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The Landau-Khalatnikov-Fradkin transformation is a powerful and elegant transformation allowing us
to study the gauge dependence of the propagator of charged particles interacting with gauge fields. With the
help of this transformation, we derive a nonperturbative identity between massless propagators in two
different gauges. From this identity, we find that the corresponding perturbative series can be exactly
expressed in terms of a hatted transcendental basis that eliminates all even {-values. This explains the
mystery of even {-values observed in multiloop calculations of Euclidean massless correlators for almost
three decades now. Our construction further allows us to derive an exact formula relating hatted and

standard {-values to all orders of perturbation theory.
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I. INTRODUCTION

Gauge invariance governs the dynamics of systems of
charged particles with deep consequences in elementary
particle physics and beyond. Through the gauge principle,
it gives rise to gauge field theories the prototype of which is
quantum electrodynamics (QED). In the latter, gauge
freedom can be expressed via a covariant gauge fixing
procedure that introduces an explicit dependence of the
Lagrangian on a gauge fixing parameter £. While physical
quantities should not depend on this parameter, precious
information can be obtained by studying the £-dependence
of various correlation functions.

Such a task can be carried out with the help of the
Landau-Khalatnikov-Fradkin (LKF) transformation [I]
(see also [2,3]) that elegantly relates the QED fermion
propagator in two different £-gauges (and similarly for the
fermion-photon vertex). Its most important applications
[4-6] are related to the study of the gauge covariance of
QED Schwinger-Dyson equations and their solutions.
This allows us, e.g., to construct a charged-particle-photon
vertex ansatz both in scalar [7] and spinor QED [8]. Other
applications [9,10] are focused on estimating large orders
of perturbation theory. Indeed, and this will play a crucial
role in what follows, the nonperturbative nature of the
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LKF transformation allows us to fix some of the coeffi-
cients of the all-order expansion of the fermion propagator.
Starting with a perturbative propagator in some fixed
gauge, say 7, all the coefficients depending on the differ-
ence between the gauge fixing parameters of the two
propagators, £ — 7, get fixed by a weak coupling expansion
of the LKF-transformed initial one. Such estimations have
been carried out for QED in various dimensions (see
[9,10]), for generalizations to brane worlds [11] and for
more general SU(N) gauge theories [12].

A seemingly unrelated topic is focused on the multiloop
structure of propagator-type functions (p-functions [13]).
About three decades ago, it was noticed that all contribu-
tions proportional to ¢, = z*/90 mysteriously cancel out in
the Adler function at three loops [15]. Two decades later, it
was shown that the four-loop contribution is also z-free and
that a similar fact holds for the coefficient function of the
Bjorken sum rule [16]. There is by now mounting evidence,
see, e.g., [17-20], that various massless Euclidean physical
quantities demonstrate striking regularities in terms propor-
tional to even {-function values, {,,, €.g., to 72" with n
being a positive integer [21]. Additional cancellations of
7" terms have been observed in the so-called C-scheme
[23]. Such puzzling facts have recently given rise to the
“no-z theorem.” The latter is based on the observation
[24,25] that the e-dependent transformation of the {-values
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eliminates even zetas from the expansion of four-loop
p-integrals. A generalization of (1) to five and six loops is
available in Refs. [26,27] and [14], respectively (the latter
used the results obtained in [28]). The results (1) and their
extensions in [14,27,29] give a possibility to predict the
terms ~7z>" in higher orders of perturbation theory (see their
evaluation in [14,26,29]). Note that the results [14,26,
27,29] also contain multizeta values the consideration of
which is beyond the scope of the present study.

In the present paper, we shall use the LKF transformation
in order to study general properties of the coefficients of the
propagator. We will show how the transformation naturally
reveals the existence of the hatted transcendental basis.
Moreover, it will allow us to extend the results of Eq. (1) to
any order in &.

The appearance of the hatted transcendental basis from
the LKF transformation can be naturally understood in the
following way. The LKF transformation produces all-loop
results for very restricted objects: the difference of fermion
propagators in two gauges. So, at every order of the e-
expansion these all-loop results should contain (at least, a
part of) the basic properties of the corresponding master
integrals; i.e., the all-loop results should be expressed in the
form of (at least, a part of) the corresponding hatted
{-values. In a sense, it is not the full set of the hatted
{-values but only the onefold ones. This comes from the
fact that the results produced by the LKF transformation
contain only products of I'-functions and, thus, their
expansions contain only the simple onefold {-values.

