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We investigate the effect of an applied constant and uniform magnetic field in the fine-structure constant
of massive and massless QED. In massive QED, it is shown that a strong magnetic field removes the so
called Landau pole and that the fine-structure constant becomes anisotropic having different values along
and transverse to the field direction. Contrary to other results in the literature, we find that the anisotropic
fine-structure constant always decreases with the field. We also study the effect of the running of the
coupling constant with the magnetic field on the electron mass. We find that in both cases of massive
and massless QED, the electron dynamical mass always decreases with the magnetic field, what can be
interpreted as an inverse magnetic catalysis effect.
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I. INTRODUCTION

The effect of magnetic fields on the different properties
of quantum particles has always attracted great interest [1].
At present, it has been reinforced by the fact that there
is the capability to generate very strong magnetic fields in
non-central heavy ion collisions, and because of the
discovery of strongly magnetized compact stars, which
have been named magnetars. In this domains, fields of
the order or larger than the QCD scale (B ≥ Λ2

QCD ¼
4 × 104 MeV2 ¼ 6.8 × 1018 G) are estimated to be gen-
erated at RHIC and LHC [2], and fields larger than the

electron critical field, BðeÞ
c ¼ 4.4 × 1013 G, can exist in the

surface of magnetars [3].
Among the magnetic field effects studied in electrody-

namics, those related to the possible variation of the fine-
structure constant [4–6] and to the electron mass [7–15]
have attracted special attention.
In QED, screening effects can modify the value of the

observable coupling constant. There exists even the pos-
sibility that the renormalized coupling becomes screened to
zero. In that case, the theory is said to be “trivial.” Thus, a
theory that appears to describe interacting particles at the

classical level, can become a trivial theory of noninteracting
free particles when quantum and relativistic effects are
included. This phenomenon is referred to as quantum
triviality [16]. This problem appears in QED in what is
known as the Landau pole problem [17], where QED
becomes inconsistent at very short-distance scales in the
perturbative regime unless the renormalized charge is set to
zero. The inclusion of a magnetic field can affect this result
since the magnetic field contribute to the charge screening.
In this paper, we will show that in a strong magnetic field
the Landau-pole is removed by the screening produced by
the electron-positron pairs filling the lowest Landau level
(LLL). On the other hand, we obtain that the behavior of
the fine-structure constant with the magnetic field is in
disagreement with those reported in Refs. [4,5] years ago.
We will make a detailed exposition of the gauge invariant
method we are using so to show what is the source of this
discrepancy.
Another problem that has attracted much attention in the

last two decades is the so-called magnetic catalysis of chiral
symmetry breaking (MCχSB) [9–15]. This phenomenon is
responsible for the dynamical generation of a fermion mass
(i.e., by catalyzing chiral symmetry breaking) by an applied
magnetic field in a massless fermion theory. The study of
theories of massless relativistic fermions has recently
gained new interest in the context of quasiplanar systems,
such as pyrolitic graphites (HOPG) [18,19] and graphene
[20], because their low-energy excitation quasiparticle
spectrum has a linear dispersion relation. The dynamics
of those charge carriers is described by a relativistic
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quantum field theory of massless fermions in 2þ 1
dimensions [18,21]. The MCχSB is a universal phenome-
non that takes place in any relativistic theory of interactive
massless fermions in a magnetic field, and it has been
proposed as the mechanism explaining various effects in
quasiplanar condensed matter systems [22].
In the original works of MCχSB a characteristic feature

is the increase of the dynamical mass with the magnetic
field (for a review see [23] and references therein). Hence,
as the critical temperature for chiral restoration results
proportional to the dynamical mass, the critical temperature
also increases with the field [24]. Nevertheless, this result
is in sharp contrast with recent QCD-lattice calculations
that showed a decrease of the critical temperature for the
chiral/deconfinement transition with the magnetic field
[25], a phenomenon that has been called “inverse magnetic
catalysis” (IMC).
In Ref. [26], we adopted the point of view, shared by

other authors [27], that the origin of the IMC in QCD
should lie in the effects of the magnetic field in the running
of the strong coupling. Our analysis contained two new
fundamental elements. On the one hand, we showed that
in the strong field region (qB > Λ2

QCD), where the infrared
dynamics becomes relevant, the QCD running coupling
becomes anisotropic: the color interaction in the directions
parallel and transverse to the field is characterized by two
different functions of the momentum and the field [26].
On the other hand, we found that the quarks, confined by
the field to the LLL, produce magnetic antiscreening (i.e.,
the quark magnetic contribution to the running coupling
constant enters with the same sign as the gluon contribu-
tion) in the parallel coupling, which is the one entering to
determine the chiral critical temperature. The magnetic
antiscreening of the LLL quarks is connected to the color
paramagnetic behavior of the pairs formed by LLL virtual
quarks and antiquarks [28]. The magnetic antiscreening
produced by the LLL pairs increases with the magnetic
field because the phase space of the LLL increases with the
field, allowing more pairs to be formed. These results
naturally lead to IMC and also allow us to identify a
possible physical mechanism for the behavior of Tc with
the field (i.e., the decrease of the parallel strong coupling
with the field).
From this result and taking into account the universal

character of the MCχSB phenomenon, it is natural to ask if
the IMC effect also takes place in massless QED. To get
inside on this question will be another goal of this paper. As
we will see below, there are some signals of IMC in this
case, although, as it will be discussed there, more work is
needed for a complete certain answer. From a physical
point of view, the question is to find if the weakening effect
on the coupling produced by the screening of the pairs into
the LLL, is surpassed by the strengthen of the interaction
due to the reduction of the spatial dimension produced by
the particle confinement to the LLL. We will show that in

this case, as in the QCD case, the weakening of the
coupling constant is the winning effect.
The paper is organized as follows: In Sec. II, we

calculate the Coulomb potential energy in the presence
of a constant and uniform magnetic field considering one-
loop corrections through the polarization operator in the
two limits of strong and weak magnetic fields. In doing
this, for the sake of completeness, we review the approach
introduced in Ref. [29] making more explicit some deri-
vations. Then, in Sec. III, we use the results of Sec. II to
calculate the running of the fine-structure constant with
the magnetic field at different strengths. In Sec. IV, we
investigate how the magnetic field affects the electron mass
in massive QED, as well as in the massless case where the
MCχSB phenomenon plays a fundamental role. In this
analysis, an important new element is that the effect of the
magnetic field in the fine-structure constant for each case
is included. Then, the possibility of IMC in the massless
case is analyzed. In Sec. V, the main results of this paper
are summarized and their physical significance are dis-
cussed. Finally, in Appendix, detailed calculations of the
polarization-operator coefficient entering in the Coulomb
potential energy are given in the weak and strong-field
approximations using the Ritus’s method.

II. THE COULOMB POTENTIAL
ENERGY AT B ≠ 0

One of the main goals in this paper is to find how a
magnetic field can affect the electron mass through radi-
ative and nonperturbative corrections when the effect of
the magnetic field is also considered in the fine-structure
constant. To find how αQED depends on B, we will start by
calculating the Coulomb potential energy in different field-
strength limits. For the sake of understanding, we review as
follows the basic derivations introduced in Ref. [29] to
study the Coulomb potential in the presence of a magnetic
field. To have this explicit derivations will serve then to
make it clear what is the source of the discrepancies with
previous results regarding the behavior of the fine-structure
constant with the magnetic field [4,5]. In particular, we will
show that the discrepancy is due to the fact that in [4,5] it
was considered in the structure of the photon propagator,
terms that are forbidden by the gauge invariance of the
polarization operator.
From the relationship between the 4-vector potential

AμðxÞ and the 4-current JμðyÞ,

AμðxÞ ¼
Z

∞

−∞
Dμνðx − yÞJνðyÞd4y; ð1Þ

where Dμνðx − yÞ is the photon propagator, we have that
for a static point-charge source, JνðyÞ ¼ eδν0δ3ðyÞ, the
corresponding static potential is
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AμðxÞ ¼ e
Z

∞

−∞
Dμ0ðy0;xÞdy0: ð2Þ

Since the photon fields are electrically neutral, the
photon propagator can be Fourier transformed

DμνðxÞ ¼
1

ð2πÞ4
Z

DμνðkÞeikxd4k: ð3Þ

Then, substituting (3) in (2), we obtain the general
expression for the Coulomb potential of a pointlike static
charge,

