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Second look to the Polyakov loop Nambu-Jona-Lasinio model at finite
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We revisit the Polyakov loop coupled Nambu—Jona-Lasinio model that maintains the Polyakov loop
dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of
neutron stars. For this purpose we re-examine the form of the potential for the deconfinement order
parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally
equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present
model that cures this spurious effect and is normalized to match the asymptotic behavior of the QCD
equation of state given by O(a?) and partial O(a? In? @) perturbative results.
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I. INTRODUCTION

During the last decades the properties of matter at
extreme conditions have been intensively studied both
theoretically and experimentally. Phase transformations
governed by strong interaction, i.e., the deconfinement
of color degrees of freedom (d.o.f.) and restoration of chiral
symmetry, belong to the most important subjects of these
studies. The interest to the mentioned phenomena is
stimulated by experiments on collisions of ultrarelativistic
heavy ions performed at facilities RHIC and LHC, which
have already yielded signals of the quark-gluon plasma
(QGP) existence [1]. Moreover, future experimental pro-
grams planned in FAIR GSI, NICA JINR, and J-PARK are
in a dire need of information about the phase diagram of
quantum chromodynamics (QCD), being a modern theory
of strong interaction.

Another practical need of information about phase
transformations in strongly interacting matter is related
to the possible existence of hybrid compact stars with a
quark core [2,3]. Furthermore, the recently predicted
sudden increase of frequency of gravitational waves emit-
ted in mergers of such hybrid stars opens a remarkable
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possibility of their detection [4] but, on the other hand, it
still requires further clarification of some details of the
quark-hadron transition.

A complete knowledge about this transition can be
reached only within QCD, which, even despite the tremen-
dous efforts documented in the literature, is not satisfac-
torily solved due to its nonperturbative character. At the
same time, a significant progress toward the understanding
the phase structure of QCD has been achieved during the
last years. First principle calculations on discrete space-
time lattices provided access to the equation of state (EOS)
in the regime of high temperatures 7" and limited baryonic
chemical potentials up [5-8]. Taylor series expansion
[9-11], re-weighting techniques [12-14] and analytical
continuation from imaginary chemical potentials [15—19]
extended the applicability range of lattice QCD up to
2 < 3. Further extension remains impossible at present due
to the sign problem [20,21]. Thermodynamics of QCD was
also studied within the functional renormalization group
approach, which allowed us to take under control quantum
quark-meson fluctuations in the deep infrared limit
[22-27]. At the same time, a pure Yang-Mills potential
for the Polyakov loop being an order parameter of the
deconfinement transition does not provide a phase tran-
sition in a perturbative regime, see, e.g., [28-30]. This
difficulty can be overcome within an effective scalar theory
whose minima correspond to the Polyakov loop expect-
ation values [31]. The discontinuous change of a global
minimum provides the first order phase transition in the
pure Yang-Mills case. The incorporation of this mechanism
to the Nambu-Jona-Lasinio (NJL) model, which reprodu-
ces proper chiral dynamics [32], makes it possible to
account for two of the most important aspects of QCD,
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e.g., the deconfinement of color d.o.f. and the dynamical
restoration of chiral symmetry.

In the past years this approach, known as the Polyakov-
Nambu-Jona-Lasinio (PNJL) model, was successfully
applied to the study of QCD thermodynamics at zero
baryonic chemical potential [33-36]. A systematic improve-
ment of the model allowed it to account for effects of
nonlocal current-current interaction [37], diquark d.o.f. [38],
and mesonlike correlations of quarks [39]. At the same time,
the backreaction of quarks propagating in a homogeneous
temporal gluon field, which is assumed by the PNJL
model, makes the Polyakov loop potential ¢/ dependent
on pp. The incorporation of this effect into the model
has become an important step toward the understanding
of the strongly interacting matter phase diagram, see,
e.g., [40—44]. A perturbative estimate of this dependence
[40], however, leads to identically zero U at T = 0. As a
result, the PNJL model at zero temperature does not encode
information about the physical value of the Polyakov
loop and, consequently, fails to reproduce its dynamics.
Working out an improved parametrization of the Polyakov
loop potential with a special emphasis on its density
dependence is the primary goal of the present work.
Previous approaches to this problem have already been
considered, see for example [45]. The construction of a -
dependent Polyakov loop potential leading to non artificial
contribution of gluons to the baryonic density must be
carefully considered.

The confined phase of the PNJL model should be
identified with the hadronic one. Its description in the
present model is rather schematic since, typically, it
includes only scalar and pseudoscalar mesonic correlations
of quarks [39,40,43]. A more elaborate description of
strongly interacting matter can be obtained within a hybrid
EOS. Since the Polyakov loop is the deconfinement order
parameter, it is natural to assume that its nonzero expect-
ation value suppresses hadronic d.o.f. Therefore, the EOS
of hadron matter should switch to the PNJL EOS when the
Polyakov loop attains a no zero value. In other words, the
phase transitions given by the Gibbs criterion and defined
by the order parameter should coincide. Below we consider
a hybrid model with such a Polyakov-Gibbs phase tran-
sition. We pay special attention to the case of electrically
neutral f-equilibrated matter at zero temperature, which is
of practical interest to astrophysical applications in neutron
stars (NSs). In our work we will deal with a standard
treatment based on thermodynamical considerations
although there are also some works where this may be
externally triggered [46—48].

