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We revisit the Polyakov loop coupled Nambu–Jona-Lasinio model that maintains the Polyakov loop
dynamics in the limit of zero temperature. This is of interest for astrophysical applications in the interior of
neutron stars. For this purpose we re-examine the form of the potential for the deconfinement order
parameter at finite baryonic densities. Since the modification of this potential at any temperature is formally
equivalent to assigning a baryonic charge to gluons, we develop a more general formulation of the present
model that cures this spurious effect and is normalized to match the asymptotic behavior of the QCD
equation of state given by Oðα2sÞ and partial Oðα3s ln2 αsÞ perturbative results.
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I. INTRODUCTION

During the last decades the properties of matter at
extreme conditions have been intensively studied both
theoretically and experimentally. Phase transformations
governed by strong interaction, i.e., the deconfinement
of color degrees of freedom (d.o.f.) and restoration of chiral
symmetry, belong to the most important subjects of these
studies. The interest to the mentioned phenomena is
stimulated by experiments on collisions of ultrarelativistic
heavy ions performed at facilities RHIC and LHC, which
have already yielded signals of the quark-gluon plasma
(QGP) existence [1]. Moreover, future experimental pro-
grams planned in FAIR GSI, NICA JINR, and J-PARK are
in a dire need of information about the phase diagram of
quantum chromodynamics (QCD), being a modern theory
of strong interaction.
Another practical need of information about phase

transformations in strongly interacting matter is related
to the possible existence of hybrid compact stars with a
quark core [2,3]. Furthermore, the recently predicted
sudden increase of frequency of gravitational waves emit-
ted in mergers of such hybrid stars opens a remarkable

possibility of their detection [4] but, on the other hand, it
still requires further clarification of some details of the
quark-hadron transition.
A complete knowledge about this transition can be

reached only within QCD, which, even despite the tremen-
dous efforts documented in the literature, is not satisfac-
torily solved due to its nonperturbative character. At the
same time, a significant progress toward the understanding
the phase structure of QCD has been achieved during the
last years. First principle calculations on discrete space-
time lattices provided access to the equation of state (EOS)
in the regime of high temperatures T and limited baryonic
chemical potentials μB [5–8]. Taylor series expansion
[9–11], re-weighting techniques [12–14] and analytical
continuation from imaginary chemical potentials [15–19]
extended the applicability range of lattice QCD up to
μB
T ≤ 3. Further extension remains impossible at present due
to the sign problem [20,21]. Thermodynamics of QCD was
also studied within the functional renormalization group
approach, which allowed us to take under control quantum
quark-meson fluctuations in the deep infrared limit
[22–27]. At the same time, a pure Yang-Mills potential
for the Polyakov loop being an order parameter of the
deconfinement transition does not provide a phase tran-
sition in a perturbative regime, see, e.g., [28–30]. This
difficulty can be overcome within an effective scalar theory
whose minima correspond to the Polyakov loop expect-
ation values [31]. The discontinuous change of a global
minimum provides the first order phase transition in the
pure Yang-Mills case. The incorporation of this mechanism
to the Nambu-Jona-Lasinio (NJL) model, which reprodu-
ces proper chiral dynamics [32], makes it possible to
account for two of the most important aspects of QCD,
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e.g., the deconfinement of color d.o.f. and the dynamical
restoration of chiral symmetry.
In the past years this approach, known as the Polyakov-

Nambu-Jona-Lasinio (PNJL) model, was successfully
applied to the study of QCD thermodynamics at zero
baryonic chemical potential [33–36]. A systematic improve-
ment of the model allowed it to account for effects of
nonlocal current-current interaction [37], diquark d.o.f. [38],
andmesonlike correlations of quarks [39]. At the same time,
the backreaction of quarks propagating in a homogeneous
temporal gluon field, which is assumed by the PNJL
model, makes the Polyakov loop potential U dependent
on μB. The incorporation of this effect into the model
has become an important step toward the understanding
of the strongly interacting matter phase diagram, see,
e.g., [40–44]. A perturbative estimate of this dependence
[40], however, leads to identically zero U at T ¼ 0. As a
result, the PNJL model at zero temperature does not encode
information about the physical value of the Polyakov
loop and, consequently, fails to reproduce its dynamics.
Working out an improved parametrization of the Polyakov
loop potential with a special emphasis on its density
dependence is the primary goal of the present work.
Previous approaches to this problem have already been
considered, see for example [45]. The construction of a μB-
dependent Polyakov loop potential leading to non artificial
contribution of gluons to the baryonic density must be
carefully considered.
The confined phase of the PNJL model should be

identified with the hadronic one. Its description in the
present model is rather schematic since, typically, it
includes only scalar and pseudoscalar mesonic correlations
of quarks [39,40,43]. A more elaborate description of
strongly interacting matter can be obtained within a hybrid
EOS. Since the Polyakov loop is the deconfinement order
parameter, it is natural to assume that its nonzero expect-
ation value suppresses hadronic d.o.f. Therefore, the EOS
of hadron matter should switch to the PNJL EOS when the
Polyakov loop attains a no zero value. In other words, the
phase transitions given by the Gibbs criterion and defined
by the order parameter should coincide. Below we consider
a hybrid model with such a Polyakov-Gibbs phase tran-
sition. We pay special attention to the case of electrically
neutral β-equilibrated matter at zero temperature, which is
of practical interest to astrophysical applications in neutron
stars (NSs). In our work we will deal with a standard
treatment based on thermodynamical considerations
although there are also some works where this may be
externally triggered [46–48].
The article is organized as follows. In the next section we

briefly sketch the PNJL model. Section III is devoted to the
generalization of the Polyakov loop potential to the case of
finite baryonic density. The hybrid quark-hadron EOS and
the corresponding thermodynamic quantities of interest are
discussed in Sec. IV. Conclusions are given in Sec. V.

