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We analyze the Callan-Symanzik equations when scale invariance at a nontrivial infrared (IR) fixed
point αIR is realized in the Nambu-Goldstone (NG) mode. As a result, Green’s functions at αIR do not
scale in the same way as for the conventional Wigner-Weyl (WW) mode. This allows us to propose a
new mechanism for dynamical electroweak symmetry breaking where the running coupling α “crawls”
towards (but does not pass) αIR in the exact IR limit. The NG mechanism at αIR implies the existence of a
massless dilaton σ, which becomes massive for IR expansions in ϵ≡ αIR − α and is identified with the
Higgs boson. Unlike “dilatons” that are close to a WW-mode fixed point or associated with a Coleman-
Weinberg potential, our NG-mode dilaton is genuine and hence naturally light. Its ðmassÞ2 is

proportional to ϵβ0ð4þ β0ÞF−2
σ hĜ2ivac, where β0 is the (positive) slope of the beta function at αIR,

Fσ is the dilaton decay constant and hĜ2ivac is the technigluon condensate. Our effective field theory for
this works because it respects Zumino’s consistency condition for dilaton Lagrangians. We find a closed
form of the Higgs potential with β0-dependent deviations from that of the Standard Model. Flavor-
changing neutral currents are suppressed if the crawling region α≲ αIR includes a sufficiently large
range of energies above the TeV scale. In Appendix A, we observe that, contrary to folklore,
condensates protect fields from decoupling in the IR limit.

DOI: 10.1103/PhysRevD.100.095007

I. WW OR NG MECHANISM
AT FIXED POINTS?

The discovery of the Higgs boson has focussed attention
on strongly coupled electroweak theories that can produce a
light scalar. Crawling technicolor (TC) is a new proposal
for this.
The main idea of crawling TC is that there is a conformal

limit of dynamical electroweak theory at which the Higgs
boson corresponds to a zero-mass dilaton. This differs
fundamentally from recent work on “dilatonic” walking

gauge theories [1–5] in that we have a true dilaton: it does
not decouple in the relevant conformal limit.
Modern approaches to the conformal properties of field

theories depend on a key assertion from long ago: renorm-
alization destroys the conformal invariance of a theory at all
couplings α except at fixed points where the ψ function of
Gell-Mann and Low or the related β function of Callan and
Symanzik (CS) vanishes.
At a fixed point, exact conformal invariance corresponds

to the limit θμμ → 0, where θμν is the energy-momentum
tensor (improved [6] when scalar fields are present). Like
other global symmetries, this symmetry can be realized in
two ways [7]:
(1) The Wigner-Weyl (WW) mode, where conformal

symmetry is manifest, Green’s functions exhibit
power-law behavior, and all particle masses go
to zero.

(2) The Nambu-Goldstone (NG) mode, where there is a
massless scalar boson of the NG type (a genuine
dilaton) that allows other masses to be nonzero.
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There are no theoretical grounds for preferring one
mode over the other: consistent model field theories that
exhibit scale invariance in either theWWor NGmode exist.
The choice ultimately depends on phenomenological
requirements.
Dilaton Lagrangians were invented long ago [8–12].

They were used recently to construct chiral-scale pertur-
bation theory [13–15] for three-flavor quantum chromo-
dynamics (QCD) with a nonperturbative infrared (IR)
fixed point.
Nevertheless, most theoretical discussions of IR fixed

points, such as all work on dynamical electroweak sym-
metry breaking since 1997 [16], implicitly assume that the
WW mode of exact scale invariance is realized at the fixed
point. This is natural if perturbation theory is the guide,
since the NG mode is necessarily nonperturbative. This
choice was also influenced by Wilson’s pioneering work on
ultraviolet (UV) fixed points [17]. As he noted in footnote
21 of Ref. [17], the NG scaling mode is a phenomeno-
logical possibility but he had no way of applying his
methods to that case. Accordingly, he designed his theo-
retical framework for the WW mode and required [18] that
the nonlocality of rescaled interaction Hamiltonians be
short range. Subsequent observations in lattice QCD of
long-range effects such as pions, which are not an obvious
consequence of Wilson’s method, indicate that a self-
consistent procedure to replace the Wilsonian framework
when dynamics chooses the NG scaling mode may not be
necessary after all.1

There is extensive theoretical and phenomenological
interest in the possibility that α runs to an IR fixed point
in non-Abelian gauge theories. Investigations of this type
should be distinguished according to the manner in which
conformal symmetry is realized.
TheWWmode is associated with the conformal window,

where the signal for a fixed point is the scaling of Green’s
functions. For Nf fermion gauge triplets, WW-mode fixed
points are seen in lattice studies [20–24] in the range
9 ⪅ Nf ≤ 16. The lower edge of the conformal window is
thought to lie between Nf ¼ 8 and Nf ¼ 12, with the value
Nf ¼ 12 being debated currently [25–27]. At a WW-mode
fixed point αww, massive particles and all types of NG
bosons are forbidden.
The NG mode corresponds to small values of Nf outside

the conformal window. Much of this article is devoted to
explaining why this possibility is so often overlooked. In
particular, i) the lattice results above are not applicable
because Green’s functions do not scale at a fixed point in
the NGmode (Secs. II and VII), and ii) neither confinement

nor dimensional transmutation can be used to prove any-
thing about the IR running of α (Sec. II and Appendix A).
Indeed, there have been many attempts (reviewed in
Ref. [28]) to find IR fixed points for small Nf, but the
outcome is unclear: there is no reliable theory of non-
perturbative gauge theory beyond the lattice, and lattice
investigations of IR behavior for small Nf are in their
infancy. The signal for a fixed point in the NG mode
would be either α tending to a constant value αIR, or better
(given the scheme dependence of α), the presence of a light
scalar particle (a pseudodilaton σ) with M2

σ linearly
dependent on the techniquark mass mψ as the TC limit
mψ → 0 is approached. Then conformal symmetry is
hidden, so particle masses and scale condensates such
as2 hψ̄ψivac can be generated dynamically in the conformal
limit α ⇁ αIR, as in the left-hand diagram of Fig. 1.
The result is a new theoretical possibility which we

call “crawling technicolor.” The Higgs boson corresponds
to the dilaton of the scaling NG mode at αIR. Its small mass
is due to the proximity of α to αIR at the Standard Model
(SM) energy scale, which is IR relative to the TC scale.
Unlike all other Higgs-boson theories, crawling TC is an
expansion about a limit _D → 0 with Djvaci ≠ 0, where D
generates dilatations. This theory is unique in being an
expansion about a genuine scaling limit in the NG mode
with a genuine dilaton. It has its own phenomenology
(Secs. III–VIII), distinct from all others.
Unlike WW-mode fixed points, it is not possible to

understand this scenario from a perturbative point of view.
Already, small-Nf lattice studies have shown that the
dynamics of gauge bosons and fermions with zero
Lagrangian (or “current”) masses can drive α while
producing hadronization, a nonperturbative effect. These
dynamical variables do not drop out of the analysis because
TC hadrons are created. They will remain the basic
variables of any nonperturbative method to show that αIR

exists, irrespective of whether one has written down an
effective low-energy theory or not. The effective theory will
be the result, not the cause, of the existence of αIR.
The dynamical setting of our theory requires an analysis

of the CS equations near IR fixed points in the NG mode,
something that, to the best of our knowledge, has not been
attempted before. This topic is introduced in Sec. II.
The main result is that conventional scaling equations are

replaced by soft-dilaton theorems. That is why NG-mode
scale invariance produces scale-dependent amplitudes.

1Wilson’s framework has recently been used to analyze the NG
mode at a UV fixed point in the OðNÞ model in three dimensions
[19]. In practice, the NG mode is more practical for IR fixed
points because soft-dilaton theorems are derived from low-energy
expansions.

2A misconception that fermion condensates decouple in the IR
limit has crept into the literature; reasons why that idea fails are
given in Appendix A. Having the chiral condensate act as a scale
condensate was proposed for strong interactions in Refs. [10,29].
This was later extended to QCD in chiral-scale perturbation
theory [13–15], of which crawling TC is a technicolored
analogue. Reference [5] cited Refs. [13–15] as forerunners for
their TC theory, but the IR fixed point considered in Ref. [5] is
actually in the WW mode, as in walking TC.
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It reinforces a key point made above: lattice investigations
of the conformal window [16,20–22,24,27] assume a
power-law behavior for Green’s functions at fixed points,
so they do not exclude NG-mode fixed points occurring at
small Nf values [14,23].
Section III introduces crawling TC, a new dynamical

mechanism for electroweak theory. As indicated above, we
assume the existence of an IR fixed point αIR in the NG
mode at which both electroweak and conformal symmetry
are hidden2. This happens if there is a fermion condensate
hψ̄ψivac ≠ 0 at αIR. Crawling TC differs from the standard
theory—walking TC—in several key ways that are sum-
marized in Fig. 1 (left diagram for crawling TC and right
diagram for walking TC). In crawling TC, the Higgs boson
is identified as the pseudodilaton for α≲ αIR. Unlike other
“dilaton” proposals, our pseudodilaton does not decouple at
αIR and so we can legitimately argue that it is naturally light
for α≲ αIR. An explicit formula is derived for the pseudo-
dilaton mass in terms of the parameters of the underlying
gauge theory at the fixed point; this follows from a direct
application of the CS analysis of Sec. II.
This leads to the following general observations (Sec. IV):
(1) A careful distinction must be made between a theory

like crawling TC where exact scale invariance is
realized in the NG mode, and a large class of theories
basedon scalons [30]. Scalons are not genuinedilatons
because the scale-invariant limit inwhich they become
exactly massless is in the WW mode characteristic of
an unconstrained polynomial Lagrangian.

(2) In a Lagrangian formalism, a scaling NG mode is
possible if a real scalar field χ that scales homo-
geneously obeys the scale-invariant constraint
χ > 0, e.g., when written ∼ expðσ=FσÞ in terms of
an unconstrained field σ. However, a scaling NG
mode is guaranteed to exist only if amplitudes are
shown to depend on dimensionful constants in the
scale-invariant limit.

(3) In 1970, Zumino (on page 472 of Ref. [11]) ob-
served that dilaton Lagrangians are consistent only
if ϕ4 interactions disappear in the limit of scale

invariance. That avoids problems with the conformal
NG mode of λϕ4 theory found by Fubini 6 years
later [31]—a point largely overlooked since then.

(4) Zumino’s condition is stable under NG-mode re-
normalization of the nonlinear theory, where NG
bosons couple via derivative interactions.

Following brief remarks about phenomenology in
Sec. V, the construction of the low-energy effective field
theory (EFT) for crawling TC is considered in Sec. VI. The
resulting EFT looks like an electroweak chiral Lagrangian
[32–34] with a generic Higgs-like scalar field h [35–45],
but in our theory, the NG mode for exact scale invariance
requires us to constrain h and verify that the equivalence
theorem permits our change of field variables σ → h. As a
result, we obtain a closed form for the Higgs potential as a
function of h. It differs from the SM Higgs potential by
terms depending on β0.
Section VII contains a discussion of signals for NG-

mode fixed points which may be seen in lattice inves-
tigations. In particular, we note that observations [46–49] of
a light scalar particle for Nf ¼ 8 flavors may indicate the
presence of an NG-mode IR fixed point in the Nf ¼ 8

theory. Prompted by recent work [5,44,45] on “dilaton-
based” potentials, we consider testing our Higgs potential
on the lattice in order to determine β0.
The main text concludes in Sec. VIII with a brief review

of the key points and an analysis showing that the effects of
flavor-changing neutral currents (FCNCs) can be naturally
suppressed in crawling TC.
There are five appendices. Appendix A shows that the

assertion2 that condensates decouple in the IR limit is
underivable and contradicts QCD. Appendix B reviews the
original current-algebraic approach to soft-pion theorems
and their extension to scale [29,50,51] and conformal
[52–54] symmetry. Appendix C examines how gluon
and technigluon condensates may be defined without
relying on perturbative subtractions. Appendix D describes
the NG-mode scale-invariant world at αIR: most amplitudes
depend on dimensionally transmuted masses, but coeffi-
cient functions in short-distance expansions are shown to

FIG. 1. Crawling and walking scenarios for the TC β function in SUð3Þ gauge theories withNf Dirac flavors. Our proposal is shown in
the left diagram: for small Nf values outside the conformal window, a fermion condensate hψ̄ψivac ≠ 0 forms at nonzero coupling and
remains nonvanishing at the IR fixed point αIR (NG mode). The solid curve in the right diagram is for a walking gauge theory on the
lower edge of the conformal window (largeNf consistent with hψ̄ψivac ≠ 0). The dashed curve is for a theory with a still largerNf inside
the conformal window; it has an IR fixed point αww where scale invariance is manifest (WWmode): hψ̄ψivac ¼ 0. The gauge coupling α
of the solid curve walks past αww and continues into its IR region α ≫ αww, where its jβj is assumed to be large and (say) linear.
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obey the same scaling and conformal rules as leading
singularities in WW-mode theories. Finally, Appendix E
reviews formulas for the anomalous dimension of the trace-
anomaly operator.
In standard terminology, a symmetry realized in the NG

mode is said to be “spontaneously broken.” As noted by
Dashen long ago [55], this can be misleading: a global
symmetry in the NG mode is hidden, not broken. Similarly,
the term “electroweak symmetry breaking” misleads, since
gauge-invariant physical quantities are necessarily invariant
under the global chiral subgroup of the local gauge group.
Of course, all of this is well known. However, in crawling
TC, we have to deal with the NG mode not just for chiral
invariance but also for the less familiar case of scale
invariance as well. In this paper, we take care to avoid
the terms “spontaneous” and “electroweak symmetry
breaking” because, in a scaling context, they are so easily
confused with explicit symmetry breaking.
Throughout, the gauge constant g and coupling α ¼

g2=ð4πÞ refer to TC. Our notation for the gluon and
electroweak gauge fields will be GA

μ ;Wa
μ; Bμ, with gs,

gw, g0w and GA
μν;Wa

μν; Bμν for the corresponding coupling
constants and field-strength tensors. To indicate TC fields,
we will add a hat, i.e., ĜA

μ and Ĝ
A
μν. For symbols like θμν and

the dilaton σ, we will let the context distinguish between
TC and QCD. Dilaton decay constants are Fσ for TC and fσ
for QCD [13–15]:

hvacjθμνjσðqÞiTC ¼ ðFσ=3Þðqμqν − gμνq2Þ;
hvacjθμνjσðqÞiQCD ¼ ðfσ=3Þðqμqν − gμνq2Þ: ð1Þ

The phases of jσiTC;QCD are chosen such that Fσ and fσ are
positive.