The article is organized as follows. In the next section we
briefly sketch the PNJL model. Section III is devoted to the
generalization of the Polyakov loop potential to the case of
finite baryonic density. The hybrid quark-hadron EOS and
the corresponding thermodynamic quantities of interest are
discussed in Sec. IV. Conclusions are given in Sec. V.

I1. PNJL MODEL

In this work we consider the case of N, =3 quark
flavors with physical masses. We adopt the simplest form
of the Lagrangian from Refs. [34-36], which provides
dynamical restoration of chiral symmetry

L=~ g + 5 [(@9)* + (@ir'Fa)’] - U(®@, @),
(n

where the flavor space row ¢ = (,,, w4, ;)" stands for the
quark field, the diagonal matrix 7/ = diag(m,, m4, my)
gives the corresponding masses and chiral-symmetric local
four-point quark interaction in scalar and pseudoscalar
channels is controlled by a coupling constant G. The flavor
mixing interaction channels of the ’t Hooft determinant
type [49] are neglected for the sake of simplicity. We,
however, should note that, even if accounted, such terms do
not significantly affect the thermodynamics of the present
model but lead to a slight stiffening of its EOS [3]. A
covariant derivative D# = 0 — igA* absorbs the static and
uniform gluon field A¥, where g is the gauge coupling.
According to the PNJL model assumption, only the
temporal component of this field has nonzero value, i.e.,
in the case of three colors (N, = 3) one gets A* = §HA%
with 4¢ being the Gell-Mann matrices. Within the present
model the dynamics of gluons is reduced to the one of
the Polykov loop. It is given in terms of temporal gauge

fields as
1 (B
O=—1r, {Texp (zg/ drA“)] , (2)
Nc 0

where 7 is the time ordering operator, f = % is the inverse
temperature, A* = iA°. The involved trace in the previous
expression is carried over color indices. Hereafter all
quantities are given in the natural system of units where
the Boltzmann constant, the speed of light, and the
Planck constant are set kg = ¢ = A = 1. In the Polyakov
gauge the temporal gluon field is diagonal in color
space and, thus, is controlled by only two independent
nonzero variables, A and AY [34]. This makes the
Polyakov loop expectation value complex, i.e., ®* # ®
in the general case. It, however, becomes real when quark
chemical potentials vanish (see, for example, Ref. [40] for a
discussion).

The gluonic self-interaction of the non-Abelian nature is
modeled by the potential /(®, ®*). Its dependence on the
Polyakov loop expectation value and corresponding com-
plex conjugate is chosen as in Ref. [36]. This choice
provides center Z(3) symmetry of ¢/ and its absolute
minimum at |[®| =0 or |[®| — 1 in the cases of small
and high temperatures, respectively. Thus
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b,(T)

U, ) = =2 =" + by(T) Infl — 60" D

+4(03 4 03) — 3(> D)2, (3)

Note that the logarithmic divergence of this potential
appears as necessary to limit the expectation value of the
Polyakov loop modulus from above. The medium depen-
dent functions in Eq. (3) are defined as

by(T) = agT* + a\ToT> + a,T3T?, (4)

A natural strategy to assign values of their parameters is to
fit ¢ to the lattice data of thermodynamics of pure gauge
QCD since its pressure is pgye = —U. In Ref. [36] this
procedure gave ag=3.51, a; =-247, a,=15.22,
ay = —1.75. Note, that in this case T, = 270 MeV repre-
sents the temperature of the deconfinement phase transition
in the absence of quarks.

The present paper focuses on the zero temperature case,
which is the most interesting for modeling evolved NSs
with possible quark cores. The relevant thermodynamic
potential € can be obtained as a limit of the finite
temperature case. Bosonization of Lagrangian in Eq. (1)
and a posterior mean field approximation is a standard
procedure to obtain Q as done in [34-37]. An equivalent
treatment is provided by the introduction of the mean
values of scalar (gq) and pseudoscalar (giy’7q) quark
condensates along with a further linearization procedure for
L obtained from considering small deviations from these
mean values. Thus

% — U(®, DY) + % - A[s(w; T w7)O(A? — p?)