II. PNJL MODEL

In this work we consider the case of Nf ¼ 3 quark
flavors with physical masses. We adopt the simplest form
of the Lagrangian from Refs. [34–36], which provides
dynamical restoration of chiral symmetry

L ¼ q̄ðiD − m̂Þqþ G
2
½ðq̄qÞ2 þ ðq̄iγ5τ⃗qÞ2� − UðΦ;Φ�Þ;

ð1Þ

where the flavor space row q ¼ ðψu;ψd;ψ sÞT stands for the
quark field, the diagonal matrix m̂ ¼ diagðmu;md;msÞ
gives the corresponding masses and chiral-symmetric local
four-point quark interaction in scalar and pseudoscalar
channels is controlled by a coupling constant G. The flavor
mixing interaction channels of the ’t Hooft determinant
type [49] are neglected for the sake of simplicity. We,
however, should note that, even if accounted, such terms do
not significantly affect the thermodynamics of the present
model but lead to a slight stiffening of its EOS [3]. A
covariant derivative Dμ ¼ ∂μ − igAμ absorbs the static and
uniform gluon field Aμ, where g is the gauge coupling.
According to the PNJL model assumption, only the
temporal component of this field has nonzero value, i.e.,
in the case of three colors (Nc ¼ 3) one gets Aμ ¼ δμ0A

0
a
λa

2

with λa being the Gell-Mann matrices. Within the present
model the dynamics of gluons is reduced to the one of
the Polykov loop. It is given in terms of temporal gauge
fields as

Φ ¼ 1

Nc
trc

�
T exp

�
ig
Z

β

0

dτA4

��
; ð2Þ

where T is the time ordering operator, β ¼ 1
T is the inverse

temperature, A4 ¼ iA0. The involved trace in the previous
expression is carried over color indices. Hereafter all
quantities are given in the natural system of units where
the Boltzmann constant, the speed of light, and the
Planck constant are set kB ¼ c ¼ ℏ ¼ 1. In the Polyakov
gauge the temporal gluon field is diagonal in color
space and, thus, is controlled by only two independent
nonzero variables, A0

3 and A0
8 [34]. This makes the

Polyakov loop expectation value complex, i.e., Φ� ≠ Φ
in the general case. It, however, becomes real when quark
chemical potentials vanish (see, for example, Ref. [40] for a
discussion).
The gluonic self-interaction of the non-Abelian nature is

modeled by the potential UðΦ;Φ�Þ. Its dependence on the
Polyakov loop expectation value and corresponding com-
plex conjugate is chosen as in Ref. [36]. This choice
provides center Zð3Þ symmetry of U and its absolute
minimum at jΦj ¼ 0 or jΦj → 1 in the cases of small
and high temperatures, respectively. Thus
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UðΦ;Φ�Þ ¼ −
b2ðTÞ
2

Φ�Φþ b4ðTÞ ln½1 − 6Φ�Φ

þ 4ðΦ�3 þΦ3Þ − 3ðΦ�ΦÞ2�: ð3Þ

Note that the logarithmic divergence of this potential
appears as necessary to limit the expectation value of the
Polyakov loop modulus from above. The medium depen-
dent functions in Eq. (3) are defined as

b2ðTÞ ¼ a0T4 þ a1T0T3 þ a2T2
0T

2; ð4Þ

b4ðTÞ ¼ a4T3
0T: ð5Þ

A natural strategy to assign values of their parameters is to
fit U to the lattice data of thermodynamics of pure gauge
QCD since its pressure is pglue ¼ −U. In Ref. [36] this
procedure gave a0 ¼ 3.51, a1 ¼ −2.47, a2 ¼ 15.22,
a4 ¼ −1.75. Note, that in this case T0 ¼ 270 MeV repre-
sents the temperature of the deconfinement phase transition
in the absence of quarks.
The present paper focuses on the zero temperature case,

which is the most interesting for modeling evolved NSs
with possible quark cores. The relevant thermodynamic
potential Ω can be obtained as a limit of the finite
temperature case. Bosonization of Lagrangian in Eq. (1)
and a posterior mean field approximation is a standard
procedure to obtain Ω as done in [34–37]. An equivalent
treatment is provided by the introduction of the mean
values of scalar hq̄qi and pseudoscalar hq̄iγ5τ⃗qi quark
condensates along with a further linearization procedure for
L obtained from considering small deviations from these
mean values. Thus

Ω
V
¼ UðΦ;Φ�Þ þ hq̄qi2

2G
−
Z
f
½3ðωþ

f þ ω−
f ÞθðΛ2 − p2Þ

þ 2T ln ð1þ 3Φe−βω
þ
f þ 3Φ�e−2βω

þ
f þ e−3βω

þ
f Þ

þ 2T ln ð1þ 3Φ�e−βω
−
f þ 3Φe−2βω

−
f þ e−3βω

−
f Þ�: ð6Þ

Hereafter a symbolic notation for summation over all quark

flavors and simultaneous integration over momentum
R
f ¼P

f

R d3p⃗
ð2πÞ3 is introduced for shortening expressions. Single

particle energies of quarks (superscript index “þ”) and
antiquarks (superscript index “−”)