II. NG-MODE SOLUTIONS OF THE
CS EQUATIONS

The basic idea of this section is to understand the CS
equation as a Ward identity for scale transformations near
an IR fixed point in the NG mode. The method is similar to
the original non-Lagrangian procedure for analyzing chiral
condensates; see Appendix B for a review.
Let us begin with TC where the Lagrangian is chiral

SUðNfÞL × SUðNfÞR symmetric. For scale transforma-
tions, the relevant operator is the divergence of the
dilatation current Dμ ¼ xαθαμ. It is governed by the trace
anomaly [56–59], which for massless fermion fields takes
the form

∂μDμ ¼ θμμ ¼ βðαÞ
4α

fĜA
μνĜ

Aμν − hĜA
μνĜ

Aμνivacg; ð2Þ

where hĜ2ivac is the technigluon condensate hvacjĜ2jvaci
and jvaci is the nonperturbative vacuum state. We apply
Eq. (2) at zero momentum transfer, where there is a

standard prescription3 for a connected insertion of the
renormalized action into Green’s functions:

iα
∂
∂α

����
μ;J⃗

⟷ −
1

4

Z
d4xĜ2

����
conn

: ð3Þ

Here α is the renormalized TC coupling, μ is the renorm-
alization scale, and J⃗ are source functions for renormalized
spectator operators fOng. This prescription is valid pro-
vided that eachOn is constructed from covariant derivatives
but is otherwise α independent in the following sense.
Briefly, ignoring details of gauge fixing and ghosts,

the rule (3) is a consequence [62] of absorbing the bare
coupling constant gB into the functional measure

DÂμB → DÂμB; ÂμB ¼ gBÂμB: ð4Þ

Then all operators ðOnÞB constructed from covariant
derivatives alone, including

ĜμνB ¼ gBĜμνB; ð5Þ

are gB independent. In the action, all dependence on gB
appears as a constant source 1=g2B for − 1

4
Ĝ2
B. A textbook

argument [63] relates terms linear in the sources 1=g2B and

J⃗ B to their renormalized counterparts:

Z
d4x

�
−

1

4g2B
Ĝ2
B þ J⃗ BðxÞ · O⃗BðxÞ

�

¼
Z

d4x

�
−

1

4g2
Ĝ2 þ J⃗ ðxÞ · O⃗ðxÞ

�
þOðJ 2Þ: ð6Þ

Then the rule follows from α ¼ g2=ð4πÞ. The term OðJ 2Þ
represents subtractions of quadratic or higher order in J for
multiple insertions of the composite operators On.
In our analysis, the operator in the technigluon con-

densate appears as a spectator, so an α-independent choice
such as

O ¼ 1

4π2
Ĝ2 ¼ α

π
Ĝ2 ð7Þ

is appropriate when using Eq. (3) (the normalization is
that originally chosen [64] for the gluon condensate).
In Appendix C, we show that there is a multiplicatively
renormalizable version of O, i.e., one which does not mix
with the identity operator I. These twin requirements are

3This is an example of the renormalized action principle. The
simplest version of it [60] is for minimal schemes such as
dimensional renormalization, where gauge-invariant composite
operators have block-diagonal renormalization matrices. See the
discussion in Ref. [61].
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essential if ambiguities in the definitions of gluon and
technigluon condensates are to be avoided.
Consider the CS equation for (say) the vacuum expect-

ation value (VEV) of OðxÞ:
�
μ
∂
∂μþ βðαÞ ∂

∂αþ γOðαÞ
�
hvacjOð0Þjvaci ¼ 0: ð8Þ

Let us move the β∂=∂α term to the right-hand side of this
formula. Then Eqs. (2) and (3) imply that the right-hand
side is given by a suitably renormalized zero-momentum
insertion of −iθμμ:

�
μ
∂
∂μþ γOðαÞ

�
hvacjOð0Þjvaci

¼ −i lim
q→0

Z
d4xeiq·xThvacjθμμðxÞOð0Þjvacisubtr: ð9Þ

The notation hisubtr indicates that small-x singularities have
been subtracted to renormalize the answer minimally with a
counterterm of order θμμ; it will not affect our conclusions.
The result (9) remains valid [modulo OðJ 2Þ terms in
Eq. (6)] for a product

Q
O if γQOðαÞ is the sum of γ

functions of individual spectator operators. Note that the
limit q → 0 in Eq. (9) is taken for θμμ ≠ 0 when there are no
massless states to which θμμ can couple.
Having taken the limit q → 0, what happens to the right-

hand side of Eq. (9) if there is an IR fixed point which
allows a second limit4 θμμ → 0 to be taken?
The standard procedure is to set all amplitudes involving

θμμ to zero. In effect, this assumes that there is no NG
mechanism, i.e., that scale invariance is realized in the WW
mode:

�
μ
∂
∂μþ γOðαwwÞ

�
hvacjOð0Þjvaciww ¼ 0: ð10Þ

Then the theory at a WW fixed point αww is manifestly scale
and conformal invariant. Green’s functions scale according
to power laws, with μ dependence reduced to trivial factors
μ−γOðαwwÞ. There is no mass gap, so particles (if they exist)
are massless. Dimensional transmutation does not occur.
In particular, fermions cannot condense at αww if scale
invariance is in the WW mode. Instead, it must be assumed
that fermion condensation is possible only when scale
symmetry is explicitly broken. For example, in walking
gauge theories [16], α is thought to vary rapidly after it
walks past αww because, by assumption, a large θμμ is
necessary for the region where hψ̄ψivac ≠ 0 (Fig. 1, right
diagram).

If scale invariance is realized in the NG mode at αIR, as
we propose, there are amplitudes for which the right-hand
side of Eq. (9) does not vanish at αIR as θμμ → 0. That can
occur if the sum over physical states jni in the dispersion
integral for ThθμμðxÞOð0Þisubtr includes the exchange of a
pseudodilaton σ:

I ¼
X
n

jnihnj ¼ jσihσj þ
X
n≠σ

jnihnj: ð11Þ

Here
P

n≠σ includes multi-NG boson states and states
containing non-NG particles; the latter have invariant mass
Mnon-NG ≠ 0 in the scale-symmetry limit Mσ → 0. The
exchange of σ produces a pole term

Z
d4xeiq·xThvacjθμμðxÞOð0Þjvaciσ polesubtr

¼ hvacjθμμð0ÞjσðqÞi i
q2 −M2

σ
hσðqÞjOð0Þjvaci; ð12Þ

which does not depend on the subtraction procedure.
Taking the limit q → 0 with Mσ ≠ 0, we see that the
zero-momentum propagator

i=ðq2 −M2
σÞjq¼0 ¼ −i=M2

σ; ð13Þ

cancels the M2
σ dependence of the matrix element

hvacjθμμjσi ¼ −FσM2
σ; ð14Þ

where Fσ is defined in Eq. (1). In the scale-invariant limit,
Fσ remains nonzero because σ is a dilaton, and so Eq. (9)
implies our key result:

�
μ
∂
∂μþ γOðαÞ

�
hvacjOð0ÞjvaciNG

→ Fσhσðq ¼ 0ÞjOð0ÞjvaciNG; θμμ → 0: ð15Þ

States jn ≠ σi do not affect this result: at most, relative to
the σ-pole term, their contributions are OðM2

σ lnMσÞ for
two-dilaton states and OðM2

σÞ for other states, including
the subtraction. Equation (15) remains valid ifO is replaced
by unordered products

Q
n OnðynÞ of operators On with

scaling functions γnðαÞ,
�
μ
∂
∂μþ

X
n

γnðαIRÞ
��

vac

����
Y
n

OnðynÞ
����vac

�
NG

¼ Fσ

�
σðq ¼ 0Þ

����
Y
n

OnðynÞ
����vac

�
NG

; α ⇁ αIR ð16Þ
4Care must be taken with the order of limits, as noted in

Appendix B for the chiral case. The analysis, but not the final
answer, depends on which limit is taken first.
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provided that light-like momenta in 0þþ channels with σ
poles are avoided.
Two features of Eqs. (15) and (16) are unfamiliar:
(1) They are soft-meson theorems which have not been

derived directly from an effective Lagrangian. That
reflects the fact that effective Lagrangians for scale
invariance were not constructed with the CS equa-
tion in mind.

(2) The CS equation cannot be formulated at α ¼ αIR in
the presence of a dilaton. Results such as Eq. (15)
refer to the limit α ⇁ αIR.

The rest of this section examines the peculiarities of IR
fixed points in the NG scaling mode.
The most important point is that the world at αIR is

not the same as the physical world on 0 < α < αIR. In
particular, short-distance behavior at αIR is not governed by
asymptotic freedom because α is fixed: it cannot run
towards the origin α ¼ 0.5 The theory at αIR is exactly
scale invariant but in the NG mode, amplitudes may be
complicated functions of dynamically transmuted scales.
Exceptions are coefficient functions of operator product
expansions at short distances, which are manifestly scale
and conformal covariant; the proof (Appendix D) is similar
to that for chiral symmetry [65].
Consider what happens at αIR when the conserved

dilatation current Dμ carries momentum q ≠ 0 in a scaling
Ward identity (Appendix B 3), and then the limit q → 0 is
taken, i.e., after the limit of scale invariance θμμ → 0. That
yields a soft-dilaton formula

Fσhσðq ¼ 0ÞjOð0ÞjvaciNG ¼ dOhvacjOð0ÞjvaciNG ð17Þ

where

dO ¼ dynamical dimension ofO at αIR: ð18Þ

In an effective Lagrangian formalism for dilatons with O
represented by an external effective operator

Oeff ¼ hOivac expðdOσ=FσÞ
¼ hOivacf1þ dOσ=Fσ þOðσ2Þg; ð19Þ

Eq. (17) arises from the term linear in σ. The Källén-
Lehmann representation requires dO ≥ 1 for all local opera-
torsO ≠ I [66], so every soft-σ amplitude hσjOjvaciwhich
does not vanish in the limit θμμ → 0 corresponds to a scale
condensate hOivac ≠ 0 (and similarly for O →

Q
nOn).

Not all scale condensates are chiral condensates, but if
hψ̄ψivac ≠ 0, the vacuum at αIR breaks both chiral and
scale invariance.

Connecting this with the physical region involves
a subtlety: in contrast with UV fixed points, the dyna-
mical dimension of an operator may change at an IR
fixed point. That is because operator dimension is deter-
mined by short-distance behavior: in the physical region
0 < α < αIR, asymptotic freedom requires it to take its
canonical value

dynamical dimension ofO ¼ dcanO ; 0 < α < αIR

ð20Þ

up to renormalized Schwinger terms (Appendix C 1),
whereas dO is determined by the short-distance properties
of the world at αIR (Appendix D).
In the limit of scale invariance at αIR, there is a continuum

of vacua related by scale transformations. In the first half of
Appendix D, we explain why physics does not depend on
which vacuum is chosen. For 0 < α < αIR, scale invariance
is broken explicitly, and there is a unique vacuum to which
quantities like γOðαÞ refer.
The relation between dO and dcanO can be easily seen by

considering the connected two-point function

ΔþðxÞ ¼ hvacjOðxÞOð0ÞjvaciNG; conn ð21Þ

at short distances x ∼ 0, where the effects of dimensional
transmutation are nonleading. In the physical region
0 < α < αIR, we have

ΔþðxÞ ∼ fconstantgðx2Þ−dcanO ðlnðμ2x2ÞÞ2γ1=β1 ; ð22Þ

where

βðαÞ ∼ −β1α2 and γOðαÞ ∼ γ1α; α → 0 ð23Þ

define the one-loop coefficients β1 > 0 and γ1 > 0 for an
asymptotically free theory. At αIR, according to Eq. (16),
ΔþðxÞ satisfies the relation

�
μ
∂
∂μþ 2γOðαIRÞ

�
ΔþðxÞ

¼ FσhσjOðxÞOð0ÞjvaciNG; conn: ð24Þ

Consider contributions to each side from the operator
product expansion for OðxÞOð0Þ. Clearly, the term propor-
tional to the dimension-0 identity operator I that contrib-
utes to the left-hand side of Eq. (24) dominates the leading
contribution to the right-hand side from a dimension ≥ 1
operator ≠ I:

�
μ
∂
∂μþ 2γOðαIRÞ

�
ΔþðxÞ ∼ 0: ð25Þ

5In chiral-scale perturbation theory for three-flavor QCD
[13,14], the asymptotic value RIR of the Drell-Yan ratio for
eþe− annihilation at αs ¼ αsIR is not the same as the QCD value
RUV ¼ 2. The most recent estimate is 2.4 ≲ RIR ≲ 3.1 [15].
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So the leading singularity of Δþ has μ dependence
∼μ−2γOðαIRÞ. Since x is the only other dimensionful quantity6

which can appear in the result, we have for α ¼ αIR

ΔþðxÞ ∼ fconstantgðx2Þ−dcanO ðμ2x2Þ−γOðαIRÞ; ð26Þ

which corresponds to

dO ¼ dcanO þ γOðαIRÞ: ð27Þ

The role of dimensional transmutation requires some
discussion. Often it is regarded as a one-loop phenomenon
which, in that context, breaks scale invariance explicitly, as
Coleman and Weinberg [67] discovered for scalar quantum
electrodynamics (QED) before the discovery of asymptotic
freedom. But in non-Abelian gauge theories, the one-loop
approximation makes sense only in the UV limit, where
there is a dimensionally transmuted scale ΛQCD=TC which
normalizes arguments of UV logarithms lnðq2=Λ2

QCD=TCÞ
as q → ∞. Of course, dimensional transmutation persists
outside the UV region because it is necessary to incorporate
nonperturbative effects like fermion condensation into
QCD and (by analogy) TC. Chiral perturbation theory
and EFTs for TC are low-energy expansions with their own
dimensionally transmuted scales

ΛχPT ¼ 4πffπ orFπg and non-NG masses ð28Þ

which have nothing to do with ΛQCD=TC. They normalize
arguments of IR logarithms

lnðq · q0 or fm orMg2π=Λ2
χPTÞ ð29Þ

for q · q0 ∼ fm orMg2π ∼ 0. In chiral-scale perturbation
theory or crawling TC, dimensional transmutation persists
at αsIR or αIR through dependence on the dilaton decay
constants 4πfσ or 4πFσ. There are no theoretical reasons,
beyond a disregard for old but well-established work on the
scaling NG mode for strong interactions [51], to suppose
that dimensional transmutation a) necessarily “turns itself
off” as a fixed point is approached, or b) prevents an NG-
mode fixed point from forming anywhere outside the
conformal window, with scale invariance hidden and not
explicitly broken.7 At present, lattice calculations are the
only guide:
(1) If Nf is large enough, WW-mode IR fixed points

with manifestly scale-invariant Green’s functions are

observed, in agreement with Eq. (10). The results
define what is meant by the conformal window [22].

(2) For smaller values of Nf outside the conformal
window, where dimensional transmutation occurs, it
remains to be seen if there are NG-mode IR fixed
points [23]. If so, scale invariance is not manifest
because of Eqs. (15) and (16). Signals for this on the
lattice will be considered in Sec. VII.

Let us recall how, despite the absence of fermion mass
terms in the Lagrangian, dimensional transmutation can
arise in massless QCD and TC. Observable constants M
with dimensions of mass, such as decay constants and
non-NG masses, are permitted because renormalization
group (RG) invariance

�
μ
∂
∂μþ βðαÞ ∂

∂α
�
M ¼ 0 ð30Þ

is consistent withM being proportional to the sole scale in
the theory, the renormalization scale μ:

M¼μ exp

�
−
Z

α

κM

dx=βðxÞ
�
; 0< κM<αIR: ð31Þ

Here κM is a dimensionless constant which depends onM
but not on α or μ. As is well known [69], the non-
perturbative nature of M can be verified by considering
the limit α ∼ 0 at fixed μ: from Eq. (23), there is an essential
singularity due to the factor expf−1=ðβ1αÞg which ensures
the absence of a Taylor series in α.
In the IR limit, two points of view are possible. One, to

be discussed below, is to treat amplitudesA as functions of
α, μ and various momenta fpg and consider what happens
as α tends to αIR. The other is to note that, since observable
constantsM are annihilated by the CS differential operator
in Eq. (30), they act as constants of integration in CS
equations for amplitudes, i.e., the CS equations allow any
dependence onM consistent with engineering dimensions.
Therefore, if an amplitude is observable and hence RG
invariant, its dependence on α and μ can be entirely
replaced by a dependence on the transmuted masses M
alone. This matters: we want to apply approximate scale
invariance to physical amplitudes, so the limit θλλ → 0 is
taken at fixed M, not fixed μ.
Alternatively, as shown by the analysis leading to

Eq. (27), it can be useful to consider amplitudes depending
on operators O such as ðα=πÞĜ2 which are not RG
invariant. Such amplitudes can be treated as functions of
M and μ, with residual dependence on μ being retained in
the scale-invariant theory at the fixed point. For example,
the amplitude hOivac appearing in Eqs. (15) and (17) can be
written as

hvacjOð0ÞjvaciNG ∼ cOM
dcanO ðM=μÞγO ¼ cOMdO=μγO

ð32Þ

6By convention, the normalization of composite field operators
excludes dimensionful factors, so dcanO is the engineering dimen-
sion of O.