A0ðxÞ ¼
e

ð2πÞ3
Z

D00ð0;kÞe−ik·xd3k: ð4Þ

If a second point-charge e is located at x, the system
electrostatic energy is

UðxÞ ¼ e2

ð2πÞ3
Z

D00ð0;kÞe−ik·xd3k: ð5Þ

Therefore, to find the Coulomb electrostatic energy in
the presence of a uniform and constant magnetic field
taken in the Landau gauge Aμ ¼ ð0; 0; Bx1; 0Þ, we need
to know the photon propagator. With that goal, we
introduce the four orthogonal vectors, which can expand
the 4-dimensional space in the presence of a magnetic
field [15,29,30]

bð1Þμ ¼ −k2F̂μνF̂
νρkρ þ k2⊥kμ; bð2Þμ ¼ 1

2
ϵμνρλF̂

νρkλ;

bð3Þμ ¼ F̂μνkν; bð4Þμ ¼ kμ; ð6Þ

with F̂μν ¼ Fμν=B, denoting the normalized electromag-
netic strength tensor and k2⊥ ¼ k21 þ k22.
The four-vectors (6) satisfy the relations

X3
a¼1

bðaÞμ bðaÞν

ðbðaÞÞ2 ¼ gμν −
kμkν
k2

; ð7Þ

X4
a¼1

bðaÞμ bðaÞν

ðbðaÞÞ2 ¼ gμν: ð8Þ

The polarization tensor is a second-rank Lorentz tensor
transverse to kμ (i.e., gauge invariant), which is also P and C
invariant. As a consequence, it is diagonal and can be given
in momentum space in terms of the orthogonal vectors (6)
as [30,31],

Πμνðk; BÞ ¼
X3
a¼1

Πaðk; BÞ
bðaÞμ bðaÞν

ðbðaÞÞ2 : ð9Þ

The coefficients Πaðk; BÞ are scalars that depend on the
momentum and magnetic field. As follows from (9),

and the orthogonality of the eigenvectors bðaÞμ , the four-
vectors (6) are the eigenvectors of the polarization operator
with corresponding eigenvectors Πaðk; BÞ,

Πν
μðk; BÞbðaÞν ¼ Πaðk; BÞbðaÞμ : ð10Þ

The inverse propagator for the Maxwell theory in a
covariant gauge and including the radiative correction
associated with the polarization operator is then given by

D−1
μν ðk; BÞ ¼ −k2gμν þ

�
1 −

1

ξ

�
kμkν þ Πμνðk; BÞ; ð11Þ

where ξ is the gauge-fixing parameter. Taking into account
the relations (7) and (9), the inverse propagator can be
written as

D−1
μν ðk; BÞ ¼

X4
a¼1

D−1
a ðk; BÞ b

ðaÞ
μ bðaÞν

ðbðaÞÞ2 ; ð12Þ

with coefficients

D−1
a ðk; BÞ ¼

� ½Πaðk; BÞ − k2�; a ¼ 1; 2; 3;

k2=ξ; a ¼ 4:
ð13Þ

By using the orthogonality conditions of the eigenvec-
tors (6) and the relation (8), the photon propagator includ-
ing the radiative corrections can be easily found from

D−1
μρ ðk; BÞDρνðk; BÞ ¼ δνμ; ð14Þ

to be given as

Dμνðk; BÞ ¼
X4
a¼1

Daðk; BÞ
bðaÞμ bðaÞν

ðbðaÞÞ2 ; ð15Þ

where

Daðk; BÞ ¼
� ½Πaðk; BÞ − k2�−1; a ¼ 1; 2; 3;

ξ=k2; a ¼ 4:
ð16Þ

It can be noticed that in the Feynman gauge, ξ ¼ 0, the
tensor structure of the photon propagator (15) reduces to
that of the polarization operator (9).
Hence, from (5), (13) and (15) we have,

UðxÞ ¼ e2

ð2πÞ3
Z

e−ik·xd3k
½k2 − Π2ð0; k23; k2⊥Þ�

: ð17Þ
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Since only the contribution a ¼ 2 in (16) is different
from zero for D00ð0;kÞ, we see that the Coulomb potential
energy is gauge independent (i.e., it does not depend on ξ).
The coefficient of the polarization operator entering

in (17), Π2ð0;k; BÞ, depends on the approximation. In
the following, we will consider the polarization operator
in the one-loop approximation taken in the two extreme
values of the magnetic field.

A. Strong-field approximation

The coefficient Π2ð0;k; BÞ, in the strong-field approxi-
mation (eB ≫ m2; k2), was originally calculated in [30,31]
to be given in the leading approximation by

ΠðsÞ
2 ðk0 ¼ 0; m2 < k2⊥; k23 < eBÞ ¼ −

2α0jeBj
π

e
−k2⊥
2jeBj; ð18Þ

ΠðsÞ
2 ðk0 ¼ 0; k2⊥; k23 < m2 < eBÞ ¼ −

α0k23jeBj
3πm2

e
−k2⊥
2jeBj ð19Þ

It is important to stress that these coefficients were
calculated in Refs. [30,31] using the Schwinger proper-time
approach [32], where the contribution of the different
Landau levels is not apparent. Nevertheless, if we use
the Ritus’s approach [33], where the Landau level con-
tribution becomes explicit, we can show (see Appendix)
that the strong-field values (18) and (19) are obtained
directly working in the LLL limit. This is an evidence that
the fermions contributing to the Coulomb potential energy
in this limit are confined to (1þ 1)-dimensions.
Taking into account the results (18) and (19), we obtain

respectively for the Coulomb potential energy (17) in the
LLL approximation

UðsÞðkÞ¼ α0

k2

�
1þ 2α0jeBj

πk2 e
−k2⊥
2jeBj

�; m2<k2⊥; k23<eB; ð20Þ

and

UðsÞðkÞ¼ α0

k2

�
1þα0k23jeBj

3πm2k2 e
−k2⊥
2jeBj

�; k2⊥; k23<m2<eB; ð21Þ

B. Weak-field approximation

In the weak-field approximation (eB < m2; k2) the
coefficient Π2 if found in Appendix in two different regions
[see Eqs, (A41) and (A46)],

ΠðwÞ
2 ðeB < k2k; k

2⊥ < m2Þ

¼ −
1

2

�
α0
3π

�
eB
m2

�
2
�
k2⊥
5

þ
k2k
2

�
−
8α0
15π

k4

m2

�
ð22Þ

ΠðwÞ
2 ðeB < m2 < k2k; k

2⊥Þ

¼ −
1

2

�
α0
3π

�
eB
m2

�
2
�
k2⊥
5

þ
k2k
2

�
−
4α0
3π

k2 ln

�
k
m

��
: ð23Þ

Then, as in the strong-field case, from (22) and (23) we
obtain respectively for the Coulomb potential energy (17)
in the weak-field approximation

UðwÞðkÞ ¼ α0

k2
h
1þ α0

6πk2 ðeBm2Þ2ðk
2⊥
5
þ k2

3

2
Þ − 4α0

15π
k2

m2

i ;
eB < k2⊥; k23 < m2; ð24Þ

and

UðwÞðkÞ ¼ α0

k2
h
1þ α0

6πk2 ðeBm2Þ2ðk
2⊥
5
þ k2

3

2
Þ − 2α0

3π lnðkmÞ
i ;

eB < m2 < k2⊥; k23: ð25Þ

III. THE RUNNING OF THE FINE-STRUCTURE
CONSTANT WITH B

The field dependent fine-structure constant, αQED,
can be obtained from the Coulomb potential energy (17)
written as

UðxÞ ¼ 1

2π2

Z
α0

k2½1 − 1
k2 Π2ð0; k23; k2⊥Þ�

e−ik·xd3k

¼ 1

2π2

Z
αQEDðk;BÞ

k2
e−ik·xd3k ð26Þ

Taking into account that the coefficient Π2ðk; BÞ has two
different asymptotic behaviors, i.e., at strong and weak
magnetic fields respectively, as follows we find the fine-
structure constant in those two limits.

A. Weak-field limit

In the weak-field limit the fine-structure constant can be
obtained from (24) and (25) respectively as

αðwÞQEDðk;BÞ ¼
α0

1þ α0
6πk2

�
jeBj
m2

�
2
�
k2⊥
5
þ k2

3

2

�
− 4α0

15π

�
k2

m2

� ;
jeBj < k2⊥; k23 < m2; ð27Þ

and

αðwÞQEDðk;BÞ ¼
α0

1þ α0
6πk2

�
jeBj
m2

�
2
�
k2⊥
5
þ k2

3

2

�
− α0

3π ln
�
k2

m2

� ;
jeBj < m2 < k2⊥; k23: ð28Þ
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In expression (28), we can notice the existence of the so
called Landau pole [17]. That is, the negative logarithmic
term in the denominator can produce for large enough
momentum a pole that rises the coupling constant to an
infinite value. Since this result is obtained through pertur-
bative one-loop calculations, it is indicating that the pole is
merely a sign of the breaking of the perturbative approxi-
mation at strong coupling. Going beyond perturbative
calculations with Lattice gauge theory it was obtained that
the QED charge at B ≠ 0 is completely screened for an
infinite cutoff [34]. We call attention that in (28) the
magnetic field contribution enters with opposite sign to
the logarithmic momentum dependent term. Thus, its effect
is to counteract the divergency, although in this approxi-
mation (jeBj ≪ k2) it is not enough to avoid the pole.
To quantify the magnetic field effect on the coupling

constant, let us introduce the relative change of αðwÞðk; BÞ
with respect to αðwÞðk; 0Þ as

ΔαðwÞ ≡ αðwÞðk; BÞ − αðwÞðk; 0Þ: ð29Þ

As the plots of Figs. 1 and 2 show, the coupling constant
in all cases decreases with the magnetic field and parallel
momentum, while increases with the transverse momen-
tum. Thus, we find that the behavior of the fine-structure
constant with the magnetic field is similar to that of the
strong coupling constant as reported in [26]. We can also
observe that, in the weak-field approximation, there is a
small anisotropy with respect to the directions along and
transverse to the magnetic field.

