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We estimate various transport coefficients of hot and dense hadronic matter in the presence of magnetic
field. The estimation is done through solutions of the relativistic Boltzmann transport equation in the
relaxation time approximation. We have investigated the temperature and the baryon chemical potential
dependence of these transport coefficients. Explicit calculations are done for the hadronic matter in the
ambit of hadron resonance gas model. We estimate thermal conductivity, electrical conductivity, and the
shear viscosity of hadronic matter in the presence of a uniform magnetic field. Magnetic field, in general,
makes the transport coefficients anisotropic. It is also observed that all the transport coefficients
perpendicular to the magnetic field are smaller compared to their isotropic counterpart.
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I. INTRODUCTION

Strongly interacting matter produced in relativistic
heavy-ion collision experiments at relativistic heavy ion
collider (RHIC) and Large Hadron Collider (LHC) gives us
a unique opportunity to study strong interaction in the
nonperturbative regime. For a comprehensive understand-
ing of the hot and dense QCD (quantum chromodynamics)
medium produced in these experiments, transport coeffi-
cients play a crucial role. Large number of experimental
data indicate the formation of quark-gluon plasma (QGP) in
high multiplicity heavy-ion collision experiments. Quark-
gluon plasma produced in the initial stage of heavy ion
collision shows collective motion, undergoes subsequent
space-time evolution and eventually gets chemically and
thermally equilibrated, and results in a hadronic medium.
Hydrodynamical modeling of the strongly interacting
matter has been routinely used to study the transverse
particle spectra of hadrons emanating out of the interaction
region. In the context of hydrodynamical modeling, the
dissipative effects can be important and the related trans-
port coefficients, e.g., shear and bulk viscosity, etc., can
play a significant role in this hydrodynamical evolution. In
various literature, it has been argued that a small value of

shear viscosity to entropy density ratio (η=s) can explain
the flow data [1–3]. One of the remarkable achievements of
the viscous hydrodynamical model is the prediction of a
small value of η=s and perfect fluid behavior of the strongly
interacting matter. A small value of η=s of the strongly
coupled plasma produced in the heavy-ion collision is in
accordance with the lower bound (Kovtun-Son-Starinet
(KSS) bound) for the same, η=s ¼ 1

4π obtained using gauge
gravity duality (AdS/CFT correspondence). Prediction of
the small value of shear viscosity to entropy density ratio
motivated a large number of investigations in understand-
ing the microscopic origin of transport coefficients [3]. It is
important to mention that KSS bound has been derived for
a strongly coupled quantum field theory having conformal
symmetry. However, QCD is not conformal and the
deviation of the conformality is encoded in the bulk
viscosity ζ of the medium [4–12]. Bulk viscosity encodes
the conformal measure ðϵ − 3PÞ=T4 of the system, and
lattice QCD simulations show a nonmonotonic behavior of
both η=s and ζ=s near the critical temperature Tc. [6–12].
Nonmonotonic behavior of bulk and shear viscosity is
perhaps very natural because of the emergent scale, in this
case, ΛQCD, near the phase transition region.
Apart from the production of strongly interacting matter

in a heavy-ion collision, generation of a nonvanishing
electromagnetic field in the noncentral heavy-ion collisions
allows one to study some novel interplay of quantum
electrodynamics and QCD interactions. The strength of the
magnetic field at the initial stages in these collisions can be
large, at least of the order of several m2

π at RHIC energies
and may even be larger, i.e., of the order of 15 m2

π at LHC
energies [13,14]. The presence of large external magnetic
field can have nontrivial effects on the properties of QGP,
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as well as on the subsequent hadronic medium. This has
motivated a large number of investigations on the properties
of hot and dense matter under strong fields. Nontrivial
nature of the QCD vacuum along with a strong magnetic
field can give rise to novel CP (charge conjugation-parity)
violating effects such as chiral magnetic effect [15]. Fluid
dynamical behavior of the strongly interacting matter in the
presence of magnetic field has been investigated within the
framework of magnetohydrodynamic simulations [16,17].
To study the phenomenological manifestation of magnetic
field on the strongly interacting matter, one requires the
initial magnetic field to survive for at least a few Fermi
proper time. The transport coefficient which plays the
important role for the survival of magnetic field in a plasma
is the electrical conductivity. In the magnetohydrodynamic
limit, when the electrical conductivity of the medium is
infinite, magnetic field is frozen in the plasma [16–34].
This apart thermal conductivity also plays a significant
role in the hydrodynamical evolution [35,36]. Various
approaches, e.g., perturbative QCD, different effective
models, etc. have been used to estimate various transport
coefficients of the QCD matter [37–66]. In the presence of
constant magnetic field, the transport coefficients no longer
remain isotropic. It can be shown that in the presence of
magnetic field in general there can be five coefficients for
shear viscosity, two coefficients bulk viscosity, and three
coefficients for thermal conductivity [67]. In Ref. [67], for
dissipative magnetohydrodynamics of strongly interacting
medium, a complete set of transport coefficients, consistent
with the Curie and Onsager principles, has been derived for
thermal conduction, shear viscosity, and bulk viscosity.
Further using Zubarevs nonequilibrium statistical operator
method, Kubo formulas for these transport coefficients
have been derived in Ref. [67].
In the present work, we investigate thermal conductivity,

electrical conductivity, and shear viscosity for the hot and
dense hadron gas produced in the subsequent evolution of
QGP, in heavy-ion collisions, and in the presence of a
magnetic field. In our previous works, we have investigated
electrical conductivity and Hall conductivity for hot and
dense hadronic matter [68] as well as for quark-gluon
plasma [69]. It was shown that for strongly interacting
medium, the electrical conductivity decreases in the pres-
ence of magnetic field while the Hall conductivity displays
a nonmonotonic behavior with magnetic field. We had also
pointed out that at zero baryon chemical potential Hall
conductivity vanishes due to opposite gyration of particles
and antiparticles. Only for nonvanishing baryon chemical
potential, Hall conductivity has a finite value [70–73]. In
these investigations, we had only considered the field
configurations where the electric and the magnetic field
are perpendicular to each other. In general, electric and
magnetic field can have more general configurations. In the
present investigation, we have considered a somewhat
general configurations of electric and magnetic field.

For a general configuration of electric and magnetic field,
we have calculated all the components of thermal conduc-
tivity, electrical conductivities, as well as shear viscosity.
It is important to mention that the formalism that we use
to calculate shear viscosity and electrical conductivity in
the presence of magnetic field has been developed in
Refs. [74–76]. The general configuration for the field leads
to extra transport coefficients. As we shall show there are
three different components for electrical and thermal
conductivities and five components of shear viscosities.
Some of the components for electrical conductivity vanish
when the electric field and the magnetic field are
perpendicular to each other [68,69]. In the present inves-
tigation, we study the effect of magnetic field on various
transport coefficients of the hot and dense hadronic matter
in a general electric and magnetic field configuration using
the hadron resonance gas model within the framework of
relaxation time approximation (RTA). It ought to be
mentioned that a large magnetic field produced in the
initial stage of heavy-ion collisions can be sustained in the
medium with finite electrical conductivity. Some transport
coefficients, e.g., bulk viscosity, thermal conductivity, etc.
in the presence of magnetic field for the QGP phase using
Landau quantization and considering only the lowest
Landau level have been investigated in Refs. [77–80].
On the other hand, for the hadronic phase considered here,
we limit ourselves to the case of small/moderate magnetic
fields. Naturally, in such a case, while the equilibrium
dynamics is decided by strong interaction, the effect of
magnetic field is reflected through the cyclotron frequency
of the individual hadrons. Such an approximation has been
utilized earlier to estimate transport coefficients [76,81].
We will follow a similar approach for hadron resonance gas
and naturally, the quantum effects due to Landau quantiza-
tion are not included here.
The hadronic phase at chemical freeze-out can be

described by well-celebrated hadron resonance gas
(HRG) model [82,83]. To explain the experimental results
of the thermal abundance of different hadron ratios in the
heavy-ion collisions, HRG model has been successfully
used [84]. Assuming a single chemical freeze-out surface of
strange and nonstrange particles, HRG model can be
described using only two parameters, temperature (T)
and baryon chemical potential (μB). Using S-matrix cal-
culation, it has been shown that in the presence of narrow
resonances, the thermodynamics of interacting gas of
hadrons can be approximated by ideal gas of hadrons
and its resonances [85,86]. Information of interaction
among different hadrons has been encoded as the reso-
nances. Due to this very simple description, HRG
model has been well explored regarding thermodynamics
[87,88], conserved charge fluctuations [89–94], as well as
transport coefficients for hadronic matter [19,21,22,38–62].
Although many improvements have been done on ideal
HRG model of noninteracting hadrons and its resonances,
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e.g., including excluded volume HRG model [62,95], etc.,
in this investigation we confine ourselves to ideal HRG
model for the estimation of various transport coefficients.
This paper is organized in the following manner. In

Sec. II, we discuss the formalism of thermal conductivity in
the presence of a magnetic field. In Secs. III and IV, we
summarize the formalism to estimate electrical conductivity
and shear viscosity in the presence of magnetic field. In
Sec. V, we discuss salient feature of HRG model and
summarize the formalism to calculate thermal averaged
relaxation time. Then in Sec. VI, we present the results for
thermal conductivity, electrical conductivity, and shear
viscosity in the presence of magnetic field. Finally, we
conclude our work with an outlook to it.