7As observed in a “note added” in Ref. [14], footnote 20 of
Ref. [4] missed these points. Contrary to footnote 8 of Ref. [68], it
is not possible to deduce anything about IR fixed points from the
one-loop formula for the beta function.
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for θλλ → 0, where the dimensionless constant cO does not
depend on μ or M.
The result (32) must not be confused with hyperscaling

relations in mass-deformed theories [70–72], where the
conformal invariance of a gauge theory in the WWmode is
explicitly broken by a mass term −mψ̄ψ in the Lagrangian.
Hyperscaling is a property of the scaling WW mode. All
VEVs hOivac and “hadron” masses Minside inside the
conformal window8 scale with fractional powers of the
Lagrangian parameter m:

hOivac ∼mfdcanO þγOðαwwÞg=f1þγmðαwwÞg;

Minside ∼m1=f1þγmðαwwÞg: ð33Þ

Not surprisingly, both hOivac and Minside in Eq. (33)
vanish in the limit m → 0 of scale invariance. That is not
the case for Eq. (32) because, unlikem,M is not a variable
current fermion mass in a Lagrangian. Rather,M is a fixed
non-Lagrangian constant associated with a condensate,
such as a decay constant or a non-NG technihadron mass
arising from nonzero constituentmasses ofm ¼ 0 fermions
(Appendix A). The key property of a scaling NG-mode
fixed point is that amplitudes depend on the nonzero scales
M in the scale-invariant limit θμμ → 0 (Appendix D), so
unlike Eq. (33), the right-hand side of Eq. (32) does not
vanish in that limit. Furthermore, if we add −mψ̄ψ to the
Lagrangian, nonzero results such as Eq. (32) are corrected
by terms linear in m, as expected in chiral perturbation
theory or its chiral-scale extension [13–15]; fractional
powers of m are never seen. There is no such thing as
hyperscaling in crawling TC.
Now let us check what happens when amplitudes are

treated as functions of α; μ; fpg as α tends to αIR at fixed μ.
Comparison with the β∂=∂α term in the CS equation (8)
shows that the right-hand side of Eq. (15) arises from the
singular α dependence of the condensate as α approaches
αIR for fixed μ:

∂
∂αhvacjOð0ÞjvaciNG∼

1

αIR−α

Fσ

β0
hσjOð0ÞjvaciNG: ð34Þ

This singularity is to be expected.9 The operator ∂=∂α
inserts O at zero-momentum transfer, so a pole due to a
zero-mass particle (the dilaton) coupled toOwill produce a
singular result. Note that it is only at the fixed point that this
is allowed. A singularity or lack of smoothness in the α

dependence of any amplitude within the interval 0 < α <
αIR would be a disaster: it would indicate a lack of
analyticity, such as a Landau pole, at a finite space-like
momentum.
Similarly, the fixed-μ limit α → αIR applied to Eq. (31) is

singular:

M ∼ μðαIR − αÞ−1=β0fconstantg; fixed μ: ð35Þ

Note that this implies

∂
∂αM

dO ∼
dOMdO

ðαIR − αÞβ0 ð36Þ

and hence, from Eq. (32),

∂
∂α hvacjOð0ÞjvaciNG ∼

dO
ðαIR − αÞβ0 hvacjOð0ÞjvaciNG;

ð37Þ

which shows that Eq. (34) is consistent with the soft-dilaton
theorem (17).
Equation (35) implies that, for M to remain finite in the

scaling limit θλλ → 0, μ tends to 0 according to the rule

μ ∝ ðαIR − αÞ1=β0 : ð38Þ

Singularities are removed when the μ, α dependence of
amplitudes is eliminated in terms of physical quantities.10

A simple example of μ dependence being related to a
soft-dilaton amplitude is when M in Eq. (31) is the mass
MP of a non-NG particle P. Then the scalar analogue
[51,74] of the Goldberger-Treiman relation (Fig. 2) applies:

μ
∂
∂μMP ¼ MP ¼ FσgσPP: ð39Þ

We close this section with a discussion of the analogue of
the low-energy theorem (15) for QCD. There the relevant

FIG. 2. Generation of the mass MP of a non-NG particle P via
the dominant σ pole in hPjθμμjPi, where −gσPPP̄P defines the
σPP coupling. In the scale-invariant limit θμμ → 0, MP remains
nonzero.

8In walking TC, there must be a phase transition at the sill of
the conformal window [73] that causes fermions to condense and
hence create NG and non-NG technihadrons outside the con-
formal window, but the distinction between spectra inside and
outside the window is usually left unclear. We reserve the term
“condensate” for VEVs which are nonzero in a symmetry limit
such as m → 0.

9Perhaps this could be exploited in searches for NG-mode
fixed points on the lattice (Sec. VII).

10This is similar to what happens in the large-Nc limit of QCD,
where the singularity fπ ∼

ffiffiffiffiffiffi
Nc

p
is eliminated by writing every-

thing in terms of the pion decay constant fπ .

CATÀ, CREWTHER, and TUNSTALL PHYS. REV. D 100, 095007 (2019)

095007-8



equations have extra terms because quarks q have mass
mq ≠ 0. When the trace anomaly [56–59] (with the vacuum
expectation value subtracted)11

θμμ ¼
�
βðαsÞ
4αs

GA
μνGAμν þ ð1þ γmðαsÞÞ

X
q

mqq̄q

�
− fVEVg

ð40Þ

and the CS equation

�
μ
∂
∂μþ βðαsÞ

∂
∂αs − γmðαsÞ

X
q

mq
∂

∂mq
þ γOðαsÞ

�

× hvacjOð0Þjvaci ¼ 0 ð41Þ

are compared, we find

�
μ
∂
∂μþ γOðαsÞ

�
hvacjOð0Þjvaci ¼ i lim

q→0

Z
d4xeiq·xT

�
vac

����
�X

q

mqq̄qðxÞ − θμμðxÞ
�
Oð0Þ

����vac
�

subtr
: ð42Þ

If heavy quarks have been decoupled, and the limit mq → 0 is taken for the light quarks q ¼ u, d, s as the IR fixed point is
approached, dilaton pole terms from both θμμ and

P
q mqq̄q may survive the limit [13–15]:�

μ
∂
∂μþ γOðαsÞ

�
hvacjOð0Þjvaci → fσhσjOð0Þjvaci

�
1 − ð3 − γmðαsIRÞÞðfπ=fσÞ2

�
m2

K þ 1

2
m2

π

	

m2

σ

�
: ð43Þ

III. CRAWLING TC: HIDDEN
ELECTROWEAK-SCALE SYMMETRY

TC is based on the idea [76–78] that electroweak
symmetry “breaking” is the dynamical effect of a gauge
theory which resembles QCD but whose coupling becomes
strong at scales of a few TeV. The trigger for this effect
is a techniquark condensate hψ̄ψivac ≠ 0. The resulting
technipions become the longitudinal components of the
W� and Z0 bosons, while the masses and couplings of the
other technihadrons are estimated by scaling up QCD
quantities, where the electroweak scale v ≃ 246 GeV plays
the role of the pion decay constant fπ ≃ 93 MeV.
An attractive feature of TC is that the hierarchy problem

is avoided: the mechanism for mass generation does not
rely on elementary Higgs-like scalars. Instead, masses are
generated dynamically through dimensional transmutation
[67], as in QCD.
When TC was invented, the Particle Data Group (PDG)

tables did not include QCD scalar JPC ¼ 0þþ resonances
below ≈1 GeV,12 so for many years, it was thought, by
analogy with QCD, that TC scalar particles would not be
seen below the TeV scale.
There is now strong evidence for a light, broad 0þþ

resonance f0ð500Þ in the QCD meson spectrum with mass

mf0 ≃ 441 MeV [79–81] (evidence which seems to have
been mostly overlooked in the TC literature), and also for a
narrow Higgs boson h at mh ≃ 125 GeV [82,83]. Given
these facts, can h be the TC version of the f0ð500Þ? At first
sight, the answer to this question is negative. An applica-
tion of the scaling rules mentioned above requires the TC
analogue f0T of f0 to have a large mass [84]

mf0T ≈ ðv=fπÞmf0 ¼ OðTeVÞ; ð44Þ
also, they seem to imply an OðTeVÞ width except for the
fact that the f0ð500Þ has plenty of phase space for its decay
into two pions, whereas there are no technipions for f0T to
decay into and (for a mass of 125 GeV) no phase space for
it to decay into WþW− or Z0Z0. But it is evident that this
estimate for the mass is much too large.
A convincing explanation for why the observed mass

mh ≃ 125 MeV is so small relative to TeV scales is hard to
find. That is a key problem shared by all theories of
dynamical Higgs mass generation, including TC and its
extensions. The most promising strategy is to suppose that
the Higgs is a pseudo-NG (pNG) boson of a hidden
symmetry. Then the mass acquired by the pNG boson
due to explicit symmetry breaking is protected by the
underlying symmetry [85,86]. A light Higgs mass can arise
if explicit symmetry breaking is due to physics at the
electroweak scale and hence small relative to the scale of
dynamical symmetry breaking.
In composite Higgs models [87–91], where the hidden

symmetry is internal, this mechanism is well understood:
the Higgs boson and all would-be NG bosons are placed in
the same multiplet of an extended group such as SOð5Þ
[92–94]. For a recent review of these models, see chapter III
of Ref. [95].

12The ϵð700Þ was excluded from the PDG tables in 1974. Its
successor f0ð500Þ was first mentioned in 1996, but became a
well-defined resonance only in the 2008 tables.

11For consistency, the γm terms in Eqs. (40) and (41) must
have opposite signs (unlike Ref. [14] where conventions
were changed during review). Here we choose the definition
γm ¼ −μ∂ lnmq=∂μ [75]. Then q̄q has dynamical dimension
3 − γmðαsIRÞ at a QCD fixed point αsIR, and similarly for ψ̄ψ in
crawling TC, where the notation becomes γmðαÞ and αIR.
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Our focus is on the main alternative: broken scale and
conformal invariance with a “dilatonic” Higgs boson. A
dilaton, or NG boson for conformal invariance, has the
property that it couples to particle mass [74]. At first, this
idea was applied to strong interactions, as reviewed in
Ref. [51]. A few years later, it was noted [96] that, in the
SM, tree-level couplings of the Higgs field are dilaton-like,
i.e., they couple to mass. The literature on dynamical Higgs
bosons spawned by this observation is unfortunately not
consistent about the meaning of “dilaton” and overlooks
the need to hide conformal invariance as it becomes exact.
The clearest examples of this are walking TC theories

with dilatonic modifications [1–5]. Consider the walking
region shown in the right-hand diagram of Fig. 1. TheWW-
mode fixed point lies within the conformal window where
dilatons cannot exist, but it is supposed that in the walking
region at the edge of the window, dynamics is affected by
“dilatons” due to a field dependence ∼ expðσ=FσÞ in an
effective Lagrangian. It is then argued (following a sug-
gestion in Ref. [97]) that these “dilatons” couple to an
operator which is small near the scale-symmetry limit

θμμ ¼ Oðα − αwwÞ; ð45Þ

and so they have a small mass protected by scale symmetry
at αww.
The flaw in this argument becomes evident when the

relation

M2
σFσ ¼ −hvacjθμμjσi ¼ Oðα − αwwÞ ð46Þ

is considered. In walking TC, the so-called “dilaton”
decouples from the theory as the WW-mode fixed point
is approached,

Fσ ∼ 0 for α ∼ αww ð47Þ

because there can be no scales at αww. Therefore, no
conclusion can be drawn about Mσ from Eq. (46). The
only general theorem governing particle decoupling is that
of Appelquist and Carazzone [98] for heavy particles.
In crawling TC (left diagram in Fig. 1), the IR fixed point

is in the NG mode, not the WW mode. As noted above
Eq. (15), the (pseudo)dilaton does not decouple as the fixed
point is approached,

Fσ → constant ≠ 0 as α → αIR ð48Þ

so from

M2
σFσ ¼ −hvacjθμμjσi ¼ Oðα − αIRÞ; ð49Þ

we can safely conclude that M2
σ is Oðα − αIRÞ and

hence small.

A precise formula for the pseudodilaton mass can be
obtained as an important application of Eq. (15). The result
is an analogue of the Gell-Mann–Oakes–Renner relation
[99] for 0− mesons.
To see this, consider the case O ¼ Ĝ2 with each side of

Eq. (15) multiplied by the factor 1
4
β=α. The result is

βðαÞ
4α

�
μ
∂
∂μþ γĜ2ðαÞ

�
hĜ2ivac → Fσhσjθμμjvaci; ð50Þ

where a simple derivation [13,14,61,100] (discussed in
Appendix E) implies

γĜ2ðαÞ ¼ β0ðαÞ − βðαÞ=α; β0ðαÞ ¼ ∂βðαÞ=∂α; ð51Þ

for the anomalous scaling function of Ĝ2. Equation (14)
implies that the right-hand side of Eq. (50) is given by
−M2

σF2
σ . For an IR expansion in ϵ ¼ αIR − α≳ 0 about the

fixed point, the left-hand side reads

βðαÞ
4α

�
μ
∂
∂μþ γĜ2ðαIRÞ

�
hĜ2ivac

¼ −
ϵβ0ð4þ β0Þ

4αIR

hĜ2ivac þOðϵ2Þ; ð52Þ

where the critical exponent β0 ¼ β0ðαIRÞ is positive (Fig. 1,
left diagram) and we have used dimensional analysis to
trade the μ∂=∂μ term for the engineering dimension of
hĜ2ivac. Equations (50) and (52) imply the desired mass
relation

M2
σ ¼

ϵβ0ð4þ β0Þ
4αIRF2

σ
hĜ2ivac þOðϵ2Þ; ð53Þ

which exhibits the pseudo-NG nature of σ explicitly.13

The requirement M2
σ ≥ 0 fixes the sign of the condensate:

hĜ2ivac ≥ 0.
This mass is protected by scale invariance at αIR because

the condition (48) ensures that our dilaton is a genuine NG
boson. That is what allows us to identify the pseudodilaton
in the crawling region near αIR as the Higgs boson with
mass much smaller than the TeV scale of TC.
This conclusion also applies if the techniquarks are given

a current mass mψ , as in the case of TC lattice simulations
where an extrapolation to the chiral limit mψ → 0 must be
performed. Since the fermion mass is an additional source
of explicit scale symmetry breaking, the IR expansion in ϵ
must be augmented by powers of mψ .

13A similar formula in Refs. [1,3] lacks the anomalous
dimension 4þ β0. The main problem is that its derivation
assumes θμμ ∼ 0 near a WW fixed point αww, where condensates
tend to zero and σ is not a pseudodilaton because it decouples
(Fσ ∼ 0).
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Repeating the same steps that led to our mass for-
mula (53), but this time for the operator11

O ¼ βðαÞ
4α

ĜA
μνĜ

Aμν þ ð1þ γmðαÞÞ
X
ψ

mψ ψ̄ψ ; ð54Þ

we find

M̃2
σF̃2

σ ¼
ϵβ0ð4þ β0Þ

4αIR

hĜ2ivac − ð3− γmÞð1þ γmÞmψ hψ̄ψivac
þOðϵ2; ϵmψ ;m2

ψÞ; ð55Þ

where M̃σ and F̃σ are the dilaton mass and decay constant
in the presence of mψ , γm is shorthand for γmðαIRÞ, and we
made use of the homogeneity equation

�
μ
∂
∂μþmψ

∂
∂mψ

− dcanO

�
hvacjOð0Þjvaci ¼ 0: ð56Þ

If hĜ2ivac can be reliably estimated (Appendix C), the
leading-order result (55) may be used to test candidate
theories of crawling TC on the lattice; see also Sec. VII.
Returning to the mψ ¼ 0 case, we note that the explicit

scale symmetry breaking responsible for the dilaton mass
arises from renormalization and is entirely nonperturbative.
That should be contrasted with
(1) the pion mass due to (chiral) symmetry breaking by

current quark-mass terms in the bare QCD Lagran-
gian, and

(2) the “scalon” mass [30] of a Coleman-Weinberg
potential [67] generated by explicit scale breaking
from one-loop renormalization of gauge theories
whose tree-level amplitudes lack massive parameters.