The paper is organized as follows. Section II introduces
the LKF transformation in coordinate space. The corre-
sponding results in momentum space are presented in
Secs. IIT and IV for spinor QED and its scalar counterpart,
respectively. Section V then provides the evaluation of the
basic elements of the LKF transformation in the form of
hatted {-values. The results are summarized in Sec. VI and
some of the first coefficients of the expansion of the hatted
{-values in terms of the usual ones are displayed in the
Appendix.

II. LKF TRANSFORMATION

In the following, we shall consider QED in a Euclidean
space of dimension d (d = 4 — 2¢). The general form of the
fermion propagator Sy (p, &) in some gauge & reads

1
where the tensorial structure, e.g., the factor p containing
Dirac y-matrices, has been extracted. It is also convenient to
introduce the x-space representation S (x, &) of the fermion
propagator as

Sp(x.&) = 3X(x.&). (3)

The two representations, Sy (x, &) and Sp(p, &), are related
by the Fourier transform which is defined as

dx )
Se(p, &) = /WEIPXSF()C,@, (4a)

SF(x’é:) —/ ddp

(2ﬂ)d/2 e_ipxSF(p’ é) . (4b)

The famous LKF transformation connects in a very
simple way the fermion propagator in two different gauges,
e.g., £ and 7. In dimensional regularization, it reads

Sp(x,&) = Sp(x, n)elPW=PO), (5)
where

ddp e—ipx
2m)? p*

D(x) = —iAez,u“_d/ A=¢—-y5.  (6)
Note that, in dimensional regularization, the term D(0) is
proportional to the massless tadpole 7,, the massive
counterpart of which is defined as

2\ _ d’p
Ta(m ) _/(2”)d (p2+m2)a'

e irx

(7)

The tadpole T,(m?) ~&(a—d/2) in the massless limit
and, thus, D(0) =0 in the framework of dimensional
regularization. So, Eq. (5) can be simplified as follows:

Sp(x, &) = Sp(x,n)ePW. (8)

We may now proceed in calculating D(x). In order
to do so, it is possible to use the following simple
formulas for the Fourier transform of massless propagators
(see, e.g., [30]):

elP* 2%7gd2q(q) a . d
/ddxxza :T’ a(a):m, a:E—a,
(%a)
e~ipx 22&ﬂd/2a a
/dp T 251() (9b)
X
This yields
. _apTd/2-2)
D(x) = —iAe?(u*x?)? d/ZW, (10)
or, equivalently, with the parameter ¢ made explicit:
1AA a e’
D(x)=—-T(1- 2x2)E, A=—"= . 11
() =" T mex), A=S=rrs. (1)
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From Eq. (11), we see that D(x) contributes with a
common factor AA accompanied by the singularity £~!

Note that, in the case of the scalar QED, the correspond-
ing scalar propagator S¢(x, £) has a similar transformation
between £ and 5 gauges, i.e.,

SC(X, 5) = SC(X, ’7)61D<X)' (12)
III. LKF TRANSFORMATION IN

MOMENTUM SPACE

Let us assume that, for some gauge fixing parameter #,
the fermion propagator Sy(p,#n) with external momentum
p has the form (2) with P(p,#n) reading

P(p.n) Zzam

> <Q> . (13)

In Eq. (13), the a,, () are coefficients of the loop expansion
of the propagator and fi is the renormalization scale:

7 = dmyi, (14)
which lies somehow between the MS-scale y and the MS -
scale j. Then, the LKF transformation shows that, for

another gauge parameter &, the fermion propagator can be
expressed as

5= mi)amu:w (ﬁ—) ")

where
n(6) = an() " )
X53F0+{m+lﬁﬂﬂl—eﬂAAY(E3“
LT - (m+ 1+ 1)e) (=) \p?)

(16)

In order to derive (16), we used the fermion propagator
Sr(p,n) with P(p,n) given by (13), did the Fourier
transform to Sy (x,#) and applied the LKF transformation
(8). As a final step, we took the inverse Fourier transform
and obtained Sy(p, &) with P(p, &) given by (15).

A. Scale fixing

In our present study, we consider only the case of the so-
called MS-like schemes [see, e.g., ji above in (14)]. In such
schemes, we need to fix specific terms coming from the
application of dimensional regularization. Such a procedure
will be called scale fixing and will play a crucial role in our
analysis.