II. THERMAL CONDUCTIVITY IN THE
PRESENCE OF MAGNETIC FIELD

One of the important transport coefficients relevant for
thermodynamic system with nonzero baryon density is the
coefficient for thermal conductivity. Thermal conduction
arises when energy flows relative to the baryonic enthalpy.
Heat current of hadron resonance gas in the presence of
conserved baryon current can be defined as [4]

I i ¼
X
a

T0i
a −

ω

nB

X
a

bajiBa
: ð1Þ

Here a is the particle index, ba is the baryon number of
different particles, e.g., for mesons bmeson ¼ 0, for baryons
bbaryon ¼ 1 and for antibaryons bantibaryon ¼ −1. ω is the
enthalpy of the system ω ¼ E þ P, E is the energy density
of the system, and P is the pressure of the system. In
Eq. (1), Tμν is the energy momentum tensor, jμB is the
conserved baryon current, and nB is the net number density
of baryons. Using the standard definition of Tμν and jμB,
heat current I i can be expressed as

I i ¼
X
a

Z
d3pa

ð2πÞ3 p
i
afa −

ω

nB

X
a

ba

Z
d3pa

ð2πÞ3 v
i
afa

¼
X
a

Z
d3pa

ð2πÞ3
pi
a

ϵa

�
ϵa − ba

ω

nB

�
δfa: ð2Þ

Here ϵa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗a

2 þm2
a

p
is the single particle dispersion

relation, and δfa ¼ fa − f0a denotes deviation from equi-
librium distribution function f0a ≡ 1

eðϵa−p⃗a:u⃗−baμBÞ=T�1
. The

relativistic Boltzmann transport equation (RBTE) in the
presence of a magnetic field of a single hadron species is
given by [81]

v⃗a:
∂fa
∂r⃗ þ qaðv⃗a × B⃗Þ: ∂fa∂p⃗a

¼ C½fa�; ð3Þ

where qa is the electric charge of the particle “a” and C½fa�
is the collision integral. To study the transport coefficient,
one is interested in small departure from equilibrium, i.e.,
one writes, faðx⃗; p⃗; tÞ ¼ f0a þ δfa. Substituting fa in (3)
and keeping linear terms in δfa, we get [76]

v⃗a:
∂f0a
∂r⃗ þ qaðv⃗a × B⃗Þ: ∂ðδfaÞ∂p⃗a

¼ C½δfa�: ð4Þ

In the collision term, all the f0a dependent terms vanish due
to the principle of detailed balance while linear in δfa term
survives. In the lhs, of Eq. (3), we have used the relation
∂f0a∂p⃗a

¼ v⃗a
∂f0a∂ϵa and v⃗:ðv⃗ × B⃗Þ contribution vanishes. Hence,

we get Eq. (4) starting from Eq. (3) in the leading order
approximation. In general, the collision integral can be
complicated; however, in the RTA, the collision integral in
the local rest frame takes simple form and it can be
written as

C½δfa�≡ −
δfa
τa

; ð5Þ

where τa is the relaxation time which determines the
timescale for the system to relax toward the equilibrium
state characterized by the distribution function f0a . The
underlying assumption of the relaxation time approxima-
tion is that the system is slightly away from equilibrium due
to external perturbation and then it relaxes toward equi-
librium with the timescale τa. In relaxation time approxi-
mation, external perturbation is not the dominant scale. In
the strongly interacting medium, strong interaction is
responsible for thermalization of the medium and the
external electromagnetic field is a perturbation with respect
to the strong dynamics. The equilibrium distribution
function satisfies

∂f0a
∂p⃗a

¼ v⃗a
∂f0a
∂ϵa ;

∂f0a
∂ϵa ¼ −βf0að1 ∓ f0aÞ;

f0a ¼
1

eðϵa−p⃗a:u⃗−baμBÞ=T � 1
; ð6Þ

where the single particle energy is ϵaðpaÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p⃗2
a þm2

a

p
,

μB is the baryon chemical potential, and β ¼ 1=T is the
inverse of temperature. v⃗a ¼ p⃗a=ϵa is the velocity of the
particle, u⃗ is the fluid velocity. In the local rest frame,
u⃗ ¼ 0. � is for fermion and boson, respectively. In the
presence of temperature gradient and magnetic field, we
can express deviation of distribution function from the
equilibrium in the following way [75]:

δfa ¼ ðp⃗a: Ξ⃗Þ
∂f0a
∂ϵa ; ð7Þ

with Ξ⃗ being related to temperature gradient, the magnetic
field, and in general can be written as
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Ξ⃗ ¼ α∇⃗T þ bh⃗þ cð∇⃗T × h⃗Þ; ð8Þ

where h⃗ ¼ B⃗
jBj is the direction of the magnetic field. Using

δf as given in Eq. (7), Eq. (4) can be expressed as

−qaBv⃗a:ðΞ⃗× h⃗Þ∂f0a∂ϵa þ v⃗a:∇⃗f0a ¼−
ϵa
τa
ðv⃗a:Ξ⃗Þ

∂f0a
∂ϵa : ð9Þ

Here,

∇⃗f0a ¼ T
∂f0a
∂ϵa

�
ϵa∇⃗

�
1

T

�
− ba∇⃗

�
μB
T

��
: ð10Þ

Using Gibbs-Duhem relation for the steady state ∇⃗P ¼
ω ∇⃗T

T þ nBT∇⃗ðμB=TÞ ¼ 0, we get [4]

∇⃗f0a ¼ −
∂f0a
∂ϵa

�
ϵa − ba

ω

nB

� ∇⃗T
T

: ð11Þ

It ought to be mentioned that in the presence of magnetic
field first law of thermodynamics as well as Gibbs-Duhem
relation can get modified. However, this modification
involves magnetization of the system. In this present
investigation, we are not considering magnetization of
the system. Using Eq. (11) and the representation of Ξ⃗
as given in Eq. (8), Eq. (9) can be expressed as

−qaBαv⃗a:ð∇⃗T× h⃗Þ−qaBcðv⃗a:h⃗Þð∇⃗T:h⃗ÞþqaBcðv⃗a:∇⃗TÞ

−
�
ϵa−ba

ω

nB

�
v⃗a:∇⃗ lnT

¼−
ϵa
τa
½αv⃗a:∇⃗Tþbðv⃗a:h⃗Þþcv⃗a:ð∇⃗T× h⃗Þ�: ð12Þ

Comparing coefficients of different tensor structures in
Eq. (12), we get

c ¼ qaB
ϵa

τaα≡ ωcaτaα; ð13Þ

b ¼ ðωcaτaÞ2αð∇⃗T:h⃗Þ ð14Þ

and

qaBc −
ϵa − ba ω

nB

T
¼ −

ϵaα

τa
: ð15Þ

Here ωca ¼ qaB
ϵa

is the cyclotron frequency of the particle
with electric charge qa. Using Eqs. (13)–(15), it can be
shown that

α ¼
�
τa
ϵa

��
ϵa − ba ω

nB

T

�
1

1þ ðωcaτaÞ2
: ð16Þ

Hence, the deviation of distribution function from
equilibrium is

δfa ¼
τaðϵa − ba

ω
nB
Þ

1þ ðωcaτaÞ2
½v⃗a:∇⃗ lnT þ ðωcaτaÞv⃗a:ð∇⃗ lnT × h⃗Þ

þ ðωcaτaÞ2ðv⃗a:h⃗Þð∇⃗ lnT:h⃗Þ� ∂f0a∂ϵa : ð17Þ

With the deviation δfa for the distribution function as
above known from RBTE, the heat current as given in
Eq. (4) can be expressed as