IV. PECULIARITIES OF DILATON
LAGRANGIANS

Compared with chiral Lagrangians, the conformal case
involves some subtleties which caused problems when first
encountered in 1969 [101,102]: the would-be NG bosons
seemed to be massive in the limit of conformal invariance.
By late 1970, these puzzles had been resolved: just one NG
field (the dilaton) is needed for the entire conformal group
[9] (Appendix B 3), and the class of consistent dilaton
Lagrangians is specified by Zumino’s condition [11]

λ ¼ OðϵÞ ð57Þ

if there is a term λϕ4 in the potential. The unusual feature of
Eq. (57) is the requirement that a symmetry-preserving
operator ϕ4 have a symmetry-breaking coefficient λ, i.e.,

λ → 0 ð58Þ

in the limit ϵ → 0 of conformal invariance.

We are revisiting this topic because the NG and WW
scaling modes are still being confused and Zumino’s
condition is not being respected. This seems to stem from
two 1976 papers, both of which a) referred to the NG mode
of conformal invariance but not to the 1969–1970 literature,
and b) have attracted a lot of interest since then:
(1) Gildener and Weinberg [30] used the term “scalon”

to describe a scalar particle which couples to θμμ but
where the limit θμμ → 0 is in the WW scaling mode.
It is therefore not a dilaton, contrary to remarks in an
early paragraph of Ref. [30] and to assertions in
subsequent literature [103–110].

(2) Fubini’s “new approach” to conformal invariance
[31] is limited to λϕ4 and its generalizations. There-
fore it cannot be used to disprove the existence of the
NG mode for (exact) scale invariance, contrary to
subsequent claims [108–110].

A. Flat directions?

If a symmetry is realized in the NG mode, it follows that
there are directions in field space, one for each NG boson,
for which the action is flat. Often this is used as a shortcut
to search for NG modes of complex Lagrangians.
So, if a Lagrangian L is scale invariant, it is tempting to

suppose that, when the action is varied, a flat direction
necessarily corresponds to a dilaton. The classic counter-
example is the Lagrangian Lfree ¼ 1

2
ð∂ϕÞ2 for a massless

spin-0 field ϕ.
As is well known, ϕ describes a genuine NG boson, but

that is for invariance under field translations

ϕ → ϕþ fconstantg; ð59Þ

not for scale transformations. The theory is exactly soluble
with amplitudes which do not depend on a scale, so scale
invariance is realized in the WW mode and ϕ is not a
dilaton. This is entirely different from exact scale invari-
ance in the NG mode, where amplitudes depend on a
nonzero dilaton decay constant Fσ and hence other dimen-
sionful constants (Appendix D).
If a scale-invariant L depends on many field compo-

nents, there can be many flat directions. One of them may
be associated with the NG mode of scale transformations,
but not necessarily. If amplitudes do not depend on
dimensionful constants in the scale-invariant limit, as in
scalon theories (Sec. IV E), the theory is dilaton-free.

B. Zumino’s consistency condition

Zumino’s condition (57) is necessary for scale invariance
to be realized in the NG mode.
Its genesis was the work of Salam and Strathdee [101],

who sought to extend the nonlinear theory of chiral
Lagrangians to the conformal case. They introduced the
now-standard parametrization
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ϕðxÞ ¼ Fσ expfσðxÞ=Fσg ð60Þ

for the scalar field ϕ in terms of a would-be dilaton field σ
with the transformation property

σ → σ −
Fσ

4
ln det

∂x0
∂x ; x → x0 conformal: ð61Þ

(There was also a vector field Aμ for special conformal
transformations, but that was subsequently abandoned
[102] in favor of ∂μσ.) Then, imitating the procedure for
chiral Lagrangians, they wrote down the most general
Lagrangian consistent with symmetry requirements,

L ¼ 1

2
ð∂ϕÞ2 − λ0ϕ

4 þ L̃ðϕ; ρÞ ð62Þ

¼ 1

2
ð∂σÞ2e2σ=Fσ − κe4σ=Fσ þ L̃ðσ; ρÞ; ð63Þ

with λ0 > 0 in the scale-invariant limit [unlike λ in
Eq. (57)]. Here ρðxÞ denotes chiral and non-NG matter
fields and κ ¼ λ0F4

σ is a positive constant.
The result of applying these apparently general princi-

ples was puzzling. When the ϕ4 term is expanded in σ,

κe4σ=Fσ ¼ κ þ 4κσ=Fσ þ 8κσ2=F2
σ þOðσ3Þ ð64Þ

the Oðσ2Þ term seems to give the would-be dilaton a mass

mσ ¼? 4
ffiffiffi
κ

p
=Fσ ð65Þ

in the scale-invariant limit [101]. Terms in

L̃ ¼
X
d

OdðχÞeð4−dÞσ=Fσ ð66Þ

cannot compensate for this: the dimension-d operators Od
do not have vacuum expectation values because of their
dependence on ρðxÞ. A massive σ cannot be an NG boson,
but could its mass have arisen from a Higgs-style mecha-
nism [101], despite the fact that the conformal symmetry
being investigated is global, not local?
Zumino observed that these puzzles were symptoms of a

more basic problem: scale-invariant ϕ4 theories and the NG
scaling mode are not compatible. If one tries to use the
parametrization (60) to force the theory into the scaling NG
mode, a low-energy expansion cannot be performed:
(1) The requirement σ → 0 as xμ → ∞ for the fluc-

tuation field σðxÞ produces infinite action if there is a
term ∼e4σ=Fσ in L.

(2) Modifying

e4σ=Fσ → e4σ=Fσ − 1 ð67Þ

is not allowed because the subtraction would violate
scale invariance.

The subtlety exposed by Zumino is that writing ϕ in
terms of σ does not necessarily force a theory into the NG
scaling mode, and, for λ0 ≠ 0 in the symmetry limit, it is
not legitimate to do so. That is connected with the fact that
Eq. (60) constrains ϕ:

ϕ > 0: ð68Þ

The conclusion (65) is incorrect because it was derived
without first finding a minimum about which to expand in
the unconstrained field σ, and e4σ=Fσ has no minimum for
finite variations of σ.14

Given that λ must vanish for scale invariance in the
NG mode, why is there an apparent clash with the
principle learned from chiral Lagrangians that the most
general Lagrangian consistent with symmetry should be
considered? The answer is that the principle needs to be
more carefully stated. When constructing an effective
Lagrangian, the most general result consistent with sym-
metry and NG-mode requirements must be sought.
Consider any continuous symmetry, either compact or

noncompact. Then the set of all possible Lagrangians con-
sistent with the symmetry will include a subset in the WW
mode, another subset in anNGmode, andotherswhichcannot
be expanded about a point in field space because of a poor
choiceoffieldvariablesorLagrangiancoefficients.So,having
written down a “general” Lagrangian, it is necessary to check
by hand that it can be expanded in all NG fields about a
stationary point. Only then can it be treated as an effective
Lagrangian for the desired NG mode(s).
Let us contrast noncompact scale symmetry with sym-

metry under global compact Uð1Þ transformations
φ → eiθφ of a complex spin-0 field. Consider the class
of symmetric Lagrangians

LA;B ¼ 1

2
j∂φj2 − Ajφj2 − Bjφj4 ð69Þ

parametrized by constants A, B. If free-field theory is
excluded,B lies in the range B > 0. Then both modes of the
theory are determined by inequalities, i.e., by continuous
ranges of the ðmassÞ2 A:

NGmode∶A < 0; WWmode∶A ≥ 0: ð70Þ

Thus, when the choice of coefficients in a chiral Lagrangian
is said to be “arbitrary,” there is an understanding that this is

14We have been asked if Zumino’s condition, when extended
to include gravity, is consistent with having a cosmological
constant Λ ≠ 0. The discussion above concerns the limit ϵ → 0,
but Λ breaks scale invariance explicitly, so there is no contra-
diction. For example, Zumino’s OðϵÞ example (74) would allow
Λ ≠ 0.
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not entirely so, especially for the model (69) where the
familiar constraints A < 0 and B > 0 apply. For the scale-
invariant Lagrangian (63), the free-field case is avoided by
requiring L̃ ≠ 0. As we have seen, one of the two modes of
scale invariance is specified by an equality:

NGmode∶ λ ¼ 0; WWmode∶ λ > 0: ð71Þ

This difference between Eqs. (70) and (71) is hardly
surprising, given that degenerate minima for scale trans-
formations have to lie on a half-line to infinity in field
space, unlike the periodic orbits characteristic of compact
group symmetries.
A feature shared by chiral and dilaton Lagrangians is that

in the symmetry limit, NG bosons do not interact at zero
momentum:

π þ π→ π þ π; σ þ σ→ σ þ σ: ð72Þ

In both cases, this follows from the flatness requirement for
degenerate minima. For dilatons, it is obviously consistent
with Eq. (58).
Now let scale symmetry be broken explicitly by adding

OðϵÞ terms to the Lagrangian (63). Zumino observed that
one of these terms could be e4σ=Fσ with a coefficient
proportional to ϵ, as in Eq. (57), and that subtractions
such as Eq. (67) are then allowed. By itself, e4σ=Fσ still does
not allow a minimum at any finite value of σ, but when
combined with d ≠ 4 terms which break scale symmetry
explicitly, the resulting dilaton potential

VðσÞ ¼ OðϵÞ ð73Þ

may have a minimum and produce a genuinely light
dilaton: m2

σ ¼ OðϵÞ. Zumino gave an example15

VðσÞ ¼ ϵF4
σfe2σ=Fσ − 1g2 ð74Þ

related to the model of Freund and Nambu [8]; it implies
m2

σ ¼ 8ϵF2
σ and λ ¼ ϵ.

There may be a concern that renormalization violates the
constraint λ ¼ 0 in the limit of scale invariance. Here it is
important to distinguish loop expansions in WW and NG
scaling modes: they are not equivalent.
In a renormalizable theory with a λϕ4 interaction, the

loop expansion is a series in a finite set of coupling
constants (including λ) which mix under RG flow, to all
orders in the expansion. The perturbation series is obtained
via small-field fluctuations such as ϕ ∼ 0, as in the WW
scaling mode, where ϕ is unconstrained. Then ϕ propa-
gators can be formed and used to construct tree and loop

diagrams. Since ϕ4 counterterms occur, the point λ ¼ 0 is
unstable under WW-mode RG flow.
However, in the NG scaling mode, we are dealing with a

nonrenormalizable loop expansion in powers of NG-boson
momenta q ∼ 0 and explicit symmetry breaking ϵ, as in
Appendix A of Ref. [14]. The constraint (68) occurs at
ϕ ¼ 0, so fluctuations ϕ ∼ 0 to form ϕ propagators are not
allowed. Instead, we expand in the unconstrained field σ
and form loops with σ propagators and vertices. The
outcome resembles that for nonlinear chiral theories
[111–113]: each new loop order produces a new set of
coupling constants because ϵ-independent counterterms
have more derivatives than before. All RG mixing of
coupling constants of a given order is OðϵÞ, as in Eq. (57).
For example, let σ be coupled to the matrix field U

[113,114] for chiral NG-bosons as follows [13–15]:

L0¼
�
1

2
ð∂σÞ2þ1

4
F2
πtrð∂μU∂μU†Þ

�
e2σ=Fσ þOðϵÞ; ð75Þ

where OðϵÞ denotes terms which break scale and chiral
invariance explicitly, and for ϵ → 0, we have chosen λ ¼ 0,
i.e., κ ¼ 0 in Eq. (63). Then for ϵ ¼ 0, all NG-boson
interactions (dilatons and chiral bosons) involve a field
derivative, and so there can be no nonderivative counter-
terms like mass counterterms δm2fσ2 or π2g or four-point
interactions δλfσ4 or π4g which would violate the mass-
lessness of NG bosons and no-interaction conditions like
Eq. (72). Instead, there are higher-derivative counterterms
such as the scale-invariant four-point interaction

F−4
σ ð∂σÞ4 ð76Þ

which isOðq2Þ in NG-boson momenta q relative to leading
order. In the presence of explicit scale breaking, as in
Eq. (74), σ propagators carry a small mass mσ ¼ Oð ffiffiffi

ϵ
p Þ.

Then there can be a d ¼ 4 counterterm in VðσÞ, but the
correction to λ is clearly OðϵÞ. Therefore Zumino’s con-
dition (57) is stable under NG-mode RG flow.
So far, the discussion has been restricted to the NG-

boson sector. The result is an expansion in powers of

fq or mNGg=f4πFσ or 4πFπg ð77Þ

with coefficients depending on logarithms lnðmNG=μÞ;
the renormalization scale μ provides the sole UV cutoff
for integrals. For dimensional regularization in n complex
dimensions, include the OðϵÞ terms (otherwise all loop
integrals vanish), and in L0, replace

e2σ=Fσ → eðn−2Þσ=Fσ : ð78Þ

The inclusion of non-NG particles such as fermions with
massM ≠ 0 for ϵ → 0 presents difficulties already familiar
from baryonic chiral perturbation theory [115,116]: for

15For early work consistent with Eq. (57), see Ref. [9]
[formula below Eq. (3.11)] and Ref. [10] [Eq. (4.6)]. Compare
Eqs. (45)–(50) of Ref. [14].

CRAWLING TECHNICOLOR PHYS. REV. D 100, 095007 (2019)

095007-13



fermion fields, the expansion is in ði=∂ −MÞ, not i∂, so
higher-derivative fermionic terms can be of leading order.
Consequently, extending the NG-mode renormalization
procedure to massive fermions is not obvious. Special
techniques have been invented to deal with loops containing
at least one NG boson [117–119], but little can be said about
pure non-NG particle dynamics such as effects due to closed
fermion loops. Instead, it must be assumed that all non-NG
dynamics can be contained in the low-energy constants of
loop expansions involving NG bosons, where chiral and (in
our case) conformal symmetry provide some guidance.
We mention closed fermion loops because it might be

thought that they should be part of the renormalization
procedure. Could they produce counterterms which give NG
bosons mass and violate Zumino’s condition? If so, non-NG
dynamics would force the theory out of the NG mode.
Consider a toy model such as the σ ∼ 0 expansion of the

scale-invariant Lagrangian

Ltoy ¼
1

2
ð∂σÞ2e2σ=Fσ þ ψ̄

�
i
2
=∂↔ −Meσ=Fσ

	
ψ : ð79Þ

In the tree approximation, for which Ltoy is designed, one
can read off relations such as the scalar analogue of the
Goldberger-Treiman relation [Eq. (39) and Fig. 2]. If Ltoy is
supposed to produce a renormalizable perturbation series
in the Yukawa coupling −M=Fσ, closed fermion loops
certainly do produce divergent self-energy, triangle and box
diagrams.
The flaw in this picture is the assertion that, for momenta

≳M, non-NG particle dynamics can be represented by the
perturbative series of a local renormalizable theory for
baryon and meson fields or their TC counterparts. There is
no hint of this from QCD or experiment. Interactions
between non-NG hadrons are strong and produce higher
resonances which could not all be represented by separate
fields.
Instead, it must be recognized that there can be non-

renormalizable higher-derivative fermionic terms in leading
order, as in the modified toy example

Lmod ¼
1

2
ð∂σÞ2e2σ=Fσ þ c1∂μ∂νΨ̄

i
2
=∂↔∂μ∂νΨ

þ c2Ψ̄
�
i
2
=∂↔ −Meσ=Fσ

	
Ψe4σ=Fσ ; ð80Þ

where c1M4 þ c2 ¼ 1 and we have chosen a new fermion
variable

ΨðxÞ ¼ expf−2σðxÞ=FσgψðxÞ ð81Þ

which carries dimension − 1
2
. In the tree approximation,

this model also produces Eq. (39), but the corresponding
fermion propagator has asymptotic behavior

SFðpÞ ¼ i
=pðc1p4 þ c2Þ þM

p2ðc1p4 þ c2Þ2 −M2
∼

i=p

c1p6
; p → ∞

ð82Þ

which makes all closed fermion loops converge.
Of course, this procedure is arbitrary, but that is the

point: nothing can be said about dynamics in the non-NG
sector. We must follow the example of chiral perturbation
theory, and start from the basic hypothesis, well supported
by experiment in the chiral case, that non-NG particle
dynamics does not force the theory out of the NG mode.