Let us first recall that the MS-scale j is related to the
previously defined scale ji with the help of

B =pte, (17)

where y is the Euler constant. An advantage of the MS-
scale is that it subtracts the Euler constant y from the e-
expansion. Moreover, it is well known that, in calculations
of two-point massless diagrams, the final results do not
display any ¢, [31]. So it is convenient to choose some
scale which also subtracts ¢, in intermediate steps of the
calculation. For this purpose, we shall consider two differ-
ent scales.

The first one is the popular G-scale [33], which subtracts
the coefficient in factor of the singularity 1/¢ in the one-
loop scalar p-type integral, i.e.,

(1 —e)(1+e¢)
I'(2-2¢)

pe = i

(18)

Following [24], we shall use a slight modification of this
scale that we will refer to as the g-scale and in which an
additional factor 1/(1 — 2¢) is subtracted from the one-loop
result, i.e.,

e = ﬁ2£F2(1 —e)l(1+e¢)
g (1 —2¢)

(19)

The advantage of the g-scale (over the G-scale) will reveal
itself in discussions below related to the so-called tran-
scendental weight of various contributions.

We shall also introduce a new scale which is based
on old calculations of massless diagrams performed by
Vladimirov who added [34] an additional factor I'(1 — ¢) to
each loop contribution. The latter corresponds to adding the
factor ™! (1 — &) to the corresponding scale. We shall refer
to this scale as the minimal Vladimirov scale, or MV scale,
and define [35]

’e ﬂZe

v = F(l _ 8) . (20)
As we will show below, the use of the MV scale leads to
simpler results in comparison with the g one. Hence, the
MV scale is more appropriate to our analysis and all our
basic results will be given in the MV scale. After that we
will discuss the differences coming from the use of the
g-scale.

In both the MV scale and g-scale, we can rewrite the
result (16) in the following general form:

105017-3



A. V. KOTIKOV and S. TEBER

PHYS. REV. D 100, 105017 (2019)

where p = MYV, g; see also Sec. IV for very similar results
in the case of scalar QED. In Eq. (21), the factor
(1=(m+1)e)/(1—(m+I+1)e) has been specially extra-
cted from @, (m,l,€) in order to ensure equal transcen-
dental level, i.e., the same value of s for {; at every order of
the e-expansion of ®,(m, [, ¢) (see below). Central to the
present work, the factors @y (m, [, €) and CDg(m, 1, &) read

C(1—=(m+1)e)l(1+(m+1)e)T*(1—¢)

Py (€)== O FI=mt 1t D)
(22a)
11 =2e
D (m, 1, &) = Dyy(m, 1, €) F3I(IF—(2)F12(1)+ oL (22b)

and may be expressed as expansions in ; (i > 3) that we
now proceed on studying.

B. MV scale
The I'-function I'(1 4 fe) has the following expansion:

(14 pe) = exp [—yﬂe + Z(—l)fnsﬂsgs} , N, = %
s=2
(23)

Substituting Eq. (23) in Eq. (22) yields for the factor
Oyy (m, 1 e):

(I)MV(mﬂ l? 8) = exXp |:Z nsps(m’ l)gsj| ’ (24)
s=2
where

(m+1)y=(m+1+1)" 421
+ (=1){(m+1)* —=m}, (25)

ps(m, 1) =

and, as expected from the MV scale, we do have

pi(m.l)=0.  py(m.l) =0. (26)

As can be see from Eq. (24), @y (m, 1, €) contains (-
function values of a given weight (or transcendental level) s
in factor of &°. Such a property strongly constrains the
coefficients of the e-series thereby simplifying our analysis.
It is reminiscent of the one earlier found in Ref. [37]. When
judiciously used, it sometimes allows us to derive
results without any calculations (as in Ref. [38]). In other
cases, it simplifies the structure of the results which can
then be predicted as an ansatz in a very simple way (see
Refs. [39,40]). For a recent application of such property,
see the recent papers [41] and references and discussions
therein.

IV. SCALAR QED

In the case of scalar (spin-0) QED, the LKF trans-
formation leads to expressions which are very similar to
spinor QED that we have considered so far.