ω�
f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm�2

f

q
∓ μf; ð7Þ

are defined through their effective masses

m�
f ¼ mf −Ghq̄qi; ð8Þ

and chemical potentials μf. The latter ones are given in
terms of quark baryonic charge Bq ¼ 1

3
, electric charge of

flavor f, Qf, and associated baryonic μB and electric μQ
chemical potentials

μf ¼ μBBq þ μQQf: ð9Þ

Note, that the strange chemical potential μS is absent in
Eq. (9) since the corresponding charge is not conserved if
weak decays are allowed. The mean value of the scalar
quark condensate hq̄qi that minimizes the thermodynamic
potential is defined by the condition

∂Ω
∂hq̄qi ¼ 0: ð10Þ

Note, that the pseudoscalar quark condensate is absent in
Eqs. (6)–(8), since within the mean field approximation its
mean value vanishes.
A sharp momentum cutoff is introduced by using a

parameter Λ to provide the simplest way of regularization
of integrals as done in [34–36,38,44,45]. However, more
refined regularization schemes implying smooth form
factors have been also successfully applied in [37,39,41].
In the present article this latter approach is not used for the
sake of simplicity.
Within the mean field approximation the Polyakov loop

expectation value and its complex conjugate are defined by
requiring the minimal value of the thermodynamic poten-
tial, i.e., ∂Ω

∂Φ ¼ ∂Ω
∂Φ� ¼ 0. For known values of the Polyakov

loop and scalar quark condensate, the pressure can be found
as p ¼ − Ω−Ωvac

V . Here Ωvac is the vacuum part of the
thermodynamic potential. It does not contribute to the
pressure and appears as the first term under the momentum
integral in Eq. (6). Thus

p ¼ 2T
Z
f
½ln ð1þ 3Φe−βω

þ
f þ 3Φ�e−2βω

þ
f þ e−3βω

þ
f Þ

þ ln ð1þ 3Φ�e−βω
−
f þ 3Φe−2βω

−
f þ e−3βω

−
f Þ�

− UðΦ;Φ�Þ − hq̄qi2
2G

: ð11Þ

It is worth noting that the vacuum term Ωvac does not have
any dependence on Φ and Φ�. From the previous consid-
erations the expectation value of the Polyakov loop can be
found from the conditions

∂p
∂Φ ¼ ∂p

∂Φ� ¼ 0: ð12Þ

As it is seen from Eqs. (6) and (11), within the present
model Φ and Φ� are symmetrically coupled to quarks and
antiquarks, respectively. Therefore, the asymmetry between
them makes the Polyakov loop complex, while it becomes
real only at μf ¼ 0. Another source of the Polyakov loop
dependence on quark chemical potentials as well as on
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flavor content is caused by the running of the QCD
coupling. Within the PNJL model this dependence is
accounted by the simple modification of the expansion
coefficients b2 and b4 [40–44]. More precisely, the back-
reaction of quarks to the gluon sector leads to the
modification of the transition temperature T0 to become
a function of μf and Nf. In Ref. [40] a perturbative estimate
of this dependence was done based on HDL/HTL results on
the effective charge.
At zero temperature, however, such an approach to

account for the impact of quarks on the Polyakov loop
is not satisfactory. First of all, the terms under the
logarithms in Eq. (11), which explicitly couple Φ and
Φ� to quarks in expressions for thermodynamic potential
and pressure, are exponentially suppressed at T ¼ 0. At the
same time, the Polyakov loop potential in Eq. (3) with
expansion coefficients b2 and b4 of the form shown in
Eqs. (4) and (5) vanishes at zero temperature. This happens
for any finite T0 ¼ T0ðμÞ. Consequently, the modification
of U motivated by the HDL/HTL perturbative estimate
accounts for backreaction of quarks to the gluon sector only
in part. As a result, the dynamics of the Polyakov loop is
totally lost in the PNJL model at zero temperature. Note,
that gluons affect the properties of strongly interacting
matter through quantum loops even at T ¼ 0, while their
thermal excitations are suppressed in this case. Therefore,
in the presence of dynamical quarks the Polyakov loop
potential should explicitly depend on baryonic density even
at zero temperature.
Before going any further we must discuss the normali-

zation of the present model. Typically, in the two-flavor
case the coupling constant G and cutoff parameter Λ are
fixed in order to reproduce vacuum values of the light quark
condensate and effective quark mass, which is taken
roughly equal to one third of the nucleon mass. Instead,
for Nf ¼ 3 this normalization scheme requires a modifi-
cation in order to account for effects of strange quarks. For
this purpose we fitted the parameters of the present model
to vacuum values of condensates of light hl̄li≡ hūuþ
d̄di=2 and strange hs̄si quarks. Our used vacuum value of
hl̄li1=3 coincides within the error bars with the recent result
hl̄li1=3 ¼ 283ð2Þ MeV from lattice simulations in three-
flavor QCD [50]. While hs̄si1=3 exceeds the lattice value
290(15) MeV by about 9%, that when accounting for the
errors bars reduces this deviation to 3%. As we discuss
later, this fine tuning of the input data was done in order to
take under control the speed of sound in the deconfinement
region. The pion decay constant fπ is obtained from the

well-known Gell-Mann-Oakes-Renner relation f2πm2
π

2
¼

− muþmd
2

hl̄li0 with the discussed condensate of light quarks
and physical masses of quarks and pion [51]. It is worth
noting, that, remarkably, this fπ value is very close to the
most recent one reported by the Particle Data Group fπ ¼
130.2ð1.7Þ MeV [51]. The set of model parameters,