C. Digression: Fubini’s “new approach”

Modern investigators of light Higgs bosons often cite
Fubini’s 1976 paper [31] as evidence that the NG scaling
mode cannot be realized in the limit of conformal sym-
metry. A cursory reading of Ref. [31] can easily produce
this wrong conclusion, especially if earlier work leading to
Zumino’s condition (57) (to which Fubini does not refer) is
not known.
Fubini’s approach was not just “new”: it was radically

different from the standard theory of dilaton Lagrangians
described above. Conformal invariance is imposed on λϕ4

theory and, more generally, on polynomial scalar-field
Lagrangians in D space-time dimensions with no depend-
ence on dimensionful constants. Scale breaking due to
renormalization is ignored. All fields are unconstrained:
nonlinear chiral or scale fields depending on Fπ or Fσ are
not present. Then Fubini considered introducing a funda-
mental scale a via a state j0iF which he called the
“vacuum” but which looks more like a coherent state; it
corresponds to a classical field BðxÞ:

Fh0jϕðxÞj0iF ¼ BðxÞ: ð83Þ

He observed (correctly) that BðxÞ cannot be constant for
λ ≠ 0, and so j0iF does not preserve translation invariance.
Instead, it preserves a linear combination

Rμ ¼
1

2
ðaPμ þ a−1KμÞ ð84Þ

of the momentum components Pμ and special conformal
generators Kμ. To restore translation invariance, Fubini
proposed a “statistical” average over the continuum of
degenerate “vacua”

jhiF ¼ expðiPμhμÞj0iF; ð85Þ

but the properties of the resulting theory and its true
vacuum (if it has one) are not known.
Fubini’s conclusions do not exclude the existence of

dilaton Lagrangians which preserve translation invariance,
because his choice of conformal models excludes the set of
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known dilaton Lagrangians, all of which obey Zumino’s
condition (57). Fubini considered Eq. (62) but not Eq. (63):
he avoided the error of assuming Eq. (60) for λ ≠ 0. His
analysis leaves ϕ unconstrained, contrary to Eq. (68), and
so yields an x-dependent result (83). In contrast, genuine
dilaton Lagrangians involve constrained scale fields (60)
with constant vacuum expectation values

hvacjFσ expðσðxÞ=FσÞjvaci ¼ Fσ: ð86Þ

Fubini’s interests were semiclassical, with apparently
no intention that his work be compared with the literature
on nonlinear dilaton Lagrangians of six years earlier
[8–12,51]. He was not known to be against the existence
of the NG mode for global scale transformations, nor was
his work seen in that light when it was published.

D. Changing field variables

Unlike nonlinear chiral Lagrangians, dilaton
Lagrangians can be linearized16 by a change of variable
consistent with the equivalence theorem if renormalization
is ignored and noninteger dimensions are absent. On
dimensional grounds, the nonlinear Lagrangian necessarily
depends on a dimensionful quantity, the dilaton decay
constant Fσ, but that dependence tends to be hidden in
the linear version. This may mask the presence of an
NG scaling mode; if so, it certainly obscures NG-mode
renormalization. Alternatively, in the absence of other
fields such as chiral bosons, it may indicate a theory
actually in the WW scaling mode with all Fσ dependence
transformed away.
The equivalence theorem17 was originally derived

[120–122] without regard to renormalization, so it was
explicitly valid only in the tree approximation. Sub-
sequently, a renormalized version of the theorem was
proven for renormalizable theories [123,124], but not
generally for NG-mode renormalization of nonlinear chiral
models [111,125]. We believe that an equivalence theorem
can be formulated and proven for nonlinear NG-boson
Lagrangians with derivative interactions in the limit of
exact symmetry, all renormalized in the NG mode as
outlined in Sec. IV B, but an all-order analysis remains
to be done.

As an example of the equivalence theorem in the tree
approximation, consider the toy Lagrangian (79). The field
σ can be expanded about a point σ0 determined by the limit
ϵ → 0 of a scale-violating perturbation ∼ϵðσ − σ0Þ2. If we
choose σ0 ¼ 0, the fermion ψ has mass M in lowest order,
so clearly, Ltoy is a dilaton Lagrangian: its amplitudes
exhibit the NG scaling mode in the limit ϵ → 0. Is it
equivalent to a polynomial Lagrangian? The answer is
“yes,” but only if the new field variable is constrained, e.g.,

σ → ϕc ¼ Fσðeσ=Fσ − 1Þ; ϕc ≥ −Fσ: ð87Þ

This change of variables is permitted by the equivalence
theorem because the constraint on ϕc does not interfere
with fluctuations ϕc ∼ 0 corresponding to σ ∼ 0:

ϕc ¼ σ þ
X
n>1

σn

n!Fn−1
σ

¼ σ þOðσ2Þ; jϕcj ≪ Fσ: ð88Þ

The result is a polynomial Lagrangian in the constrained
field ϕc

L0
toy ¼

1

2
∂μϕc∂μϕc þ Ψ̄ði=∂ −M −MF−1

σ ϕcÞΨ ð89Þ

giving the same tree-diagram S matrix as Ltoy. As noted
for Ltoy at the end of Sec. IV B, L0

toy is not a good basis for
NG-mode renormalization.
When renormalizing in the NG mode, it is not a priori

obvious that parametrizations of the chiral matrix field U
and the scalar field (60) in terms of unconstrained NG fields
survive the process. Furthermore, not all Lagrangians
equivalent at tree level are equally amenable, because
the process can be upset by terms proportional to the
equations of motion. The most undesirable scenario is
having to subtract convergent as well as divergent loop
diagrams by hand to enforce the masslessness of NG
bosons and the no-interaction requirement (72) generalized
to amplitudes with many NG-boson legs:

Aπ…πσ…σjall q¼ 0 ¼ 0; mπ ¼ 0 ¼ mσ; ϵ → 0: ð90Þ

In each order of the loop expansion, that would require an
infinite set of counterterms, i.e., the renormalization pro-
cedure would be nonlocal.
Note that by itself,

L0 ¼
1

2
ð∂σÞ2 expð2σ=FσÞ ð91Þ

is not a dilaton Lagrangian. The theory appears to be
interacting, with a loop expansion which requires renorm-
alization. However, when renormalized by subtracting
about any point in momentum space which is not IR
singular, seemingly complicated sets of diagrams at each

16This terminology is standard, but what is really meant is that
the Lagrangian becomes a polynomial in the field variables.
Similarly, read “nonpolynomial” for “nonlinear.”

17In statements of the theorem, a Lagrangian theory is defined
by the all-order loop expansion due to small-field fluctuations
about a local minimum of the potential. Modulo renormalization,
Lagrangians related by an invertible point transformation map-
ping one fluctuation region to the other, as in Eq. (88) below, are
equivalent: their S matrices agree. The mapping σ ↔ ϕ of
Eq. (60) is forbidden because the constraint (68) disallows
fluctuations ϕ ∼ 0.

CRAWLING TECHNICOLOR PHYS. REV. D 100, 095007 (2019)

095007-15



loop order sum to zero on shell [126]. Evidently, L0 for
σ ∼ 0 is equivalent to 1

2
ð∂ϕcÞ2 for ϕc ∼ 0, so tree-level

amplitudes sum to zero on shell; then cutting rules can be
used to extend the result to loops. The conclusion is that all
dependence on Fσ is absorbed by the change of varia-
ble (87). This shows that merely writing a scalar field as
f expðσ=fÞ is not enough to ensure the existence of
dilatons: it must be shown that amplitudes of the scale-
invariant theory depend on dimensionful constants.

E. Scalons are not dilatons

In their influential work on scalons, Gildener and
Weinberg [30] considered a scale-invariant limit for poly-
nomial Lagrangians, but unlike Fubini, they wanted to
produce amplitudes with no dependence on a dimensionful
constant. They did this by retaining translation invariance
and assuming the tree approximation for unshifted fields.
All dependence on dimensionful constants would be
generated by an explicit breaking of scale invariance due
to renormalization corrections depending on a scale μ.
Scalon theories are constructed as follows. First, a

polynomial Lagrangian Lgauge is constructed for a scale-
invariant gauge theory involving one [67] or more
[30,103–106] scalars. In the tree approximation, all of
these scalars are massless, but none of them can be a dilaton
because, by construction, amplitudes do not depend on
dimensionful constants. So scale invariance is realized in
the WW mode, which (as for Lfree above) is entirely
consistent with the presence of flat directions. Then one-
loop quantum corrections VCW [67] are calculated and used
to perturb Lgauge:

Lone-loop ¼ Lgauge − VCW ¼ LK:E: − Veff : ð92Þ

The explicit breaking of scale invariance by logarithmic
factors lnðϕ2=μ2Þ in VCW gives rise to two scale-violating
effects, viz. a compact set of chiral- (not scale-) degenerate
minima of Veff , and masses for one or more scalons.
Despite the third paragraph of Ref. [30], none of these
scalons can be a pseudodilaton because, in the scale-
invariant limit VCW → 0, amplitudes have no scales and
hence there are no dilatons. Scalon theories deserve to be
studied in their own right, but must not be confused with
dilaton theories.
This may be the origin of a pervasive belief that the NG

mode for scaling is possible only in the presence of explicit
scale violation [95], as in oft-repeated references to
“spontaneous breaking of approximate scale invariance.”
This sounds odd because it is not correct: only in the limit
of exact scale invariance can the distinction between the
NG and WW scaling modes be made. The most obvious
cause of this is the misunderstanding of Fubini’s work [31]
discussed in Sec. IV C. In walking TC or scalon theory,
which is generally not dependent on Ref. [31], it may stem
either from the third paragraph of Ref. [30] or simply from

an implicit assumption that “conformality” is always in
the WW mode.
A key element of this belief is that the way to elevate any

theory to dilaton status is to write f expðσ=fÞ for a scalar
field close to a fixed point and avoid discussing what this
means for the fixed point itself. In the scale-invariant limit,
there are four main possibilities:
(1) The WW mode is produced because f → 0. That is

the origin of the “fine-tuning” problem of scalon
theories [106–110], where f2 is proportional to the
magnitude of explicit scale breaking. Approximate
scale invariance requires f=v ≪ 1 contrary to f ∼ v
experimentally. More generally, the expansion

f expðσ=fÞ ¼ f þ σ þ σ2=ð2fÞ þ σ3=ð6f2Þ þ…

ð93Þ

fails: it would produce singularities ∼f−p in effec-
tive Lagrangian vertices.

(2) A phase transition causes the scale-violating expan-
sion to fail. In walking TC, the walking coupling α is
separated from the WW-mode fixed point αww in the
WW mode by a chiral phase transition [73] at the sill
of the conformal window. Nevertheless, the small
value of the Higgs mass is claimed to be a first-order
consequence of the expansion in α about αww. That
creates severe conceptual difficulties [5,127] for
“dilatonic” walking TC theories (Sec. VI).

(3) The constant f can be transformed away via the
equivalence theorem, allowing the fixed point to be
in the WW mode. That may circumvent the fine-
tuning or phase-transition problems, but then there
would be no soft-dilaton theorems: any effective
Lagrangian could be rendered independent of f, as
in the example (91) above.

(4) At the fixed point, f is the decay constant Fσ ≠ 0
given by Eq. (1), so soft-dilaton theorems (Appen-
dix B 3) exist and amplitudes do not scale at the
fixed point (Sec. II). Then the fixed point is in the
NG mode, which excludes walking TC and scalons.

Theoretical ambiguity about whether the fixed point is in
the NG or WW mode is popular but untenable: a choice
must be made. Physically, the NG mode is far closer to
reality and hence a far better candidate for theories of
approximate scale invariance: the particle spectrum in the
scale-invariant limit (Appendix D) resembles that of the
real world. Compare that with the WW mode, where there
are no thresholds except for branch cuts and poles at zero
momentum, and particles may not even exist [128].

V. COMMENTS ON PHENOMENOLOGY

Since our Higgs-boson theory differs fundamentally
from all others (they are not expansions about a scale-
invariant theory with a scale-dependent vacuum), its
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phenomenology cannot be inferred from a subclass of
existing theories: a new analysis is necessary. We begin
with remarks about the width of pseudodilatons, the relative
magnitudes of pNG boson decay constants in QCD and
crawling TC, and the electroweak S parameter [129,130].
QCD and crawling TC borrow an idea from broken scale

invariance for strong interactions that a chiral condensate
can also act as a scale condensate [10,29], implying a
relation for the σ → ππ coupling

fσgσππ ≃ −m2
σ ð94Þ

which remains valid in chiral-scale perturbation theory
[13–15]. Eq. (94) implies a width of a few hundredMeV for
σ,18 which is consistent with data for the f0ð500Þ reso-
nance, the obvious candidate for the QCD pseudodilaton.19

Here fσ and fπ are observed to have similar orders of
magnitude within a factor of ∼2. Given that both arise from
having hq̄qivac ≠ 0 in the scale-invariant limit, this was to
be expected. Note that we could not use a symmetry
argument to fix the ratio fσ=fπ , because the Coleman-
Mandula theorem [131] does not permit internal chiral and
space-time scale symmetry to be unified.
Since this works for QCD, there is good reason to let

hψ̄ψivac be a condensate for both chiral and scale trans-
formations in crawling TC, with similar orders of magni-
tude for the electroweak scale v ¼ Fπ and the TC dilaton
decay constant Fσ . This avoids the fine-tuning problem of
scalon theories noted above, where the strength of explicit
scale breaking f must be artificially adjusted to match the
scale v of the chiral condensate [106–109].
It is often suggested that TC theories have trouble

generating a small enough value of the S parameter
(defined such that S ¼ 0 in the SM) that is compatible
with the experimental number S ¼ 0.05� 0.10 [80].
Quoted values of S typically include the estimates S ≈
0.32 obtained originally by Peskin and Takeuchi [130] and
S ¼ 0.42ð2Þ in recent two-flavor lattice calculations
[132,133]. But the prescription [130] used to obtain these
estimates involves subtracting the contribution of a heavy
SM Higgs boson, and must be amended [134] if the TC
spectrum contains a light scalar. In Ref. [135], TC scenarios
which include a generic light scalar resonance were
confronted with electroweak precision data. Figure 6 of
Ref. [135], which plots the deviation κW from the SM (f=v
or Fσ=v in our notation) against the technirho mass MV ,
shows that the experimental constraints on S require v ≃ Fσ

andMV ≃ 1 TeV. Both requirements are naturally satisfied
in crawling TC.