B. Strong-field limit

From (20) and (21), the coupling constant in the strong-
field limit becomes respectively

αðsÞQEDðk; BÞ ≃
α0

1þ 2α0jeBj
πk2 e

−k2⊥
2jeBj

; m2 < k2⊥; k23 < jeBj;

ð30Þ

and

1 10 100

0

–2

–4

–6

–8

–10.0

eB / m2

(w
)

/
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×10–4 1 10 100
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–8

–10

eB / m2

(w
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/
0
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×10–4

(b)(a)

FIG. 1. In these figures we plot the relative change of αðwÞðk; BÞ [see Eq. (29)] vs the magnetic field. (a) Coupling constant given by
Eq. (27) as a function of eB=m2 for fixed values of kjj=m ¼ k⊥=m ¼ 0.5 and α0 ¼ 1=137. (b) Coupling constant given by Eq. (28) as a
function of eB=m2 for fixed values of m=kjj ¼ m=k⊥ ¼ 0.5 and α0 ¼ 1=137.
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FIG. 2. (a) Coupling constant given by Eq. (27) for eB=m2 ¼ 10−3 and α0 ¼ 1=137. Black dotted line: Shows the relative change of
the coupling constant as a function of kjj=m for k⊥=m ¼ 0.03. Red dashed line: Shows the relative change of the coupling constant as a
function of k⊥=m for kjj=m ¼ 0.03. (b) Coupling constant given by Eq. (28) for eB=m2 ¼ 10−3 and α0 ¼ 1=137. Black dotted line:
Shows the relative change of the coupling constant as a function of kjj=m for k⊥=m ¼ 2. Red dashed line: Shows the relative change of
the coupling constant as a function of k⊥=m for kjj=m ¼ 2.
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αðsÞQEDðk; BÞ ≃
α0

1þ α0k23jeBj
3πm2k2 e

−k2⊥
2jeBj

; k2⊥; k23 < m2 < jeBj:

ð31Þ

We should notice that the Landau pole [17], that appears
for k2 ≫ m2 in the weak-field case (28), is absent in the
strong field result (30). Although the coupling constant
continues increasing with the momentum (no-asymptotic
free theory) the strong effect of the magnetic field removes
the singularity. As we pointed out above, at zero magnetic
field the Landau pole is removed in a nonperturbative
approach [34]. Nevertheless, although we are working in
the one-loop approximation here, a nonperturbative expan-
sion in the magnetic field is present in the strong-field limit
(30). The nonperturbative magnetic-field interaction results
sufficient to produce a finite coupling constant for all values
of the momentum smaller than the natural scale in the
strong-field limit

ffiffiffiffiffiffiffiffiffijeBjp
.

The fine-structure constant in the first limit (30)
decreases with the magnetic field at a fixed momentum.

While, in the second limit (31), we can see that αðsÞQED

exhibits a significant anisotropy in the directions parallel
and transverse to the magnetic field,

αðsÞQEDðk3 ¼ 0; BÞ⊥ ≃ α0; k2⊥ < m2 < jeBj; ð32Þ

αðsÞQEDðk⊥ ¼ 0; BÞk ≃
α0

1þ α0jeBj
3πm2

; k2k < m2 < jeBj: ð33Þ

Notice that in this infrared limit, while in the transverse
direction the charge has a negligible screening, in the
parallel direction, at a large distance from the charge, the
effective charge decreases with the magnetic field strength
(see Fig. 3). In this case, for jeBj ≫ 3π

α0
m2, we have that the

effective charge is independent of the original coupling
constant α0, only depending on the screening effect
produced by the magnetic field,

αðsÞQEDðk⊥ ¼ 0; BÞk ≃
3πm2

jeBj ; jeBj ≫ 3π

α0
m2: ð34Þ

It is easy to check that considering α0 ¼ 1=137 and
m ¼ 0.511 MeV, for the electron mass, we obtain that
the value of the critical field to produce this effect is
eBc ∼ 1016 G, which is a value several orders smaller than
that reached in off-central heavy-ion collisions [2], and also
smaller than the one estimated for the inner core of neutron
stars [35].
Here, we should mention that our results differ from

those found years ago in Refs. [4,5], where the fine-
structure constant was obtained from the Schwinger effec-
tive action in the presence of a magnetic field [32]. In
Ref. [5], it was found that in the strong-field approximation,
αQED moderately increases with the magnetic field, while in
Ref. [4] it was reported an anisotropic behavior, with αQED
increasing, both at strong and weak fields, in the plane
perpendicular to the magnetic field and decreasing in the
direction of the field. The increase of the coupling constant
in those references is found to be related with the structure
FρλFρλgμν appearing in their photon propagator D00, while
the decrease of the coupling was associated with a structure

similar to our structure bð2Þμ bð2Þν =ðbð2ÞÞ2 in Eq. (15). In our
case, only the second structure is present, since the first one
cannot appear in the photon polarization operator because
it is not transverse with respect to kμ. This is why in the
Coulomb potential energy (17) we have only one coef-
ficient (i.e., Π2) instead of two. We point out that, as we
showed in Sec. II, the structures of the polarization operator
and photon propagator are the same in he Feynman gauge,
while the Coulomb potential energy is gauge independent.
Nor in Ref. [4], neither in [5], a physical explanation of the
different behavior of αQED with the magnetic field was
given. Also, because the approach in [4,5] makes use of
the k-independent Schwinger effective action the reported
fine-structure constants do not depend on the momenta.

IV. MAGNETIC FIELD DEPENDENCE
OF THE ELECTRON MASS

In the massive QED case, where the electron has a finite
physical mass,m0, the magnetic field can modify it through
radiative corrections. As follows, we analyze how a weak
and a strong magnetic field can affect the physical mass by
taking into account its effect on the fine-structure constant.

A. Massive QED in a weak magnetic field

In the weak-field approximation, the field-dependent
electron mass is known to be given as [36]

mðBÞ ≃m0

�
1 −

α0
4π

�jeBj
m2

0

��
: ð35Þ

102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

eB m2

(s
)

0

FIG. 3. Coupling constant given by Eq. (33) as a function of
eB=m2 for k⊥=m ¼ 0 and kjj=m ¼ 0.5.
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It is important to notice that this expression is only valid
for magnetic-field values satisfying 1 > α0

4π ðjeBjm2
0

Þ, as has

been pointed out in different contexts in Refs. [7,37]. For α0
constant, the mass decreases with the magnetic field. With
the substitution of α0 by (27), which is in the free-Landau-
pole momentum region (jeBj < k2⊥; k23 < m2

0), we obtain

mðBÞ ≃m0

2
641 − α0

4π
h
1þ α0

6πk2

�
jeBj
m2

0

�
2
�
k2⊥
5
þ k2

3

2

�
− 4α0

15π

�
k2

m2
0

�i

×

�jeBj
m2

0

�375: ð36Þ

In Fig. 4 we plot mðBÞ vs jeBj=m2
0 for fixed values

of momenta. We can notice that, increasing the magnetic
field with values within the allowed region (jeBj < k2⊥;
k23 < m2

0), mðBÞ decreases.

B. Massive QED in a strong magnetic field

The one-loop correction in the high-magnetic-field
limit (m2

0 ≪ k2k; k
2⊥ ≪ jeBj) and under the supposition that

ðα0=4πÞ ln2ðj2eBj=m2
0Þ ≪ 1 to ensure the perturbative

expansion in α0, was calculated in Ref. [7],

mðBÞ ≃m0

�
1þ α0

4π
ln2
�j2eBj

m2
0

��
: ð37Þ

Considering a field independent fine-structure constant,
we see from (37) that the mass increases with the magnetic
field. Nevertheless, if we make the replacement α0 →
αðsÞðBÞ where αðsÞðBÞ is given in Eq. (30), we obtain in
the m2

0 ≪ k2k; k
2⊥ ≪ jeBj region

mðk; BÞ ≃m0

�
1þ α0

4πð1þ 2α0jeBj
πk2 Þ

ln2
�j2eBj

m2
0

��
: ð38Þ

While in the second region (k2k; k
2⊥ ≪ m2

0 ≪ jeBj) we

have

mðk; BÞ ≃m0

"
1þ α0

4π
�
1þ α0k23jeBj

3πm2
0
k2

� ln2�j2eBj
m2

0

�#
: ð39Þ

We can see from Fig. 5 that in both cases mðk; BÞ will
then decrease with the magnetic field for a fixed k value.
In Fig. 5 we took the external momentum in the mass shell
for (a) k=m0 ¼ 10 and (b) k=m0 ¼ 0.5 and k3=m0 ¼ 0.1.

