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A full renormalization of the inert doublet model is presented and exploited for a precise calculation of
the relic density of dark matter (DM) at one-loop. In this first paper, we study the case of a DM candidate
withmDM ∼ 500 GeV. In this regime, the coannihilation channels are important. We therefore compute, for
a wide range of relative velocities, the full next-to-leading order electroweak corrections to seven
annihilation/coannihilation processes that contribute ∼70% to the relic density of DM. These corrected
cross sections are interfaced with micrOMEGAs to obtain the one-loop correction to the freeze-out relic
density. Due to the accurate measurement of this observable, the one-loop corrections are relevant. We
discuss the one-loop renormalization scheme dependence and point out the influence, at one-loop, of a
parameter that solely describes the scattering in the dark sector. A tree-level computation of the relic density
is not sensitive to this parameter.
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I. INTRODUCTION

The inert doublet model (IDM) consists of adding a
scalar doublet, Φ2, to the Standard Model (SM) of particle
physics [1]. Endowing this most simple extension of the
SM with an unbroken Z2 symmetry where Φ2 is odd while
other fields of the SM are even, guarantees the stability of
the lightest inert particle, thus providing a possible dark
matter (DM) candidate [2]. The new scalars of this addi-
tional doublet couple to the Higgs and the gauge bosons but
not to the fermions in the SM. This model provides a nice
link between the Higgs sector with the source of electro-
weak symmetry breaking and DM [3]. The model has
received a lot of attention, primarily for DM studies but also
for collider observables; see [4–10] for reviews and

updates. The majority of these analyses were performed
at leading order. A few exceptions where one-loop effects
are considered include (i) the computation of the trilinear
self-coupling of the SM-like Higgs boson [11–14], (ii) one-
loop corrections to the Higgs effective potential [3,15], the
running of the Higgs/scalar masses and the running of the
scalar parameters [6] (see also [16]), (iii) one-loop induced
cross sections relevant for direct detection [17] and
(iv) induced one-loop effects for photon production:
Higgs decay to a photon pair [18] and DM annihilation
to photons [19,20]. Yet, the relic density of DM as extracted
by Planck [21] is a precision measurement at the percent
level that calls for an equally precise theoretical prediction.
In particular, the perturbative DM annihilation cross sec-
tions that drive the amount of relic density must be
evaluated beyond tree level. This has not been performed
in the IDM case despite the fact that the relic density sets
the most stringent constraint on the IDM. This is somehow
understandable since this task requires a coherent full
renormalization of the model, the evaluation of many
processes at one-loop order and the inclusion of these
processes for the evaluation of the relic density. It is the
purpose of this paper to present such a program and to
present the first results for one-loop-corrected processes
and how they affect the value of the freeze-out relic density
in the IDM.
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The IDM model is of course subject to various experi-
mental constraints that leave two viable scenarios: onewhere
the DM mass is about MW and the other where the mass is
above 500 GeV. We will, in this first paper, be interested in a
scenario with MDM ∼ 500 GeV. Nonperturbative effects,
such as the importance of the electroweak Sommerfeld
effects [5,22–25], occur for very high masses above the
TeV and will not be treated here.
The plan of the paper is as follows. In the next Sec. II we

will first outline the model and underline its parameters.
The renormalization procedure is exposed in Sec. III.
Section IV takes into account the various constraints on
the model and motivates us in setting up our benchmark
scenario. Section V presents our findings for the full next-
to-leading order corrections that, at tree level, contribute
more than 5% of the relic density contribution. We will find
that because of coannihilation we will need to consider
seven processes. Section VI will translate these improved
predictions into a corrected value of the relic density by
interfacing our cross sections with micrOMEGAs. Finally we
conclude our findings in Sec. VIII. Appendixes are also
provided.

II. THE INERT DOUBLET MODEL
AT THE CLASSICAL LEVEL

To the Higgs doublet Φ1 of the SM, a doublet Φ2 is
added. An unbroken Z2 symmetry is imposed under which
Φ2 is odd while all other fields (of the SM) are even. The
immediate consequence is thatΦ2 cannot couple to fermions
to any order (in perturbation theory) and guarantees the
stability of the lightest inert particle, thus providing a
possible dark matter candidate. The Lagrangian of the
IDM can be written as

LIDM ¼ LSM þ ðDμΦ2Þ†DμΦ2 þ VIDMðΦ1;Φ2Þ; ð2:1Þ

where LSM is the SM Lagrangian whereas the scalar
potential is given by

VIDMðΦ1;Φ2Þ ¼ μ21jΦ1j2 þ μ22jΦ2j2 þ λ1jΦ1j4 þ λ2jΦ2j4
þ λ3jΦ1j2jΦ2j2 þ λ4ðΦ†

2Φ1ÞðΦ†
1Φ2Þ

þ
�
λ5
2
ðΦ†

1Φ2Þ2 þ H:c:

�
: ð2:2Þ

In this equation, μi and λi are real. Since the unbroken Z2

symmetry prevents the presence of tadpole terms forΦ2 (and
therefore no vacuum expectation value fromΦ2) andmixing
withΦ1, we can directly parametrize the doublets in terms of
the physical scalars,