vacuum condensates, current quark masses used, as well
as mass and decay constant of pion are listed in Table I.
The present set up gives m�

u ¼ 182.6 MeV, m�
d ¼

185.1 MeV, and m�
s ¼ 275.4 MeV in the vacuum. These

values are smaller than ∼300 MeV and ∼500 MeV usually
accepted for light and strange quarks, respectively. Such a
difference is caused by the rather schematic quark inter-
action in the present model, which accounts only for scalar
and pseudoscalar channels. These masses can be taken
under control by introducing the ’t Hooft determinant
interaction channel, which is omitted in order to keep
the quark sector of the model as simple as possible. It is also
appropriate to note here, that we do not use the parameter
set of Ref. [36] since it was found for the two flavor case,
while for three flavors it gives too large constituent masses
in vacuum being ∼700 MeV and ∼800 MeV for light and
strange quarks, respectively.

III. DENSITY DEPENDENT POLYAKOV
LOOP POTENTIAL

As it was mentioned in the previous section, terms
coupling Φ and Φ� to quarks in Eqs. (6) and (11) are
exponentially suppressed at small temperatures. Therefore,
within the original PNJL model, the equations for the
Polyakov loop become ∂U

∂Φ ¼ ∂U
∂Φ� ¼ 0. For the parameters of

the Polyakov loop potential from Ref. [36] these equations
have nonzero solution only at temperatures exceeding
263 MeV. At small temperatures Φ is identically equal
to zero, which formally should be interpreted as a confine-
ment of color charge at all baryonic densities. This, however,
contradicts the existing phenomenology of QCD. Even a
HDL/HTLmotivated perturbative modification of T0, which
becomes a function of chemical potential, does not resolve
this paradox. It can be solved, however, by introducing an
additional dependence of the Polyakov loop potential U on
the quark chemical potential or, alternatively, on the baryonic
density. The technical advantage of the latter will become
evident in the following. At the same time, from the physical
point of view, such a treatment is totally equivalent to
the case, when U depends on μf as done in Ref. [45]. The
simplest way to perform the discussed generalization of the
Polyakov loop potential is to leave its dependence onΦ and
Φ� the same as in Eq. (3), while making functions b2 and b4

TABLE I. Parameters of the present model (top row) and
resulting physical quantities (bottom row).

mu [MeV] md [MeV] ms [MeV] Λ [MeV] G [GeV−2]
2.2 4.7 95.0 925.06 2.385

jhl̄li0j1=3 [MeV] jhs̄si0j1=3 [MeV] fπ [MeV] mπ [MeV]

281 315 126.96 139.3
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dependent onbaryonic density. For this purposewepropose a
simple parametrization

b2ðT; nBÞ ¼ a0T4 þ a1T0T3 þ a2T2
0T

2 þ ã2T4
0

�
nB
T3
0

�
κ2
;

ð13Þ

b4ðT; nBÞ ¼ a4T3
0T þ ã4T4

0

�
nB
T3
0

�
κ4
; ð14Þ

with ãl and κl ≥ 0 (l ¼ 2, 4) being constants defined below.
With such a modification of U the Polyakov loop can have a
finite value even at zero temperature.
Within the present model Φ is considered as an effective

scalar field representing gluonic d.o.f. and treated under
the mean field approximation. Typically, such a mean
field framework leads to the shifting of the single particle
energies giving rise to an effective chemical potential

μ�f ≡ μf þ BqVðΦ;Φ�Þ: ð15Þ

Here V is some unknown function, which is supposed to be
the same for all quark flavors under the assumption that
their interaction with gluons is universal. We also require
V ¼ 0 at nB ¼ 0 to ensure baryon-antibaryon symmetry in
this limit.
Up to here we considered the finite temperature case. Let

us now focus on the zero temperature case, keeping in mind
that all main results are general and applicable at T ≠ 0.
Hereafter we also explicitly introduce electrons to the
consideration since they are important to neutralize quark
matter, which is the most interesting for astrophysical
applications. Their pressure pe is nothing else as the one
of noninteracting spin-1

2
fermions with mass me ¼

0.511 MeV [51] and chemical potential μe ¼ −μQ. With
the above modifications of the Polyakov loop potential and
effective chemical potentials of quarks μ�f, the zero temper-
ature pressure expression in the PNJL model reads

p ¼ −6
Z
f
ω�þ
f θð−ω�þ

f Þ − UðΦ;Φ�Þ − G
2
hq̄qi2 þ pe:

ð16Þ

Here ω�þ
f is the modified single particle energy of the form

given in Eq. (7), where the physical chemical potential μf is
replaced by the effective one μ�f, while the quark con-
densate and Polyakov loop are still defined by Eqs. (10)
and (12), respectively.
At this point we focus on V, which parametrizes the

present model. However, its choice is not arbitrary. This
follows from the analysis of the baryonic density defined as
nB ¼ − 1