C. Massless QED and inverse magnetic catalysis

In massless QED, the electron cannot gain a mass by
radiative corrections because the chiral symmetry of the
massless theory is preserved against a possible perturbative
breaking. In this case, only nonperturbative corrections can
generate a dynamical mass. In the presence of a magnetic
field, no important how weak it can be, if it is larger than
the particle momenta, it can catalyze the chiral symmetry
breaking through a phenomenon that is known in the
literature as the MSχSB [9–15]. The phenomenon of
MSχSB in massless QED is based on the physical idea
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0

FIG. 4. Dynamical mass given by Eq. (36) as a function of
eB=m2

0 for k⊥=m ¼ 0.5, kjj=m ¼ 0.5 and α0 ¼ 1=137.
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FIG. 5. Dynamical mass of Eqs. (38) and (39) as a function of eB=m2
0 are respectively plotted in: (a) for k=m0 ¼ 10 and in (b) for

k=m0 ¼ 0.5, kjj=m0 ¼ 0.1. Both with α0 ¼ 1=137.
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that a magnetic field stronger than the particle momenta
confines the electrons to the LLL, hence facilitating the
formation of the particle/antiparticle pairs, since in the
infrared region there is no gap between the LLL and
the Dirac sea. As known, the condensation of this pairs
endow the system quasiparticles with a dynamical mass and
for those in higher Landau levels, also with an anomalous
magnetic moment [13,14].
The dimensional reduction of the LLL also contributes

to the formation of the chiral condensate, since the
reduction of the spatial dimension produces the strengthen
of the interaction, that in this case is only carried out by
longitudinal photons. Nevertheless, as we have demon-
strated in this paper, a strong magnetic field produces the
weakness of the coupling constant through an increase of
the charge screening. If the second effect wins over the first
one, then the IMC effect will be also present in this case.
The electron dynamical mass generated through the

MCχSB has been calculated by several methods. One
approach [10] is by solving the Schwinger-Dyson (SD)
equation that in the presence of a magnetic field can be
written as [38,39],

Σðx; yÞ ¼ 4πα0γ
μ

Z
Gðx; x0ÞΓνðx0; y; y0ÞDμνðy0; xÞd4x0d4y0

ð40Þ

Here, Σðx; x0Þ is the field dependent fermion self-energy
operator,Dμνðx − x0Þ is the full photon propagator,Gðx; x0Þ
is the full fermion propagator, and Γνðx0; p0; y0Þ is the full
amputated vertex, which are operators depending on the
dynamically induced quantities and the magnetic field.
It can be proved [14], that using the Ritus eigenfunctions

[33], El
pðxÞ, the fermion self-energy can be diagonalized in

momentum space as

Σðp; p0Þ ¼
Z

d4xd4yĒl
pðxÞΣðx; yÞEl

pðyÞ

¼ ð2πÞ4δ̂ð4Þðp − p0ÞΠðlÞΣ̃lðp̄Þ; ð41Þ

with Σ̃l in the zero Landau level (l ¼ 0) given by the
structures,

Σ̃0ðp̄Þ ¼ Z0
kp̄

μ
kγ

k
μ þ Z0⊥p̄

μ
⊥γ⊥μ þmdynI; ð42Þ

where the four-momentum in a magnetic field is given
by p̄μ ¼ ðp0; 0;−

ffiffiffiffiffiffiffiffiffiffi
2eBl

p
; p3Þ, Z0

k, Z
0⊥ and mdyn are field

depending parameters, and I is the unit matrix.
To calculate the dynamical mass it was first used the SD

equation [10] in the quenched ladder approximation, where
in (40) it is taken the free photon propagator and bare
vertex. We should notice however that the ladder approxi-
mation is not gauge invariant. But as known, if the Ward-
Takahashi identities are satisfied by the solution of the SD

equation in some approximation in a certain gauge, one can
use the gauge transformation law for the Green’s functions
[40] to rewrite the SD equations in an arbitrary gauge. The
transformation law guarantees that the Ward-Takahashi
identities are satisfied by the solutions of the SD equation
in all other gauges, although the approximation on which
the SD equation is solved may change. In the case of the
ladder approximation in a magnetic field the gauge invari-
ance of the induced chiral mass was proved through the
Ward-Takahashi identities for he SD approach in the LLL
limit and in the Feynman gauge in Ref. [11]. But all this
means that if we change the approximation going beyond
the ladder, we will have to find of course what is the
appropriate gauge where the Ward-Takahashi identities are
satisfied by the solution of the SD equation. This was
precisely the case in [41], when considering an improved
ladder approximation where the photon propagator in (40)
was also taken full, but keeping still the bare vertex. There,
it was needed a nonlocal gauge condition.
The solution for the dynamical mass that is obtained in

the quenched ladder approximation is [9]

mdyn ≃
ffiffiffiffiffiffiffiffiffi
jeBj

p
exp

�
−
π

2

�
π

2α0

�
1=2
�
: ð43Þ

In this approximation, as it is considered that α0 is
constant, it is evident from (43) that the dynamical mass
increases with the magnetic field. Nevertheless, if we
naively consider that the fine-structure constant depends
on the magnetic field and make in (43) the replacement
α0 → αQEDðB; kÞ, in the strong-field approximation
(30)–(31), we obtain,

mdynðkk; BÞ ≃
ffiffiffiffiffiffiffiffiffi
jeBj

p
exp

�
−
π

2

�
π

2αðsÞQEDðk⊥ ¼ 0; BÞk

�
1=2
�
;

ð44Þ

with

αðsÞQEDðk⊥ ¼ 0; BÞk ≃
α0

1þ α0jeBj
3πm2

dyn

; k2k < m2
dyn < jeBj;

ð45Þ

αðsÞQEDðk⊥ ¼ 0; BÞk ≃
α0

1þ 2α0jeBj
πk2k

; m2
dyn < k2k < jeBj;

ð46Þ

In (44)–(46) we took into account that in the LLL the
fermions only interchange longitudinal momentumwith the
photon fields (i.e., k2⊥ ¼ 0).
To find how the dynamical-mass varies with the field, it

is necessary to solve the self-consistent system of coupled
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equations (44) and (45) for the region, k2k < m2
dyn < jeBj,

and (44) and (46) for the region, m2
dyn < k2k < jeBj.

Substituting (45) into (44), it is easy to find that there is
no solution for the dynamical mass as a function of the

magnetic field. While if αðsÞQEDðk⊥ ¼ 0; BÞk ¼ α0, it is found
that the mass is almost independent on the momentum
up to jkj ≤ mdynðk ¼ 0Þ, from where it begins to rapidly
decrease [12].
For the second parameter region, m2

dyn < k2k < jeBj,
let us substitute (46) into (44) and normalize the resultant

equation with respect to the electron critical field BðeÞ
c ,

mdynðkk; BÞffiffiffiffiffiffiffiffiffiffiffiffiffi
jeBðeÞ

c j
q ¼

ffiffiffiffiffiffiffiffiffijeBjp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jeBðeÞ

c j
q exp

2
64− π

2

0
B@ π

2α0
þ

jeBj
jeBðeÞ

c j
k2k

jeBðeÞ
c j

1
CA

1=2
3
75:
ð47Þ

In Fig. 6(a) we plot how the dynamical mass changes
with the field at a fixed value of the longitudinal momen-
tum, and in Fig. 6(b), how the dynamical mass changes
with the longitudinal momentum at a fixed value of the
applied field. Notice that the behavior of the dynamical
mass in this case is totally opposite to that obtained for a
constant coupling constant. Moreover, taking into account
that the critical temperature to regain the chiral symmetry in
the system, Tc, is proportional to the value of the electron
dynamical mass at zero temperature [24], we have that the
decrease of mdyn with the magnetic field will produce a
decrease of Tc, which is the typical behavior of the IMC
phenomenon in QCD [25]. In the following section we give
a physical explanation for all these peculiar behaviors and
discuss the limitations of these results.