Φ1 ¼
� Gþ

1ffiffi
2

p ðvþhþ iGÞ
�

and Φ2 ¼
� Hþ

1ffiffi
2

p ðHþ iAÞ
�
;

ð2:3Þ

where v is the SM vacuum expectation value with v ≃
246 GeV defined from the measurement of theW (MW) and
Z (MZ) masses. We have

s2W ≡ sin2θW ¼ 1 −
M2

W

M2
Z
; MW ¼ 1

2

e
sW

v; ð2:4Þ

e is the electromagnetic coupling [theSUð2Þ gauge coupling
g is then g ¼ e=sW], h is the SM 125 GeV Higgs boson,
G;G� are the Goldstone bosons, H, A are the new neutral
physical scalars1 and H� is the charged physical scalar. H
and A are the possible DM candidates. These scalars have
gauge couplings to the SM gauge bosons controlled by the
SM gauge coupling. For example, for the trilinear couplings
we have

ðHþH−γ; HþH−Z;HH�W∓; iAH�W∓; iAHZÞ
¼ i

g
2
ð2sW; c2W=cW;∓ 1;−1;−1=cWÞ: ð2:5Þ

We must note that quartic couplings of the type
HHWþW− are also present. Annihilation of DM to vector
bosons proceeds, in part, through these gauge interactions
and in part through the scalar potential coupling to which
we now turn our attention for more details.

A. Minimization of the potential

Minimization of the potential amounts to vanishing
tadpoles for Φ1 leading to the constraint

T
v
¼ μ21 þ λ1v2 ≡ 0: ð2:6Þ

There is no corresponding tadpole term for Φ2 because of
the unbroken Z2 symmetry. The no-tadpole condition will
be maintained at all orders.

B. Mass spectrum and scalar self-interactions

By collecting the bilinear terms in the physical scalar
fields of VIDM, we get the mass spectrum of the scalar sector
of the IDM

M2
h ¼

T
v
þ 2λ1v2; ð2:7Þ

1Since these additional scalars do not couple to the fermions
(of the SM), we cannot assign them definite CP numbers. By an
abuse of language, we will call A the pseudoscalar.
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M2
H� ¼ μ22 þ λ3

v2

2
; ð2:8Þ

M2
H ¼ μ22 þ λL

v2

2
¼ M2

H� þ ðλ4 þ λ5Þ
v2

2
; ð2:9Þ

M2
A ¼ μ22 þ λA

v2

2
¼ M2

H� þ ðλ4 − λ5Þ
v2

2
¼ M2

H − λ5v2;

ð2:10Þ

where

λL=A ¼ λ3 þ λ4 � λ5: ð2:11Þ

In the following, we will consider H as the possible DM
candidate. The underlying reason is that bothH andA can be
treated on equal footing. Choosing A as the DM candidate
would simply correspond to a flip in the sign λ5 → −λ5
without changing the phenomenology. The reason is the
following (weborrowarguments from [26]): TakingH as the
DM candidate and thus MH < MA;MH� , from Eqs. (2.9)
and (2.10) we obtain

λ4 þ λ5 < 0 and λ5 < 0: ð2:12Þ

The converse situation, with MA < MH;MH� , corre-
sponds to

λ4 − λ5 < 0 and λ5 > 0: ð2:13Þ

For λ5 ¼ 0, H and A are mass degenerate. All portal
triple and quartic couplings of the SM-like Higgs h to H=A
are proportional to λL=A. Indeed, we can write, at tree level,
the hHH and hAA coupling as

λhHH ¼ λLv; λhAA ¼ λAv: ð2:14Þ

Thus considering one or the other scalars as the DM
candidate amounts to switching

λ5 ↔ −λ5; λL ↔ λA: ð2:15Þ

In the same vein, we can write

λhHþH− ¼ λ3v: ð2:16Þ

The quartic couplings between the SM Higgs and the
new scalar are set by λ3;L;A,

λhhHH;hhAA;hhHþH− ¼ λL; λA; λ3: ð2:17Þ

On the other hand, λ2 controls all the quartic couplings
solely within the dark sector (HHHH, HHAA, HHHþH−,
AAAA, AAHþH− and HþH−HþH−).

C. Counting parameters

In order to survey the IDM parameter space it is
important to count the number of independent parameters
in the scalar sector. Setting aside the tadpole condition and
the 125 GeV (SM) Higgs mass, the IDM requires five extra
parameters,

ðμ2; λ2; λ3; λ4; λ5Þ: ð2:18Þ

It is interesting to trade three of the above parameters of
the scalar sector for the physical masses of the new scalars
through Eqs. (2.8)–(2.10). This will be important for the
renormalization program when we adopt an on-shell
scheme.2 The model can therefore be defined through
the following two possible trade-offs,