VI. ELECTROWEAK EFT

By analogy with QCD, where at energies below the
confinement scale one can use EFT methods to describe
pion dynamics, an EFT for dynamical electroweak sym-
metry is the most efficient way to describe physics at
energies ranging from a few GeV to several hundred GeV.
In this range, all SM interactions are relatively weak.
Perturbation theory is possible not only in the electroweak
couplings gw and g0w but also in the gluon coupling constant
gs because of asymptotic freedom for QCD. The upper limit
of several hundred GeV is chosen so that interactions
presumed to be strong at the TeV scale

Λv ∼ 4πv ¼ 4πFπ ð95Þ

become sufficiently weak in the SM sector to justify a
perturbative EFT approach. At energies ∼Λv, hadronic
bound states from the TC interactions are expected to
populate the spectrum and be responsible for the Higgs
sector seen at lower energies. The EFT is constructed by
requiring SUð3Þc × SUð2ÞL ×Uð1ÞY gauge invariance and
including the currently observed particle content, with
the Higgs identified as a pseudodilaton instead of a weak
doublet. The resulting theory is an effective chiral
Lagrangian (augmented with gauge bosons and fermions),
which for crawling TC is extended [10] to include the NG
mode of scale invariance.
Electroweak EFT was originally developed [32,33] with

a heavy Higgs boson in mind. Although no longer valid,
some basic features of that work survived subsequent
developments [35–39] and remain in low-energy EFTs
for light Higgs bosons [34,40–43]. In all of these theories,
the effective Lagrangian has a chiral component for the
would-be NG bosons which give (conveniently in Landau
gauge) mass to the weak W� and Z0 bosons. The standard
procedure is to choose a nonlinear chiral Lagrangian
[122,136–138] based on (say) a unitary matrix field U
[113,114]; linear models are inconvenient because they
depend on extraneous non-NG fields such as the sigma
field of the linear sigma model. The advantage of the
effective Lagrangian formalism is that, with symmetries
implemented at an operator level, radiative corrections
are easily computed, and contact can be made with the
SM Lagrangian in order to spot potential deviations in the
phenomenology.
As noted in Sec. IV D, the extension to dilatons is

necessarily nonlinear: the spin-0 field which transforms
with scale dimension 1 enters linearly but produces the NG
scaling mode only if it is suitably constrained and hence a
nonlinear function of unconstrained fields. In analogy with
Eq. (87), we use a special notation χc to distinguish our
χ field from theWW-mode fields implicitly used in walking
TC or scalon theories. The key feature of our theory is that
χc is constrained in the exact limit of scale invariance as
well as when there is explicit scale symmetry breaking.

18The dilaton-Higgs of crawling TC is relatively narrow
because (unlike the case of QCD), the pions are eaten, and there
is no phase space for σ to decay strongly into other particles. This
is consistent with the current [80] upper bound Γh=mh ≲ 10−4.

19This provides a clear counterexample to the claim [108–110]
that no light dilaton is expected in QCD.
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By definition, the fields U and χc transform linearly
under the electroweak gauge group and scale transforma-
tions. It is convenient to choose constraints which are
manifestly symmetry preserving

U ¼ SUð2Þmatrix and χc > 0 ð96Þ

and for which there are standard parametrizations in terms
of unconstrained Goldstone fields φa [113,114] and σ
[10,11,101]:

U ¼ eiφ
aτa=v and χc ¼ Fσeσ=Fσ : ð97Þ

Here τa are Pauli matrices.
The next step is to specify the theory responsible for

crawling TC and how its effects are to be incorporated
into our EFT. As for all TC theories, we assume it to be a
gauge theory which exhibits asymptotic freedom in the UV
limit, i.e., well above Λv. Since the range of energies being
considered is well below the strongly interacting TeV scale,
the result is controlled by the IR limit of whatever TC
theory is held responsible for those effects. In that limit, the
TC coupling α either runs to a fixed point αIR, as in the left
diagram of Fig. 1 (crawling TC), or it runs to ∞.
In crawling TC, the Higgs boson is light because it

corresponds to a small OðϵÞ term in the IR expansion of the
continuous variable ϵ ¼ αIR − α > 0 about the NG-mode
fixed point αIR. This is a great advantage over walking TC,
where the small value of α − αww in the walking region is
said to be responsible for the small Higgs mass. That
assumes that the walking region of the solid curve in the
right diagram of Fig. 1 can be approximated by the dashed
curve in that diagram near αww. The problem is that the solid
and dashed curves are separated by a strong phase disconti-
nuity [73] at the critical number of flavors N�

f defining the
sill of the conformal window (see footnote 8, and item 2 on
page 16). Confinement, a light scalon and a large chiral
condensate are presumed to exist in the walking region for
Nf < N�

f, but suddenly disappear for Nf ≥ N�
f, where

amplitudes do not depend on dimensionful constants and
where many analyses even rely on two-loop perturbation
theory [139,140]. Why should the Higgs mass be continuous
at the phase discontinuity when everything else is not?
It has been suggested [5,127] that these contradictions can

be circumvented by applying Veneziano’s version [141] of
the large-Nc limit (Nf=Nc fixed) without crossing the sill.
But the logical difficulty remains that, no matter what limits
are taken, a region cannot be found where the theory is
“chirally broken and confining” and, at the same time, in the
conformal WW mode. Another problem for walking TC is
that Nf is large with N2

f − 4 physical light technipions,
which is hard to reconcile with phenomenology. All of these
problems go away if the possibility of an NG-mode IRFP for
small Nf is acknowledged.

We consider crawling TC for a QCD-like SUð3Þ gauge
theory but with only Nf ¼ 2 flavors of massless Dirac
techniquarks so that, at low energies, all technipions are
eaten giving SM gauge bosons and fermions their masses.20

We stress that the form of the EFT to be derived below does
not depend on Nf, as long as one is outside the conformal
window. The choice Nf ¼ 2 simply avoids having to
justify the absence of light physical technipions.
As noted in Sec. I, the possibility that IR fixed points

occur at small values of Nf has been studied extensively
[28], but currently there is little direct evidence for or
against their existence (see Sec. VII). If present, they are
almost certainly in the NG scaling mode, as indicated in the
left diagram of Fig. 1. That is because they lie outside the
conformal window: dimensional transmutation can occur,
with the WW-mode scaling laws (10) replaced by the soft-
dilaton theorems (15) and (16).
We make the standard assumption that TC theory mimics

massless QCD. At the TeV scale and below, the technigluon
coupling α is strong, techniquarks and technigluons are
confined and bound states and resonances are expected to be
produced. All technihadrons in the non-NG sector are heavy,
i.e., in the TeV range. Unlike QCD, the would-be techni-
pions are unphysical, but in crawling TC there is a
pseudodilaton (the Higgs particle), which plays a role similar
to that of the QCD resonance f0ð500Þ in chiral-scale
perturbation theory [13,14]. At energies well below Λv,
one can build an EFT where the dynamical degrees of
freedom are the quarks, leptons and gauge fields of the SM
and the unconstrained Goldstone fields ϕa and σ. Effects due
to TC fields such as hψ̄ψivac ≠ 0 are still present, but hidden
inside the low-energy coefficients of the EFT. The gauge
potentials areGA

μ ,Wa
μ andBμ with field-strength tensorsGA

μν,
Wa

μν and Bμν for SUð3Þc gluons and SUð2ÞL and Uð1ÞY
electroweak bosons, respectively. The SM fermions have the
usual charge assignments under the SM gauge group,

SUð3Þ SUð3Þc SUð2ÞL Uð1ÞY
qL 1 3 2 1

6

uR 1 3 1 2
3

dR 1 3 1 − 1
3

lL 1 1 2 − 1
2

eR 1 1 1 −1

where generation indices i ¼ 1, 2, 3 on the matter fields are
understood and the SUð2ÞL doublets take the usual form

20A fully realistic version of our model would avoid stable,
fractionally charged technibaryons [142] e.g., by including a
fourth generation of leptons to allow the techniquarks to carry
SM-like hypercharges. We assume that any additional matter
fields are heavier than the electroweak scale and are therefore
excluded as dynamical degrees of freedom in the EFT.
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qL ¼
�
u

d

	
L

and lL ¼
�
νl

e

	
L

: ð98Þ

In crawling TC, the SM Higgs doublet is replaced with
a chiral-singlet dilaton field σ and a triplet of Goldstone
fields ϕa, so the EFT combines the loop expansion of a
renormalizable theory with that of an effective Goldstone
Lagrangian. This is in close analogy with, e.g., what
happens when pion dynamics is coupled to QED. It is
understood that all mass is to be produced by a Higgs-style
mechanism, so the relevant renormalizable Lagrangian is
that for a massless version of the SM with terms depending
on massive constants like v omitted. It is convenient to
postpone including the dilaton field σ; first we add to the
massless SM Lagrangian the lowest-order nonlinear chiral
and Yukawa terms constructed from U such that SM gauge
invariance is preserved. Under SUð2ÞL ×Uð1ÞY, U must
transform to a new matrix Ũ which also satisfies the
constraint (96), i.e., it is unitary and obeys the condition
det Ũ ¼ 1:

U → Ũ ¼ VLUVY with detVL ¼ 1 ¼ detVY: ð99Þ

It follows that VY is not proportional to I and so U does not
have a unique value of Y. Instead, VY must belong to the
Uð1Þ subgroup of SUð2Þ generated by τ3 [for consistency
with the charge assignments in Eq. (98)]. That yields a
familiar result

U → Ũ ¼ eiω·τUeiητ3 ð100Þ

originally obtained [33] from the gauge property for the
matrix field for a heavy Higgs boson. Our presentation
shows that there is no need to introduce a Higgs field to
determine the gauge property of U.
Then invariance under the SM gauge group gives the

well-known EFT Lagrangian for Higgsless dynamical
electroweak symmetry in leading order (LO) [32–34]

LnoHiggs ¼ −
1

4
GA

μνGAμν −
1

4
Wa

μνWaμν −
1

4
BμνBμν

þ q̄Li=DqL þ ūRi=DuR þ d̄Ri=DdR þ l̄Li=DlL

þ ēRi=DeR − vfq̄LŶuUUR þ q̄LŶdUDR

þ l̄LŶeUER þ H:c:g þ 1

4
v2trðDμUDμU†Þ;

ð101Þ

where the doublet notation

ŪR¼ð ūR 0Þ; D̄R¼ð0 d̄R Þ; ĒR¼ð0 ēR Þ ð102Þ

for right-handed fermions matches the 2 × 2 matrix U,
and Ŷu;d;e are 3 × 3 Yukawa matrices in generation space.

The masses for the gauge bosons and fermions are
contained in the last line when U ¼ I (unitary gauge).
In terms of the Uð1ÞY hypercharges Yf tabulated
above, the gauge-covariant derivatives of quark fields q ¼
u or d are

DμqL ¼ ð∂μ þ igsGμ þ igwWμ þ ig0wYqLBμÞqL;
DμqR ¼ ð∂μ þ igsGμ þ ig0wYqRBμÞqR; ð103Þ

with analogous expressions for leptons obtained by
omitting the SUð3Þc terms. The covariant derivative
associated with the gauge property (100) is [33]

DμU ¼ ∂μU þ igwWμU −
i
2
g0wBμUτ3: ð104Þ

Equation (101) can be made scale invariant by
multiplying each operator by an appropriate power of
the dimension-1 field eσ=Fσ and adding a dilaton kinetic
term [10]

1

2
F2
σð∂eσ=Fσ Þ2 ¼ 1

2
e2σ=Fσ∂μσ∂μσ: ð105Þ

More generally, approximate scale invariance implies that a
chiral Lagrangian operator Q with dynamical dimension
dQ is replaced by

Qσ ¼ Q × fcQeð4−dQÞσ=Fσ þ ð1 − cQÞeð4−dQþβ0Þσ=Fσg
¼ cQQinv þ ð1 − cQÞQβ0 : ð106Þ

Here Qinv has dimension 4 (the scale-invariant part),
while Qβ0 accounts for explicit scale symmetry breaking
by the trace anomaly near αIR and so has dimension
4þ β0 (Appendix E). The coefficient of Qβ0 is fixed by
requiring that the original operator Q be recovered in
the absence of dilaton interactions. The dimensions dQ
take the naive values implied by canonical dimensions,
i.e., 1 and 3

2
for gauge and fermion fields and 0 for the

unitary field U.
The values of the low-energy constants cQ depend on

dynamics and are not fixed by symmetry arguments alone.
However, scale invariance imposes constraints on them. For
a Lagrangian of the form

P
j Q

j
σ, the trace of the improved

energy-momentum tensor is

θμμjeff ¼
X
j

ðdQj
σ
− 4ÞfQj

σ − hQj
σivacg

¼ β0
X
j

ð1 − cQjÞfQj
β0 − hQj

β0 ivacg; ð107Þ
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where only operators Qj
β0 with dynamical dimension ≠ 4

contribute. The requirement that this expression vanish in
the scale-invariant limit θμμ → 0 implies [15]

cQj ¼ 1þOðϵÞ; ð108Þ

where the correction OðϵÞ is due to the explicit breaking of
scale invariance by the trace anomaly in the low-energy
region α ≲ αIR.
In the limit ϵ → 0, a potential ∼e4σ=Fσ is forbidden by

Zumino’s consistency condition (57). If its coefficient is
OðϵÞ, e4σ=Fσ by itself is still not acceptable because it has no
minimum for finite variations of the unconstrained field σ
(Sec. IV B). However, a dilaton potential V of first order in
ϵ is possible because there can be a term of dimension
4þ β0 as well,

VðσÞ ¼ c1Vfe4σ=Fσ − 1g þ c2Vfeð4þβ0Þσ=Fσ − 1g; ð109Þ

where both c1V and c2V are OðϵÞ, with constant terms
subtracted as in Zumino’s example (74). The function VðσÞ
has a minimum for c1V < 0 and c2V > 0, which we assume.
The value hσivac of σ at the minimum is a matter of
convention because field translations

σ → σ þ constant ð110Þ

merely affect which of the physically equivalent scale-
invariant worlds is chosen as ϵ → 0 (Appendix D).
Our convention for σ is hσivac ¼ 0. Minimizing V at
σ ¼ 0, we have

4c1V þ ð4þ β0Þc2V ¼ 0 ð111Þ

so (say) c1V can be eliminated in favor of c2V . In turn, cV2
can be eliminated in terms of the pseudodilaton mass Mσ

by equating the second-order term of V to 1
2
M2

σσ
2. The

result is an explicit formula for the LO Higgs potential in
crawling TC:

VðσÞ ¼ M2
σF2

σ

β0

×

�
−
1

4
e4σ=Fσ þ 1

4þ β0
eð4þβ0Þσ=Fσ þ β0

4ð4þ β0Þ
�
:

ð112Þ

The form of this potential is fixed solely by the presence of
an IR fixed point and the fact that the explicit breaking of
scale symmetry occurs through the operator Ĝ2.
The full LO Lagrangian LLO is obtained by collecting

from above all modifications of the Higgsless Lagrangian
(101) and discarding terms considered to be next-to-
leading order (NLO). It is at this point that consistent
rules for the expansion into LO, NLO, next-to-NLO, …

must be adopted. As for any EFT with an underlying
strongly coupled dynamics, the expansion is organized by
the number of loops, with each order absorbing the
divergences of the previous one. This ensures that the
EFT is renormalized order by order. In the following we
will rely on v ∼ Fσ (see the end of Sec. V).
The pure-dilaton part of LLO is easily found, being so

similar to a standard nonlinear chiral Lagrangian. We seek a
simultaneous expansion in momenta p and masses of pNG
bosons (just Mσ in our case):

p ∼Mσ ≪ 4πFσ ∼ Λv: ð113Þ

The scale-invariant kinetic term (105) is already Oðp2Þ, so
extraOðp2ϵÞ terms generated by Eq. (106) forQ → 1

2
ð∂σÞ2

are NLO. The Oðp2Þ term (105) is of the same order as the
OðM2

σÞ dilaton potential V, so the LO contribution is

Lσ;LO ¼ 1

2
e2σ=Fσ∂μσ∂μσ − VðσÞ: ð114Þ

This Lagrangian is suitable for the tree approximation: the
p;Mσ dependence of each propagator i=ðp2 −M2