+2TIn (1 4 3De ™ 4 3D 1 4 ¢~

+ 2T 1In (1 + 3®*e P75 4+ 30e™ "5 4+ 7)), (6)
Hereafter a symbolic notation for summation over all quark
flavors and simultaneous integration over momentum | =

> 7 Ik (";T’; is introduced for shortening expressions. Single

particle energies of quarks (superscript index “4”) and
antiquarks (superscript index “—")

a)f =./p>+ m;z T Uy, (7)
are defined through their effective masses
my =m;—G(qq), (8)

and chemical potentials py. The latter ones are given in
terms of quark baryonic charge B, = % electric charge of

flavor f, Qf, and associated baryonic pup and electric pgp
chemical potentials

Hy = By + poQy. )

Note, that the strange chemical potential ug is absent in
Eq. (9) since the corresponding charge is not conserved if
weak decays are allowed. The mean value of the scalar
quark condensate (gg) that minimizes the thermodynamic
potential is defined by the condition

o0
{qq)

Note, that the pseudoscalar quark condensate is absent in
Egs. (6)—(8), since within the mean field approximation its
mean value vanishes.

A sharp momentum cutoff is introduced by using a
parameter A to provide the simplest way of regularization
of integrals as done in [34-36,38,44,45]. However, more
refined regularization schemes implying smooth form
factors have been also successfully applied in [37,39,41].
In the present article this latter approach is not used for the
sake of simplicity.

Within the mean field approximation the Polyakov loop
expectation value and its complex conjugate are defined by
requiring the minimal value of the thermodynamic poten-
tial, i.e., g—g = (%{ = 0. For known values of the Polyakov
loop and scalar quark condensate, the pressure can be found
as p = —% Here Q,,. is the vacuum part of the
thermodynamic potential. It does not contribute to the
pressure and appears as the first term under the momentum
integral in Eq. (6). Thus

= 0. (10)

p= ZT/[ln (1 + 3@ 4 3D e 2% 4 7))

f
+In(1+ 3D e P 4 3de” P 4 6_3/}"’?)]
(29)?
-U(D,d*) — . 11
(@.0) - 92 1)

It is worth noting that the vacuum term Q,,. does not have
any dependence on @ and ®*. From the previous consid-
erations the expectation value of the Polyakov loop can be
found from the conditions

dp Op
6= 90 = (12)

As it is seen from Eqgs. (6) and (11), within the present
model @ and ®* are symmetrically coupled to quarks and
antiquarks, respectively. Therefore, the asymmetry between
them makes the Polyakov loop complex, while it becomes
real only at yy = 0. Another source of the Polyakov loop
dependence on quark chemical potentials as well as on
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flavor content is caused by the running of the QCD
coupling. Within the PNJL model this dependence is
accounted by the simple modification of the expansion
coefficients b, and b, [40—44]. More precisely, the back-
reaction of quarks to the gluon sector leads to the
modification of the transition temperature 7, to become
a function of y; and N . In Ref. [40] a perturbative estimate
of this dependence was done based on HDL/HTL results on
the effective charge.

At zero temperature, however, such an approach to
account for the impact of quarks on the Polyakov loop
is not satisfactory. First of all, the terms under the
logarithms in Eq. (11), which explicitly couple ® and
@* to quarks in expressions for thermodynamic potential
and pressure, are exponentially suppressed at 7' = 0. At the
same time, the Polyakov loop potential in Eq. (3) with
expansion coefficients b, and b, of the form shown in
Egs. (4) and (5) vanishes at zero temperature. This happens
for any finite Ty = To(u). Consequently, the modification
of U motivated by the HDL/HTL perturbative estimate
accounts for backreaction of quarks to the gluon sector only
in part. As a result, the dynamics of the Polyakov loop is
totally lost in the PNJL model at zero temperature. Note,
that gluons affect the properties of strongly interacting
matter through quantum loops even at 7' = 0, while their
thermal excitations are suppressed in this case. Therefore,
in the presence of dynamical quarks the Polyakov loop
potential should explicitly depend on baryonic density even
at zero temperature.

Before going any further we must discuss the normali-
zation of the present model. Typically, in the two-flavor
case the coupling constant G and cutoff parameter A are
fixed in order to reproduce vacuum values of the light quark
condensate and effective quark mass, which is taken
roughly equal to one third of the nucleon mass. Instead,
for Ny = 3 this normalization scheme requires a modifi-
cation in order to account for effects of strange quarks. For
this purpose we fitted the parameters of the present model
to vacuum values of condensates of light (Il) = (iu +
dd)/?2 and strange (5s) quarks. Our used vacuum value of
(11)!/3 coincides within the error bars with the recent result
(I)'/3 = 283(2) MeV from lattice simulations in three-
flavor QCD [50]. While (55)!/3 exceeds the lattice value
290(15) MeV by about 9%, that when accounting for the
errors bars reduces this deviation to 3%. As we discuss
later, this fine tuning of the input data was done in order to
take under control the speed of sound in the deconfinement
region. The pion decay constant f, is obtained from the
well-known Gell-Mann-Oakes-Renner relation @ =
— MM (]1), with the discussed condensate of light quarks
and physical masses of quarks and pion [51]. It is worth
noting, that, remarkably, this f, value is very close to the
most recent one reported by the Particle Data Group f, =
130.2(1.7) MeV [51]. The set of model parameters,

TABLE 1. Parameters of the present model (top row) and
resulting physical quantities (bottom row).

m, [MeV] my [MeV] m, [MeV] A [MeV] G [GeV~?]
2.2 4.7 95.0 925.06 2.385
(Dol [MeV]  |(55)9|'° [MeV]  f, [MeV]  m, [MeV]
281 315 126.96 139.3

vacuum condensates, current quark masses used, as well
as mass and decay constant of pion are listed in Table I.