V
dΩ
dμB

. The conditions ∂Ω
∂Φ ¼ ∂Ω

∂Φ� ¼ 0 and ∂Ω
∂hq̄qi ¼ 0

significantly simplify its calculation giving

nB ¼ −
1

V

�∂Ω
∂μB þ ∂Ω

∂nB
dnB
dμB

�
¼ ∂p

∂μB þ ∂p
∂nB

dnB
dμB

; ð17Þ

where the relation between the thermodynamic potential
and pressure was used on the second step. Finally, with the
help of Eqs. (15) and (16) the baryonic density expression
becomes

nB ¼ 6Bq

Z
f
θð−ω�þ

f Þ

þ
�
6Bq

Z
f
θð−ω�þ

f Þ ∂V∂nB −
∂U
∂nB

� ∂nB
∂μB : ð18Þ

The first term in this expression corresponds to the
contribution of quarks, while the second one includes
derivatives of potentials U and V associated with the
Polyakov loop. This means that the second term can be
connected to gluons that, as known, do not carry baryonic
charge and can not contribute to nB. This paradox becomes
even more evident in absence of dynamical quarks, i.e.,
when their masses approach the infinitely heavy limit. In
this case the momentum integrals in Eq. (18) vanish, while
baryonic density still retains a finite value nB ¼ − ∂U

∂μB. In
other words, the introduction of some dependence of
the Polyakov loop potential on baryonic chemical potential
or baryonic density would spuriously lead to baryonic
charge of gluons. In order to solve this problem we require
that the square bracket expression in Eq. (18) is zero so that
in this case baryonic density equals to

nB ¼ 6Bq

Z
f
θð−ω�þ

f Þ: ð19Þ

Consequently, this leads to the condition

nB
∂V
∂nB −

∂U
∂nB ¼ 0; ð20Þ

which relates the potentials U and V. It is important to stress
that at finite temperature the condition (20) written in terms
of the baryonic density remains exactly the same, while
expression for nB itself obviously gets modified by thermal
excitations of quarks. The fulfillment of this relation
ensures that at any baryonic chemical potential and temper-
ature only quarks contribute to baryonic density. The above
analysis also shows why it is more convenient from the
practical point of view to consider the discussed potentials as
functions of baryonic density instead of baryonic chemical
potential. We can easily check that Eq. (20) is fulfilled by the
function

VðΦ;Φ�Þ ¼ −
c2ðnBÞ

2
Φ�Φþ c4ðnBÞ ln½1 − 6Φ�Φ

þ 4ðΦ�3 þΦ3Þ − 3ðΦ�ΦÞ2�; ð21Þ
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which preserves the same dependence on the Polyakov loop
as in the case of the potential U and involves coefficients

clðnBÞ ¼
κlblð0; nBÞ
ðκl − 1ÞnB

: ð22Þ

For further convenience we also introduce the notation

dlðnBÞ ¼ nBclðnBÞ − blð0; nBÞ ¼
blð0; nBÞ
κl − 1

: ð23Þ

As it follows from Eqs. (21) and (22), the potential V
vanishes at nB ¼ 0 for an arbitrary temperature only if
either κl ¼ 0 or κl > 1. An additional limitation on the
possible values of κl can be found from the analysis of the
regime of high baryonic densities, when effective masses of
quarks m�

f become negligible compared to their chemical
potentials μ�f. In this case fermionic contribution to the

pressure, i.e., the first term in Eq. (16), behaves as n4=3B ,
while the second one, which comes from the Polyakov loop
potential, is proportional to nκ2B for κ2 ≥ κ4 and nκ4B
otherwise. The term associated with the quark condensate
can be neglected. Since at high baryonic densities quarks
are expected to be massless and asymptotically free [52],
the total pressure should behave as p ∼ μ4B. It follows from
the thermodynamic identity nB ¼ ∂p

∂μB that such an asymp-

totic p is obtained only if κl ≤ 4
3
. At the same time, the

requirement of the baryonic charge-anticharge symmetry
can be fulfilled only if bl is an even function of baryonic
density. Along with the other limitations on possible values
of κl this result yields either κl ¼ 0 or 4

3
. As it is shown

below, the mean value of the Polyakov loop modulus
approaches one at high densities only if b4

b2
→ 0. Therefore,

we set κ2 ¼ 4
3
and κ4 ¼ 0. In the asymptotic case of high

densities this corresponds to b2 ∼ μ4B and constant b4. Note
that the contribution of gluons to baryonic density coming
from the derivative ∂U

∂μB is compensated.
At this point, the Polyakov loop potentials U and V have

two free parameters, i.e., ã2 and ã4. The value of ã2 can be
estimated by assuming that the ratio of the symmetric quark
matter pressure to the Stefan-Boltzmann pressure pSB is the
same in the limits of infinite temperature and baryonic
chemical potential, i.e., p

pSB
jμB→∞ ¼ p

pSB
jT→∞ ¼ αSB. The

present assumption is supported by the consistency of
lattice data on the QCD EOS for 2, 2þ 1 and 3 quark
flavors [5] and Oðα2sÞ perturbative calculations at zero
temperature [53]. In both of these cases αSB ¼ 0.8 within
estimated error bars. We also should note that at present,
unfortunately, there is no reliable information about QCD
matter at high densities. Thus, relaying on the perturbative
results seem to be the only available approach to normalize
the model.