ðμ2; λ3; λ4; λ5; λ2Þ → ðMH;MA;MH� ; λL=A; λ2Þ; ð2:19Þ

or equivalently

ðμ2; λ3; λ4; λ5; λ2Þ → ðMH;MA;MH� ; μ2; λ2Þ: ð2:20Þ

We set λ2 apart as it describes couplings solely between the
additional scalars and not involving the SM Higgs. At tree
level for example and for 2 → 2 annihilation processes, λ2
is irrelevant. This would mean that at one-loop order, for
annihilation processes, a renormalization for λ2 is not
necessary. However, λ4 and λ5 can be reconstructed from
a combination of the additional scalar masses

λ4 ¼
1

v2
ðM2

H þM2
A − 2M2

H�Þ; ð2:21Þ

λ5 ¼
1

v2
ðM2

H −M2
AÞ: ð2:22Þ

The extraction of λ3 not only requires a knowledge of at
least one scalar mass but also either a value of λL (or
equivalently the hHH coupling) or the mass parameter μ2,
to wit

λ3 ¼
2

v2
ðM2

H� − μ22Þ ¼
2

v2
ðM2

H� −M2
HÞ þ λL: ð2:23Þ

III. RENORMALIZATION OF THE IDM

The presence of the Z2 symmetry tremendously eases
the renormalization of the IDM. As a result of this
symmetry there is no mixing, at any order, between the
SM fields and the extra fields introduced by the IDM. The
tadpole condition only applies to the SM part. The SM part,
including the SM Higgs (and the Goldstone bosons), are
renormalized, independently and exactly as in the SM. We

2Note that sW was also defined in terms of theW and Zmasses,
Eq. (2.4).
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therefore follow an on-shell (OS) scheme whose details can
be found in Ref. [27]. We will pursue the OS approach for
all three extra physical scalar fields, H;A;H�. We will
therefore use the physical masses of these fields as input
parameters instead of the parameters of the scalar potential.
Nonetheless, there remain two parameters which we still
need to define. As stated earlier, of all the parameters in the
IDM, only λ2 connects the extra fields. Its renormalization
is not needed for one-loop annihilation processes to SM
particles. However, one parameter (either μ2 or λL;A or a
combination of these) is still needed to fully define all the
couplings between H;A;H� and the SM Higgs and
Goldstones; see Eq. (2.19). For example λL=A has, at tree
level, a simple physical interpretation as the portal cou-
pling hHH=hAA.
To carry the renormalization program and define the

counterterms, shifts are introduced for the Lagrangian
parameters and the fields. All bare quantities (X0), par-
ticularly in Eq. (2.2), are decomposed into renormalized
quantities (X) and counterterms (δX) as

X0 → X þ δX; X ¼ μ2; λ2; λ3; λ4; λ5; ð3:1Þ

for the parameters3 and

ϕ0 → ϕþ 1

2
δZϕ; ϕ ¼ ðh;H; A;H�Þ; ð3:2Þ

for the fields.
The OS conditions on the physical scalars require that

their masses are defined as pole masses of the renormalized
one-loop propagator and that the residue at the pole be
unity. With Σϕϕðp2Þ being the scalar two-point function
with momentum p we have (ϕ ¼ h;H; A;H�),

δM2
ϕ ¼ ΣϕϕðM2

ϕÞ; ð3:3Þ

δZϕ ¼ −
∂Σϕϕðp2Þ

∂p2

����
p2¼M2

ϕ

: ð3:4Þ

δMH; δMA and δMH� directly give OS definitions for λ4
and λ5 through Eqs. (2.21) and (2.22). With only three
physical masses, we cannot reconstruct all five counter-
terms from two-point functions. We therefore revert to
couplings between the Higgses. Remembering that λL
measures the hHH coupling, we could extract a counter-
term for δλL from a measurement of the hHH coupling. We
could have also chosen the hAA or hHþH− couplings.
Sticking with λL, when Mh > 2MH, the invisible width
of the Higgs Γðh → HHÞ is the observable of choice
especially because no infrared divergence affects this

observable. This observable will therefore be set as input,
which is equivalent to stating that the observable receives
no correction. We denote the amplitude for h → HH as
Aðh → HHÞ≡AhHH. We express this amplitude at tree
level as

A0
hHH ¼ −λLv; ð3:5Þ

and the full one-loop renormalized amplitude for hðpÞ →
Hðp1ÞHðp2Þ as

Aren
hHHðp2; p2

1; p
2
2Þ ¼ −λLv

�
δλL
λL

þ δv
v
þ 1

2
δZh þ δZH

�

þA1PI
HHhðp2; p2

1; p
2
2Þ; ð3:6Þ

where A1PI
HHhðp2; p2

1; p
2
2Þ is the full one-loop one particle

irreducible vertex. When the threshold is open, we set p2 ¼
M2

h and p2
1 ¼ p2

2 ¼ M2
H defining a gauge invariant OS

counterterm for λL as

δOSλL
λL

¼ A1PI
HHhðm2

h;M
2
H;M

2
HÞ

λLv
−
δv
v
−
1

2
δZh − δZH: ð3:7Þ

Another gauge invariant but scale-dependent scheme is to
use an MS definition where only the (mass-independent
term) ultraviolet divergent part is kept

δMSλL
λL

¼
�
A1PI

HHhðm2
h;M

2
H;M

2
HÞ

λLv
−
δv
v
−
1

2
δZh − δZH

�
∞
:

ð3:8Þ

The coefficient of the ultraviolet divergent part is nothing
but the one-loop β constant (βλL) of λL,

δMSλL
λL

¼ βλLCUV; CUV ¼ 2

ε
− γE þ lnð4πÞ; ð3:9Þ

where ε ¼ 4 − d with d being the number of dimensions in
dimensional regularization and γE being the Euler constant.
As discussed at length in Ref. [28], a general scheme can be
defined as

δλL
λL

¼ βλLðCUV þ lnðμ̄2=Q2
λÞÞ; ð3:10Þ

where Qλ is an effective scale that depends on the external
momenta (hence the subtraction point) and the internal
masses introduced to define the counterterm, and μ̄ is the
scale introduced by dimensional reduction. For the MS,
scheme Qλ ¼ μ̄.
For mh < 2MH, it is difficult to come up with a

straightforward OS scheme for λL (or equivalently μ2 once
the mass counterterms for the extra scalars have been set).

3This procedure is also applied to the SM sector including the
μ1 and λ1 terms of potential. For the latter, the tadpole condition is
imposed at one-loop; see [27].
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We have therefore chosen an MS scheme for λL according
to Eq. (3.9). A formal OS extraction that would work for
any configuration of H and h masses could use the cross
section that builds up direct detection, namelyHq → Hq in
the limit of zero Q2 transfer, in effect isolating the
HðM2

HÞ → HðM2
HÞhðQ2 → 0Þ vertex. But direct detection

involves uncertainties through the introduction of param-
eters from nuclear matrix elements. Moreover, the λL
contribution to direct detection can be swamped by the
pure gauge contribution (which we discuss later).
As stated before, the counterterm for μ2 is directly related

to that of λL:

δμ22 ¼ δM2
H −

v2

2
δλL − λLv2

δv
v
: ð3:11Þ

For the annihilation processes we will find that a counter-
term for λ2 is not necessary; however an MS definition
based on the corresponding β function can be derived. This
is shown in Appendix B.

IV. A HIGH MASS IDM BENCHMARK POINT

Previous studies on the collider and astrophysical con-
straints of the IDM parameter space [6,14,26,29–51] have
delineated two regions with a viable DM candidate that
provides the correct relic density of DM. The first one is
dubbed the “low mass regime” where MH ≈Mh=2 and the
second the “high mass regime” where MH ≳ 500 GeV. To
show the impact of a more precise calculation of the
annihilation cross sections that enter the relic density, in
this paper we start by finding a point that passes the relic
density constraints based on a tree-level calculation. For
this we use the code micrOMEGAs [52,53]. The relic density
constraint set by Planck [21],

Ωh2 ¼ 0.1197� 0.0022; ð4:1Þ

is imposed.
The characteristics of our benchmark point are the

following:

MH ¼ 550GeV; MA ¼ 551GeV; M�
H ¼ 552GeV;

λL ¼ 0.0193; λ2¼ 0.01

ðλ3 ¼ 0.0926; λ4¼−0.0545;

λ5 ¼−0.0181 and μ2¼ 549.45GeVÞ: ð4:2Þ

The values between brackets in Eq. (4.2) are derived values.
For the SM parameters, we take Mh ¼ 125 GeV,
MW ¼ 80.45 GeV, MZ ¼ 91.19 GeV and α ¼ 1=137.
For these values of the parameters, the calculated relic
density (calculated with tree-level cross sections) is
Ωh2 ≃ 0.117, a value consistent with Eq. (4.1). At tree
level, the cross section does not depend on λ2. Note that the

viability of this point relies on the almost degenerate IDM
scalar spectrum and the small values of the λ’s. These small
values of λ’s automatically ensure that a perturbative
calculation can be performed. Moreover, vacuum stability
holds [6,54] together with the fact that the global minimum
is associated with the inert vacuum [9]. The degeneracy in
the scalar masses can be viewed as rather fine-tuned [6].
This degeneracy means that constraints from electroweak
precision measurements are easily evaded, in particular,
the custodial isospin symmetry parameter T [48]. Indeed in
this case,

ΔT ≃
1

24π2αv2
ðMH� −MAÞðMH� −MHÞ ð4:3Þ

is vanishingly small.
Far more stringent is the constraint from the spin-

independent DM-nucleon cross section for direct detection.
In this scenario, the one-loop electroweak gauge contribu-
tion to the H nucleon cross section, σðgÞHN [17,55], is almost
an order of magnitude larger than the tree-level Higgs

exchange contribution triggered by λL, σðλLÞHN [56]. One
obtains

σðλLÞHN ¼ f2
λ2L
4π

�
m2

N

mHm2
h

�
2

; ð4:4Þ

where mN is the nucleon mass, and f ∼ 1=3 is the nucleon
form factor. With MH ≫ MW , one can write