The present set up gives my = 182.6 MeV, m); =
185.1 MeV, and m} = 275.4 MeV in the vacuum. These
values are smaller than ~300 MeV and ~500 MeV usually
accepted for light and strange quarks, respectively. Such a
difference is caused by the rather schematic quark inter-
action in the present model, which accounts only for scalar
and pseudoscalar channels. These masses can be taken
under control by introducing the ’t Hooft determinant
interaction channel, which is omitted in order to keep
the quark sector of the model as simple as possible. It is also
appropriate to note here, that we do not use the parameter
set of Ref. [36] since it was found for the two flavor case,
while for three flavors it gives too large constituent masses
in vacuum being ~700 MeV and ~800 MeV for light and
strange quarks, respectively.

III. DENSITY DEPENDENT POLYAKOV
LOOP POTENTIAL

As it was mentioned in the previous section, terms
coupling ® and ®* to quarks in Egs. (6) and (11) are
exponentially suppressed at small temperatures. Therefore,
within the original PNJL model, the equations for the
Polyakov loop become g—g = % = 0. For the parameters of
the Polyakov loop potential from Ref. [36] these equations
have nonzero solution only at temperatures exceeding
263 MeV. At small temperatures @ is identically equal
to zero, which formally should be interpreted as a confine-
ment of color charge at all baryonic densities. This, however,
contradicts the existing phenomenology of QCD. Even a
HDL/HTL motivated perturbative modification of Ty, which
becomes a function of chemical potential, does not resolve
this paradox. It can be solved, however, by introducing an
additional dependence of the Polyakov loop potential &/ on
the quark chemical potential or, alternatively, on the baryonic
density. The technical advantage of the latter will become
evident in the following. At the same time, from the physical
point of view, such a treatment is totally equivalent to
the case, when U depends on i as done in Ref. [45]. The
simplest way to perform the discussed generalization of the
Polyakov loop potential is to leave its dependence on @ and
®* the same as in Eq. (3), while making functions b, and b,
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dependent on baryonic density. For this purpose we propose a
simple parametrization

K
by(T,np) = agT* + a\ToT° + a; T5T* + &, T <n_B) ;

7
(13)

by(T, np) = asTiT + 44T} (%) g (14)
0

with @; and x; > 0 (I = 2, 4) being constants defined below.
With such a modification of ¢/ the Polyakov loop can have a
finite value even at zero temperature.

Within the present model @ is considered as an effective
scalar field representing gluonic d.o.f. and treated under
the mean field approximation. Typically, such a mean
field framework leads to the shifting of the single particle
energies giving rise to an effective chemical potential

'u} E,uf-FBqV((D,(D*). (15)

Here V is some unknown function, which is supposed to be
the same for all quark flavors under the assumption that
their interaction with gluons is universal. We also require
V = 0 at np = 0 to ensure baryon-antibaryon symmetry in
this limit.

Up to here we considered the finite temperature case. Let
us now focus on the zero temperature case, keeping in mind
that all main results are general and applicable at 7 # 0.
Hereafter we also explicitly introduce electrons to the
consideration since they are important to neutralize quark
matter, which is the most interesting for astrophysical
applications. Their pressure p, is nothing else as the one
of noninteracting spin—% fermions with mass m, =
0.511 MeV [51] and chemical potential yu, = —up. With
the above modifications of the Polyakov loop potential and
effective chemical potentials of quarks 7}, the zero temper-

ature pressure expression in the PNJL model reads

G
p=-6 [ W} 0-0}) ~U@.0) =5 30" + p.
o : 2
(16)

Here w}* is the modified single particle energy of the form
given in Eq. (7), where the physical chemical potential s/ is
replaced by the effective one 4}, while the quark con-
densate and Polyakov loop are still defined by Egs. (10)
and (12), respectively.