At this regime the modulus of the Polyakov loop
approaches unity and the logarithmic term in the expression
for U can be neglected. Therefore, U ≃ − a2

2
n4=3B in this

case. The quark contribution to the pressure is the one ofNf

species of massless noninteracting fermions with spin-color
degeneracy 6, i.e., 1

4
ðπ2Nf

Þ1=3ðnBBq
Þ4=3. The finite contribution

being quadratic in the quark condensate can be neglected.
Then, with the help of the thermodynamic identity nB ¼ ∂p

∂μB
the dependence of the total pressure on baryonic density
can be turned to the one on baryonic chemical potential.
This yields

p
pSB

����
μB→∞

¼ αSB ¼
�
1þ 2ã2B

4
3
q

�
Nf

π2

�1
3

�−3
; ð24Þ

where the Stefan-Boltzmann pressure pSB ¼ NfðBqμBÞ4
4π2

was
used. Finally, using this expression we obtain

ã2 ¼
1

2B
4
3
q

�
π2

Nf

�1
3

�
α
−1
3

SB − 1

�
¼ 0.358 · N

−1
3

f : ð25Þ

For Nf ¼ 3 this gives ã2 ≃ 0.25.
In order to numerically check this result we calculated

the zero temperature pressure of three flavor symmetric
(μQ ¼ 0) quark matter as function of baryonic chemical
potential μB for different values of coefficients ã2 and ã4.
As it is seen from Fig. 1, the value of ã2, indeed, provides
correct asymptotic of the pressure corresponding to
about 80% of the Stefan-Boltzmann pressure. This result
holds for any value of ã4. At the same time, NJL model
without Polyakov loop potential significantly overesti-
mates the pressure compared to results of perturbative
calculations.
The present model is an effective low energy approxi-

mation of QCD and, strictly speaking, is not applicable
to the analysis of thermodynamics at infinite density. We
assume that its applicability range is limited by μB at
which quark chemical potential becomes comparable to
the cut off parameter, i.e., by μB ≃ 3μf ¼ 3Λ ≃ 3 GeV.
From the practical point of view we are interested only in
chemical potentials μB ≲ 2 GeV reached inside the NSs
[3], which is well inside the estimated applicability range
of the present model.
At zero temperature the calculation of the Polyakov loop

expectation value is significantly simplified since in this
caseΦ andΦ� enter the expression for the pressure Eq. (16)
only through potentials U and V. Then, by direct calcu-
lation it is possible to show that Φ ∂p

∂Φ −Φ� ∂p
∂Φ� ∼Φ3 −Φ�3.

On the other hand, this expression equals to zero due to
requirement (12). This means that the expectation value of
Polyakov loop belongs to the SU(3) center subgroup, i.e.,
Φ ¼ jΦjei2Πl3 with l ¼ 0, 1, 2. As a result, in the zero
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temperature case potentials U and V depend only on the
modulus of the Pokyakov loop expectation value, which
can be found from Eq. (12) as

jΦj ¼ 1

3
þ 2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9d4ðnBÞ

d2ðnBÞ

s
: ð26Þ

Besides this solution the Eq. (12) also possesses the trivial
root jΦj ¼ 0, which corresponds to the confinement state.

IV. EQUATION OF STATE

Expression (26) demonstrates that jΦj approaches unity
at high densities only if d4

d2
¼ − b4

3b2
→ 0 in full agreement

with values found for κ2 and κ4. On the other hand, this
limiting value of the Polyakov loop modulus should be
reached from below. This means, that d4d2 < 0. According to
the definition (23) and value of ã2 this is the case only for
ã4 > 0. Therefore, the solution in Eq. (26) is meaningful
only if the expression under the square root is positive. This
allows us to conclude that within the present model the
modulus of the Polyakov loop is nonzero only at baryonic
densities larger than a critical value

nc ¼
�
3ã4
ã2

�3
4

T3
0; ð27Þ

while jΦj ¼ 0 for nB < nc. It is also seen from Eq. (26) that
jΦj ¼ 1

3
at nB ¼ nc. Treating the Polyakoov loop expect-

ation value as the deconfinement order parameter we

should assume that quark matter exists only at nB ≥ nc
when jΦj has nonzero values. At the same time, at smaller
densities jΦj ¼ 0 and strongly interacting matter exists in
the form of hadrons. This gives us a phenomenological
criterion to construct within the present model a hybrid
quark-hadron EOS.
For this purpose we utilize the Gibbs construction which

requires that the pressures and chemical potentials of the
two phases coincide at the phase transition. This corre-
sponds to the dynamical and chemical equilibrium of
phases. Thermal equilibrium is trivially provided since
we consider the case of zero temperature. We also consider
electrically neutral matter since it is the most interesting for
astrophysical applications. Electric chemical potential μQ is
defined by the condition of zero total density of electric
charge, i.e., from

nQ ¼ 6

Z
f
θð−ω�þ

f ÞQf − ne ¼ 0; ð28Þ

where ne ¼ ∂pe∂μe defines the particle density of electrons.
Note that the equilibriumwith respect to β-decay is provided
automatically since μd ¼ μu þ μe by construction.
The coefficient ã4 plays an important role in the

construction of the resulting hybrid EOS. It is chosen to
satisfy the condition that the modulus of the Polyakov loop
receives nonzero value jΦj ¼ 1