I i ¼
X
a

τa
T

Z
d3pa

pi
ap

j
a

ϵ2a

ðϵa −ba ω
nB
Þ2

1þðωcaτaÞ2

× ð∇jTþðωcaτaÞϵjkl∇kThlþðωcaτaÞ2hjhl∇lTÞ∂f0a∂ϵa
¼
X
a

τa
3T

Z
d3pa

p2
a

ϵ2a

ðϵa−ba ω
nB
Þ2

1þðωcaτaÞ2

× ðδik − ðωcaτaÞϵilkhlþðωcaτaÞ2hihkÞ∇lT
∂f0a
∂ϵa

¼−ðk0δik − k1ϵilkhlþ k2hihkÞ∇kT: ð18Þ

Here we have introduced the different components of
the thermal conductivity k0, k1, and k2. In Boltzmann
approximation, these coefficients are explicitly given as,
respectively,

k0 ¼
X
a

ga
3T2

Z
d3pa

ð2πÞ3
�
p2
a

ϵ2a

� ðϵa − ba
ω
nB
Þ2

1þ ðωcaτaÞ2
f0aτa; ð19Þ

k1 ¼
X
a

ga
3T2

Z
d3pa

ð2πÞ3
�
p2
a

ϵ2a

� ðϵa − ba
ω
nB
Þ2ðωcaτaÞ

1þ ðωcaτaÞ2
f0aτa;

ð20Þ

k2 ¼
X
a

ga
3T2

Z
d3pa

ð2πÞ3
�
p2
a

ϵ2a

� ðϵa − ba w
nB
Þ2ðωcaτaÞ2

1þ ðωcaτaÞ2
f0aτa:

ð21Þ

Here ϵa, ga, τa are the single particle dispersion relation,
degeneracy factor, and relaxation time of “a’th” particle
species. From Eq. (19), it is clear that for nonvanishing
magnetic field thermal conductivity gets modified. It may
be noted that in the absence of the magnetic field, the
coefficients k1 and k2 vanish and the thermal conductivity
becomes isotropic and is given by the coefficient k0.

Further k2 and k1 are associated with ∇⃗T:h⃗ and ∇⃗T × h⃗
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terms in the expression of δfa. Hence, if ∇⃗T is
perpendicular to B⃗, then k2 vanishes and there are two
nonvanishing coefficients of the thermal conductivity k0
and k1. For a general configuration of temperature gradient

and magnetic field, ∇⃗T:h⃗ can be nonzero; hence, in that
case, all the three components k0, k1, and k2 are non-
vanishing. We may point out that in the absence of
magnetic field the expression of k0 as given in Eq. (19)
can also be derived systematically as shown in
Refs. [96,97] in the Landau frame where the flow velocity
is identified with the energy flow rather than baryon
number flow as in the Eckert frame.

III. ELECTRICAL CONDUCTIVITY IN THE
PRESENCE OF MAGNETIC FIELD

Similar to thermal conductivity, to calculate electrical
conductivity,we startwith theRBTEof single hadron species
in the presence of external electromagnetic field [81],

pμ∂μf þ qFμνpν
∂f
∂pμ ¼ C½f�: ð22Þ

Here q is the electric charge of the particle, pμ is the particle
four momenta, Fμν is the electromagnetic field strength
tensor, and C½f� is the collision integral. For a static and
homogeneous case, in relaxation time approximation, we
can write the kinetic equation as given in Eq. (22) as an
equation for deviation from equilibrium δf ¼ f − f0 [76],

qE⃗:
∂f0
∂p⃗ þ qðv⃗ × B⃗Þ: ∂ðδfÞ∂p⃗ ¼ C½δf�≡ −

δf
τ
: ð23Þ

In the presence of electric and magnetic field, we can take
an ansatz for the deviation of the equilibrium distribution
function in the following way [75]:

δf ¼ ðp⃗: Ξ⃗Þ ∂f0∂ϵ ; ð24Þ

with

Ξ⃗ ¼ ae⃗þ bh⃗þ cðe⃗ × h⃗Þ; ð25Þ

where e⃗ ¼ E⃗
jEj and h⃗ ¼ B⃗

jBj are the direction of the electric

field and magnetic field, respectively. This is similar to the
ansatz taken as in Eq. (7) for the calculation of thermal

conductivity, with ∇⃗T now being replaced by e⃗. Using
Eqs. (24) and (25), Eq. (23) can be expressed as

qðE⃗:v⃗Þ − qBav⃗:ðe⃗ × h⃗Þ − qBcðe⃗:h⃗Þðv⃗:h⃗Þ þ qBcðv⃗:e⃗Þ
¼ −

ϵ

τ
½aðv⃗:e⃗Þ þ bðv⃗:h⃗Þ þ cv⃗:ðe⃗ × h⃗Þ�: ð26Þ

Comparing coefficients of difference tensor structures in
Eq. (26), we get

c ¼ qB
ϵ
τa≡ ωcτa; ð27Þ

b ¼ ðωcτÞ2aðe⃗:h⃗Þ ð28Þ

and

qBcþ qE ¼ −
ϵa
τ
: ð29Þ

Using Eqs. (27)–(29), it can be shown that

a ¼ −qE
1þ ðωcτÞ2

�
τ

ϵ

�
: ð30Þ

Hence,

δf ¼ −
qτ

1þ ðωcτÞ2

× ½v⃗:E⃗þ ðωcτÞv⃗:ðE⃗ × h⃗Þ þ ðωcτÞ2ðv⃗:h⃗ÞðE⃗:h⃗Þ�
∂f0
∂ϵ :

ð31Þ

The electric current (j⃗) can be defined as

j⃗ ¼
Z

d3p
ð2πÞ3 qv⃗δf: ð32Þ

Using Eq. (31), electric current as given in Eq. (32) can
be expressed as

jl ¼ q2

3

Z
d3p
ð2πÞ3

v2τ
1þ ðωcτÞ2

× ½El þ ðωcτÞϵljkhkEj þ ðωcτÞ2hlhjEj�
�
−
∂f0
∂ϵ

�

¼ ðσ0δlj − σ1ϵ
lkjhk þ σ2hlhjÞEj: ð33Þ

From Eq. (33), we can identify various components of
electrical conductivity tensor in the presence of magnetic
field,

σ0 ¼
q2

3T

Z
d3p
ð2πÞ3 τ

�
p2

ϵ2

�
1

1þ ðωcτÞ2
f0; ð34Þ

σ1 ¼
q2

3T

Z
d3p
ð2πÞ3 τ

�
p2

ϵ2

�
ωcτ

1þ ðωcτÞ2
f0; ð35Þ

σ2 ¼
q2

3T

Z
d3p
ð2πÞ3 τ

�
p2

ϵ2

� ðωcτÞ2
1þ ðωcτÞ2

f0: ð36Þ

It is important to note that in Refs. [68,69] we discussed
electrical conductivity and Hall conductivity in the pres-
ence of magnetic field. σ0 and σ1 as given in Eqs. (34) and
(35) can be identified with electrical conductivity in the
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presence of magnetic field and Hall conductivity, respec-
tively, as obtained in Ref. [68]. In Refs. [68,69], we only
considered electric field and magnetic field perpendicular
to each other; however, for a general configuration of
electric and magnetic field, we get another transport
coefficient σ2 [75]. Hence, for a general configurations
of electric and magnetic field, we have three different
components of electrical conductivity tensor. For a multi-
component model, total σ0, σ1, and σ2 can be expressed as

σ0 ¼
X
i

q2i gi
3T

Z
d3p
ð2πÞ3

�
p2

ϵ2i

�
1

1þ ðωciτiÞ2
f0iτi; ð37Þ

σ1 ¼
X
i

q2i gi
3T

Z
d3p
ð2πÞ3

�
p2

ϵ2i

�
ωciτi

1þ ðωciτiÞ2
f0iτi; ð38Þ

σ2 ¼
X
i

q2i gi
3T

Z
d3p
ð2πÞ3

�
p2

ϵ2i

� ðωciτiÞ2
1þ ðωciτiÞ2

f0iτi: ð39Þ

Here ϵi, gi, τi are the single particle dispersion relation,
degeneracy factor, and relaxation time of “i’th” particle
species. From Eq. (38), it is clear that Hall conductivity is
zero at vanishing baryon chemical potential even at finite
magnetic field. Only at finite baryon chemical potential
Hall conductivity has nonvanishing value at finite magnetic
field. Behavior of σ0 and σ1 with temperature, baryon
chemical potential, and magnetic field has been discussed
in Ref. [68]. In this investigation, we present variation of σ2
with temperature, baryon chemical potential, and magnetic
field.