RðλLÞ¼
σðgÞHN

σðλLÞHN

∼
�
6π

α2

λLs4W

�
2
�

MH

8MW

�
2
�
1þ M2

h

M2
W

�
2

∼9 for λL ¼ 0.019 and MH ¼ 550GeV: ð4:5Þ

This benchmark point passes the present XENON1T
[57] constraint. However, further improvement in the
experimental sensitivity from direct detection experiments
could make the viability of this benchmark point difficult
even if the relic density constraint is passed.
The degeneracy in the scalar masses means that the relic

density is built up by a few coannihilation channels.
They mainly annihilate into vector bosons. The percentage
contribution of each channel to the relic density is

8>>>>>>>>>>><
>>>>>>>>>>>:

HH → WþW− ð18%Þ;
HH → ZZ ð14%Þ;
HþH− → WþW− ð13%Þ;
AA → WþW− ð9%Þ;
HþH → Wþγ ð8%Þ;
AA → ZZ ð7%Þ;
HþA → Wþγ ð6%Þ:

ð4:6Þ
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These weights are given by micrOMEGAs based on tree-level
calculations. The other channels contribute less than or
equal to 5%, including the hh final state channel.
Out of the seven cross sections, those with annihilations

to a photon, HþA → Wþγ and HþH → Wþγ are driven
solely by gauge couplings and are, at tree level, indepen-
dent of λL;A. The other five interactions are sensitive to λL.
However, considering the small value of λL in our bench-
mark example, to a good approximation these cross
sections are also dominantly (though not totally) driven
by gauge interactions so we can write σHH→WþW− ∼
σAA→WþW− ∼ σHþH−→WþW− ¼ 2c4WσHH→ZZ ¼ 2c4WσAA→ZZ.
The weights quoted in Eq. (4.6) are a measure of the
relative importance of the corresponding cross sections
diluted by the Boltzmann factor. We will now look at the
one-loop corrections that affect the seven dominant proc-
esses given in Eq. (4.6) which, at tree level, contribute more
than 5% to the relic density. We will compute these
processes for a wide range of velocities.

V. ANNIHILATION CROSS SECTIONS
AT ONE-LOOP ORDER

A. Some important technicalities

The calculation of the relic density requires the depend-
ence of the different relevant cross sections on the relative
velocity v of the annihilating particles times v, σijvij, where
i, j stand for the annihilating/coannihilating particles,
before applying thermal averaging. Within the standard
cosmological model and assuming freeze-out, the latter part
is computed quite precisely by micrOMEGAs. For two
annihilating particles with momenta p1 and p2 and masses
m1 and m2, the relative velocity is defined as

v¼2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs−ðm1þm2Þ2Þðs−ðm1−m2Þ2Þ

p
s2−ðm2

1−m2
2Þ2

; s¼ðp1þp2Þ2;

v¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4M2

DM=s
q

¼2β form1¼m2¼MDM: ð5:1Þ

However, it is possible to replace the tree-level cross
sections generated by micrOMEGAs by corrected cross
sections. This iswhatwe do in order to obtain loop-corrected
relic density. In our case, the corrected cross sections are the
one-loop-corrected cross sections for the processes listed in
Eq. (4.6). Most of the steps of the calculation are automated.
We rely on SloopS [58–61] which relies on LanHEP [62,63] to
define the model. LanHEP generates the complete set of
Feynman rules, applying shifts on fields and parameters and
sets the conditions on the generated counterterms in a format
compatible with an amplitude generator code. We interface
LanHEP with the package bundle FeynArts, FormCalc and
LoopTools [64–66].
For each process and for each velocity we check that the

virtual corrections (including the counterterms) are ultra-
violet finite. To this end we vary the CUV [Eq. (3.9)]

parameter by 7 orders of magnitude and check that the
result is stable within machine (double) precision. For
processes involving charged particles, bremsstrahlung
processes 2 → 2þ γ are generated. The latter is split into
two parts, the soft photon radiation and the hard photon
radiation. The soft photon radiation for photon energies
Eγ < kc with kc small enough is generated automatically
through the factorization formula which eliminates the one-
loop infrared divergence that we regularize with a small
finite photon mass. The hard photon radiation is computed
numerically. We loop over a few values of kc making sure
that the soft plus hard part adds to a value that is insensitive
to kc. This step could be time consuming but we have
optimized its automation. When we refer to next-to-
leading order corrections, we have in mind the full one-
loop, the soft and the hard radiation which is of course
independent of the regularizing photon mass or the inter-
mediate cutoff kc.

B. Processes at one-loop

Our default values for the one-loop corrections are
presented in this subsection for a scale μ̄ ¼ MH taken to
define λL. The scale dependence will be discussed when we
convert the results to the level of the relic density
calculation.