3
exactly at the quark phase

boundary as obtained by the Gibbs criterion. In other
words, the definition of phase transition given by the Gibbs
criterion and the behavior of the order parameter coincide
in the present model. It is clear that the parameters of quark-
hadron phase transition and the corresponding value of ã4
depend on the particular hadronic EOS.
In this work we use three hadronic EOS. Two of them,

i.e., the APR4 EOS [54], which stands for the parametri-
zation of the microscopic potential A18þ δvþ UIX, and
the SLy EOS [55], are usually used as references in many
nuclear and astrophysical studies. The third hadronic EOS,
the IST [56] is able to fulfill many experimental and
observational constraints on properties of nuclear and
hadron matter. It is necessary to note that the mentioned
hadronic EOSs do not include strangeness content as it only
appears in quark matter due to weak processes converting d
and s quarks to each other. Matching hadronic EOSs with
the developed procedure in the present paper we obtained
three hybrid EOSs labeled below as PNJL-IST, PNJL-
APR4, and PNJL-SLy, respectively.
The upper panel of Fig. 2 shows the pressure of

electrically neutral quark phase for each of these hybrid
EOSs (blue curves) as a function of baryonic chemical
potential in the phase transition region. The transition from
hadronic matter (black curves) happens when the pressures
of two phases coincide. As is seen from the lower panel of
Fig. 2, which shows the Polyakov loop modulus versus

p/
p S

B

0.5

0.6

0.7

0.8

0.9

1

µB [MeV]
1000 2000 3000 4000 5000

NJL
PNJL, ã2 = 0.10, ã4 = 0.058
PNJL, ã2 = 0.10, ã4 = 0.029
PNJL, ã2 = 0.25, ã4 = 0.058
PNJL, ã2 = 0.25, ã4 = 0.029
PNJL, ã2 = 0.40, ã4 = 0.058
PNJL, ã2 = 0.40, ã4 = 0.029

FIG. 1. Scaled pressure of three flavor symmetric quark matter
as a function of baryonic chemical potential μB at different values
of the Polyakov loop potential parameters.
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baryonic chemical potential, before this transition jΦj ¼ 0
indicating a hadron phase of the strongly interacting matter.
Quark matter exists above the transition point, where the
modulus of the Polyakov loop attains nonzero value
approaching unity at high μB. A discontinuous jump of
the Polyakov loop modulus at the phase transition reveals
that jΦj, indeed, is the deconfinement order parameter.
The corresponding values of parameter ã4 together with
baryonic densities of coexistence at the deconfinement
transition hadron nhB and quark nqB phases are given in
Table II. As it is seen from Fig. 2 the behavior of the quark

matter pressure is weakly sensitive to details of hadronic
EOS used to find ã4. This is reflected by the close values
found for baryonic densities of nhB and nqB corresponding to
the PNJL-IST, PNJL-APR4, and PNJL-SLy EOSs. The
same conclusion can be drawn from the upper panel of
Fig. 3, which depicts the pressure of electrically neutral
matter at zero temperature as a function of baryonic density.
Indeed, the quark sector of the hybrid EOSs constructed
with the PNJL model and different hadronic EOS (blue
curves) are barely distinguishable by eye. It worth noting,
that it happens the same case for hybrid EOSs constructed
with the NJL model without the Polyakov loop (red curves)
and the MIT bag model (green curves) with the bag
constant B1=4 ¼ 200 MeV, which are shown for compari-
son. The quark EOS of the PNJL model is sizably stiffer
than the one of the NJL model. This feature of the present
model can provide positive feedback to the two solar mass
limit problem for NSs [57] or even for a disconnected
third-family branch of compact stars in the mass-radius
relationship [58].
Within the NJL-inspired models this problem can also be

resolved by considering a phenomenological vector inter-
action producing universal repulsion between quarks [59].
Such a vector interaction stiffens an EOS and corresponds
to a quadratic behavior of pressure at high baryonic
densities, i.e., p ∼ n2B at nB → ∞. This leads to p ∼ μ2B
being inconsistent with results of perturbative QCD p ∼ μ4B
[53,60]. We, however, may think on NJL-inspired models
as a low energy approximation which should not neces-
sarily reproduce the high density behavior of QCD. At the
same time, the baryonic chemical potential in the compact
star interiors can reach values up to 2 GeV [3], which is
well inside the estimated applicability range of the present
model. Zero temperature OðαsÞ, Oðα2sÞ and partial
Oðα3s ln2 αsÞ perturbative results show that at such μB
scaled pressure p

μ4B
differs from the corresponding asymptotic

value by just a few percent [53,60]. This means that at the
highest densities typical for the compact star interiors the
behavior of pressure is close top ∼ μ4B. Therefore, the ability
of the present model to provide such a behavior of EOS
is important for astrophysical applications. In addition, this
EOS predicts the phase transition onset at nB roughly equal
to 4-5 normal nuclear densities n0, which is significantly
larger than ∼2.5n0 in models with vector quark interaction
[3]. Note that such a small density of deconfinement is

FIG. 2. Pressure p (upper panel) and Polyakov loop modulus
jΦj (lower panel) of electrically neutral matter as a function of
baryonic chemical potential μB in the phase transition region.
Black dotted line on the lower panel represents jΦj ¼ 1

3
.

TABLE II. Values of ã4, baryonic densities of pure hadronic nhB
and quark nqB phases coexisting at the deconfinement phase
transition.