V. PHYSICAL DISCUSSION AND SUMMARY

As it is generally accepted, to understand the particle
dynamics in quantum field theory, it is necessary to
know how the different physical parameters, as particle

momentum, temperature, electromagnetic fields, etc., affect
the coupling constants. In this paper we are in particular
interested in the effect of an applied uniform and constant
magnetic field in the fine-structure constant and conse-
quently into the electron mass in two cases: in normal QED,
where there is a different from zero electron mass that can
be affected by a magnetic field through radiative correc-
tions, and in massless QED, where the electron mass can be
dynamical generated by the so called MCχSB phenomenon
[9–15]. In the second case, we are considering the dynami-
cal mass calculated in the rainbow approximation, as a first
look to the IMC phenomenon in QED.
We have found that contrary to other results previously

reported in the literature [4,5], the fine-structure constant
in massive QED decreases with the magnetic field in the
weak-field, as well as in the strong-field limits. To under-
stand why this is the physical result to be expected, let us
start by considering the zero-field situation. In this case, the
fine-structure constant decreases toward larger distances.
The decrease is produced by the vacuum polarization effect
due to the electron-positron pairs that can be continuously
created from the vacuum in faith of the Heisenberg
uncertainty principle. The pairs produce a screening effect
that increases with distance as the cloud of this virtual
particles increases. Now, when we apply a magnetic field,
the virtual particles redistribute in Landau levels, each of
which has a state degeneracy. As known, increasing the
field, the density of states of each Landau level to be
occupied by the virtual pairs increases, so the screening
corresponding to a fixed distance also increases, producing
the decrease of the coupling constant at that distance.
In making the physical analysis of the investigated

scenarios, we should take into account the three main
scales that are involved: the magnetic length, lM ∼
1=

ffiffiffiffiffiffiffiffiffijeBjp
, which is associated with the radius of the

LLL; the Compton wavelength, lC ∼ 1=m, which is asso-
ciated with the quantum field theory region where the
particle-antiparticle pairs are created; and the observation
length, lO ∼ 1=jkj, from where we want to define the
charge effective value.
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FIG. 6. Dynamical mass behavior of Eq. (47): (a) as a function of eB=jeBðeÞ
c j with k2jj=jeBðeÞ

c j ¼ 10−4, and (b) as a function of
k2jj=jeBðeÞ

c j with eB=jeBðeÞ
c j ¼ 10−1.
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In the strong-field limit, the coupling constant becomes
significantly anisotropic. In the direction transverse to the
field, the coupling constant does not vary with the field
neither the momentum. In this case the virtual cloud is
confined to the LLL without any freedom to move in the
transverse direction by virtue of jumping between Landau
levels. For the coupling in the longitudinal direction, we
found in the infrared region, lM < lC < lO, that when the
field is strong enough jeBj > 3π

α0
m2, the effective coupling

constant becomes independent of the original charge and of
the observation distance along the field direction. In this
case, there is a strong screening that only depends on the
magnetic field and particle mass. The decrease of the
effective coupling with the field can be seen here as a
consequence of the fact that since the magnetic length is
smaller than the Compton wavelength, the virtual pairs are
confined to the LLL. Then, by increasing the field, the
magnetic length decreases, and at the same time, the state
degeneracy increases. Hence, for any observation distance
along the magnetic field direction, which is larger than
the Compton wavelength, the screening is the same and the
net charge that is seen is almost zero due to the strong
screening.
As it is known, in perturbative QED at zero magnetic

field there exists a charge singularity at short distance that
is called the Landau pole [17]. This singularity hinders
perturbative QED at very short distances. Now, once a
magnetic field is applied, we have shown that even in the
weak-field limit (28), the effect of the magnetic field is to
counteract the singularity, although the magnetic field
strength in the weak-field case is not enough to remove
it. Nevertheless, at strong field, when the magnetic-field
nonperturbative contribution is taken into account in the
one-loop calculation of the fine-structure constant, the pole
disappears, as can be seen from (30) at lO < lC. In this case,
when all the LLL states are populated at lM ≪ lO, the
effective coupling is completely screened.
In the weak-field limit, lM > lC, it is regained the zero-

field limit of the coupling constant as the leading con-
tribution (27)–(28), while the magnetic field produces a
weak screening effect. In this case, the leading contribution
is coming from the virtual cloud that is smeared through out
the whole space since the separation between Landau levels
is so tiny that resembles a continue distribution.
When calculating the radiative effect of a magnetic field

on the electron mass, the field effect on the fine-structure
constant should be considered. In the case of massive QED,
the role of a strong magnetic field is important and the
screening effect in the coupling becomes significant.
Hence, the net effect of the applied magnetic field gives
a mass decrease with the field. In the weak-field limit, the
screening effect persists, but in a lower degree.
For massless QED the Compton wavelength becomes

a dynamical parameter, lC ∼ 1=mdyn, that depends on the
magnetic field and becomes very large for a small mdyn.

Thus, the magnetic length is always smaller than the
Compton wavelength (lM < lC), and the states in the
Landau levels available for the virtual cloud should be
affected by the magnetic field, and consequently affecting
the screening. In the used approximation, we have found
that this screening effect results more important than the
strengthen of the interaction due to the spatial dimensional
reduction in the LLL and this is why the dynamical mass
decreases with the field as shown in Fig. 6. Consequently,
the critical temperature needed to regain the chiral sym-
metry decreases with the field, since it is proportional to the
dynamical mass. This is the distinctive signal of IMC in this
system. On the other hand, the dynamical mass increases
with the longitudinal momentum because the coupling
constant increases with the momentum as it is typical for a
theory without asymptotic freedom. However, the results
we are presenting here for the massless case only serve to
give a signal of the importance of the role the running
coupling can play in the field dependence of the dynami-
cally induced mass. This role is missing in the ladder and
improved ladder approximations considered up to now,
because there, it has been considered a bare vertex. But in
order to have a consistent treatment for this problem we
need to go beyond those approximations and considerer in
the SD equation (40) a full vertex together with the full
propagators that will all depend on the magnetic field and
dynamical mass. For this approximation to be reliable the
appropriate gauge condition that makes the SD solution to
satisfy the Ward-Takahashi identities should be found, what
is not a trivial task.
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APPENDIX: Π2 COEFFICIENT OF THE
ONE-LOOP PHOTON PROPAGATOR AT B ≠ 0

1. Strong-field limit

Our goal now is to find the one-loop polarization
operator in the strong-field limit. We will use the Ritus’s
method [33], where the Landau levels appear in an explicit
way. Then, for a weak coupled theory, the strong-field limit
prescription results in keeping only the LLL contribution,
since at a strong field the particles will be confined into
their lowest energy state (i.e., they will not have enough
energy to jump across the energy gap separating the Landau
leves that is proportional to

ffiffiffiffiffiffiffiffiffijeBjp
). We will show, that

working in this form, it is obtained the same result that was
found in [30] by using the Schwinger proper-time method
where the sum in all Landau levels was considered.
The photon polarization operator in the one-loop

approximation reads
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Πμνðx; yÞ ¼ −4παTr½γμGðx; yÞγνGðy; xÞ� ðA1Þ

where Gðx; yÞ is the electron propagator, and γμ the Dirac’s
gamma matrices.
Taking into account that in the momentum space the

electron propagator has the form

Gðx; x0Þ ¼
XZ d4p

ð2πÞ4 EpðxÞΠðlÞ
1

=̄p −m
Ēpðx0Þ ðA2Þ

where, in the Landau gauge Aμ ¼ ð0; 0; Bx1; 0Þ, the
4-momentum is p̄μ ¼ ðp0:0;−

ffiffiffiffiffiffiffiffiffiffi
2eBl

p
; p3Þ and Ep are the

Ritus’s eigenfunctions matrices given by

Ep ¼
X
σ¼�1

EpσðxÞΔðσÞ; ðA3Þ

with

EpσðxÞ ¼ Nneiðp0x0þp2x2þp3x3ÞDnðρÞ: ðA4Þ

Here, DnðρÞ denotes the parabolic cylinder functions with
argument ρ ¼ ffiffiffiffiffiffiffiffiffiffiffi

2jeBjp ðx1 − p2=eBÞ, normalization factor
Nn ¼ ð4πeBÞ1=4= ffiffiffiffiffi

n!
p

, and positive integer index

n ¼ nðl; σÞ≡ lþ σ þ 1

2
: ðA5Þ

The spin projector are defined as

ΔðσÞ≡ I þ iσγ1γ2

2
: ðA6Þ

Also, the factor ΠðlÞ≡ ΔðþÞ þ Δð−Þð1 − δ0lÞ and the
notation

XZ d4p
ð2πÞ4 ≡

X
l

Z
dp0dp2dp3

ð2πÞ4 ðA7Þ

were introduced.
Then, Eq. (A1) in the momentum space reads

ΠμνðkÞ ¼ −2αeBe−k̂2⊥
X
l;l0

Z
d2p
ð2πÞ2

X
fσg

eiðn−n0þn̄0−n̄Þϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!n0!n̄!n̄0!

p Jnn0 ðk̂⊥ÞJn̄0n̄ðk̂⊥Þ
½p̄2 −m2�½ðp − kÞ2 −m2�

× Tr½Δðσ̄0ÞγμΔðσ̄ÞΠðlÞðp̄þmÞΔðσÞγνΔðσ0ÞΠðl0Þð=̄p − =̄kþmÞ� ðA8Þ

where fσg means sum over σ, σ0, σ̄ and σ̄0, and p − kμ ≡ ðp0 − k0; 0;−
ffiffiffiffiffiffiffiffiffiffiffi
2eBl0

p
; p3 − k3Þ.