1. H +H − → W+W −

We start our discussion with a process whose weight to
the relic density (at tree level) is 13%. Even though this is
not the most dominant contribution, it helps bring forth an
important behavior. At tree level, this process slowly and
linearly varies with the relative velocity. This is still the case
at one-loop where the full one-loop computation corrects
the tree-level result by about −10% for relative velocities
∼0.2 and above. However, the one-loop contribution shoots
with large positive “corrections” up to extremely low
velocities; see Fig. 1. This is easily understood as a result of
the electromagnetic Sommerfeld effect. The photon
exchange between the electrically charged coannihilating
particles at very low relative velocities leads to a relative
correction which at one-loop reads as

Δσ1-loop Sommv
σtreev

¼ πα

v
: ð5:2Þ

We have checked that our numerical code captures this
effect exactly. This one-loop Sommerfeld contribution can
be resummed with the result that the tree-level cross section
is turned into

σresummed¼ Snrσtree; Snr ¼
Xnr

1−e−Xnr
and Xnr ¼ 2πα=v:

ð5:3Þ
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Since characteristic velocities for the calculation of the relic
density are typically in the range v ∼ 0.2–0.3, the
Sommerfeld enhancement taken either at one-loop or
resummed to all orders does not have much of an impact
on the relic density. We have checked this feature explicitly.
It is however important that our full calculation catches
such behavior at very small velocities quite precisely.

While presenting our results for the relic density, this
resummation is performed even though its effect is tiny.
Note that an electroweak equivalent to the Sommerfeld

correction is induced by rescattering through W and Z
bosons and even through the SM Higgs boson. For
HþH− → WþW− these low velocity effects are completely
swamped by the photon exchange (Sommerfeld effect). For

FIG. 1. Dependence of the tree-level and one-loop-corrected cross-section HþH− → WþW− with respect to the relative velocity
(squared). The right panel gives the percentage correction.

FIG. 2. Dependence of the tree-level and one-loop-corrected cross section AA → ZZ (upper panels) and AA → WþW− with respect to
the relative velocity (squared). The right panels give the percentage correction.
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later reference, let us point out that these electroweak
equivalents may play a role at very small velocities only if
MW;Z;h=MDM ≪ 1, which is not attained in our scenario.
The masses of theW, Z and h bosons provide a cutoff to the
1=v rise, so the rise of the cross section, when the massive
bosons are involved, is not indefinite. Higgs exchange will
be totally negligible considering that the hHH coupling, for
example, is controlled by the small λL.

2. AA → ZZ and AA → W+W −

AA → ZZ and AA → WþW− contribute respectively 7%
and 10% to the relic density at tree level. The velocity
dependence of their cross sections at tree level decreases
slowly with an almost similar rate. At one-loop, the photon
final state radiation affects theWþW− channel. The overall
corrections are thus larger in the charged channel than in
the neutral channel. For v ¼ 0.3 this correction is a modest
−5% in the ZZ channel but about −20% in the WþW−

channel. Nonetheless, the corrections follow a similar
trend; see Fig. 2. For large velocities, the corrections are
largest (and negative) and tend to decrease in absolute
values by a contribution that behaves as 1=v2 up to v ∼ 0.12
where it again drops. This behavior at such small values of

the relative velocity is a reminder of the Sommerfeld effect
due to the W exchange. In these two processes such effects
are only triggered byW exchange (and not by Z exchange)
since no AAZ coupling exists, where AH�W∓ is operative.
This rescattering, AA → HþH−, also explains why the
corrections in the WþW− channel are larger; indeed the
amplitude for HþH− → WþW− is more than twice as large
as the HþH− → ZZ counterpart.

3. HH → ZZ and HH → W+W −

As expected, for small λ’s, the H ↔ A have the same
cross section at tree level; see Fig. 3. Their dependence on
velocity is the same, as are the radiative corrections apart
from a notable difference for very small velocities. TheHH
annihilations with respect to the relative velocity now
feature two dents, contrary to the AA annihilations where
one dent appears. The first of these dents occurs at
practically the same location in v as the one that occurs
for the AA annihilations. It corresponds to the exchange
of the W. The second one at slightly larger velocities is
due to the Z exchange. Again the corresponding velocities
are too small to be relevant for the calculation of the
relic density.

FIG. 3. As in Fig. 2 but for HH → ZZ and HH → WþW−.
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4. H +H → W+ γ and H+A → W+ γ

Again these two cross sections are practically inter-
changeable both at the leading and at next-to-leading order.
The relative one-loop corrections decrease as the relative
velocity decreases, with a correction of about −10% for a
typical velocity, v ∼ 0.3; see Fig. 4. Since at tree level these
processes do not depend on λL;A, a fully on-shell renorm-
alization is possible with the results that these one-loop
cross sections are μ̄ independent.

VI. RELIC ABUNDANCE COMPUTATIONS

Having performed the full one-loop corrections to the
seven processes that make up about 70% of the total relic
density at tree level, we have interfaced our calculations
with micrOMEGAs by providing the tables for these cross
sections (with the velocity dependence) in lieu of their tree-
level value to micrOMEGAs for the calculation of the relic
density (thermal averaging, freeze-out). The remaining
processes (HþH− → γγ, HþH− → γZ, HþH → ZWþ,
HþA → ZWþ, HþH− → ZZ and HþH− → hh) were
kept at their tree-level values. For the loop-corrected