IV. SHEAR VISCOSITY IN THE PRESENCE
OF MAGNETIC FIELD

Effect of magnetic field on shear viscosity of strongly
interacting matter has been discussed in Refs. [74,76,98–
101]. Without going into the details of the formalism, for
completeness, we briefly mention here the salient features
of the formalism. Following Refs. [74,76,98–101], we start
with Boltzmann kinetic equation in the presence of
magnetic field as discussed in Ref. [76],

pμ∂μf0 þ qBμν ∂δf
∂uμ uν ¼ C½δf�: ð40Þ

Here f0 is the equilibrium distribution function. In
the Boltzmann approximation, f0 ¼ e−p

μUðxÞμ=T�μB=T .
Uλ ≡ ðγV; γVV⃗Þ is the macroscopic velocity of the fluid,
pμ ¼ muμ is the particle four momentum, δf is the
deviation from equilibrium, and Bμν is electromagnetic
field tensor which contains magnetic field [76]. In
Boltzmann approximation,

∂μf0 ¼ −
f0
T
pλ∂μUλðxÞ: ð41Þ

In comoving frame, it can be shown that [76]

∂μf0jV⃗¼0
¼ −

f0
T
pν∂μVν: ð42Þ

Using Eq. (42), the Boltzmann equation (40) can be
written as

−
f0
T
pμpνVμν ¼ −qBμν ∂δf

∂uμ uν þ C½δf�: ð43Þ

Here Vμν ¼ 1
2
ð∂μVν þ ∂νVμÞ. Shear viscosity only deals

with spatial variation of fluid velocity. Hence, we can drop
all temporal dependence from the Boltzmann equation and
only deal with spatial derivatives. Hence, the Boltzmann
equation considering only the spatial derivatives of fluid
velocity is

ϵ

T
pαvβVαβf0 ¼

qB
ϵ
bαβvβ

∂ðδfÞ
∂vα þ δf

τ
: ð44Þ

Here α, β are spatial indices, bαβ ≡ ϵαβγbγ , bγ ¼ Bγ

B , B
μν is

the electromagnetic field tensor with μ; ν ¼ f0; 1; 2; 3g.
Vαβ ¼ 1

2
ð∂αVβ þ ∂βVαÞ, Vα is the fluid velocity, pμ ¼

ðϵ; p⃗Þ is the particle four momentum. Following
Refs. [74,76], we can express δf in the following manner:

δf ¼
Xn¼4

n¼0

gðnÞV
ðnÞ
αβ vαvβ; ð45Þ

where the tensors VðnÞ
αβ are

Vð0Þ
αβ ¼ ð3bαbβ − δαβÞ

�
bγbδVγδ −

1

3
∇⃗:V⃗

�
;

Vð1Þ
αβ ¼ 2Vαβ þ δαβVγδbγbδ − 2Vαγbγbβ − 2Vβγbγbα

þ ðbαbβ − δαβÞ∇⃗:V⃗ þ bαbβVγδbγbδ;

Vð2Þ
αβ ¼ 2ðVαγbβbγ þ Vβγbαbγ − 2bαbβVγδbγbδÞ;

Vð3Þ
αβ ¼ Vαγbβγ þ Vβγbαγ − Vγδbαγbβbδ − Vγδbβγbαbδ;

Vð4Þ
αβ ¼ 2ðVγδbαγbβbδ þ VγδbβγbαbδÞ: ð46Þ

Deviation of purely spatial components of the energy
momentum tensor from equilibrium energy momentum
tensor can be written as [76,98]

δTαβ ¼
Z

d3p
ð2πÞ3 vαvβϵδf: ð47Þ

Again using the functions VðnÞ
αβ , we can write
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δTαβ ¼
X4
n¼0

ηnV
ðnÞ
αβ : ð48Þ

The viscosity component associated with the tensor Vð0Þ
αβ

is the longitudinal viscosity as Vð0Þ
αβ bαbβ ≠ 0 while the

components ηðnÞ corresponding to VðnÞ
αβ (n ¼ 1, 2, 3, 4) are

called the transverse viscosities as they are transverse to
bαbβ. To calculate transverse shear viscosity coefficients,

we impose the conditions ∇⃗:V⃗ ¼ 0 and Vγδbγbδ ¼ 0

[74,76]. Hence, Vð0Þ
αβ ¼ 0. Using the tensors VðnÞ

αβ , n ¼ 1,
2, 3, 4, Eq. (44) can be expressed as (for details, see
Refs. [76,98–100])

ϵ

T
vαvβVαβf0 ¼ 2ωcg1½2Vαγbαβvβvγ − 2Vαρbαβbρvβðb⃗:v⃗Þ� þ 2ωcg2½2Vαρbαβvβbρðv⃗:b⃗Þ�

þ 2ωcg3½2Vαβvαvβ − 4Vαβvαbβðb⃗:v⃗Þ� þ 2ωcg4½2Vαβvαbβðb⃗:v⃗Þ�
þ g1

τ
½2Vγδvγvδ − 4Vγρvγbρðb⃗:v⃗Þ� þ

g2
τ
½4Vγρvγbρðb⃗:v⃗Þ�

þ g3
τ
½2Vγρbδρvγvδ − 2Vρσbγρbσvγðb⃗:v⃗Þ� þ

g4
τ
½4Vρσbγρbσvγðb⃗:v⃗Þ�: ð49Þ

To get Eq. (49), we have used ∇⃗:V⃗ ¼ 0, Vαβbαbβ ¼ 0,
bαβbα ¼ 0, bαβvαvβ ¼ 0, and bαbα ¼ 1. Comparing vari-
ous tensor structure in Eq. (49), we can write

g3 ¼ 2ωcτg1

2ωcg3 − ωcg4 þ
g1
τ
−
g2
τ
¼ 0

4ωcg1 − 4ωcg2 þ
2

τ
g3 −

4

τ
g4 ¼ 0

2ωcg3 þ
1

τ
g1 ¼

ϵ

2T
f0: ð50Þ

Solving the above set of equations for the coefficients g1,
g2, g3, and g4, we get

g1 ¼
ϵ

2T
τ

½1þ 4ðωcτÞ2�
f0; ð51Þ

g2 ¼
ϵ

2T
τ

½1þ ðωcτÞ2�
f0; ð52Þ

g3 ¼
ϵ

2T
τðωcτÞ

½1
2
þ 2ðωcτÞ2�

f0; ð53Þ

g4 ¼
ϵ

2T
τðωcτÞ

½1þ ðωcτÞ2�
f0: ð54Þ

Using Eqs. (47) and (48), various components of the
shear viscosity in magnetic field can be shown to be [76,98]

ηn ¼
2

15

Z
d3p
ð2πÞ3 ϵgnv

4; n ¼ 1; 2; 3; 4; ð55Þ

so that

η1 ¼
1

15T

Z
d3p
ð2πÞ3

p4

ϵ2
τ

1þ 4ðωcτÞ2
f0; ð56Þ

η2 ¼
1

15T

Z
d3p
ð2πÞ3

p4

ϵ2
τ

1þ ðωcτÞ2
f0; ð57Þ

η3 ¼
1

15T

Z
d3p
ð2πÞ3

p4

ϵ2
τðωcτÞ

1
2
þ 2ðωcτÞ2

f0; ð58Þ

η4 ¼
1

15T

Z
d3p
ð2πÞ3

p4

ϵ2
τðωcτÞ

1þ ðωcτÞ2
f0: ð59Þ

For hadron resonance gas model, total shear viscosity in
the presence of magnetic field can be expressed as

η1 ¼
X
i

gi
15T

Z
d3p
ð2πÞ3

p4

ϵ2i

1

1þ 4ðωciτiÞ2
f0iτi; ð60Þ

η2 ¼
X
i

gi
15T

Z
d3p
ð2πÞ3

p4

ϵ2i

1

1þ ðωciτiÞ2
f0iτi; ð61Þ

η3 ¼
X
i

gi
15T

Z
d3p
ð2πÞ3

p4

ϵ2i

ðωciτiÞ
1
2
þ 2ðωciτiÞ2

f0iτi; ð62Þ

η4 ¼
X
i

gi
15T

Z
d3p
ð2πÞ3

p4

ϵ2i

ðωciτiÞ
1þ ðωciτiÞ2

f0iτi: ð63Þ

In Eqs. (60)–(63), gi, τi are degeneracy factor and relax-
ation time of “i’th” hadron. gi in Eqs. (60)–(63) should not
be confused with g1, g2, g3, g4 as given in Eqs. (51)–(54). In
the absence of magnetic field, only Vð1Þ

αβ is nonvanishing
and the corresponding shear viscosity is η1. In the absence
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of magnetic field, η1 ¼ η2 and η3 ¼ η4 ¼ 0. η3 and η4 are
Hall-type shear viscosities. Similar to other Hall-type
transport coefficients, Hall-type shear viscosity also van-
ishes for zero baryon chemical potential even for non-
vanishing magnetic field. This is because, at vanishing
baryon chemical potential, when the number density
of particles and antiparticles are same, particles and
antiparticles will have equal and opposite contribution
to shear viscosity η3 and η4. Only at finite baryon
chemical potential, η3 and η4 can take nonvanishing values.
In this context, a comment regarding the anisotropic η
may be in order. First, let us note that ηi (i ¼ 1, 2, 3, 4)
is smaller compared to the longitudinal viscosity coeffi-
cient η0. Therefore, the flow velocity in the direction
perpendicular to the direction of the magnetic field
will be larger as compared to the case in the absence of
magnetic field.
In Refs. [102,103], transport coefficients have been

calculated using a 14-moment approximation for dissipa-
tive magnetohydrodynamics. In these studies, the effects
of Landau quantization have not been considered. As is
the case in the present work, the effect of Landau
quantization is not included and further more number of
transport coefficients arise in the presence of magnetic
field. However, the viscous stress is decomposed in a
different basis as compared to Refs. [102,103]. Therefore,
the different components of the shear viscosity are not same
as in Refs. [102,103]. However, one can relate these two
basis as has been shown, e.g., in Ref. [101].
To make a comparison between 14-moment method of