In the derivation of Eq. (A8), we used the identities [42]

Z
dy e−ik

0·yĒpðyÞγνEp0 ðyÞ ¼ ð2πÞ4δ̂ð3Þðp0 þ k0 − pÞe−k̂02
2 e−i

k0
1
ðp0

2
þp2Þ

2eB

X
σ;σ0

Jnn0 ðk̂0⊥Þeiðn−n0Þϕffiffiffiffiffiffiffiffiffiffi
n!n0!

p ΔðσÞγνΔðσ0Þ ðA9Þ

and Z
dx eik·xĒp0 ðxÞγμEpðxÞ ¼ ð2πÞ4δ̂ð3Þðp0 þ k − pÞe−k̂2

2 ei
k1ðp02þp2Þ

2eB

X
σ̄;σ̄0

Jn̄0n̄ðk̂⊥Þeiðn̄0−n̄Þϕffiffiffiffiffiffiffiffiffiffi
n̄!n̄0!

p Δðσ̄0ÞγμΔðσ̄Þ; ðA10Þ

where n¼nðl;σÞ, n0 ¼nðl0;σ0Þ, n̄¼nðl; σ̄Þ and n̄0 ¼nðl0; σ̄0Þ
with n given by Eq. (A5), and

Jnn0 ðk̂⊥Þ≡
Xminðn;n0Þ

m¼0

n!n0!jik̂⊥jnþn0−2m

m!ðn −mÞ!ðn0 −mÞ! ðA11Þ

with k̂⊥ ≡ k⊥=2eB.
In the low energy region or strong field limit, q̂ ≪ 1,

only those terms with smallest power in q̂⊥ in Jnn0 and Jn̄0n̄
contribute to the polarization operator. Then, in the leading
approximation

Jnn0 ðq̂0⊥Þ → n!δnn0 and Jn̄0n̄ → n̄!δn̄0n̄; ðA12Þ

and taking l ¼ l0 ¼ 0, the photon polarization operator in
the LLL approximation has the form

Πjj
μνðkÞ ¼ −2αeBe−k̂2⊥

Z
dp0dp3

ð2πÞ2

×
Tr½γjjμΔðþÞð=̄pjj þmÞγjjνΔðþÞð=̄pjj − =̄kjj þmÞ�

½p2
jj −m2�½ðp − kÞ2jj −m2�

ðA13Þ

where γμjj ¼ ðγ0; 0; 0; γ3Þ and p̄μ
jj ¼ ðp0; 0; 0; p3Þ.

The trace over Dirac gamma matrices is straightforward
and we get
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Tr½γjjμΔðþÞð=̄pjj þmÞγjjνΔðþÞð=̄pjj − =̄kjj þmÞ� ¼ 2ðp̄jj
μðp̄ − k̄Þjjν þ p̄jj

νðp̄ − k̄Þjjμ − gμνðp̄jj · ðp̄ − k̄Þjj −m2ÞÞ: ðA14Þ

Replacing Eq. (A14) in Eq. (A13), we obtain

Πjj
μνðkÞ ¼ −2αeBe−k̂2⊥

Z
d2pjj
ð2πÞ2

2½p̄jj
μðp̄ − k̄Þjjν þ p̄jj

νðp̄ − k̄Þjjμ − gμνðp̄jj · ðp̄ − k̄Þjj −m2Þ�
½p2

jj −m2�½ðp − kÞ2jj −m2� : ðA15Þ

The integration over momenta can be easily carried out by using Feynman parametrization, it is

Πjj
μνðkÞ ¼ −2αeBe−k̂2⊥

Z
1

0

dx
Z

d2ljj
ð2πÞ2

2

½l2jj −M�2 ½2l
jj
μl

jj
ν − 2xð1 − xÞkjjνkjjμ − gjjμνðl2jj þM − 2m2Þ� ðA16Þ

where lμjj ≡ pμ
jj − ð1 − xÞkμjj and M≡ −xð1 − xÞk2jj þm2.

By using dimensional regularization, we remove the logarithmic divergent part, and we obtain

Πjj
μνðkÞ ¼ i

 
gjjμν −

kjjμk
jj
ν

k2jj

!
ΠðkÞ ðA17Þ

with

ΠðkÞ≡ −
2αeB
π

e−k̂
2⊥
Z

1

0

dx
xð1 − xÞk2jj

−xð1 − xÞk2jj þm2

¼ 2αeB
π

e−k̂
2⊥

2
641þ 2m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2jjðk2jj − 4m2Þ
q ln

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − k2jj

q
−

ffiffiffiffiffiffiffiffi
−k2jj

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 − k2jj

q
þ

ffiffiffiffiffiffiffiffi
−k2jj

q
1
CA
3
75 ðA18Þ

where the i factor in (A17) comes from the integration over
the momentum in the Minkowski space [43].
Since the tensor structure in Eq. (A17) can be written in

terms of bð2Þμ bð2Þν [see Eq. (6)] as

gjjμν −
kjjμk

jj
ν

k2jj
¼ bð2Þμ bð2Þν

ðbð2ÞÞ2 ðA19Þ

with gjjμν ¼ diagð1; 0; 0;−1Þ, then, the coefficient ΠðkÞ in
Eq. (A17) is no other than Π2ðk; BÞ in Eq. (9).
In the region k2jj ≪ m2 ≪ jeBj, Π2ðk; BÞ has the asymp-

totic behavior

Π2ðk; BÞ ¼
αk23jeBj
3πm2

e−k̂
2⊥ ðA20Þ

and for the region m2 ≪ k2jj ≪ jeBj, Π2ðk; BÞ behaves as

Π2ðk; BÞ ¼
2αjeBj

π
e−k̂

2⊥ : ðA21Þ

These results coincide with those reported in
Refs. [30,31] where it was used the Schwinger proper-
time approach.

2. Weak-field limit

The general expression of the Π2ð0;k; BÞ coefficient
was obtained from the one-loop polarization operator in the
proper-time approach in Ref. [44]. Considering a uniform
and constant magnetic field along the x3 direction it was
given by

Π2ðk; BÞ ¼ −
1

2
ðk2kΣ2 þ k2⊥Σ1Þ ðA22Þ

with k2k ¼ k23 − k20, and k2⊥ ¼ k21 þ k22. Notice in (A22) the

anisotropy introduced by the uniformmagnetic field between
the longitudinal and transverse momentum components.
In (A22), the following notation was introduced,

Σi ¼ Σð1Þ
i þ Σð2Þ

i ; ðA23Þ

Σð1Þ
i ¼ 2α

π

Z
∞

0

e−Bcrt=B

�
giðtÞ
sinhðtÞ −

1

3t

�
dt ðA24Þ

Σð2Þ
i ¼ 2α

π

Z
∞

0

e−Bcrt=Bdt
Z

1

−1
dη

σiðt; ηÞ
sinhðtÞ

�
exp

�
−k2⊥

Mðt; ηÞ
eB

− k2k
1 − η2

4eB
t

�
− 1

�
ðA25Þ
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where Bcr ¼ m2=e and

g1ðtÞ ¼
1

4t sinhðtÞ
�
sinhð2tÞ

t
− 2

�
; g2ðtÞ ¼

coshðtÞ
3

;

ðA26Þ

σ1ðt;ηÞ ¼
1− η

2

sinh½ð1þ ηÞt�
2 sinhðtÞ ; σ2ðt;ηÞ ¼

1− η2

4
coshðtÞ;

ðA27Þ

Mðt; ηÞ ¼ coshðtÞ − coshðtηÞ
2 sinhðtÞ : ðA28Þ

Our goal now is to get the weak-field limit of (A22).
It is easy to check that for Bcr=B ≫ 1 all the integrands
in (A24)–(A25) are suppressed at high t (t > B=Bcr)
due to the exponential damping e−Bcrt=B. Thus, the leading
contribution at weak-field is found in the region
0 ≤ t ≤ B=Bcr ≪ 1. In this small t region the asymptotic
behavior of the parameters are given by

g1ðt ∼ 0Þ ¼ 1

3
þ t2

15
; g2ðt ∼ 0Þ ¼ 1

3
þ t2

6
; ðA29Þ

σiðt ∼ 0; ηÞ
sinhðt ∼ 0Þ ¼

1 − η2

4t
; i ¼ 1; 2 ðA30Þ

Mðt ∼ 0; ηÞ ¼ 1 − η2

4
t: ðA31Þ

Plugging (A29)–(A31) into (A24) and (A25) we obtain

Σð1Þ
1 ≃

2α

π

Z
B=Bcr

0

�
1

t

�
1

3
þ t2

15

�
−

1

3t

�
dt ¼ α

15π
ðB=BcrÞ2;

ðA32Þ

Σð1Þ
2 ≃

2α

π

Z
B=Bcr

0

�
1

3t
þ t
6
−
1

3t

�
dt¼ α

6π
ðB=BcrÞ2; ðA33Þ

Σð2Þ
1 ¼ Σð2Þ

2 ≃
2α

π

Z
B=Bcr

0

dt

×
Z

1

−1
dη

1 − η2

4t

h
e−k

2
kð

1−η2
4eB Þt−k2⊥ð1−η

2

4eB Þt − 1
i

¼ α

2π

Z
1

−1
dηð1 − η2Þ

Z
x0

0

dx
e−x − 1

x

¼ α

2π

Z
1

−1
dηð1 − η2Þ½Eið−x0Þ − C − lnðx0Þ� ðA34Þ

where x0 ¼ 1−η2
4

k2

m2, EiðxÞ is the exponential-integral
function and C the Euler constant. In (A34) we used the
formula [45]

Z
x0

0

dx
e−x − 1

x
¼ Eið−x0Þ − C − lnðx0Þ: ðA35Þ

To integrate (A34) in η, we have to consider two cases:
(a) k=m ≪ 1

In this case we use the formula [45]

Eið−x0Þ ¼ Cþ lnðx0Þ þ
X∞
n¼1

ð−Þn xn0
nn!

