS
President’s International Fellowship Initiative (PIFI) under
Grant No. 2019PM0108.

1.010 1.015 1.020 1.025

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.30 1.35 1.40 1.45
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 8. Left panel: TheKþK− invariant mass distribution in the ϕwindow withmπ0KK̄ fixed at 1.39 GeV for J=ψ → ηπ0KK̄. The solid
line includes all the diagrams (tree and loops with the I ¼ 0 and I ¼ 1 KK̄ FSI) in Fig. 2, the dashed line includes the tree and I ¼ 0 KK̄
FSI diagrams, and the dotted line is a linear interpolation between the two ends of a narrow window of the ϕ resonance:
mKK̄ ∈ ½1010; 1030� MeV. Right panel: The π0KþK− invariant mass distribution of the same reaction with mKK̄ integrated in the ϕ
window, where we have subtracted the sideband contribution (i.e., the part below the straight dotted line in the left panel). The K� width
has been taken into account in these plots.
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APPENDIX A: EXPLICIT FORM OF Mμν
id

In this section, we present the explicit form of Mμν
id appearing in Eq. (4). First, we define Iid, Jid, and Iμ1μ2…μn

id as

Iid ¼
Z

d4q
ð4πÞ2

1

½q2 −m2
Kid

þ iϵ�½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ� ; ðA1Þ

Jid ¼
Z

d4q
ð4πÞ2

1

½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ� ; ðA2Þ

Iμ1μ2…μn
id ¼

Z
d4q
ð4πÞ2

qμ1qμ2…qμn

½q2 −m2
Kid

þ iϵ�½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ� : ðA3Þ

With the technique of tensor decomposition of loop integrals, Iμ, Iμν, Iμνρ, and Iμνρσ can be rewritten as given in Ref. [56]:

Iμ ¼
X
i¼1;2

kμi Ci; ðA4Þ

Iμν ¼ gμνC00 þ
X
i;j¼1;2

kμi k
ν
jCij; ðA5Þ

Iμνρ ¼
X
i¼1;2

ðgμνkρi þ gνρkμi þ gρμkνi ÞC00i þ
X

i;j;k¼1;2

kμi k
ν
jk

ρ
kCijk; ðA6Þ

Iμνρσ ¼ ðgμνgρσ þ gμρgνσ þ gμσgνρÞC0000 þ
X

i;j¼1;2

ðgμνkρi kσj þ gνρkμi k
σ
j þ gρμkνi k

σ
j þ gμσkνi k

ρ
j þ gνσkμi k

ρ
j þ gρσkμi k

ν
jÞC00ij

þ
X

i;j;k;l¼1;2

kμi k
ν
jk

ρ
kk

σ
l Cijkl: ðA7Þ

Using these Iid and Iμ1μ2…μn
id , the loop amplitude Mμν

id is written as

Mμν
id ¼ Iid

�
kμ1k

ν
2 − 2kμ2k

ν
2 þ

2ðk1 · k2Þ
m2

K�
id

kμ1k
ν
2 −

k21
m2

K�
id

kμ1k
ν
2

�
þ 2

m2
K�

id

Iρidk
μ
1k

ν
2k2ρ þ

1

m2
K�

id

gρσI
ρσ
id k

μ
1k

ν
2

þ Iμid

�
−kν2 þ

2ðk1 · k2Þ
m2

K�
id

kν2 −
k21
m2

K�
id

kν2

�
þ Iνid

�
2kμ1 − 4kμ2 þ

4ðk1 · k2Þ
m2

K�
id

kμ1 −
2k21
m2

K�
id

kμ1

�
þ 2

m2
K�

id

Iμρid k
ν
2k2ρ

þ 1

m2
K�

id

gρσI
μρσ
id kν2 þ

4

m2
K�

id

Iνρkμ1k2ρ þ
2

m2
K�

id

gρσIνρσk
μ
1 þ Iμνid

�
4ðk1 · k2Þ
m2

K�
id

− 2 −
2k21
m2

K�
id

�
þ 4

m2
K�

id

Iμνρid k2ρ þ
2

m2
K�

id

gρσI
μνρσ
id :