σÞ is
compensated by the Oðp2Þ or OðM2

σÞ behavior of the next
vertex.
The remaining terms in LLO are obtained by making the

Higgsless Lagrangian (101) scale invariant. The result

LLO¼−
1

4
GA

μνGAμν−
1

4
Wa

μνWaμν−
1

4
BμνBμνþ q̄Li=DqL

þ ūRi=DuRþ d̄Ri=DdRþ l̄Li=DlLþ ēRi=DeR

þ1

2
e2σ=Fσ∂μσ∂μσ−VðσÞþ1

4
v2trðDμUDμU†Þe2σ=Fσ

−vfq̄LŶuUURþ q̄LŶdUDRþ l̄LŶeUERþH:c:geσ=Fσ

ð115Þ

describes the low-energy behavior of strongly interacting
TC plus weak interactions of the dilaton with the SM gauge
bosons and fermions. As we saw for the dilaton kinetic
energy, not all terms from Eq. (106) are needed, but the
reasons for this are less obvious and require a discussion.
Equation (115) contains covariant derivatives Dμ given

by Eq. (103), so gauge invariance requires products like
gwWμ in Eq. (103) to be counted like ∂μ, i.e., as OðpÞ. In
the original version of this rule [112,113], the gauge field
was taken to be OðpÞ. That choice works if the field is
external, but it is not suitable when gauge propagators
appear; then it is necessary to require [143]

gauge field ¼ Oð1Þ; charge ¼ OðpÞ ð116Þ

so that gauge-boson kinetic energies are Oðp2Þ, corre-
sponding to Oðp−2Þ behavior for the gauge propagators.
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In bosonic diagrams, this Oðp−2Þ behavior is compensated
by the next vertex being Oðp2Þ because of the OðpÞ rule
(116) for gauge coupling constants.21 There are separate
rules for fermions because propagators are Oðp−1Þ [146]:

fermion field ¼ Oðp1=2Þ; Yukawa coupling ¼ OðpÞ:
ð117Þ

The rules (116) and (117) should be understood purely as
tagging devices to ensure correct power counting for l-loop
chiral amplitudes. Numerical estimates for the gauge
couplings gw, g0w; gs in various energy regimes should
not be inferred beyond the requirement that perturbation
theory remains applicable.
The rules for the tree approximation and beyond can be

efficiently described in terms of chiral dimensions
[147,148]. Fields or coupling constants counted as
Oðp½…�Þ above are said to have chiral dimension ½…�:

½Gμ;Wμ; Bμ; σ;ϕa� ¼ 0; ½ψ � ¼ 1

2
;

½gs; gw; g0w; Ŷu;d;e; ∂μ� ¼ 1; ½M2
σ� ¼ 2: ð118Þ

The construction of the LO Lagrangian is summarized by
the rule that it be homogeneous in chiral dimension
with ½LLO� ¼ 2.
The utility of Eq. (118) becomes evident beyond LO,

where rules for the low-energy expansion of EFT loop
diagrams are needed. Despite the complications presented
by the structure of loop diagrams, the rule for the NlLO
Lagrangian at l-loop order implied by low-energy power
counting is simple: construct all operators with chiral
dimension 2lþ 2, i.e.,

LEFT ¼
X
l≥0

LNlLO with ½LNlLO� ¼ 2lþ 2: ð119Þ

At each order, the set of operators includes renormalization
counterterms needed to render all loop integrals UV
convergent. Similarly, on-shell NlLO amplitudes are
Oðp2lþ2Þ modulo logarithms, where p ∼ 0 refers to
momenta, NG boson masses and the rule (118) for coupling
constants.
NLO amplitudes are interesting [149,150], especially for

electroweak processes like h → γγ. The QCD analogues of
these are two-photon reactions such as f0ð500Þ → γγ in

chiral-scale perturbation theory (the forerunner of crawling
TC). However, as noted in Appendix A of Ref. [14], a
general NLO analysis depends on the next order of Taylor
expansions of β and γ functions in α about αIR, which would
take us far afield. Therefore, for the remainder of this
article, we restrict our attention to the LO approximation.
An immediate comparison of the Higgs sector of

crawling TC with that of the SM is obscured by the
complicated σ dependence of the formula (115) for LLO.
However, in the tree approximation, there is a field
redefinition [43]

h ¼
Z

σ

0

eσ
0=Fσdσ0 ¼ Fσðeσ=Fσ − 1Þ; h ≥ −Fσ ð120Þ

which simplifies the structure of Higgs vertices and
importantly, satisfies the requirements of the equivalence
theorem17; indeed, h is just the constrained field ϕc already
discussed in Eqs. (87) and (88). The constraint on h refers
to the fact that its scale transformations

h → ρ−1hþ Fσðρ−1 − 1Þ; x → ρx ð121Þ

are restricted to the region −Fσ ≤ h < ∞. The change of
field variables σ → h is permitted by the theorem because
fluctuations σ ∼ 0 about the minimum of V are mapped to
h ∼ 0.
With this redefinition, the EFT Lagrangian (115)

becomes

LLO ¼ −
1

4
GA

μνGAμν −
1

4
Wa

μνWaμν −
1

4
BμνBμν þ q̄Li=DqL

þ ūRi=DuR þ d̄Ri=DdR þ l̄Li=DlL þ ēRi=DeR

þ 1

2
ð∂hÞ2 − VðhÞ þ 1

4
v2trðDμUDμU†Þð1þ h=FσÞ2

− vfq̄LŶuUUR þ q̄LŶdUDR þ l̄LŶeUER þ H:c:g
× ð1þ h=FσÞ: ð122Þ

Apart from the Higgs potential V, this LO result
resembles the SM, where the factors ð1þ h=FσÞ2 and
ð1þ h=FσÞ in the last two terms become ð1þ h=vÞ2 and
ð1þ h=vÞ respectively. Similar results are often quoted for
“dilatonic” or scalon-type theories, despite the WW mode
being chosen in the limit of scale invariance. The difference
is that the experimental result Fσ ∼ v indicated by mea-
surements [151] of the decays h → ττ;WW;ZZ and bb̄ is
expected in crawling TC but requires “fine tuning” in
scalon theories (Secs. IV E and V).
What clearly distinguishes our result from the SM and

other theories is the unique dependence of the Higgs
potential V on the nonperturbative constant β0:

21In Sec. VI and Appendices A and B of Ref. [14], the old
OðpÞ rule for an external photon field Aμ was used. To adapt that
discussion to fit Eq. (116), simply regard eAμ as the photon
source, where −e is the electron’s charge. Then everything works,
including chiral power counting for UV-convergent one-loop
amplitudes such as KS → γγ [144,145].
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VðhÞ ¼ M2
σF2

σ

β0

�
−
1

4

�
1þ h

Fσ

	
4

þ 1

4þ β0

�
1þ h

Fσ

	
4þβ0

þ β0

4ð4þ β0Þ
�
: ð123Þ

In the expansion

VðhÞ ¼
X
n≥2

an

�
h
Fσ

	
n
; ð124Þ

the coefficients an are given by

an ¼
M2

σF2
σ

β0
1

n!

�
Γ½4þ β0�

Γ½5þ β0 − n� −
3!

ð4 − nÞ!
�
; with

1

ð4 − nÞ!≡
�
1; n ¼ 4;

0; n > 4:
ð125Þ

We have retained the notationMσ for the LOmass of h as
a reminder that our Higgs boson is a genuine pseudodi-
laton. Expanding the gamma functions in Eq. (125) yields

VðhÞ ¼ M2
σF2

σ

�
1

2

�
h
Fσ

	
2

þ 5þ β0

3!

�
h
Fσ

	
3

þ 11þ β0ðβ0 þ 6Þ
4!

�
h
Fσ

	
4

þOðh5Þ
�
: ð126Þ

The corresponding SM formula is

VSMðhÞ ¼
1

2
m2

hh
2f1þ h=ð2vÞg2: ð127Þ

Unlike the SM, our effective theory is not renormalizable,
so powers ∼h5 and higher are present in Eq. (126).
Although a determination of the Higgs quartic self-
coupling appears to be out of the LHC’s reach and very
challenging even for future colliders [152], measurements
of Higgs double production during the high-luminosity
phase of the LHC should make it possible to place bounds
on the cubic coupling [153,154]. Currently, this is the most
promising way to determine β0.
Subject to the NG-mode requirements for h noted above,

it is evident that our Lagrangian (122) belongs to a class of
Lagrangians [35–43] proposed for dynamical electroweak
theories with the Higgs field treated as a generic scalar.
General formulas are given in Sec. 2 of Ref. [43].
Given the explicit form of the potential, we can check the

relation (53) between the dilaton mass and the technigluon
condensate. Let us compare the trace anomaly in the EFT

θμμjeff ¼ −
M2

σF2
σ

4þ β0

��
1þ h

Fσ

	
4þβ0

− 1

�
ð128Þ

with that of the underlying theory

θμμ ¼ −
ϵβ0

4αIR

fĜ2 − hĜ2ivacg þOðϵ2Þ: ð129Þ

As specified in Appendices C and E, the operator Ĝ2 scales
homogeneously (no mixing with the identity operator I)
and with dynamical dimension 4þ β0. That is also true

for the operator ð1þ h=FσÞ4þβ0 in Eq. (128), so we can
conclude that hĜ2ivac corresponds to the remaining term in
Eq. (128):

ϵβ0

4αIR

hĜ2ivac ¼
M2

σF2
σ

4þ β0
þOðϵ2Þ: ð130Þ

This yields the LO formula

M2
σ ¼

ϵβ0ð4þ β0Þ
4αIRF2

σ
hĜ2ivac þOðϵ2Þ; ð131Þ

in agreement with the result (53) derived from the CS
equations. At NLO, the correction to Eq. (131) is of the
form ∼M4

σ lnðMσ=Λσ;vÞ; scale invariance forbids quadratic
dependence on the scales Λσ;v.

VII. SIGNALS FOR CRAWLING TC
ON THE LATTICE

Throughout this paper we have been careful to distin-
guish IR fixed points according to whether scale invariance
is realized in the WW or NG mode. This distinction is
especially important for the search for IR fixed points on the
lattice, since these investigations typically rely on criteria or
techniques that apply to the WW mode only. In particular,
the existence of NG-mode IR fixed points cannot be inferred
from spectral studies based on hyperscaling relations [22],
because these scaling laws are forbidden by the soft-dilaton
results of Eqs. (15) and (16): conformal symmetry is hidden.
Another key point [noted below Eq. (29) in Sec. II] is that
NG-mode IR fixed points are theoretically possible for any
value of Nf outside the conformal window. When con-
formal symmetry is hidden, there is no need to tuneNf to lie
on the edge of the conformal window (which is standard
practice in “dilatonic” walking gauge theories [1–5]). This
suggests that the set of IR fixed points may be larger
than previously envisioned; a sketch for SUð3Þ gauge
theories is shown in Fig. 3.
The most direct ways to look for candidate theories of

crawling TC on the lattice are as follows:
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(1) Search for the “freezing” of α [28] for Nf values
outside the conformal window, where dimensional
transmutation and chiral condensation can occur.
Note that the UV expansions of α typically used to
measure nonperturbative corrections to asymptotic
freedom for QCD amplitudes are not applicable. The
energy scale must be lowered beyond the region
where UVexpansions break down and into the far IR
region α ≲ αIR.

(2) Test whether amplitudes exhibit the singular behav-
ior displayed in Eq. (34).

(3) Confirm the presence of a pseudodilaton with a
small value ofM2

σ, especially if Eq. (53) or Eq. (131)
can be tested.

Lattice calculations forNf ¼ 8 triplet fermions [46–49] and
Nf ¼ 2 sextet fermions [155] suggest that, in the IR region,α
varies slowly and chiral condensation produces technipions
(63 forNf ¼ 8 triplets and 3 forNf ¼ 2 sextets) plus a light
scalar boson. These examples have been taken as support for
walking gauge theories, but they could actually point to
crawling scenarios. At present, definite conclusions cannot
be drawn because current lattice investigations can be
matched to chiral constraints only for large fermion masses
[133,156–158]. Consequently these investigations may be
too far from the chiral limit for soft dilaton theorems to apply.
If a candidate pseudodilaton σ is seen on the lattice for a

small number Nf of fermion triplets, it may be possible to
determine F2

σ from the σ-pole residue of a component of
hθαβðxÞθμνð0Þivac. (We say “may,” because explicit break-
ing of space-time symmetries by the lattice regulator makes
θαβ hard to study on the lattice [159].) Since lattice
simulations are performed with massive techniquarks

mψ ≠ 0, what is actually measured is the mψ ≠ 0 version
F̃σ of the decay constant [see Eq. (55)], from which Fσ is
found by extrapolating in mψ to mψ ¼ 0.
Then the anomalous dimension γm of ψ̄ψ at αIR can be

deduced from the LO soft-σ theorem

3 − γm ¼ Fσ
hσjψ̄ψ jvaci
hvacjψ̄ψ jvaci þOðmψÞ: ð132Þ

This involves the σ-pole residues of hψ̄ψðxÞψ̄ψð0Þivac and
hθαβðxÞψ̄ψð0Þivac, where the latter is required to check
magnitudes and fix the sign of 3 − γm.
An analysis [5] of mψ dependence in effective

Lagrangians has led to proposals [44,45] that “dilaton-
based” potentials for walking TC and conformally deformed
theories be tested on the lattice. Can a similar approach be
applied to our Higgs potential (109) and hence determine β0?
The first step of Refs. [5,44,45] is to account for mψ ≠ 0

by including in the EFT a chiral mass operator which shifts
the VEVof the dimension-1 scalar field χ from hχimψ¼0 to
hχimψ≠0. Constraints on decay constants and spin-0 masses
are found by minimizing the mψ ≠ 0 potential and evalu-
ating its curvature at the minimum. The mψ dependence of
the results appears to be entirely determined by dependence
on the shift hχimψ¼0 → hχimψ≠0.
Applying the same procedure to Eq. (112), one finds

that physical results do not depend on the value chosen
for hχi > 0, or equivalently, for hσi. Invariance under
σ → σ þ constant is expected for a true dilaton because
the equivalence theoremallowsus to choose any real valueof
hσi; indeed, hσi does not have to vanish even for mψ → 0.
The equations are simplest ifweuse this freedom to retain the
choice hσi ¼ 0 asmψ is turnedon. Evenwith that choice, it is
necessary to distinguish observable masses and decay
constants such as M̃σ and F̃σ for values of mψ ≠ 0 from
those for mψ ¼ 0 (Mσ and Fσ). Similarly, we replace the
mψ ¼ 0 coefficients c1V and c2V of Eq. (109) by their
counterparts c̃1V and c̃2V for mψ ≠ 0. Since c1V and c2V
are counted as LO,wemust also countOðmψ Þ corrections to
them as LO, as in chiral-scale perturbation theory [13–15]:

c̃nV ¼cnVþmψdnVþOðm2
ψ ;mψϵ;ϵ2Þ; n¼1;2: ð133Þ

HerednV donot dependon the scale-breakingparametersmψ

or ϵ. In terms of σ, the effective LO mass operator for Nf

degenerate flavors is [13–15]

Lmass ¼
1

2
mψBπF2

πTrðU þ U†Þeð3−γmÞσ=F̃σ þOðm2
ψ ; mψϵÞ;

ð134Þ
where to first order inmψ , we can use themψ ¼ 0 values of
the decay constants Fπ and the condensate constant Bπ

appearing in hψ̄ jψ iivac ¼ −F2
πBπδ

ij.