ðA36Þ

to write (A34) as

Σð2Þ
1 ¼ Σð2Þ

2 ≃
α

2π

Z
1

−1
dη
X∞
n¼1

ð−Þn
nn!

�
1 − η2

4

�
nþ1
�
k
m

�
2n

ðA37Þ

Hence, the leading contribution is given by

Σð2Þ
1 ¼ Σð2Þ

2 ≃ −
α

2π

k2

m2

Z
1

−1
dη ð1 − η2Þ2 ¼ −

8α

15π

k2

m2

ðA38Þ

Substituting with (A32), (A33) and (A38) into
(A23) we obtain

Σ1 ¼ Σð1Þ
1 þ Σð2Þ

1 ≃
α

15π

�
eB
m2

�
2

−
8α

15π

k2

m2
ðA39Þ

Σ2 ¼ Σð1Þ
2 þ Σð2Þ

2 ≃
α

6π

�
eB
m2

�
2

−
8α

15π

k2

m2
: ðA40Þ

Now, plugging in (A22) the results (A39) and (A40)
we have

ΠðwÞ
2 ðeB < k2k; k

2⊥ < m2Þ

¼ −
1

2

�
α

3π

�
eB
m2

�
2
�
k2⊥
5

þ
k2k
2

�
−

8α

15π

k4

m2

�
ðA41Þ

(b) k=m ≫ 1
Here it is convenient to take in (A34) the asymptotic

expansion of the exponential-integral function [46]

Eið−x0Þ ¼ −
e−x0

x0

�XN
n¼0

n!
ð−x0Þn

þOðjx0j−N−1Þ
�
;

jx0j ≫ 1: ðA42Þ

Then, the leading term in (A34) is given by the
logarithm
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Σð2Þ
1 ¼ Σð2Þ

2 ≃ −
2α

π

Z
1

−1
dη

1 − η2

4
ln

�
1 − η2

4

k2

m2

�

≃ −
4α

3π
ln

�
k
m

�
: ðA43Þ

Substituting with (A32), (A33) and (A43) into
(A23) we obtain

Σ1 ¼ Σð1Þ
1 þ Σð2Þ

1 ≃
α

15π

�
eB
m2

�
2

−
4α

3π
ln

�
k
m

�
ðA44Þ

Σ2 ¼ Σð1Þ
2 þ Σð2Þ

2 ≃
α

6π

�
eB
m2

�
2

−
4α

3π
ln

�
k
m

�
: ðA45Þ

Finally, plugging in (A22) the results (A44) and
(A45) we have

Π2ðeB < m2 < k2k; k
2⊥Þ

¼ −
1

2

�
α

3π

�
eB
m2

�
2
�
k2⊥
5

þ
k2k
2

�
−
4α

3π
k2 ln

�
k
m

��
:

ðA46Þ

[1] W. Greiner, B. Müller, and J. Rafelski, Quantum Electro-
dynamics of Strong Fields (Springer-Verlag, Berlin, 1985).

[2] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl.
Phys. A803, 227 (2008); V. Skokov, A. Yu. Illarionov, and
V. D. Toneev, Int. J. Mod. Phys. A 24, 5925 (2009); V.
Voronyuk, V. D. Toneev, W. Cassing, E. L. Bratkovskaya,
V. P. Konchakovski, and S. A. Voloshin, Phys. Rev. C 83,
054911 (2011); A. Bzdak and V. Skokov, Phys. Lett. B 710,
171 (2012); L. Ou and B. A. Li, Phys. Rev. C 84, 064605
(2011); W. T. Deng and X. G. Huang, Phys. Rev. C 85,
044907 (2012); J. Bloczynski, X. G. Huang, X. Zhang, and
J. Liao, Phys. Lett. B 718, 1529 (2013); Nucl. Phys. A939,
85 (2015).

[3] S. A. Olausen and V. M. Kaspi, Astrophys. J. Suppl. 212, 22
(2014).

[4] R. Ragazzon, J. Phys. A 25, 2997 (1992).
[5] A. Chodos, A. Kaiser, and D. Owen, Phys. Rev. D 50, 3566

(1994).
[6] G. Calucci and R. Ragazzon, J. Phys. A 27, 2161 (1994); P.

Elmfors, P. Liljenberg, D. Persson, and B. S. Skagerstam,
Phys. Rev. D 51, 5885 (1995); D. Persson, Ann. Phys.
(N.Y.) 252, 33 (1996).

[7] B. Jankovici, Phys. Rev. 187, 2275 (1969).
[8] V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Zh.

Eksp. Teor. Fiz. 67, 453 (1974); W.-Y. Tsai, Phys. Rev. D
10, 1342 (1974); M. Kobayashi and M. Sakamoto, Prog.
Theor. Phys. 70, 1375 (1983); R. Gepraegs, H. Riffert, H.
Herold, H. Ruder, and G. Wunner, Phys. Rev. D 49, 5582
(1994); A. V. Kuznetsov, N. V. Mikheev, and M. V. Osipov,
Mod. Phys. Lett. A 17, 231 (2002); A. E. Shabad and V. V.
Usov, Phys. Rev. Lett. 96, 180401 (2006); B. Machet, Int. J.
Mod. Phys. 31, 1650071 (2016).

[9] K. G. Klimenko, Theor. Math. Phys. 90, 1 (1992); Z. Phys.
C 54, 323 (1992); V. P. Gusynin, V. A. Miransky, and I. A.
Shovkovy, Phys. Rev. Lett. 73, 3499 (1994); Nucl. Phys.
B563, 361 (1999); D. S. Lee, C. N. Leung, and Y. J.
Ng, Phys. Rev. D 55, 6504 (1997); E. J. Ferrer and V.
de la Incera, Phys. Lett. B 481, 287 (2000); Yu. I. Shilnov
and V. V. Chitov, Yad. Fiz. 64, 2138 (2001) [Phys. Atom.

Nucl. 64, 2051 (2001)]; C. N. Leung and S.-Y. Wang, Nucl.
Phys. B747, 266 (2006); N. Sadooghi and A. Sodeiri Jalili,
Phys. Rev. D 76, 065013 (2007); E. Rojas, A. Ayala, A.
Bashir, and A. Raya, Phys. Rev. D 77, 093004 (2008); A.
Raya and E. Reyes, Phys. Rev. D 82, 016004 (2010); E. J.
Ferrer, V. de la Incera, and A. Sanchez, Nucl. Phys. 864, 469
(2012).

[10] C. N. Leung, Y. J. Ng, and A.W. Ackley, Phys. Rev. D 54,
4181 (1996).

[11] E. J. Ferrer and V. de la Incera, Phys. Rev. D 58, 065008
(1998).

[12] E. Elizalde, E. J. Ferrer, and V. de la Incera, Phys. Rev. D 68,
096004 (2003).

[13] E. J. Ferrer and V. de la Incera, Phys. Rev. Lett. 102, 050402
(2009).

[14] E. J. Ferrer and V. de la Incera, Nucl. Phys. B824, 217
(2010).

[15] E. J. Ferrer, V. de la Incera, and A. Sanchez, Phys. Rev. Lett.
107, 041602 (2011).

[16] L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov,
Dokl. Akad. Nauk SSSR 95, 497 (1954).

[17] L. D. Landau, in Niels Bohr and the Development of Physics,
edited by W. Pauli (Pergamon Press, London, 1955).

[18] G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).
[19] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988); J.

Gonzalez, F. Guinea, and M. A. H. Vozmediano, Phys. Rev.
Lett. 77, 3589 (1996); D. V. Khveshchenko, Phys. Rev. Lett.
87, 206401 (2001); E. V. Gorbar, V. P. Gusynin, V. A.
Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108
(2002).