At this point we focus on V, which parametrizes the
present model. However, its choice is not arbitrary. This
follows from the analysis of the baryonic density defined as
ng = —%%. The conditions 92 = 2% = 0 and % =
significantly simplify its calculation giving

Op dny

8713 d//lB ’ (17)

1 [0Q 0Qdng op
n = —_-— | — _— = —
i V [Oug  Ongdug Opgp
where the relation between the thermodynamic potential
and pressure was used on the second step. Finally, with the
help of Egs. (15) and (16) the baryonic density expression

becomes

ng = 6Bq/ft9(—a);+)

oV U dn
_ph) Y o | Ong
- [68’%9( “r )8n3 ong| Oup (18)

The first term in this expression corresponds to the
contribution of quarks, while the second one includes
derivatives of potentials ¢/ and )V associated with the
Polyakov loop. This means that the second term can be
connected to gluons that, as known, do not carry baryonic
charge and can not contribute to ng. This paradox becomes
even more evident in absence of dynamical quarks, i.e.,
when their masses approach the infinitely heavy limit. In
this case the momentum integrals in Eq. (18) vanish, while
baryonic density still retains a finite value ng = —5’77’2. In

other words, the introduction of some dependence of
the Polyakov loop potential on baryonic chemical potential
or baryonic density would spuriously lead to baryonic
charge of gluons. In order to solve this problem we require
that the square bracket expression in Eq. (18) is zero so that
in this case baryonic density equals to

ng = 6B, /f O(-w’"). (19)

Consequently, this leads to the condition

av ou

" ong Ong (20)
which relates the potentials / and V. It is important to stress
that at finite temperature the condition (20) written in terms
of the baryonic density remains exactly the same, while
expression for ny itself obviously gets modified by thermal
excitations of quarks. The fulfillment of this relation
ensures that at any baryonic chemical potential and temper-
ature only quarks contribute to baryonic density. The above
analysis also shows why it is more convenient from the
practical point of view to consider the discussed potentials as
functions of baryonic density instead of baryonic chemical
potential. We can easily check that Eq. (20) is fulfilled by the
function

V(®, d*) = —%@*@ + c4(ng) In[1 — 60*®
+4(D*3 + D) — 3(D*D)?], (21)
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which preserves the same dependence on the Polyakov loop
as in the case of the potential ¢/ and involves coefficients

k;bi(0, np)

(x; = 1)ng '

c/(ng) = (22)

For further convenience we also introduce the notation

by(0, np)

= b0, ng) = K —1 (23)

d)(ng) = ngey(ng)

As it follows from Eqs. (21) and (22), the potential V
vanishes at nyz = 0 for an arbitrary temperature only if
either k;, = 0 or x; > 1. An additional limitation on the
possible values of k; can be found from the analysis of the
regime of high baryonic densities, when effective masses of
quarks m} become negligible compared to their chemical
potentials 4. In this case fermionic contribution to the

) . 4/3
pressure, i.e., the first term in Eq. (16), behaves as nB/ ,

while the second one, which comes from the Polyakov loop
potential, is proportional to ny for x, > k4 and ny
otherwise. The term associated with the quark condensate
can be neglected. Since at high baryonic densities quarks
are expected to be massless and asymptotically free [52],
the total pressure should behave as p ~ u3. It follows from
the thermodynamic identity np = a_p that such an asymp-

totic p is obtained only if x; < 4 At the same time, the
requirement of the baryonic charge anticharge symmetry
can be fulfilled only if b; is an even function of baryonic
density. Along with the other limitations on possible values
of «; this result yields either x; = 0 or 2 As it is shown
below, the mean value of the Polyakov loop modulus
approaches one at high densities only if 2 5. = 0. Therefore,

we set ky = % and x; = 0. In the asymptotic case of high

densities this corresponds to b, ~ u% and constant b,. Note
that the contribution of gluons to baryonic density coming

from the derivative g“ is compensated.

At this point, the Polyakov loop potentials {/ and ) have
two free parameters, i.e., d, and a,. The value of &, can be
estimated by assuming that the ratio of the symmetric quark
matter pressure to the Stefan-Boltzmann pressure pgp is the
same in the limits of infinite temperature and baryonic
chemical potential, i.e., 2|, _. =-E|r_ = asps. The
present assumption is supported by the consistency of
lattice data on the QCD EOS for 2, 2+ 1 and 3 quark
flavors [5] and O(a?) perturbative calculations at zero
temperature [53]. In both of these cases agg = 0.8 within
estimated error bars. We also should note that at present,
unfortunately, there is no reliable information about QCD
matter at high densities. Thus, relaying on the perturbative
results seem to be the only available approach to normalize
the model.

At this regime the modulus of the Polyakov loop
approaches unity and the logarithmic term in the expression
for U can be neglected. Therefore, U ~ —%n‘g 3 in this
case. The quark contribution to the pressure is the one of N,
species of massless noninteracting fermions with spin-color
degeneracy 6, i.e., § (% v )/ 3(”'9)4/ 3. The finite contribution
being quadratic in the quark condensate can be neglected.
Then, with the help of the thermodynamic identity ny = %
the dependence of the total pressure on baryonic density
can be turned to the one on baryonic chemical potential.
This yields

s (N3
Pl o= (1 + 20,8, (—{>3> . (24)
PSBluz—oo n
_ Nf (BqﬂB)4
where the Stefan-Boltzmann pressure pgg = ——;— was

used. Finally, using this expression we obtain

1 [#2\3 1 1
23% fo agy— 1) =0.358- Nf . (25)
5 \V.