Indeed, let S¢(p,n) be a scalar propagator with external
momentum p and gauge fixing parameter #; its general
expression reads

1 00 ) ﬂ2 me
Sc(p,'l)Z—zZ%(n)A’”(—2> C@)
) Z— )4

where a,(n) are coefficients of the loop expansion of the
propagator and /i the renormalization scale (14). Then, the
LKF transformation shows that, for another gauge para-
meter &, the scalar propagator can be expressed as

1 0 ~2\ me
sc<p,f>=;2aa<f>Am(§) L)
m=0

where

a5, (&) = ai () W

D1+ (m+ De)'(1 —€) (AA) (*\
Z 1— (m+14 1)) (—e)l< > '

=0
(29)

In order to derive (29), we used the scalar propagator
Sc(p,n) of Eq. (27), did the Fourier transform to S¢(x, 77)
and applied the LKF transformation (12) which is identical
to (8). As a final step, we took the inverse Fourier transform
and obtained Sc(p, &) in (28).

For the MV and g-scales, we can rewrite Eq. (29) in the
following form:

®© AAI ?) le
0> @ymt.e) oo (M) o)

=0

where p = MV, g. We therefore see that the difference
between Egs. (30) and (21) is only in the factor (1—(m+
1)e)/(1—(m+1+1)e) which did not play any role in the
above analysis. Hence, for scalar QED, we can repeat all
evaluations done for spinor QED and we will end up with the
same set of hatted {-values as before in Egs. (45) and (46).

V. SOLUTION OF THE RECURRENCE
RELATIONS

We now focus on the polynomial pg(m,[) of Eq. (25)
that is conveniently separated in even and odd s values.
Then, we see that the following recursion relations hold:

Pk = Pak—1 + Lpog—r + p3, (31a)
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Pak-1 = Pak-2 + Lpoy—3 + ps. (31b)
Specific to the MV scheme, these relations only depend on
L which leads to strong simplifications. Nevertheless, they
are difficult to solve for arbitrary k. It is simpler to proceed
by explicitly considering the first values of k:

P4 = 2p39 (328')
ps = ps+Lps+ps=(3+L)ps. (32b)
P6 = Ps +Lps+ p3 = (4 +3L)p;, (32¢)

showing that p, takes the form of a polynomial in L in
factor of p;. Then, taking L p; from (32b) and substituting
it in (32c¢) yields

Lps = ps —3ps, Ps = 3ps —5p3, (33)

which reveals that the even polynomial pg can be entirely
expressed in terms of the lower order odd ones, p; and ps.

We may automate this procedure for higher values of k.
The general expression of p, is given by

sy

= Z As,mme?a; (34)
m=0

see Egs. (A1) of the Appendix for values of the first 20
coefficients and Egs. (A2) for values of p, with 7 < s < 20.
Taking L* p; from the equations for p,,_, and substituting
them in the equations for p,; yields

k=1
ka_Zp2s 1Co 25— 1—szk amt1Cok2k-amr1s (35)

s=2 m=1

where the 20 first coefficients, Cy; 5,_;, are presented in the
Appendix, Eq. (A3). From these results, it is possible to
determine the exact k-dependence of Cy; 5,1, Which has
the following structure:

C =b (2£): (36)
2k 2k=2m+1 = D2m—1 Qm—1)1(2k=2m+ 1)’
with the first coefficients b,,,_; taking the values
1 1 1 17 31
b1—§, b3——Z, bs—i, b7—_7’ b9—77
691 5461 929569
b”:_T’ B3="5 5= "
3202291 221930581
=T, 19= 2 ,
4722116521 968383680827
by =5 by; = 5 (37)

Examining the numerators of b,,,_;, one can see that they
are proportional to the numerators of Bernoulli numbers.
Indeed, a closer inspection reveals that, accurate to a sign,
the coefficients b,,,_; coincide with the zero values of Euler
polynomials E, (x):

byy—1 = —Ey_1(x = 0), (38)

and therefore to Bernoulli and Genocchi numbers, B,, and
G,,, respectively, because

Gom (22" -1)

Es, 1(X 0) 2m7 Gop=— By, (39)

Hence, the compact formula for the coefficients b,,,_;
expressed through the well-known Bernoulli numbers B,,,
reads

22m -1
b2m—1 = (7’")32111' (40)

Together with (36), Eq. (40) provides an exact analytic
expression for py, Eq. (35), for arbitrary values of k.