Refs. [102,103], one might compare the expression for
different viscosity coefficients for the case of massless
Boltzmann gas which has been given in Ref. [102]. To this
end, we define η0, the viscosity coefficient without mag-
netic field for massless Boltzmann gas in the relaxation
time approximation, e.g., for a single species.
For the massless Boltzmann gas, it can be shown that

η0 ¼
g

15T

Z
d3p
ð2πÞ3

p4

ϵ2
f0τ ¼

4λmfpP

5
; ð64Þ

where the mean free path λmfp ¼ vτ≡ τ for massless
particles and P denotes pressure which can be expressed as

P ¼ g
Z

d3p
ð2πÞ3

p2

3ϵ
f0: ð65Þ

This η0 differs by a factor 3=5 from 14-moment method
estimation of η0ð14Þ ¼ 4

3
λmfpP. Then the relationship

between ηi’s as evaluated here and ηij’s of 14-moment
method is given as

η00ð14Þ ðξBÞ ¼
5

3
η1ðξBÞ;

η02ð14Þ ðξBÞ ¼
5

3
ðη2ðξBÞ − η1ðξBÞÞ;

η03ð14Þ ðξBÞ ¼
5

3
η3ðξBÞ=2;

η04ð14Þ ðξBÞ ¼
5

3
η4ðξBÞ; ð66Þ

where ξB ¼ qBλmfp

T . To derive this, we have replaced ωcτ≡
qBτ
ϵðpÞ by its thermal averaged value, i.e., qBτ

ϵ̄ ≡ 1
3
ξB, where

ϵ̄ ¼ 3T, the average single particle energy at a given
temperature. Here we have not compared η01ð14Þ ðξBÞ as it
has been shown in Ref. [101] that η01ð14Þ ðξBÞ is related to the
bulk viscosity in the magnetic field. However, in this
investigation, we have not studied bulk viscosity tensor
in the presence of magnetic field. In Refs. [102,103],
authors have found the Hall-type shear viscosities
(η03ð14Þ , η04ð14Þ) which are independent of the mean free
path (λmfp), for a large ratio of the mean free path to thermal
Larmor radius (ξB ≫ 1). This behavior of Hall-type vis-
cosities is similar to present results.
From Eqs. (19)–(21), (37)–(39), and (60)–(63), it is clear

that the important input required for the estimation of the
transport coefficient is the relaxation time τi which in
general can be energy dependent. In this investigation, we
consider only energy averaged relaxation time. Further, the
coefficients of thermal conductivity are dependent on bulk
thermodynamic properties of the system, e.g., energy
density, pressure, and enthalpy. These thermodynamic
quantities and the relaxation time will be estimated for
the hadronic system within the hadron resonance gas model
that we discuss in the next section.

V. HADRON RESONANCE GAS MODEL

The thermodynamic potential of a noninteracting gas of
hadrons and its resonances at finite temperature (T) and
baryon chemical potential (μB) can be expressed as [53]

logZðβ; μB; VÞ ¼
Z

dmðρMðmÞ logZbðm;V; β; μBÞ

þ ρBðmÞ logZfðm;V; β; μBÞÞ; ð67Þ

where V is the volume and T ¼ 1=β is the temperature of
pointlike hadrons and their resonances. Total partition
function is sum of the partition functions of free mesons
(Zb) and baryons (Zf) with mass m. Moreover, spectral
function which encodes hadron properties are represented
as ρB and ρM for free mesons and baryons, respectively.
Various thermodynamic quantities can be calculated using
derivatives of the logarithm of the partition function as
given in Eq. (67), with respect to the thermodynamic
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parameters T, μB, and the volume V. In this investigation,
we confine ourselves to ideal HRG model where we have
considered all the hadrons and their resonances below a
certain mass cutoff Λ. This can be achieved by taking the
following form of spectral density:

ρB=MðmÞ ¼
Xmi<Λ

i

giδðm −miÞ: ð68Þ

Here mi and gi are mass and degeneracy of “ith” hadron
species. Although HRG with discrete particle spectrum is
very appealing because of its simple structure, but it can
explain lattice QCD data for trace anomaly only up to
temperature ∼130 MeV [104]. Including Hagedorn spec-
trum along with discrete particle spectrum HRG model can
explain lattice QCD data for QCD trace anomaly up to
T ∼ 160 MeV [104]. For details of thermodynamics of
HRG model, see, e.g., Ref. [82].
The relaxation time of particle a with three momentum

pa and energy ϵa is expressed as [40,105]

τ−1a ðϵaÞ ¼
X
b;c;d

Z
d3pb

ð2πÞ3
d3pc

ð2πÞ3
d3pd

ð2πÞ3Wða; b → c; dÞf0b:

ð69Þ

Here Wða; b → c; dÞ is the transition rate for process
aðpaÞ þ bðpbÞ → cðpcÞ þ dðpdÞ and can be expressed
in terms of the transition amplitude M in the following
way:

Wða;b→ c;dÞ¼ ð2πÞ4δðpaþpb−pc−pdÞ
2ϵa2ϵb2ϵc2ϵd

jMj2: ð70Þ

In the center of mass (c.m.) frame, the relaxation
time (τa) or equivalently interaction frequency (ωa) can
be written as

τ−1a ðϵaÞ≡ ωaðϵaÞ ¼
X
b

Z
d3pb

ð2πÞ3 σabvabf
0
b: ð71Þ

Here σab is the total scattering cross section for the
process aðpaÞ þ bðpbÞ → cðpcÞ þ dðpdÞ and vab is the
relativistic relative velocity between particles a and b,

vab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpa:pbÞ2 −m2

am2
b

q
ϵaϵb

: ð72Þ

In this work, we shall be considering energy averaged
relaxation time. One can obtain the energy independent
relaxation time τa by averaging the relaxation time τaðϵaÞ
over the distribution function f0aðϵaÞ [40,97],

τ−1a ¼
R d3pa

ð2πÞ3f
0
aτ

−1
a ðϵaÞR d3pa

ð2πÞ3f
0
a

¼
X
b

R d3pa
ð2πÞ3

d3pb
ð2πÞ3f

0
af0bσabvabR d3pa

ð2πÞ3f
0
a

: ð73Þ

Using Eq. (73), the energy averaged relaxation time ðτaÞ
can be expressed as [62]

τ−1a ¼
X
b

nbhσabvabi; where; nb ¼
Z

d3pb

ð2πÞ3 f
0
b: ð74Þ

Here nb and hσabvabi represent number density and thermal
averaged cross section, respectively. The thermal averaged
cross section for the scattering process aðpaÞ þ bðpbÞ →
cðpcÞ þ dðpdÞ is given as [106]

hσabvabi ¼
R
d3pad3pbσabvabf0aðpaÞf0aðpbÞR

d3pad3pbf0aðpaÞf0aðpbÞ
: ð75Þ

In Boltzmann approximation and for hard sphere (of radius
rh) scattering for the cross section (σ ¼ 4πr2h), the thermal
averaged cross section becomes

hσabvabi ¼
σ
R
d3pad3pbvabe−ϵa=Te−ϵb=TR
d3pad3pbe−ϵa=Te−ϵb=T

: ð76Þ

Note that in Boltzmann approximation of the thermal
averaged relaxation time chemical potential dependence
gets canceled from the numerator and denominator. Rather
than using momentum integration it is useful to introduced
c.m. energy variable (

ffiffiffi
s

p
) to calculate thermal averaged

cross section. In terms of c.m. energy variable (
ffiffiffi
s

p
), it can

be shown that

Z
d3pad3pbvabe−ϵa=Te−ϵb=T

¼ 2π2T
Z

ds
ffiffiffi
s

p ðs − 4m2ÞK1ð
ffiffiffi
s

p
=TÞ ð77Þ

and

Z
d3pad3pbe−ϵa=Te−ϵb=T ¼ ð4πm2TK2ðm=TÞÞ2: ð78Þ

Thus, the thermal averaged cross section can be given as

hσabvabi¼
σ

8m4TK2
2ðm=TÞ

Z
∞

4m2

ds
ffiffiffi
s

p ðs−4m2ÞK1ð
ffiffiffi
s

p
=TÞ:

ð79Þ

Here
ffiffiffi
s

p
is the c.m. energy, K1 and K2 are modified

Bessel function of first order and second order, respectively.
When the particles are of different species, then the above
equation can be generalized as
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hσabvabi ¼
σ

8Tm2
am2

bK2ðma=TÞK2ðmb=TÞ

×
Z

∞

ðmaþmbÞ2
ds ×

½s − ðma −mbÞ2�ffiffiffi
s

p

× ½s − ðma þmbÞ2�K1ð
ffiffiffi
s

p
=TÞ; ð80Þ

where σ ¼ 4πr2h is the total scattering cross section for the
hard sphere. It is important to mention that in hard sphere
scattering approximation section σ is independent of
temperature and baryon chemical potential. But thermal
averaged cross section hσvi in general can depend on
temperature (T) and chemical potential μB. Only in
Boltzmann approximation, hσvi is independent of μB
[106]. Evaluating the thermal averaged relaxation time
for each species, we estimate various transport coefficients
of the hot and dense hadron gas.