For N, =3 this gives a, ~0.25.

In order to numerically check this result we calculated
the zero temperature pressure of three flavor symmetric
(1o = 0) quark matter as function of baryonic chemical
potential up for different values of coefficients @, and ay.
As it is seen from Fig. 1, the value of @,, indeed, provides
correct asymptotic of the pressure corresponding to
about 80% of the Stefan-Boltzmann pressure. This result
holds for any value of @,. At the same time, NJL model
without Polyakov loop potential significantly overesti-
mates the pressure compared to results of perturbative
calculations.

The present model is an effective low energy approxi-
mation of QCD and, strictly speaking, is not applicable
to the analysis of thermodynamics at infinite density. We
assume that its applicability range is limited by pp at
which quark chemical potential becomes comparable to
the cut off parameter, i.e., by up~3ur =3A~3 GeV.
From the practical point of view we are interested only in
chemical potentials up <2 GeV reached inside the NSs
[3], which is well inside the estimated applicability range
of the present model.

At zero temperature the calculation of the Polyakov loop
expectation value is significantly simplified since in this
case ® and ®* enter the expression for the pressure Eq. (16)
only through potentials ¢/ and V. Then by direct calcu-
lation it is possible to show that CD - O gg* ~ O3 — P,
On the other hand, this expression equals to zero due to
requirement (12). This means that the expectation value of
Polyakov loop belongs to the SU(3) center subgroup, i.e.,

— |®[e™" with [ =0, 1, 2. As a result, in the zero

ZZZI
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FIG. 1. Scaled pressure of three flavor symmetric quark matter

as a function of baryonic chemical potential 4 at different values
of the Polyakov loop potential parameters.

temperature case potentials &/ and V depend only on the
modulus of the Pokyakov loop expectation value, which
can be found from Eq. (12) as

: (26)

1
O ==+

Besides this solution the Eq. (12) also possesses the trivial
root |®| = 0, which corresponds to the confinement state.

IV. EQUATION OF STATE

Expression (26) demonstrates that |®| approaches unity
at high densities only if Z—i = —31’742 — 0 in full agreement
with values found for x, and x,. On the other hand, this
limiting value of the Polyakov loop modulus should be
reached from below. This means, that Z—: < 0. According to

the definition (23) and value of &, this is the case only for
ay > 0. Therefore, the solution in Eq. (26) is meaningful
only if the expression under the square root is positive. This
allows us to conclude that within the present model the
modulus of the Polyakov loop is nonzero only at baryonic
densities larger than a critical value

[3a0\d
ne= (=2, (27)
as

while |®| = 0 for ng < n,. Itis also seen from Eq. (26) that
|®| =1 at ng = n,. Treating the Polyakoov loop expect-
ation value as the deconfinement order parameter we

should assume that quark matter exists only at np > n,
when |®| has nonzero values. At the same time, at smaller
densities |®| = 0 and strongly interacting matter exists in
the form of hadrons. This gives us a phenomenological
criterion to construct within the present model a hybrid
quark-hadron EOS.

For this purpose we utilize the Gibbs construction which
requires that the pressures and chemical potentials of the
two phases coincide at the phase transition. This corre-
sponds to the dynamical and chemical equilibrium of
phases. Thermal equilibrium is trivially provided since
we consider the case of zero temperature. We also consider
electrically neutral matter since it is the most interesting for
astrophysical applications. Electric chemical potential y is
defined by the condition of zero total density of electric
charge, i.e., from

ny =6 /f 0(-" )0, — 1, =0, (28)

where n, = ‘35 defines the particle density of electrons.
Note that the equilibrium with respect to f-decay is provided
automatically since u,; = u, + p, by construction.

The coefficient a, plays an important role in the
construction of the resulting hybrid EOS. It is chosen to
satisfy the condition that the modulus of the Polyakov loop
receives nonzero value |®| = § exactly at the quark phase
boundary as obtained by the Gibbs criterion. In other
words, the definition of phase transition given by the Gibbs
criterion and the behavior of the order parameter coincide
in the present model. It is clear that the parameters of quark-
hadron phase transition and the corresponding value of a,
depend on the particular hadronic EOS.

In this work we use three hadronic EOS. Two of them,
i.e., the APR4 EOS [54], which stands for the parametri-
zation of the microscopic potential A18 + év 4+ UIX, and
the SLy EOS [55], are usually used as references in many
nuclear and astrophysical studies. The third hadronic EOS,
the IST [56] is able to fulfill many experimental and
observational constraints on properties of nuclear and
hadron matter. It is necessary to note that the mentioned
hadronic EOSs do not include strangeness content as it only
appears in quark matter due to weak processes converting d
and s quarks to each other. Matching hadronic EOSs with
the developed procedure in the present paper we obtained
three hybrid EOSs labeled below as PNJL-IST, PNJL-
APR4, and PNJL-SLy, respectively.