A. Hatted ¢-values

At this point, it is convenient to represent the argument of
the exponential in the rhs of (24) as follows:

Zmpsf“' = Z’?zkpzkEZk + Z’?zk-l Pau—r€ (41)
=3 k=2 k=2

With the help of Eq. (35), the first term in the rhs of Eq. (41)
may be expressed as

) ) k

2k _ 2k
E Mk P2k€™ = E k€ E P25-1Cox 251
k=2 k=2 s=2

= Z Pas-1 Z Mok Cor 187 (42)
s=2 k=s

Then, Eq. (41) can be written as Y%, fiy,_ pos_ €~

where

fos—1 = Mas-1 + Z Nk Corsm1 €1 (43)
k=s

Thus, Eq. (24) can be represented as

(o)
Dpry (m, 1 €) = exp {Z ’72.;—11?2.;—18%_1]
§=2

525 1
2s — 1

—exp{ st-lg l]» (44)
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where
Caomt = Cagor + Z Ok Coppgm 2079011 (45)
k=s
with
B (2k)!

Cotet = brk2ets (25 — )12k =25 + 1)1

N 25 — 1

Cokas-1 = ok Gk

_, (2k—1)!
TR g )12k =25 + 1)1

(40)

Together with (46) and (40), Eq. (45) provides an exact
expression for the hatted {-values in terms of the standard
ones valid for all €; see Eqs. (A4) for explicit expressions of

&y, for s < 10.

B. g-scale

We may proceed in a similar way for the factor
®,(m, 1, e). Substituting Eq. (23) in Eq. (22b) yields

¢wmma—aﬁ§ymamnﬂ, (1)

where the new polynomial p{(m,[) can be expressed in
terms of p,(m, 1), Eq. (25), as

pi(m,1) = py(m. 1) 4 6,(m.1),
Ss(m, 1) = (2° =3 = (-1)*)L (48)

Equation (48) is such that §,(m,l) = 0fors =1 and s = 2
and, thus,

pi(m.1) =0, py(m.1) =0, (49)
similar to the Vladimirov case, Eq. (26).

We may then consider the even and odd values of s
separately as in (31) leading to the following recursion
relations:

52/{ - 4(22k_2 - 1)],

P35y = Dok + O (50a)

1
Pt = Paket1 T Ot Oop—1 = 5521(- (50b)

These recurrence relations depend on the variable [/ but
not on the product L = (I + 1) as it was for the MV scale.
So, the g-scale recursion relations (50) are essentially more

complicated than the MV-scale ones, (31). Fortunately, it is
very simple to see that in the relations

k
Py = Zpgx—lCZkls—la (51)
s=2

the coefficients Cy; 5, are exactly the same as in Eq. (35)
because the corrections d,;, and d,;_; exactly cancel each
other. So, the hatted {-values for the g-scale are identical to
the ones of the MV scale, (45) and (46).

VI. SUMMARY

From the result (21) corresponding to the LKF trans-
formation of the fermion propagator [and similarly, from
(29), corresponding to the LKF transformation of the scalar
propagator] we have found peculiar recursion relations
(31a) and (31b) between even and odd values of the
polynomial associated to the uniformly transcendental
factor ®yy(m, 1, e) (22). These relations are simple in
the new MV scheme that we have introduced in Eq. (20).
They relate the even and odd parts in a rather simple way
[see Eq. (35)] which reveals the possibility (44) to express
all results for @y (m, 1, €) in terms of hatted {-values. As
can be seen from Egs. (50a) and (50b) in the more popular
g-scheme, the corresponding recursion relations are slightly
more complicated but lead to the same relations (35)
between even and odd parts of the polynomial associated
to @, (m,l,€) (22b) and, correspondingly, to the same
hatted {-values. Our careful study of the recursion relations
(31a) and (31b) has allowed us to derive exact formulas,
Egs. (43) and (45), relating hatted and standard {-values to
all orders of perturbation theory. The coefficients of the
relations are expressed trough the well-known Bernoulli
numbers, B,,,, as can be see from Egs. (46) and (40). The
numerical values of some of these coefficients and some
explicit relations between hatted and standard {-values are
presented in the Appendix. Our results provide stringent
constraints on multiloop calculations at any order in
perturbation theory.
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been extended to seven-loop order.