ðA8Þ
Since both the K�Kπ0 and ϕKK̄ vertices are P wave and the K� propagator has a momentum-dependent numerator, the

amplitude of the triangle diagram is UV divergent. In all calculations of this paper, we use dimensional regularization and
with the MS subtraction scheme for the subtraction of the UV divergence, and unless specified we take μ ¼ 1.2 GeV for the
scale introduced in dimensional regularization.
In Eq. (A8), for example, a term gρσIρσ should be understood as

gρσI
ρσ
id ¼

Z
d4q
ð2πÞ4

gρσqρqσ

½q2 −m2
Kid

þ iϵ�½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ�

¼
Z

d4q
ð2πÞ4

�
m2

Kid

½q2 −m2
Kid

þ iϵ�½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ�

þ 1

½ðqþ k1Þ2 −m2
K�

id
þ iϵ�½ðqþ k2Þ2 −m2

Kid
þ iϵ�

�

¼ m2
Kid

Iid þ Jid: ðA9Þ

The terms gρσIμρσ and gρσIμνρσ also need similar manipulations.

TRIANGLE SINGULARITIES IN … PHYS. REV. D 100, 114010 (2019)

114010-11



APPENDIX B: GENERAL PHASE-SPACE
FORMULA FOR 1 TO n-BODY DECAY

The partial decay rate of a particle of mass m into n
bodies in its rest frame is given in terms of the Lorentz-
invariant matrix element M by

dΓ ¼ ð2πÞ4
2m

jMj2dΦnðp1;…; pnÞ; ðB1Þ

where dΦn is an element of the n-body phase space given by

dΦnðp1;…; pnÞ ¼ δ4
�
p −

Xn
i¼1

pi

�Yn
i¼1

d3pi

ð2πÞ32Ei
: ðB2Þ

To get the decay formula, we need to integrate the
order-4 Dirac δ function in Eq. (B2) which represents the
four-momentum conservation. For instance, we can inte-
grate the momenta of the last particle first:

Z
d3pn

ð2πÞ32En
δ4
�
p −

Xn
i¼1

pi

�
¼

Z
d4pn

ð2πÞ4 ð2πÞδðp
2
n −m2

nÞθðp0
nÞδ4

�
p −

Xn
i¼1

pi

�

¼ 1

ð2πÞ3 δ
��

p −
Xn−1
i¼1

pi

�2

−m2
n

�
θ

��
p −

Xn−1
i¼1

pi

�0� Z
d4pnδ

4

�
p −

Xn
i¼1

pi

�

≡ 1

ð2πÞ3 δ
��

p −
Xn−1
i¼1

pi

�2

−m2
n

�
θ

��
p −

Xn−1
i¼1

pi

�0�
ϑ4n

�
p −

Xn
i¼1

pi

�
; ðB3Þ

where we have defined an order-n ϑ function as follows:

Z
X
dnxδnðx − x0Þ≡ ϑnXðx − x0Þ: ðB4Þ

Substituting Eq. (B3) into Eq. (B2), we can get

dΦnðp1;…; pnÞ ¼
1

ð2πÞ3
Yn−1
i¼1

d3pi

ð2πÞ32Ei
δ

��
p −

Xn−1
i¼1

pi

�2

−m2
n

�
θ

��
p −

Xn−1
i¼1

pi

�0�
ϑ4n

�
p −

Xn
i¼1

pi

�
: ðB5Þ

So far, we still have an order-1 Dirac δ function which represents the mass-shell condition of the last particle. Just like what
we did in Eq. (B3), to eliminate the remaining order-1 Dirac δ function, we can integrate over the momentum of the (n − 1)
th particle:

Z
d3pn−1

ð2πÞ32En−1
δ

��
p −

Xn−1
i¼1

pi

�2

−m2
n

�
¼ 1

2ð2πÞ3
Z jpn−1j2djpn−1jdΩn−1

En−1
δ

��
p −

Xn−1
i¼1

pi

�2

−m2
n

�

¼ 1

2ð2πÞ3
Z

jpn−1jdEn−1dΩn−1δ

��
p −

Xn−1
i¼1

pi

�2

−m2
n

�
: ðB6Þ

Before we continue to simplify the expression, let us make some definitions to facilitate subsequent calculations:

pðkÞ ¼
Xn
i¼k

pi; p ¼
Xn
i¼1

pi ¼ pð1Þ;

mðkÞ ¼
ffiffiffiffiffiffiffiffi
p2
ðkÞ

q
; EðkÞ ¼ p0

ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
ðkÞ þm2

ðkÞ
q

:

In addition, we use X�ðlÞ to represent the specific form of physical quantity X (X can be momentum p, energy E, or massm,

etc.) in the c.m. frame of the particle system l; lþ 1;…; n. Furthermore, for simplicity, we redefine X�ðlÞ
l and X�ðlÞ

ðlÞ as Xð�Þ
l

and X�
ðlÞ, respectively. Since the element of final state phase space of each particle is Lorentz invariant, one can calculate

each part in any reference frame. Then, let us come back to the integration of the phase space for the (n − 1)th particle, and
we calculate this part in the c.m. frame of (n − 1)th and nth particle system:
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Z
jpn−1jdEn−1dΩn−1δ

��
p −

Xn−1
i¼1

pi

�2

−m2
n

�
¼

Z
jpn−1jdEn−1dΩn−1δ½ðpðn−1Þ − pn−1Þ2 −m2

n�

¼
Z

jpð�Þ
n−1jdEð�Þ

n−1dΩ
ð�Þ
n−1δ½ðp�

ðn−1Þ − pð�Þ
n−1Þ2 −m2

n�: ðB7Þ

Here we note that in the c.m. frame of the (n − 1)th and nth particle system we have

p�
ðn−1Þ ¼ ðmðn−1Þ; 0Þ: ðB8Þ

Substituting Eq. (B8) into the order-1 Dirac δ function of Eq. (B7),

δ½ðp�
ðn−1Þ − pð�Þ

n−1Þ2 −m2
n� ¼ δðm2

ðn−1Þ þm2
n−1 − 2mðn−1ÞE

ð�Þ
n−1 −m2

nÞ ¼
1

2mðn−1Þ
δ

�
Eð�Þ
n−1 −

m2
ðn−1Þ þm2

n−1 −m2
n

2mðn−1Þ

�
: ðB9Þ

Then, using Eq. (B9), Eq. (B7) is written as

Z
jpð�Þ

n−1jdEð�Þ
n−1dΩ

ð�Þ
n−1δ½ðp�

ðn−1Þ − pð�Þ
n−1Þ2 −m2

n� ¼
Z

jpð�Þ
n−1jdΩð�Þ

n−1
1

2mðn−1Þ
ϑn−1

�
Eð�Þ
n−1 −

m2
ðn−1Þ þm2

n−1 −m2
n

2mðn−1Þ

�
; ðB10Þ

where we have integrated out the last order-1 Dirac δ function. Then substituting Eq. (B10) into Eq. (B6), we can get

dΦnðp1;…; pnÞ ¼
1

2ð2πÞ6
�Yn−2

i¼1

d3pi

ð2πÞ32Ei

� jpð�Þ
n−1jdΩð�Þ

n−1
2mðn−1Þ

θ

��
p −

Xn−1
i¼1

pi

�
0
�

× ϑ4n

�
p −

Xn
i¼1

pi

�
ϑn−1

�
Eð�Þ
n−1 −

m2
ðn−1Þ þm2

n−1 −m2
n

2mðn−1Þ

�
: ðB11Þ

It is worth noting that the effect of the θ and ϑ functions is to limit the integrating range to the physical region, and it is easy
to check that, in the physical region,