The upper panel of Fig. 2 shows the pressure of
electrically neutral quark phase for each of these hybrid
EOSs (blue curves) as a function of baryonic chemical
potential in the phase transition region. The transition from
hadronic matter (black curves) happens when the pressures
of two phases coincide. As is seen from the lower panel of
Fig. 2, which shows the Polyakov loop modulus versus
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FIG. 2. Pressure p (upper panel) and Polyakov loop modulus
|®| (lower panel) of electrically neutral matter as a function of
baryonic chemical potential pp in the phase transition region.
Black dotted line on the lower panel represents |®| = 1.

baryonic chemical potential, before this transition |®| = 0
indicating a hadron phase of the strongly interacting matter.
Quark matter exists above the transition point, where the
modulus of the Polyakov loop attains nonzero value
approaching unity at high up. A discontinuous jump of
the Polyakov loop modulus at the phase transition reveals
that |®|, indeed, is the deconfinement order parameter.
The corresponding values of parameter a, together with
baryonic densities of coexistence at the deconfinement
transition hadron n}, and quark n% phases are given in
Table II. As it is seen from Fig. 2 the behavior of the quark

TABLEIL.  Values of &, baryonic densities of pure hadronic n/,

and quark n} phases coexisting at the deconfinement phase
transition.

iy nl [fm?] nf [fm?]
PNIJL-IST 0.032 0.80 1.25
PNJL-APR4 0.031 0.73 1.23
PNJL-SLy 0.030 0.75 1.19

matter pressure is weakly sensitive to details of hadronic
EOS used to find 4. This is reflected by the close values
found for baryonic densities of n; and n} corresponding to
the PNJL-IST, PNJL-APR4, and PNJL-SLy EOSs. The
same conclusion can be drawn from the upper panel of
Fig. 3, which depicts the pressure of electrically neutral
matter at zero temperature as a function of baryonic density.
Indeed, the quark sector of the hybrid EOSs constructed
with the PNJL model and different hadronic EOS (blue
curves) are barely distinguishable by eye. It worth noting,
that it happens the same case for hybrid EOSs constructed
with the NJL model without the Polyakov loop (red curves)
and the MIT bag model (green curves) with the bag
constant B'/4 = 200 MeV, which are shown for compari-
son. The quark EOS of the PNJL model is sizably stiffer
than the one of the NJL model. This feature of the present
model can provide positive feedback to the two solar mass
limit problem for NSs [57] or even for a disconnected
third-family branch of compact stars in the mass-radius
relationship [58].

Within the NJL-inspired models this problem can also be
resolved by considering a phenomenological vector inter-
action producing universal repulsion between quarks [59].
Such a vector interaction stiffens an EOS and corresponds
to a quadratic behavior of pressure at high baryonic
densities, i.e., p ~n% at ng — oco. This leads to p ~ u3
being inconsistent with results of perturbative QCD p ~ 5,
[53,60]. We, however, may think on NJL-inspired models
as a low energy approximation which should not neces-
sarily reproduce the high density behavior of QCD. At the
same time, the baryonic chemical potential in the compact
star interiors can reach values up to 2 GeV [3], which is
well inside the estimated applicability range of the present
model. Zero temperature O(a;), O(a?) and partial
O(a} In? a;) perturbative results show that at such ug
scaled pressure é differs from the corresponding asymptotic

value by just a few percent [53,60]. This means that at the
highest densities typical for the compact star interiors the
behavior of pressure is close to p ~ u. Therefore, the ability
of the present model to provide such a behavior of EOS
is important for astrophysical applications. In addition, this
EOS predicts the phase transition onset at nz roughly equal
to 4-5 normal nuclear densities ng, which is significantly
larger than ~2.5n, in models with vector quark interaction
[3]. Note that such a small density of deconfinement is
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FIG. 3. Pressure p (upper panel) and squared speed of sound c?
(lower panel) of electrically neutral matter as a function of
baryonic density ng calculated for hybrid EOS with the quark
phase described by the PNJL (blue curves), NJL (red curves), and
MIT bag (green curves) models.

also reported in other works [61,62]. They, however,
either explicitly include repulsive vector interaction [61]
or use parametrization of the deconfined phase EOS,

which leads to p ~ n?“ with ¢Z = 0.8 or 1 [62] being
very close to the quadratic form produced by vector
interaction channels.