APPENDIX: EXPLICIT EXPRESSIONS
FOR Ay 5 pss Cox25-1 AND
HATTED ¢-VALUES

1. Coefficients Ay ,, of Eq. (34) for k < 20

Aro=k=2, Ap_1y2=1, Ayr=k, (Ala)
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Ag, =6,
Ajpy =28,
Az =45,
Ay =55,
Ajs = 06,
Ay =78,
Ay =91,
Ay = 105,
Ay, = 120,
Asg 1 = 136,

Ag; =10, Ay =15, Ay, =10, A =21,
A, =35, Ay 3 =15, A = 36, Ay, = 56,
Apzp = 84, Az =170, Apzg =21,

Aus =120, Ay =126, A, =56,

Ao = 165, Ajs3 =210, Ay =126,  Ayss =28,
Ay =220, Ay =330, Ay =252, Ay =84,
Ais =286, Ay =495, Ay, =462,  Ays =210,
Aigr =364, Ay =715,  Aga=792,  Ags =462,
Algs =455, Ay =1001, A, =1287, Ajgs = 924,
Ass =560,  Asps = 1365,  Axs=2002, Ass= 1716,

2. Polynomials p, of Eq. (34) for 7 <s < 20

p7=(5+6L+L?)p,
ps = (6 + 10L +4L?) ps,
po = (7+ I15L + 10L> + L*) ps,
pio = (8 +21L +20L? + 5L*)p;,
pi = (9+28L +35L + 15L° + L*)ps,
P2 = (10 4+ 36L + 56L% + 35L% + 6L*) 5.
i3 = (11 +45L 4 84L% +70L° + 21L* + L) ps,
pia = (124 55L + 12012 + 126L° + 56L* + 7L%) s,
pis = (13 4+ 66L + 165L% 4+ 210L3 + 126L* + 28L5 + L) p5.

Pie = (14 + 78L + 220L% + 330L3 + 252L* + 84L> + 8L%) ps,

p17 = (15+91L + 286L2 + 495L3 + 462L* + 210L> + 36LS + L") p3,

A10.2 = 207
A12’3 == 35,
Al7,6 = 36,
A18.6 — 120,
A19,6 - 330,
Ay =192,

pig = (16 + 105L + 364L% + 715L3 + 792L* + 46213 + 120L° + 9L7) ps,

Pro = (17 + 120L + 455L% + 1001L3 + 1287L* + 924L° + 330L5 + 45L7 + L8®)p5,

Pao = (18 + 136L + 560L% + 1365L3 + 2002L* + 1716L° + 792L° + 165L7 + 10L3) p5.
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(Alh)
(Ali)

A19’7 - 45,
(A1j)

A20.7 — 1 65
(ALK)

(A2a)
(A2b)
(A2)
(A2d)

(A2e)
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3. Coefficients Cy; 5,_; of Eq. (35) for k <10

Cook-1 = k, Ces = =5,
C10,7 = —30, C10’5 = 126,
Cip9 = =55, Cip7 =396,
Cia1 = 91, Ci49 = 1001,
C16,]3 = —140, C16,1l = 2184,
Ci63 = 1529080,

Cig15 = =204, Cig.13 = 4284,

Cigs = 23394924, Cig3 = —47408019,

Cy,17 = —285, Cro.15 = 7752,

Cao7 = 211668360,  Cy5 = —900752361,

Cgs = —14,
ClO,S - —255,
C12.5 - —1683,
C]4.7 = —7293,
Cl6.9 - —24310,

C18,11 - —67626,

C20'13 - —164730,

Cao3 = 1825305870.

C8,3 = 28,
C12’3 = 3410,
C14y5 — 31031,

C] 6,7 — 177320,

C18,9 - 753610,

C20,1 1= 26033 80,

4. Hatted ¢-values, {,A‘ZS_ 1, of Eq. (45) for s <10

(A3a)
(A3b)
(A3c¢)

C]4‘3 — —62881,
(A3d)

C16$5 - —754572,
(A3e)

(A3f)

C18,7 - —5497596,
(A3g)

(A3h)

Ca0.9 = —29015090,
(A3i)

(A3j)

We display below the first terms of the e-series generated by our exact result Eq. (45). For the sake of clarity,
we display in a box the terms which were known up to the present work from the latest publication [14]. Moreover,
we also display in a dashed box the terms calculated in the paper [29] which appeared in arXiv two months after the first

version of our paper.
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