VI. RESULTS AND DISCUSSIONS

We have estimated thermal conductivity, electrical con-
ductivity, and shear viscosity in the presence of magnetic
field within the framework of hadron resonance gas model.
For the hadron resonance gas model, we consider all the
hadrons and their resonances up to a mass cutoff Λ which
we take as Λ ¼ 2.6 GeV as is listed in Ref. [107]. For a
detailed list of hadrons and its resonances, we refer to
Appendix A of Ref. [108]. Apart from these parameters
radii of the hard spheres also enter in the calculation of
relaxation time. We have considered a uniform radius of
rh ¼ 0.5 fm for all the hadrons [62,109]. With these set of
parameters, we have estimated thermal conductivity, shear
viscosity, etc. as a function of temperature (T) and baryon
chemical potential (μB) for different values of the magnetic
field (B).

A. Results for thermal conductivities
in a magnetic field

In Fig. 1, we show the variation of normalized thermal
conductivity (k0=T2) with temperature (T) for various
values of magnetic field at a finite baryon chemical
potential. As may be observed from the figure, the
normalized thermal conductivity k0=T2 decreases with
temperature. Let us note that k0=T2 as given in Eq. (19)
depends on the relaxation time ω=nB and distribution
function. As temperature increases, the scattering rate
increases as the number of particle increases. This leads
to relaxation time, which is inverse of scattering rate,
decreasing with temperature. Further ω=nB also decreases
with temperature which has been shown in the left plot in
Fig. 2. The reason for this behavior of ω=nB with temper-
ature can be understood as follows. The dominant con-
tribution to the sum over all hadrons arises from pions and
protons which can be approximately given by

ω

nB
¼ E þ P

nB
∼
Eπ þ Pπ

np
þ Ep þ Pp

np

∼
e−mπ=Tðmπ þ TÞ
sinhðμB=TÞe−mp=T

þ coshðμB=TÞe−mp=Tðmp þ TÞ
sinhðμB=TÞe−mp=T

:

ð81Þ

With increasing temperature, cothðμB=TÞ as well as
ðmp þ TÞ increases. Hence, if one considers only baryons,
then with temperature ωB=nB increases as can be seen in
the right plot of Fig. 2. However, for pions, ωπ=nB
decreases with temperature due to the term eðmp−mπÞ=T in
Eq. (81). For hadron resonance gas, contributions of
mesons in the energy density and pressure are significantly
large with respect to the baryonic contributions. Hence,
when we consider hadron resonance gas, due to mesonic
contribution to energy density and pressure, ω=nB
decreases with temperature as can be seen in the left plot
in Fig. 2.
It is also clear that in the presence of magnetic field

thermal conductivity decreases. This can be understood
from the expression for k0=T2 in Eq. (19) which is inversely
proportional to 1þ ðωcτÞ2. At low temperature, relaxation
time is relatively larger and at low temperature k0 ∼ 1

ω2
cτ
.

Hence, at low temperature, magnetic field affects k0=T2

significantly. On the other hand, at high temperature, τ is
small; hence, the effect of ωcτ in the denominator of

FIG. 1. Variation of normalized thermal conductivity (k0=T2)
with temperature (T) for different values of magnetic field (B) at
finite baryon chemical potential. Red solid line represents B ¼ 0

case, blue dotted line and brown dashed line represent eB ¼
0.01 GeV2 and eB ¼ 0.03 GeV2, respectively. In the presence of
magnetic field, k0=T2 decreases. At low temperature, decrease in
k0=T2 due to magnetic field is significant. But at higher temper-
ature, the effect of magnetic field on k0=T2 is not significant.
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Eq. (19) is not significant. Thus, at small temperature,
k0=T2 decreases with magnetic field but at large temper-
ature magnetic field does not affect k0=T2 significantly.
This behavior of thermal conductivity is analogous to the
variation of electrical conductivity (σ0=T), as discussed
in Ref. [68].
We next discuss the variation of k0=T2 with μB in Fig. 3.

In the left panel, we show the result for vanishing magnetic
field and for nonvanishing magnetic field on the right panel.
With increasing μB and temperature, k0=T2 decreases. With
increasing μB, relaxation time of different hadrons and
ω=nB decreases. Relaxation time decreases with μB, due to
the fact that with increasing μB number density of the
baryons increases. With increasing number density of the

baryons scattering rate increases. On the other hand,
decreasing behavior of ω=nB with μB can be understood
using Eq. (81). From Eq. (81), it is clear that with
increasing μB, mesonic as well as baryonic contribution
inω=nB of hadron resonance gas decreases due to the factor
sinhðμB=TÞ in the denominator. Mesonic contribution in
energy density and pressure of hadron resonance gas is
independent of μB. On the other hand, number density of
baryons ðnBÞ increases with μB. Thus, with increasing μB,
mesonic contribution in ω=nB decreases. Further, for
baryons energy density, pressure and number density
depend upon μB. From Eq. (81), it is clear that energy
density and pressure of baryons ∼ coshðμB=TÞ, but
nB ∼ sinhðμB=TÞ. Hence, with increasing μB, baryonic

FIG. 2. Left plot: variation of ω=nB with temperature (T) for different values of μB at zero magnetic field. Right plot: variation of ω=nB
only for baryons denoted as ωB=nB, with temperature (T) for different values of μB for a vanishing magnetic field. With increasing
temperature and μB, ω=nB of the hadron resonance gas decreases. However, baryonic contribution to ω=nB i.e., ωB=nB increases with
temperature.

FIG. 3. Left plot: variation of normalized thermal conductivity (k0=T2) with temperature (T) for different values of μB at zero magnetic
field. Right plot: variation of normalized thermal conductivity (k0=T2) with temperature (T) for different values of μB for a nonvanishing
magnetic field. With increasing temperature and μB, k0=T2 decreases. In the presence of magnetic field, k0=T2 decreases.
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contribution in ω=nB of the hadron resonance gas
decreases. Decreasing behavior of ω=nB with μB has been
shown in Fig. 2. For the range of temperature and μB
considered in this investigation, decrease of τ and ω=nB is
dominant with respect to increasing f0 with μB. Hence,
with μB, k0=T2 of the hot and dense hadron gas decreases. It
may be noted that as μB → 0, thermal conductivity diverges
as n−2B . This divergence is inconsequential as the factor
k0n2B enters the equation of motion. Since k0n2B remains
finite as μB → 0, transport due to thermal conduction

becomes irrelevant as ∇⃗ðμB=TÞ → 0 [4]. For μB → 0,
relevant transport processes are only momentum diffusion
through viscous stresses. Such behavior was also seen in
Ref. [97]. For nonvanishing magnetic field, k0=T2

decreases due to ðωcτÞ2 factor in the denominator of
expression for k0.
In Fig. 4, we show the variation of Hall-type thermal

conductivity (k1=T2) with temperature. For vanishing
magnetic field, k1=T2 is zero as can be seen from
Eq. (20). Only at finite magnetic field and finite μB,
k1=T2 can have nonvanishing values. In the left plot in
Fig. 4, we show the variation of k1=T2 with temperature for
nonvanishing values of μB for a fixed value of magnetic
field. It is clear from this plot that with μB, k1=T2 decreases.
This decrease is predominately due to a decrease of ω=nB
factor with increasing μB. On the other hand, for a fixed
value of μB, k1=T2 decreases with magnetic field at low
temperature and increases with magnetic field at high
temperature as can be seen in the right plot of Fig. 4.
This behavior of k1=T2 can be understood in the following
way: at low temperature, τ is large; hence, at low temper-
ature k1=T2 ∼ 1=ωc. On the other hand, at high temper-
ature, relaxation time is small and k1=T2 ∼ ωc. Thus,