We also paid a special attention to the behavior of the
speed of sound of the present model defined as ¢ = ‘;—Ie’
with e being an energy density. The dependence of this
quantity on ng is shown on the lower panel of Fig. 3. First,

we note that at high densities ¢2 approaches a limiting

value % which is provided by the pressure asymptote

p~uy. At the same time, the speed of sound is a
decreasing function of baryonic density. In the case of
the NJL model without Polyakov potential ¢? also
decreases with ng, while for the MIT bag model it is
constant due to the absence of the quark masses and
interaction. In the right vicinity of phase transition the
speed of sound of the present model has quite a large value
~0.9. Moreover, at some particular values of coupling G
and cut off parameter A it can even become superluminal.
In this work ¢z < 1 was provided by the adjustment of
the above mentioned parameters. This explains why our
vacuum value of the strange quark condensate is slightly
larger than the lattice one. In fact, the vacuum value of
(55)1/3 is just 3% larger than the lattice value on the upper
edge of its error bars [50]. Taking into account that the
quark interaction in the present model is rather schematic,
we find the reached consistency with the lattice data more
than satisfactory. We expect that the introduction of
additional realistic interaction channels will make this
consistency even better and it is left for future work. At the
same time, it is necessary to stress that a superluminal
speed of sound appears even in very advanced effective
theories. See, e.g., Fig. 25 of Ref. [3], where this problem
was resolved by adjusting the coupling constants which
control the quark interaction in vector and s-wave, spin-
singlet, flavor- and color-antitriplet channels. Moreover,
the asymptotic value of ¢? predicted by that work exceeds
1 due to the presence of vector interaction channel leading

to p ~pu3 and ¢2 — 1 at high densities.

V. CONCLUSIONS

We reexamined the PNJL model at finite baryonic
densities in order to incorporate the Polyakov loop dynam-
ics at zero temperature being of interest to modeling NSs
with quark cores. The main question addressed in this work
is how the Polyakov loop potential depends on baryonic
density or, equivalently, baryonic chemical potential. We
demonstrated that typically used HDL/HTL perturbative
estimate of this dependence, unfortunately, is inapplicable
at zero temperature since it leads to zero value of the
deconfinement order parameter at all baryonic densities.
In order to solve this problem we performed a phenom-
enological generalization of the Polyakov loop potential
to the case of finite ng. The introduction of an arbitrary
dependence of ¢/ on ny or pup can be formally interpreted
as originating the presence of baryonic charge of gluons.
This paradox appears at all temperatures and is the most
evident in the absence of dynamical quarks when their
current masses approach infinity. As we show it can be
solved by introducing the Polyakov loop dependent shift of
a single quark energy, which is absorbed by an effective
chemical potential of quarks, in the spirit of the mean field
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framework of the Polyakov loop treatment within the PNJL
model. We derived a relation between the corresponding
single particle potential )V and the Polyakov loop potential
U, whose fulfillment ensures an absence of gluonic con-
tribution to the baryon charge density. Moreover, it has the
same form regardless of the quark interaction channels
present in the model nor any particular form of the
Polyakov loop potential /. We expect that the cancellation
of gluonic contribution to the baryon charge density at
finite temperatures can be important for a reliable modeling
of the QCD phase diagram.

The analysis of the present model asymptotic behavior at
high baryonic densities provided us with a very tight
restriction on a possible dependence of U/ on ng. In fact,
the uncertainty remaining corresponds only to unknown
values of two constant parameters, i.e., d, and dy.
Furthermore, based on our model EOS and results of the
O(a?) perturbative calculations at zero temperature we
found that in the case of three quark flavors a, = 0.25.
The remaining free parameter of the density dependent
Polyakov loop potential @, was used in order to match
EOSs of quark and hadron matter at the deconfinement
phase transition. We used the Gibbs criterion together with
the requirement that the Polyakov loop jumps exactly at the
phase transition. Such an approach to construct a phase
transition in hybrid quark-hadron EOS simultaneously
provides the existence of chemical and dynamical equilib-
rium of coexisting phases as well as a discontinuous
behavior of its order parameter. We used three different
EOSs of hadron matter and all them yielded roughly the
same density of the deconfinement onset around 4 — 5n,,.
At the same time we should note that the onset of the

deconfinement can be shifted to smaller densities if a
quark-hadron phase boundary is not sharp but smoothed
due to small values of surface tension.

As an important consequence of nonzero values of the
Polyakov loop at zero temperature the stiffening of the
model EOS arises. Technically this effect is caused by a
contribution coming from the Polyakov loop potential /.
As it appears it can provide the NS interiors with an ability
to resist the gravitational collapse and, consequently, to
reach the well-known two solar mass limit for NSs. At the
same time, such a stiffening leads to the increase of the
speed of sound. In fact, it has the maximal value in the right
vicinity of the deconfinement phase transition. A further
increase of the baryonic density leads to the decrease of
the speed of sound, which has asymptotic value ¢ = 1 of
free massless quarks in a full agreement with asymptotic
freedom of quarks expected at high baryonic densities. We
also expect that nonzero values of the Polyakov loop can
affect properties of color superconducting phase, which
should be studied in the future.
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