θ

��
p −

Xn−1
i¼1

pi

�
0
�
ϑ4n

�
p −

Xn
i¼1

pi

�
ϑn−1

�
Eð�Þ
n−1 −

m2
ðn−1Þ þm2

n−1 −m2
n

2mðn−1Þ

�
¼ 1: ðB12Þ

Thus, by confining the integral range to the physical region, we can get

dΦnðp1;…; pnÞ ¼
1

2ð2πÞ6
�Yn−2

i¼1

d3pi

ð2πÞ32Ei

� jpð�Þ
n−1jdΩð�Þ

n−1
2mðn−1Þ

¼ 1

2nð2πÞ3n
�Yn−2

i¼1

jpijdEidΩi

� jpð�Þ
n−1jdΩð�Þ

n−1
mðn−1Þ

: ðB13Þ

This expression is sufficient to get the result, but it is better to express it in terms of invariant masses. Then, let us consider
the relation between the energy and invariant masses for each particle:

Eð�Þ
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð�Þ2
k þm2

k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ðkÞ2
ðkþ1Þ þm2

k

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�ðkÞ2
ðkþ1Þ −m2

ðkþ1Þ þm2
k

q
; Eð�Þ

k ¼ mðkÞ − E�ðkÞ
ðkþ1Þ: ðB14Þ

With these two equations, we can get

mðkÞdE
ð�Þ
k ¼ ðmðkÞ − Eð�Þ

k ÞdmðkÞ −mðkþ1Þdmðkþ1Þ: ðB15Þ

With k ¼ 1, because of dmð1Þ ¼ dm ¼ 0, we have

mdEð�Þ
1 ¼ −mð2Þdmð2Þ; ðB16Þ
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and we obtain

dΦnðp1;…; pnÞ ¼
1

2nð2πÞ3n
�Yn−2

i¼1

jpð�Þ
i jdEð�Þ

i dΩð�Þ
i

� jpð�Þ
n−1jdΩð�Þ

n−1
mðn−1Þ

¼ 1

2nð2πÞ3n
�Yn−2

i¼1

jpð�Þ
i jdΩð�Þ

i

� jpð�Þ
n−1jdΩð�Þ

n−1
mðn−1Þ

�Yn−2
k¼1

dEð�Þ
k

�

¼ 1

2nð2πÞ3n
�Yn−2

i¼1

jpð�Þ
i jdΩð�Þ

i

� jpð�Þ
n−1jdΩð�Þ

n−1
mðn−1Þ

				 ∧n−2
k¼1

ðmðkÞ − Eð�Þ
k ÞdmðkÞ −mðkþ1Þdmðkþ1Þ

mðkÞ

				;

where ∧ represents the wedge product which has the following properties:

dx ∧ dy ¼ −dy ∧ dx; dx ∧ dx ¼ 0: ðB17Þ

With Eq. (B16), the differential invariant mass dmðkÞ in dE�
k vanishes, and thus we have

dΦnðp1;…; pnÞ ¼
1

2nð2πÞ3n
Yn−2
i¼1

jpð�Þ
i jdΩð�Þ

i
jpð�Þ

n−1jdΩð�Þ
n−1

mðn−1Þ

�Yn−2
k¼1

mðkþ1Þdmðkþ1Þ
mðkÞ

�

¼ 1

2nð2πÞ3nm
Yn−1
i¼1

jpð�Þ
i jdΩð�Þ

i

�Yn−1
k¼2

dmðkÞ

�
: ðB18Þ

At last, using Eq. (B18), we can rewrite the phase-space factor in Eq. (B1) as follows:

dΓ ¼ ð2πÞ4−3n
2nþ1m2

jMj2jpð�Þ
1 j � � � jpð�Þ

n−1jdΩð�Þ
1 …dΩð�Þ

n−1dmð2Þ…dmðn−1Þ; ðB19Þ

where ðjpð�Þ
k j;Ωð�Þ

k Þ is the momentum of particle k in the c.m. frame of the particle system k; kþ 1;…; n and mðkÞ is the
invariant mass of the particle system k; kþ 1;…; n.
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