variation of k1=T2 is different with magnetic field at low
temperature and high temperature.
In Fig. 5, variation of the third component of the thermal

conductivity tensor k2=T2 has been shown with temper-
ature. It is clear for Eq. (21) that k2=T2 has nonvanishing
value only at finite magnetic field. In the right plot in Fig. 5,
we show the variation of k2=T2 with temperature at nonzero
μB for various values of magnetic field. In the left plot in
Fig. 5, we show the variation of k2=T2 with temperature
and μB for nonvanishing value of magnetic field. From the
right plot in Fig. 5, we can see that with magnetic field
k2=T2 increases. However, for a large magnetic field and
low temperature, k2=T2 is not affected by magnetic field
significantly. Naively this is because for low temperature

the relaxation time is large; hence, ðωcτÞ2
1þðωcτÞ2 ∼ 1 for high

magnetic fields. Similarly, at high temperature, when the
relaxation time is small, k2=T2 ∼ τ2ω2

c. Hence, at high
temperature, with increasing magnetic field k2=T2

increases. In the left plot of Fig. 5, we show the variation
of k2=T2 for nonzero values of baryon chemical potential at
finite magnetic field. In this plot, we can see that with μB,
k2=T2 decreases. Variation of k2=T2 with μB is convoluted
because in the expression of k2=T2 various terms are
present which depend upon μB, e.g., relaxation time,
distribution function, etc. With increasing μB, relaxation
time as well as ω=nB decreases and f0 increases. But the
increase of f0 with μB is not large enough to compensate
the decreasing behavior of τ and ω=nB. Hence, with
increasing μB, k2=T2 decreases.

B. Results for electrical conductivity in a magnetic field

In this subsection, we discuss the variation of electrical
conductivity (σ2=T) with temperature, magnetic field, and

FIG. 4. Left plot: variation of Hall-type thermal conductivity k1=T2 with temperature for nonvanishing magnetic field and different
values of μB. Right plot: variation of k1=T2 with temperature for different values of magnetic fields. With μB k1=T2 decreases. But for a
fixed value of μB variation of k1=T2 is nonmonotonic with magnetic field. At low temperature, k1=T2 decreases with magnetic field, but
at higher temperature k1=T2 increases with magnetic field.
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baryon chemical potential. In our earlier work, we had
demonstrated in details variation of σ0 and σ1 with temper-
ature, magnetic field, and μB [68]. Therefore, we do not
repeat the discussion on the results for σ0 and σ1 here. Here
we only show the variation of σ2 with temperature, baryon
chemical potential, and magnetic field. In the left plot
of Fig. 6, we show the variation of σ2=T with temperature
for a nonvanishing value of magnetic field but with
different values of μB. For a fixed value of magnetic
field and μB, σ2=T decreases with temperature. Among
various hadrons, mesonic contribution to σ2=T is large with
respect to the baryonic contribution. With increasing temp-
erature, mesonic contribution decreases due to decrease
in the relaxation time of mesons. With increasing μB,
mesonic contribution to σ2=T decreases and the baryonic

contribution increases. However, the decrease in mesonic
contribution with increasing μB is not compensated with
increasing baryonic contribution for the range of temper-
ature and baryon chemical potential considered here.
Hence, with increasing μB, σ2=T decreases. In the right
plot in Fig. 6, we show the variation of σ2=T with magnetic
field. For the range of T, μB, and B we considered in this
investigation, σ2=T increases with magnetic field.

C. Results for shear viscosity in a magnetic field

In Fig. 7, we show the variation of η1=T3 with temper-
ature for nonvanishing values of μB for zero magnetic field.
It is important to note that for zero magnetic field η1 ¼ η2
and η3 ¼ η4 ¼ 0. With temperature η1=T3 decreases and it

FIG. 6. Left plot: variation of σ2=T with temperature for a nonvanishing magnetic field and for different values of μB. With increasing
μB, σ2=T decreases. Right plot: variation of σ2=T with temperature for nonvanishing values of magnetic field at finite μB. With magnetic
field, σ2=T increases.

FIG. 5. Left plot: variation of k2=T2 with temperature (T) for various values of baryon chemical potential at finite magnetic field. Right
plot: variation of k2=T2 with temperature (T) for various values of magnetic field. For a fixed value of magnetic field and μB, k2=T2

decreases with temperature. With increasing magnetic field, generically k2=T2 increases within the range of T, μB, and B considered in
this investigation. But with increasing μB, k2=T2 decreases.
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increases with μB. This behavior of η1=T3 with μB is a
combined effect of the variation of relaxation time and
distribution function with μB. Relaxation time decreases
with μB; however, with increasing baryon, chemical poten-
tial f0 increases. Among various hadrons, mesonic con-
tribution to η1=T3 is larger as compared to the baryonic
contribution at zero μB. With increasing temperature,
relaxation time of the hadrons decreases which gives rise
to the decreasing behavior of η1=T3 with temperature. On
the other hand, with μB mesonic contribution decreases due
to a decrease in relaxation time with μB; however, with μB,
baryonic contribution increases due to the μB factor in
the distribution function. This increasing contributions of

baryons at finite μB compensate decreasing contributions of
the mesons. With increasing μB, baryonic contribution
becomes significant over mesonic contribution. Hence,
η1=T3 increases with μB for a given T at vanishing magnetic
field.
In Fig. 8, we show the variation of η1=T3 and η2=T3 with

temperature for nonvanishing values of magnetic field at
zero baryon chemical potential. From the expressions for η1
and η2, it is clear that in the presence of magnetic field their
behavior regarding variation with temperature is similar. η1
and η2 only differ in numerical values with η1 being little
smaller as compared to η2 due to the different numerical
factors in the denominator as given in Eqs. (56) and (57).
From the left plot in Fig. 8, we can see that with magnetic
field η1=T3 decreases. This is due to ðωcτÞ2 factor in the
denominator of Eq. (60). However, for a fixed value of
magnetic field, variation of η1=T3 with temperature is
rather nonmonotonic in nature. The variation of η1=T3

and η2=T3 with temperature for a nonvanishing value of
magnetic field shows a peak structure. These coefficients
have three types of terms that depend upon temperature.
The first one, the prefactor 1=T4, which always decreases
with temperature, the τ dependent factor τ

1þaðωcτÞ2 (a ¼ 4 for

η1 and a ¼ 1 for η2), and the distribution function which
always increases with temperature. At large temperature for
which one can neglect aðωcτÞ2 term due to small relaxation
time compared to 1, η1=T3 becomes linearly dependent on τ
and is independent of magnetic field. The decreasing
behavior of the prefactor (1=T4) and τ with temperature
compensate for the increasing behavior of the distribution
function resulting in a decreasing behavior of η1=T3

reaching the zero-field limit. This explains the large
temperature behavior of η1=T3 and η2=T3, as seen in (8).

FIG. 7. Variation of η1=T3 with temperature for vanishing
magnetic field but with different values of μB. At zero magnetic
field, η1 ¼ η2. From this figure, it is clear that η1=T3 decreases
with temperature and increases with μB.

FIG. 8. Left plot: variation of η1=T3 with temperature for vanishing μB but with different values of magnetic field. Right plot: variation
of η2=T3 with temperature for vanishing μB but with different values of magnetic field. For vanishing magnetic field, η1 ¼ η2, which can
be seen in this figure. Also, for nonvanishing magnetic field, η1 ≠ η2 can be seen in these plots. With increasing magnetic field, both
η1=T3 and η2=T3 decrease. This decrease is very prominent at low temperature. At high temperature, the effect of magnetic field is not
significant.
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At a small temperature for which, the relaxation time is
large enough so that τ

1þaðωcτÞ2 ∼
1

ω2
cτ
, which is an increasing

function of temperature as τ decreases with temperature.
However, the increasing behavior of 1

ω2
cτ
and the distribution

function are overshadowed by the decreasing behavior of
the prefactor 1=T4, leading to an initial decreasing behavior
of η1=T3 and η2=T3 at relatively low temperatures. As
temperature increases further, the increasing behavior of 1