HþH− → WþW− we compared the result of the relic
density with full one-loop calculation, the subtraction of
the Sommerfeld correction [Eq. (5.2)], and the replacement
of the Sommerfeld contribution with its resummed classical
result [Eq. (5.3)]. As expected, we found no noticeable
change between the different implementation of the QED
Sommerfeld effect. As we saw above, all the cross sections
we calculated at one-loop are affected by a negative
correction for μ̄ ¼ MH. Here we recall that we had taken
as input α ¼ αð0Þ; the sign and size of the corrections are
not due to the running of α. Smaller one-loop cross sections
compared to tree level translate to a larger relic density than
derived from tree-level cross sections. This is corroborated
by the value Ωh2 ¼ 0.12494 that we find. For μ̄ ¼ MH=2,
the loop corrections are smaller, and this naturally translates
into a smaller correction to the relic density. Indeed we find
a correction of only ∼ − 0.3%. This would tend to suggest
that this scale, for the aforementioned choice of parameters,
is optimal for reducing the size of the radiative corrections.
For μ ¼ 2MH, the correction to the relic density amounts to
∼15.3%. The scale variation is large compared to the
experimental precision on the relic density. Considering

FIG. 4. As in Fig. 3 but for HþH → Wþγ and HþA → Wþγ. The one-loop corrections are μ̄ independent since they are totally driven
by the gauge interactions.
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that these scenarios are quite fine-tuned, for an almost
degenerate scalar mass spectrum, our calculations show
that if one is performing a tree-level analysis one should not
strictly impose the very constrained experimental bound on
the relic density but one should allow a theoretical
uncertainty of at least about 10% for such benchmark
scenarios. We may ask whether the radiative corrections
change much the relative weights of the different processes.
Table I shows that these relative contributions experience
little change, independent of the scale chosen. The most
important change is therefore an almost uniform correction
on all the cross sections.

VII. NEWS FROM THE DARK SECTOR:
IMPACT OF λ2

λ2 does not enter the calculation of the annihilation cross
sections at tree level. But, just as the Z decay to muons does
not depend on the top quark mass at tree level, at one-loop
the top quark makes its effect felt. For the case at hand, there
is less subtlety for the nondecoupling of the self-coupling in
the dark sector. HH can rescatter before annihilating to
gauge bosons. The rescattering HH → HH involves the
self-coupling λ2. One therefore expects the one-loop anni-
hilating cross sections to depend on λ2. To investigate this
effect, we retain the same value of λL and consider two other
values of λ2, both well within the perturbative and positivity
of the potential bound, λ2 ¼ 0.1 and λ2 ¼ 1. Our results are
shown in Table II.We observe that there is a noticeable albeit
small change when λ2 is increased to 0.1, the scale variation
is reduced and the total electroweak corrections to the relic
density are below 7.8%. The case λ2 ¼ 1 is much more
interesting. The corrections are now quite large for each of
the three renormalization scales MH=2;MH and 2MH. For
all of these three scales, the tree-level benchmark point
would be ruled out. However, we note that the large-scale
uncertainty with corrections ranging between þ21.2% for

μ ¼ Mh=2 and−34.3% for μ ¼ 2MH means that a judicious
scale choice, within the rangeMH=2 to 2MH, can minimize
the corrections. A more thorough one-loop analysis is in
order by studying other scenarios with a larger range of
values for the other quartic couplings. One could find points
not allowed by a tree-level analysis that could be validated
by a one-loop analysis.We leave this interesting analysis for
a future publication. It looks however that although the
virtual effect of λ2 is not at all negligible it (fortunately or
unfortunately) introduces also a non-negligible scale varia-
tion to the corrections.More importantly, compared to a tree-
level treatment, one-loop corrections introduce not only a
scale uncertainty which is manageable for small values of λ2
but also a parametric dependence (dependence on λ2) which
is not caught by a tree-level treatment. In fact, this λ2
dependence turns out to be even larger than the scale
dependence. One could in fact use the measurement of
the relic density to constrain λ2.

VIII. CONCLUSIONS

The experimental value of the relic density as extracted
from Planck data is now at the percent level. For many
particle physics models of dark matter this is a very
stringent bound that reduces drastically the range of the
parameters in that model. Assuming a standard cosmo-
logical model based on freeze-out, the restriction on the
parameter space of the model arises from the contribution
of the annihilation and coannihilation cross sections that
build up the evaluation of the relic density. Unfortunately,
most analyses are based on tree-level evaluations of these
cross sections. The level of precision on the experimental
bound on the relic density calls for a theoretical prediction
that should go beyond a tree-level evaluation of these cross
sections. Such a program has been set up for the minimal
supersymmetric model [58–61,67–69] and the next-to-
minimal supersymmetric model [28]. After a first explor-
atory investigation in Ref. [70], the present paper has
extended this program to the IDM. As such this paper has
presented a full systematic renormalization of the model
and specialized in the first application into the so-called
heavy mass scenario. In fact, in order to be fully perturba-
tive, here we have covered a scenario with heavy scalar
masses not heavier than 550 GeV. We have performed full
one-loop calculations to seven annihilation/coannihilation
processes. We have interfaced these corrected cross sec-
tions with micrOMEGAs to turn these cross sections into a

TABLE I. Relative contributions to the relic abundance with
and without corrections. Note that although the cross sections for
the last five processes (identified with •) are not loop corrected,
their relative contribution could change.