[20] K. S. Novoselov et al., Science 306, 666 (2004); K. S.
Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A.
Firsov, Nature (London) 438, 197 (2005); Y. Zhang,
Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

[21] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[22] K. Farakos and N. E. Mavromatos, Int. J. Mod. Phys. B

12, 809 (1998); G. W. Semenoff, I. A. Shovkovy, and

E. J. FERRER and A. SANCHEZ PHYS. REV. D 100, 096006 (2019)

096006-14

https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1016/j.nuclphysa.2008.02.298
https://doi.org/10.1142/S0217751X09047570
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1103/PhysRevC.83.054911
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1016/j.physletb.2012.02.065
https://doi.org/10.1103/PhysRevC.84.064605
https://doi.org/10.1103/PhysRevC.84.064605
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1016/j.physletb.2012.12.030
https://doi.org/10.1016/j.nuclphysa.2015.03.012
https://doi.org/10.1016/j.nuclphysa.2015.03.012
https://doi.org/10.1088/0067-0049/212/1/6
https://doi.org/10.1088/0067-0049/212/1/6
https://doi.org/10.1088/0305-4470/25/10/026
https://doi.org/10.1103/PhysRevD.50.3566
https://doi.org/10.1103/PhysRevD.50.3566
https://doi.org/10.1088/0305-4470/27/6/036
https://doi.org/10.1103/PhysRevD.51.5885
https://doi.org/10.1006/aphy.1996.0124
https://doi.org/10.1006/aphy.1996.0124
https://doi.org/10.1103/PhysRev.187.2275
https://doi.org/10.1103/PhysRevD.10.1342
https://doi.org/10.1103/PhysRevD.10.1342
https://doi.org/10.1143/PTP.70.1375
https://doi.org/10.1143/PTP.70.1375
https://doi.org/10.1103/PhysRevD.49.5582
https://doi.org/10.1103/PhysRevD.49.5582
https://doi.org/10.1142/S0217732302006321
https://doi.org/10.1103/PhysRevLett.96.180401
https://doi.org/10.1142/S0217751X16500718
https://doi.org/10.1142/S0217751X16500718
https://doi.org/10.1007/BF01018812
https://doi.org/10.1007/BF01566663
https://doi.org/10.1007/BF01566663
https://doi.org/10.1103/PhysRevLett.73.3499
https://doi.org/10.1016/S0550-3213(99)00573-8
https://doi.org/10.1016/S0550-3213(99)00573-8
https://doi.org/10.1103/PhysRevD.55.6504
https://doi.org/10.1016/S0370-2693(00)00482-2
https://doi.org/10.1134/1.1423756
https://doi.org/10.1134/1.1423756
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1016/j.nuclphysb.2006.04.028
https://doi.org/10.1103/PhysRevD.76.065013
https://doi.org/10.1103/PhysRevD.77.093004
https://doi.org/10.1103/PhysRevD.82.016004
https://doi.org/10.1016/j.nuclphysb.2012.07.003
https://doi.org/10.1016/j.nuclphysb.2012.07.003
https://doi.org/10.1103/PhysRevD.54.4181
https://doi.org/10.1103/PhysRevD.54.4181
https://doi.org/10.1103/PhysRevD.58.065008
https://doi.org/10.1103/PhysRevD.58.065008
https://doi.org/10.1103/PhysRevD.68.096004
https://doi.org/10.1103/PhysRevD.68.096004
https://doi.org/10.1103/PhysRevLett.102.050402
https://doi.org/10.1103/PhysRevLett.102.050402
https://doi.org/10.1016/j.nuclphysb.2009.08.024
https://doi.org/10.1016/j.nuclphysb.2009.08.024
https://doi.org/10.1103/PhysRevLett.107.041602
https://doi.org/10.1103/PhysRevLett.107.041602
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.77.3589
https://doi.org/10.1103/PhysRevLett.77.3589
https://doi.org/10.1103/PhysRevLett.87.206401
https://doi.org/10.1103/PhysRevLett.87.206401
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1103/PhysRevB.66.045108
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1142/S0217979298000478
https://doi.org/10.1142/S0217979298000478


L. C. R. Wijewardhana, Mod. Phys. Lett. A 13, 1143
(1998); W. V. Liu, Nucl. Phys. B556, 563 (1999); E. J.
Ferrer, V. P. Gusynin, and V. de la Incera, Mod. Phys. Lett. B
16, 107 (2002); M. S. Sercheli, Y. Kopelevich, R. Ricardo da
Silva, J. H. S Torres, and C. Rettori, Solid State Commun.
121, 579 (2002); E. J. Ferrer, V. P. Gusynin, and V. de la
Incera, Eur. Phys. J. B 33, 397 (2003); V. P. Gusynin, V. A.
Miransky, S. G. Sharapov, and I. A. Shovkovy, Phys. Rev. B
74, 195429 (2006); I. F. Herbut, Phys. Rev. Lett. 97, 146401
(2006); J. N. Fuchs and P. Lederer, Phys. Rev. Lett. 98,
016803 (2007); K. G. Klimenko and R. N. Zhokhov, Phys.
Rev. D 88, 105015 (2013); D. Ebert, K. G. Klimenko, P. B.
Kolmakov, and V. C. Zhukovsky, Ann. Phys. (Amsterdam)
371, 254 (2016).

[23] R. Gatto and M. Ruggieri, Lect. Notes Phys. 871, 87 (2013);
V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576, 1
(2015).

[24] V. P. Gusynin and I. A. Shovkovy, Phys. Rev. D 56, 5251
(1997); E. J. Ferrer, V. de la Incera, I. Portillo, and M.
Quiroz, Phys. Rev. D 89, 085034 (2014).

[25] G. Bali, F. Bruckmann, G. Endródi, Z. Fodor, S. D. Katz, S.
Krieg, A. Schäfer, and K. K. Szabó, J. High Energy Phys. 02
(2012) 044; G. S. Bali, F. Bruckmann, G. Endródi, Z. Fodor,
S. D. Katz, and A. Schäfer, Phys. Rev. D 86, 071502(R)
(2012).

[26] E. J. Ferrer, V. de la Incera, and X. J. Wen, Phys. Rev. D 91,
054006 (2015).

[27] R. L. S. Farias, K. P. Gomes, G. Krein, and M. B. Pinto, Phys.
Rev. C 90, 025203 (2014); A. Ayala, C. A. Dominguez, L. A.
Hernandez, M. Loewel, and R. Zamora Phys. Lett. B 759, 99
(2016); A. Ayala, C. A. Dominguez, L. A. Hernandez, M.
Loewe, A. Raya, J. C. Rojas, and C. Villavicencio, Phys. Rev.
D 94, 054019 (2016); C. F. Li, L. Yang, X. J. Wen, and G. X.
Peng, Phys. Rev. D 93, 054005 (2016).

[28] N. K. Nielsen, Am. J. Phys. 49, 1171 (1981).
[29] A. E. Shabad and V. V. Usov, Phys. Rev. D 77, 025001

(2008).
[30] I. A. Batalin and A. E. Shabad, Zh. Eksp. Teor. Fiz. 60, 894

(1971) [Sov. Phys. JETP 33, 483 (1971)]; A. E. Shabad,
Ann. Phys. (N.Y.) 90, 166 (1975).

[31] A. E. Shabad, Polarization of the Vacuum and a Quantum
Relativistic Gas in an External Field (Nova Science

Publishers, New York, 1991); P. N. Lebedev, Phys. Inst.
192, 5 (1988).

[32] J. Schwinger, Phys. Rev. 82, 664 (1951).
[33] V. I. Ritus, Ann. Phys. (N.Y.) 69, 555 (1972); Zh. Eksp.

Teor. Fiz.75, 1560 (1978) [Sov. Phys. JETP 48, 788 (1978)].
[34] M. Göckeler, R. Horsley, V. Linke, P. Rakow, G. Schierholz,

and H. Stüben, Phys. Rev. Lett. 80, 4119 (1998); S. Kim,
J. B. Kogut, and M.-P. Lombardo, Phys. Rev. D 65, 054015
(2002); H. Gies and J. Jaeckel, Phys. Rev. Lett. 93, 110405
(2004).

[35] L. Dong and S. L. Shapiro, Astrophys. J. 383, 745 (1991);
C. Y. Cardall, M. Prakashand, and J. M. Lattimer, Astro-
phys. J. 554, 322 (2001); E. J. Ferrer, V. de la Incera, J. P.
Keith, I. Portillo, and P. L. Springsteen, Phys. Rev. C 82,
065802 (2010); E. J. Ferrer and A. Hackebill, Phys. Rev. C
99, 065803 (2019).

[36] M. H. Johnson and B. A. Lippmann, Phys. Rev. 77, 702
(1950).

[37] E. J. Ferrer, V. de la Incera, D. Manreza Paret, A. Pérez
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