ω2
cτ

and the distribution function become increasingly impor-
tant and η1=T3 and η2=T3 start increasing. Finally, at a
much larger temperature, where ωcτ can be negligible,
η1=T3 and η2=T3 approach the zero-field behavior of
decreasing nature with temperature as mentioned earlier.
This essentially explains the nonmonotonic behavior of
η1=T3 and η2=T3 with temperature.
It is also important to note that at high temperature

magnetic field does not affect η1=T3 significantly. This is
because at high temperature relaxation time is small; hence,
the factorωcτ in the denominator of Eq. (60) is rather small.
Hence, at high temperature, suppression effect due to
magnetic field is not significant. In the right plot of
Fig. 8, we show the variation of η2=T with temperature
for nonvanishing values of magnetic field at zero μB.
Behavior of η2=T can also be understood in the same
manner as we have discussed for η1=T3.
Next, we show the variation of η1=T3 and η2=T3 with

temperature for a nonvanishing magnetic field and various
values of μB in Fig. 9. In the presence of magnetic field, η1
is smaller than η2 as can be seen from Eqs. (60) and (61).
Besides this, variations of η1=T3 and η2=T3 are similar with
temperature, magnetic field, and μB. From Fig. 9, it is clear
that variation of η1=T3 and η2=T3 with μB is similar to
Fig. 7, i.e., with μB, η1=T3 and η2=T3 increase. Mesonic

contribution to η1=T3 and η2=T3 is significantly larger than
the baryonic contribution at vanishing μB. With increasing
μB, mesonic contribution decreases due to a decrease in the
relaxation time of mesons. On the other hand, with
increasing μB, baryonic contribution increases due to μB
factor in the distribution function. Increasing baryonic
contribution compensates decreasing mesonic contribution
to η1=T3 and η2=T3. Hence, with increasing μB, both η1=T3

and η2=T3 increase. However, in the presence of magnetic
field, values of η1 and η2 are smaller with respect to the
same in the absence of magnetic field. For a nonvanishing
value of μB, magnetic field variation of η1=T3 and η2=T3

with temperature is nonmonotonic and is similar to Fig. 8.
In Fig. 10, we show the variation of η3=T3 and η4=T3

with temperature for eB ¼ 0.01 GeV2 for values of μB ¼
300 MeV and μB ¼ 600 MeV. Note that η3 and η4 are
Hall-type shear viscosities in magnetic field. Hence, η3 and
η4 are zero for zero magnetic field as well as for zero baryon
chemical potential due to equal and opposite contributions
of particles and antiparticles. Only at nonvanishing mag-
netic field and finite μB, η3 and η4 have nonvanishing
values. From Fig. 10, we see that with μB both η3=T3 and
η4=T3 increase for nonvanishing value of magnetic field.
This behavior of η3 and η4 can be understood naively in the
following way. Due to Hall-type nature of η3 and η4, only
baryons contribute to η3 and η4 at finite μB. With increasing
μB, the number density of baryons increases; this gives rise
to increasing behavior of η3=T3 and η4=T3.
In Fig. 11, we show the variation of η3=T3 and η4=T3

with temperature for μB ¼ 300 MeV for different values of
magnetic. From this figure, we can see that with increasing
magnetic field both η3=T3 and η4=T3 increase at large
temperature. But at low temperature, both η3=T3 and η4=T3

decrease with magnetic field. This behavior of η3=T3 and

FIG. 9. Left plot: variation of η1=T3 with temperature for different values of μB in the presence of magnetic field. Right plot: variation
of η2=T3 with temperature for different values of μB in the presence of magnetic field. Behavior of η1=T3 and η2=T3 is similar apart from
their numerical values. η2 is larger than η1 as can be seen from their analytical expressions. For higher μB, value of η1=T3 and η2=T3 is
higher. Variation of both η1=T3 and η2=T3 with temperature shows nonmonotonic behavior with a peak structure.
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η4=T3 is similar to the other Hall-type conductivities as
discussed earlier. At low temperature, due to large value
of relaxation time, both η3=T3 and η4=T3 ∼ 1=ωc. On the
other hand, at high temperature, due to large relaxation time
η3=T3 ∼ ωc. This different behavior of η3=T3 as well as
η4=T3 with magnetic field at high and low temperatures
gives rise to nonmonotonic variation of these Hall-type
shear viscosities with magnetic field.
Next, let us discuss temperature dependence of normal-

ized Hall-type shear viscosities η3=T3 and η4=T3. At large
temperature, as may be observed from Eqs. (58) and (59),

both η3=T3 and η4=T3 ∼ 1
T4 τ2ωc vanish. This is because ωc,

being inversely proportional to baryon mass, is small, as
well as τ itself, becomes vanishingly small at large temper-
atures. On the other hand, at small temperatures, with the
relaxation time becoming larger, so 1þ ðωcτÞ2 ∼ ðωcτÞ2
and η3=T3, η4=T3∼ 1

T4
1
ωc
e−mB=T , mB being the baryon mass,

which increases with temperature. Therefore, for some
intermediate values between these two limits, one will have
a maximum for η3=T3 and η4=T3. Indeed, with increasing
magnetic field, the peak occurs at higher temperatures, as
may be clearly observed from Eq. (11).

FIG. 11. Left plot: variation of η3=T3 with temperature for different values of nonvanishing magnetic field and finite μB. Right plot:
variation of η4=T3 with temperature for different values of nonvanishing magnetic field and finite μB. Variation of η3=T3 and η4=T3 with
temperature and magnetic field is similar apart from their numerical values. For low temperature, η3=T3 and η4=T3 decrease with
magnetic field. On the other hand, for high temperature, both η3=T3 and η4=T3 increase with magnetic field. Variation of η3=T3 and
η4=T3 with temperature is nonmonotonic with a peak.

FIG. 10. Left plot: variation of η3=T3 with temperature for a nonvanishing magnetic field and different values of μB. Right plot:
variation of η4=T3 with temperature for a nonvanishing magnetic field and different values of μB. Behavior of η3=T3 and η4=T3 is similar
with μB and temperature apart from their numerical values. With increasing μB, Hall-type shear viscosities η3=T3 and η4=T3 increase.
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It is also important to mention that the nonmonotonic
behavior of shear viscosities is intimately related to the
order of magnitude estimate of the relaxation time which is
model dependent. If the relaxation time is very small, such
that ωcτ ≪ 1, the variation of normalized shear viscosities
will be linearly dependent on τ (for η1, η2). In this case, the
behavior can be monotonically decreasing function of T as
τ decreases with T. This kind of situation can arise in
various quasiparticle models of quark-gluon plasma, e.g.,
in Ref. [69] Hall conductivity has been studied for two
different quasiparticle models of quark-gluon plasma. The
variation of Hall conductivity is different in different
quasiparticle models, as discussed in Ref. [69]. However,
we expect that while this feature of nonmonotonic behavior
will be there for hadronic models, in general, this may not
hold good for quark matter described, e.g., by different
quasiparticle models where the relaxation time can differ by
an order of magnitude.

VII. CONCLUSION

Off central heavy ion collisions can produce a strong
magnetic field. The lifetime of such a field during the
evolution of QGP to hadron gas depends critically on
transport coefficients like electrical conductivity. Similarly,
the other dissipative coefficients in the presence of mag-
netic field are also important and essential ingredients for
the magnetohydrodynamic evolution of the strongly inter-
acting medium produced subsequent to the collision. We
have here attempted to evaluate some of these coefficients
for magnetized hot and dense hadronic matter. The explicit
calculations are performed within the hadron resonance
gas model.
We have used the Boltzmann transport equation in the

relaxation time approximation to estimate the transport
coefficients. We have incorporated the effect of magnetic
field through the cyclotron frequency of individual hadrons.
Due to the vector nature of the field, the transport
coefficients are no longer isotropic. It is observed that
the anisotropic transport coefficients are always smaller
than their isotropic counterpart at vanishing magnetic field.
For strong fields, the effects arising from collision become

smaller compared to the effects arising from the cyclotron
frequency.
For shear viscosity due to the presence of magnetic field,

the transverse viscosity coefficient will be smaller com-
pared to the longitudinal viscosity coefficient and will
affect transverse flow. The structure of the viscous stress
tensor in a magnetic field is model independent. However,
the precise value of the transverse shear viscosity depends
on the model considered. The viscous properties of the fluid
extracted from flow data can lead to a more ideal fluid
behavior in the presence of magnetic field as compared to
the case in the absence of magnetic field [76].
In the context of electrical conductivity, it was shown

that Hall conductivity σ1 for hadron gas generically
increases with magnetic field [68]. It is also observed here
that the non-Hall-type conductivity σ2 increases with
magnetic field, while the component σ0 decreases with
magnetic field. It is to be noted that σ ¼ σ0 þ σ2 is the
electrical conductivity in the absence of magnetic field.
Similar behavior is also observed for the anisotropic

thermal conductivities (k0, k1, and k2). The “Hall-type”
thermal conductivity k1 generically increases with mag-
netic field. The non-Hall-type conductivity k0 decreases
with magnetic field, while k2 increases with magnetic field
keeping k ¼ k0 þ k2, being independent of magnetic field
with a value as one would obtain in the absence of magnetic
field. In the present work, we have included the effect of
magnetic field through cyclotron frequency of individual
hadrons and have not taken the quantum effects arising
from Landau quantization. Further, the relaxation time has
been included with a hard sphere scattering where the effect
of magnetic field is not included. Some of these calcu-
lations are in progress and will be reported elsewhere.
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