Process LO μ ¼ mX μ ¼ mX=2 μ ¼ 2 ×mX

HH → WþW− 18% 16% 18% 14%
HH → ZZ 14% 14% 14% 14%
HþH− → WþW− 13% 15% 15% 15%
AA → WþW− 9% 8% 9% 7%
HþH → Wþγ 8% 7% 7% 8%
AA → ZZ 7% 7% 7% 8%
HþA → Wþγ 6% 6% 6% 7%
•HþH− → γγ 5% 5% 5% 6%
•HþH− → γZ 4% 5% 4% 5%
•HþH → ZWþ 3% 3% 3% 3%
•HþA → ZWþ 3% 3% 2% 3%
•HþH− → ZZ 2% 2% 2% 2%

TABLE II. Dependence of the relic density on the parameter λ2
and the influence of the scale variation. The percentage change is
shown within brackets.

λ2 μ ¼ MH μ ¼ MH=2 μ ¼ 2MH

0.01 0.12494 (6.9%) 0.11652 (−0.3%) 0.13469 (15.3%)
0.1 0.12210 (4.5%) 0.11843 (1.3%) 0.12601 (7.8%)
1 0.09950 (−14.9%) 0.14163 (21.2%) 0.07683 (−34.3%)
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more precise evaluation of the relic density assuming the
standard freeze-out mechanism. The one-loop calculations
have been implemented in an automated code for loop
calculations. We have used a mixed scheme where most of
the parameters are defined on shell based on the physical
masses of the model. Having exhausted all masses in the
model to fully define the model, one parameter has been
defined in MS, the coupling of the scalar DM,H, to the SM
Higgs. We have found that the one-loop corrections to the
relic density for this particular mass vary from −34% to
þ15% depending on the renormalization scale chosen to
define the h −H −H coupling and most importantly on the
value of the coupling λ2 which measures the interaction
solely within the dark sector between the extra scalars. This
is an indirect effect that should be taken into account
especially for λ2 of order 1. Its effects can be larger than the
renormalization scale uncertainty of the one-loop calcu-
lation, else the relic density calculation can be used to set a
limit on the dark-sector interaction. A tree-level calculation
of the relic density is totally insensitive to the couplings that
describe interaction within the dark sector. Preliminary
investigations for DMmasses beyond 750 GeV have shown
that electroweak Sommerfeld effects become important and
that some resummation needs to be performed and merged
with perturbative purely one-loop effects like those trig-
gered by rescattering in the dark sector (the indirect effects
of λ2). We leave the study of this mass range to a
forthcoming publication. Note that a for masses beyond
1 TeV, a purely nonperturbative treatment has been given in
[5,25]. Other viable parameter space of the IDM is the low
mass regime with MH ≈Mh=2. This requires the calcu-
lation of 2 → 3 processes at one-loop for the evaluation of
the relic density. We also leave this application for a
forthcoming publication.
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APPENDIX A: FEYNMAN RULES

We give below the Feynman rules of the trilinear and
quadrilinear couplings among the scalars of the model
using the parametrization of Eq. (2.19).

1. Cubic Higgs couplings

h − h − h∶ − 3i

�
M2

h

v
−

T
v2

�
; ðA1Þ

h −H −H∶ − 2i
�
M2

H − μ22
v

�
¼ −iλLv; ðA2Þ

h − A − A∶ − 2i

�
M2

A − μ22
v

�
¼ −iλAv; ðA3Þ

h −Hþ −H−∶ − 2i

�
M2

H� − μ22
v

�
¼ −iλ3v: ðA4Þ

2. Quartic Higgs couplings

h − h − h − h∶ − 3i

�
M2

h

v2
−

T
v3

�
; ðA5Þ

h − h −H −H∶ − 2i

�
M2

H − μ22
v2

�
¼ −iλL; ðA6Þ

h − h − A − A∶ − 2i

�
M2

A − μ22
v2

�
¼ −iλA; ðA7Þ

h − h −Hþ −H−∶ − 2i

�
M2

H� − μ22
v2

�
¼ −iλ3; ðA8Þ

H −H −H −H∶ − 6iλ2; ðA9Þ

A − A − A − A∶ − 6iλ2; ðA10Þ

H −H − A − A∶ − 2iλ2; ðA11Þ

H −H −Hþ −H−∶ − 2iλ2; ðA12Þ

A − A −Hþ −H−∶ − 2iλ2; ðA13Þ

Hþ −H− −Hþ −H−∶ − 4iλ2: ðA14Þ
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APPENDIX B: COUNTERTERM FOR λ2

The MS counterterm for λ2 can be obtained from
adapting the beta functions of the two Higgs doublet
model to the IDM given in Ref. [71] for example. In
particular, we can write

δλMS
2 ¼ 1

32π2
ðβ̂Sλ2 þ β̂gλ2ÞCUV; ðB1Þ

with

β̂Sλ2 ¼ 24λ22 þ 2λ23 þ 2λ3λ4 þ λ24 þ λ25; ðB2Þ

β̂gλ2 ¼
3

8
ð3g4 þ g04 þ 2g2g02 − 3λ2ð3g2 þ g02ÞÞ; ðB3Þ

where g ¼ e=sW; g0 ¼ e=cW .
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