ã4 nhB [fm3] nqB [fm3]

PNJL-IST 0.032 0.80 1.25
PNJL-APR4 0.031 0.73 1.23
PNJL-SLy 0.030 0.75 1.19

O. IVANYTSKYI et al. PHYS. REV. D 100, 103020 (2019)

103020-8



also reported in other works [61,62]. They, however,
either explicitly include repulsive vector interaction [61]
or use parametrization of the deconfined phase EOS,

which leads to p ∼ nc
2
sþ1
B with c2s ¼ 0.8 or 1 [62] being

very close to the quadratic form produced by vector
interaction channels.
We also paid a special attention to the behavior of the

speed of sound of the present model defined as c2s ¼ dp
dϵ

with ϵ being an energy density. The dependence of this
quantity on nB is shown on the lower panel of Fig. 3. First,

we note that at high densities c2s approaches a limiting
value 1

3
which is provided by the pressure asymptote

p ∼ μ4B. At the same time, the speed of sound is a
decreasing function of baryonic density. In the case of
the NJL model without Polyakov potential c2s also
decreases with nB, while for the MIT bag model it is
constant due to the absence of the quark masses and
interaction. In the right vicinity of phase transition the
speed of sound of the present model has quite a large value
∼0.9. Moreover, at some particular values of coupling G
and cut off parameter Λ it can even become superluminal.
In this work c2s < 1 was provided by the adjustment of
the above mentioned parameters. This explains why our
vacuum value of the strange quark condensate is slightly
larger than the lattice one. In fact, the vacuum value of
hs̄si1=3 is just 3% larger than the lattice value on the upper
edge of its error bars [50]. Taking into account that the
quark interaction in the present model is rather schematic,
we find the reached consistency with the lattice data more
than satisfactory. We expect that the introduction of
additional realistic interaction channels will make this
consistency even better and it is left for future work. At the
same time, it is necessary to stress that a superluminal
speed of sound appears even in very advanced effective
theories. See, e.g., Fig. 25 of Ref. [3], where this problem
was resolved by adjusting the coupling constants which
control the quark interaction in vector and s-wave, spin-
singlet, flavor- and color-antitriplet channels. Moreover,
the asymptotic value of c2s predicted by that work exceeds
1
3
due to the presence of vector interaction channel leading

to p ∼ μ2B and c2s → 1 at high densities.

V. CONCLUSIONS

We reexamined the PNJL model at finite baryonic
densities in order to incorporate the Polyakov loop dynam-
ics at zero temperature being of interest to modeling NSs
with quark cores. The main question addressed in this work
is how the Polyakov loop potential depends on baryonic
density or, equivalently, baryonic chemical potential. We
demonstrated that typically used HDL/HTL perturbative
estimate of this dependence, unfortunately, is inapplicable
at zero temperature since it leads to zero value of the
deconfinement order parameter at all baryonic densities.
In order to solve this problem we performed a phenom-
enological generalization of the Polyakov loop potential
to the case of finite nB. The introduction of an arbitrary
dependence of U on nB or μB can be formally interpreted
as originating the presence of baryonic charge of gluons.
This paradox appears at all temperatures and is the most
evident in the absence of dynamical quarks when their
current masses approach infinity. As we show it can be
solved by introducing the Polyakov loop dependent shift of
a single quark energy, which is absorbed by an effective
chemical potential of quarks, in the spirit of the mean field

p 
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FIG. 3. Pressure p (upper panel) and squared speed of sound c2s
(lower panel) of electrically neutral matter as a function of
baryonic density nB calculated for hybrid EOS with the quark
phase described by the PNJL (blue curves), NJL (red curves), and
MIT bag (green curves) models.

SECOND LOOK TO THE POLYAKOV LOOP … PHYS. REV. D 100, 103020 (2019)

103020-9



framework of the Polyakov loop treatment within the PNJL
model. We derived a relation between the corresponding
single particle potential V and the Polyakov loop potential
U, whose fulfillment ensures an absence of gluonic con-
tribution to the baryon charge density. Moreover, it has the
same form regardless of the quark interaction channels
present in the model nor any particular form of the
Polyakov loop potential U. We expect that the cancellation
of gluonic contribution to the baryon charge density at
finite temperatures can be important for a reliable modeling
of the QCD phase diagram.
The analysis of the present model asymptotic behavior at

high baryonic densities provided us with a very tight
restriction on a possible dependence of U on nB. In fact,
the uncertainty remaining corresponds only to unknown
values of two constant parameters, i.e., ã2 and ã4.
Furthermore, based on our model EOS and results of the
Oðα2sÞ perturbative calculations at zero temperature we
found that in the case of three quark flavors ã2 ¼ 0.25.
The remaining free parameter of the density dependent
Polyakov loop potential ã4 was used in order to match
EOSs of quark and hadron matter at the deconfinement
phase transition. We used the Gibbs criterion together with
the requirement that the Polyakov loop jumps exactly at the
phase transition. Such an approach to construct a phase
transition in hybrid quark-hadron EOS simultaneously
provides the existence of chemical and dynamical equilib-
rium of coexisting phases as well as a discontinuous
behavior of its order parameter. We used three different
EOSs of hadron matter and all them yielded roughly the
same density of the deconfinement onset around 4 − 5n0.
At the same time we should note that the onset of the

deconfinement can be shifted to smaller densities if a
quark-hadron phase boundary is not sharp but smoothed
due to small values of surface tension.
As an important consequence of nonzero values of the

Polyakov loop at zero temperature the stiffening of the
model EOS arises. Technically this effect is caused by a
contribution coming from the Polyakov loop potential U.
As it appears it can provide the NS interiors with an ability
to resist the gravitational collapse and, consequently, to
reach the well-known two solar mass limit for NSs. At the
same time, such a stiffening leads to the increase of the
speed of sound. In fact, it has the maximal value in the right
vicinity of the deconfinement phase transition. A further
increase of the baryonic density leads to the decrease of
the speed of sound, which has asymptotic value c2s ¼ 1

3
of

free massless quarks in a full agreement with asymptotic
freedom of quarks expected at high baryonic densities. We
also expect that nonzero values of the Polyakov loop can
affect properties of color superconducting phase, which
should be studied in the future.
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