FIG. 3. Search for IR fixed points in SUð3Þ gauge theories with
Nf Dirac fermions in the triplet representation. The diagram
assumes that IR fixed points of some kind exist from Nf ¼ 2 to
Nf ¼ 16, with chiral-scale perturbation theory χPTσ at Nf ¼ 3.
Crawling TC with N2

f − 4 physical technipions (none for
Nf ¼ 2) is possible anywhere outside the conformal window.
For simplicity of presentation, we choose to have αIR (or αww

for Nf ≳ 12) be a decreasing function of Nf for a given
renormalization scheme.
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The mψ -dependent potential to be minimized is

ṼðσÞ ¼ c̃1Ve4σ=F̃σ þ c̃2Veð4þβ0Þσ=F̃σ − NfmψBπF2
πeð3−γmÞσ=F̃σ

þOðm2
ψ ; mψϵ; ϵ2Þ: ð135Þ

Keeping just LO terms OðϵÞ and OðmψÞ, the result of
minimizing Ṽ at σ ¼ 0 is

0 ¼
LO

4c̃1V þ ð4þ β0Þc̃2V − NfmψBπF2
πð3 − γmÞ: ð136Þ

We now set the Oðσ2Þ term equal to 1
2
M̃2

σσ
2 and find

M̃2
σF̃2

σ ¼
LO

16c̃1V þ ð4þ β0Þ2c̃2V − NfmψBπF2
πð3 − γmÞ2

ð137Þ

which, from Eqs. (133) and (136), corresponds to mψ

dependence

M̃2
σF̃2

σ ¼
LO

M2
σF2

σ þmψ ½d2Vβ0ð4þ β0Þ
þ NfBπF2

πð3 − γmÞð1þ γmÞ�: ð138Þ

Equations (136) and (137) can be solved for c̃1V and c̃2V :

4β0c̃1V ¼
LO

− M̃2
σF̃2

σ þ NfmψBπF2
πð3 − γmÞðβ0 þ γm þ 1Þ;

β0ð4þ β0Þc̃2V ¼
LO

M̃2
σF̃2

σ − NfmψBπF2
πð3 − γmÞðγm þ 1Þ:

ð139Þ

Unlike Refs. [5,44,45], we do not find any additional
constraints at this stage. Without input from higher-order
terms in Ṽ, we have no independent information about c̃1V
or c̃2V.
A determination of β0 from Ṽ is difficult because it

involves calculating a three-point function on the lattice and
then going on shell to measure the cubic Higgs coupling.
Given Eq. (139), we find

gσσσ ¼
LO

ð1=3!Þh−ð∂σÞ2σ=F̃σ þOðσ3Þ terms in Ṽion shell
¼
LO

ð5þ β0ÞM̃2
σ=F̃σ − NfmψBπF2

πð3 − γmÞðγm þ 1Þ
× ðγm þ β0 þ 1Þ=F̃3

σ: ð140Þ

In the limit mψ → 0, this agrees (as it should) with the
Oðh3Þ coupling in Eq. (126).
Otherwise, if αIR can be isolated, it may be easier to

obtain β0 directly from the running of α near αIR. If an
independent value of the technigluon condensate becomes
available (Appendix C), the mψ ≠ 0 version (55) of the
dilaton mass formula may be tested.

VIII. FINAL REMARKS:
SUPPRESSION OF FCNCs

Many papers have been written about the idea that the
Higgs boson is some sort of “dilaton,” but unlike crawling
TC, there is a lack of commitment to the NG-mode
requirement that the limit of exact scale invariance produce
scale-dependent amplitudes (Appendix D). As explained in
Sec. IV E, schemes like walking TC and deformed con-
formal potentials are not dilaton theories: they follow the
example of scalon theory [30] by assuming manifest scale
invariance (i.e., no scaling-NG mechanism) in the scale-
invariant limit. Only in crawling TC, where there is a
genuine dilaton with a nonzero decay constant in the scale-
invariant limit, can it be argued that approximate scale
invariance protects the small mass of the Higgs boson.
To satisfy the NG-mode requirement, crawling TC

assumes the existence of a nonperturbative IR fixed point
αIR at which conformal invariance is exact, and a con-
densate hψ̄ψivac for both electroweak and scale trans-
formations that is nonvanishing in the conformal limit
α → αIR (left diagram of Fig. 1). Both of the decay
constants v and Fσ arise from this condensate in the limit
of scale invariance, so their ratio v=Fσ is allowed to be of
order unity without the fine-tuning problem of scalon-type
theories.
Hidden scale invariance corresponds to new solutions for

the CS equations near αIR, with scaling laws for Green’s
functions replaced by the soft-dilaton theorems (15) and
(16). Since the scaling-law criteria used to find IR fixed
points inside the conformal window are not valid for
NG-mode fixed points, they may appear at small Nf values
(Fig. 3).
The distinctive feature of our theory is the dependence of

the Higgs potential of Eqs. (123)–(126) on β0, the slope of
βðαÞ at αIR (left diagram of Fig. 1). We look forward to
determinations of β0 via experiment (Sec. VI) or the lattice
(Sec. VII).
Finally, we note that standard explanations of the mass

hierarchy of quarks and leptons and the suppression of
FCNCs can be naturally adapted to fit crawling TC.
According to the theory of extended technicolor (ETC)

[160–163], there is a unification scale ΛV ≫ Λv at which
the SM and TC gauge groups combine to form an ETC
gauge group with an intermediate boson X of mass

MX ∼ ΛV=ð4πÞ ≫ W;Zmasses: ð141Þ

The ETC coupling gX of SM fermions ψSM ¼ q;l to TC
fermions22 ψTC and directly or indirectly to other SM
fermions induces FCNCs via effective four-fermion inter-
actions such as

22Previously denoted as ψ , as in Fig. 1 and Eq. (54). ETC
fermions ψETC do not play a major role in this analysis.
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Lqi↔qj ¼ cijðgX=MXÞ2q̄iLγμψTCRψ̄TCLγμqjR þ H:c:;

ð142Þ

LjΔSj¼2 ¼ cΔS¼2ðgX=MXÞ2d̄LγμsRs̄LγμdR þ H:c:; ð143Þ

where cij and cΔS¼2 are Oð1Þ numerical coefficients. The
observed bound on K0 ↔ K̄0 requires MX=gX ≳ 103 TeV
in Eq. (143), but then, rough estimates of the contributions
of Lqi↔qj and its leptonic analogue Lli↔lj to the SM-
fermion mass matrix tend to be orders of magnitude too
small to fit the observed quark-lepton spectrum. This
assumes vacuum insertion for the ψTC-dependent part of
Eq. (142) renormalized at the ETC scale,

ψTCRψ̄TCL → hvacjψ̄TCLψTCRjvaciETC: ð144Þ

The conclusion then follows from the relation

hvacjψ̄TCLψTCRjvaciETC
¼ hvacjψ̄TCLψTCRjvaciTC exp

Z
ΛV

Λv

dμ
μ
γmðαðμÞÞ ð145Þ

between ETC- and TC-scale amplitudes implied by the
CS equation (8) for O ¼ ψ̄TCLψTCR, and from the obser-
vation that

hvacjψ̄TCLψTCRjvaciTC ¼ OðΛ3
vÞ ð146Þ

is very small compared with the ETC amplitude. If
asymptotic freedom in TC sets in above Λv as rapidly as
it does in QCD, the exponential factor in Eq. (145) is at
most logarithmic in ΛV=Λv and thus much too small to fit
the SM-fermion spectrum.
Walking TC dispenses with part of the QCD/TC analogy

by assuming that the TC β function is close to zero over
the large range of energies between the TC and ETC
scales [164–170]. That corresponds to the walking
region of the right diagram of Fig. 1. Since β ≈ 0
implies γmðαÞ ≈ constant, γmðαÞ can be approximated by
a constant value γ�m in the integral. The result is power
enhancement

exp
Z

ΛV

Λv

dμ
μ
γmðαðμÞÞ ≈ ðΛV=ΛvÞγ�m ð147Þ

in Eq. (145). A minimal enhancement ≳102 is obtained for
γ�m ≈ 1. That gives an order-of-magnitude fit to the SM-
fermion spectrum (apart from the top quark and neutrinos,
which require special treatment).
In crawling TC, power enhancement can occur in the

crawling region (left diagram of Fig. 1) if β0 for TC

(Nf ≠ 3) is much smaller than β0 for QCD where23 Nf ¼
3 after decoupling t, b, c. That would allow TC resonances
to appear up to an energy Mmax much larger than Λv and
explain the delay in the onset of asymptotic freedom in TC
compared with QCD. The IR end of the integral in
Eq. (145) is sensitive to the proximity of αðmhÞ to the
fixed point αIR, so mh is the relevant lower limit. Given
that α varies little between αIR and αðMmaxÞ, we have
γmðαÞ ≃ γmðαIRÞ, so the exponential factor in Eq. (145)
becomes

exp
Z

Mmax

mh

dμ
μ
γmðαðμÞÞ ≈ ðMmax=mhÞγmðαIRÞ: ð148Þ

Like γ�m, γmðαIRÞ is a nonperturbative number. If we take
(say) γmðαIRÞ ¼ 1, an enhancement of 102 corresponds
to Mmax ¼ 12.5 TeV.
In conclusion, crawling TC is a consistent theory which

avoids the conceptual difficulties of walking TC while
sharing its benefits. Crawling TC (left diagram of Fig. 1)
does not suffer from walking TC’s phase discontinuity
(between the solid and dashed lines of the right diagram),
and allows the number of physical technipions to be
minimized by taking Nf small.
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APPENDIX A: DECOUPLING: THE DIFFERENCE
BETWEEN CURRENT AND
CONSTITUENT MASSES

While writing this paper and its predecessors [13–15],
we were puzzled by a reluctance in the literature to consider
the NG mode for scale invariance, especially at an IR fixed
point of a gauge theory. Possible reasons for this are
suggested in the text of this paper. However, our attention

23Precocious asymptotic freedom for QCD is observed in the
Nf ¼ 3 region, i.e., for momenta Q ≫ ms up to the charm
threshold. It has nothing to do with the candidate Nf ¼ 2 theory
for crawling TC; in particular, s does not decouple in the chiral
SUð2ÞL × SUð2ÞR limit taken at fixed ms. On the lattice, the
cases Nf ¼ 2þ 1 and Nf ¼ 2 are clearly distinct.
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has just been drawn to a reason we did not take seriously: a
belief that condensates decouple in the IR limit because
they give their constituent fields “mass,” effectively making
them heavy relative to IR scales. Fermion condensates are
usually mentioned in this regard [16], presumably because
a gluonic analogue of the Lagrangian mass term −mψ̄ψ
cannot be constructed without introducing extra field
variables (perturbative Higgs mechanism).
The gap in this argument is that it does not distinguish

between a light fermion’s small current mass m and its
large constituent mass Σð0Þ. Here Σðq2Þ is the fermion’s
self-energy dynamically generated by the nonperturba-
tive mechanism responsible for fermionic condensation
hψ̄ψivac ≠ 0 and (in QCD) the SUð3ÞLþR-invariant part of
the masses of non-NG hadrons. While m violates chiral
symmetry explicitly, Σ does not: it remains nonzero in the
limit m → 0 of chiral SUðNfÞL × SUðNfÞR symmetry. In
general, m and Σ are matrices in flavor and spinor space.
The current mass appears in the covariant operator i=D −m
in the Schwinger-Dyson equation

T�hði=Dx −mÞψðxÞψ̄ðyÞivac ¼ iδ4ðx − yÞ; ðA1Þ

where the time-ordering operation T� preserves chiral
SUðNfÞL × SUðNfÞR and gauge covariance, and
T�f∂μ…g≡ ∂μT�f…g by definition. The self energy Σ
appears in the solution for the dressed propagator

Z
d4xeiq:xT�hψðxÞψ̄ð0Þivac ¼

i
Aðq2Þ=q −m − Σðq2Þ :

ðA2Þ

Equations (A1) and (A2) imply the standard self-consistent
conditions for 1

2
ð1� γ5ÞΣ shown in Fig. 4.

The argument above contains an implicit assumption that
Σ sets the scale for decoupling, i.e., that for momenta
q ≪ Σ, the fermions are very “heavy” relative to q and so
decouple. We show below that QCD is not tenable if that
assertion is believed.
Fortunately for QCD, a natural extension of the pertur-

bative Appelquist-Carazzone theorem [98] to include
dimensionally transmuted scales such as Σð0Þ indicates
that it is the current mass which matters. In chiral
perturbation theory, both m and q tend to zero such that

m=q2 is finite, so decoupling does not occur. It is also
reassuring that the existence of gluonic condensates does
not cause gluons to decouple. More generally, dimension-
ally transmuted scales M ≠ 0 are allowed in the extreme
IR limit of QCD and (by analogy) TC. These observations
hold irrespective of whether an IR fixed point exists or not,
so if it exists, nothing prevents it from realizing scale
invariance in the NG mode.
Consider QCD at low energies, with the t, b and c quarks

decoupled. In the limit mu;d;s → 0 of chiral SUð3ÞL ×
SUð3ÞR symmetry, low-energy theorems can be derived
for amplitudes involving the eight chiral NG bosons π, K, η
and local operators such as chiral currents and q̄LqR. For
amplitudes with non-NG states excluded, soft-meson the-
orems are derivable when all external momenta q tend to
zero. The key point is that this soft-meson limit and the IR
limit of the running of αs for Nf ¼ 3 are indistinguishable:
the results of applying chiral perturbation theory and the
RG must match. An assumption that u, d, s decouple in
the IR limit would imply decoupling of π, K and η and
so contradict the well-known soft-meson theorems for
these NG bosons required by chiral perturbation theory.
That would be a disaster for QCD.
Instead, what happens is that π, K and η exist in the IR

limit of QCD. There are two main possibilities:
(a) There is no IR fixed point; rather, αs runs to ∞ with

scale invariance explicitly broken. Standard chiral
SUð3ÞL × SUð3ÞR perturbation theory is applicable.

(b) There is an IR fixed point αsIR which is necessarily in
the scaling NG mode because of the quark condensate
responsible for chiral NG bosons. There are nine NG
bosons, a dilaton σ as well as π, K and η, and chiral-
scale perturbation theory [13–15] is applicable.

It is important to check that these conclusions are
consistent with the Appelquist-Carazzone theorem. It states
that, to all orders in a perturbative gauge theory, a field
with a large Lagrangian mass M decouples in the limit
M → ∞ taken at fixed renormalization scale μ, with finite
changes in other renormalization constants such as the
gauge coupling α. Since dimensionally transmuted con-
stants M such as those associated with fermion condensa-
tion are nonperturbative, as is evident from the discussion
of Eq. (31), the proof of Appelquist and Carazzone
effectively assumes that all M vanish. So at first sight,
the theorem is irrelevant, and nothing needs to be checked.
However, it is reasonable to suppose that the Appelquist-

Carazzone theorem could be extended to include M
constants with the conditions of the theorem otherwise
unchanged. First, it is necessary to identify RG invariants
M associated with the field with a large current mass M;
either they tend to∞withM, such as particle thresholds for
heavy-quark production in QCD, or they vanish because
they involve Green’s functions like hb̄bivac which depend
on that field. Then, for RG invariants Mres that remain in
the residual theory after decoupling, there would be a finite

FIG. 4. Equation (A1) written as a relation between one-
particle-irreducible (1PI) two-point and three-point functions in
momentum space. The fermion and gauge-boson propagators
within the loop are fully dressed.
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change due e.g., to the finite renormalization of α and β in
Eq. (31). This is just a consistency argument, not a
derivation, but we suggest that a reasonable derivation
may be possible using Landau’s diagrammatic analysis of
the nonperturbative behavior of vertex functions [171].
Although this extension of the theorem appears not to have
been stated, much less derived, it is implicit in non-
perturbative applications such as the decoupling of t, b
and c in the presence of light-quark condensates such
as hūLuRivac ≠ 0.
Following Appelquist and Carazzone [98], let us scale

the theorem’s conditions such that the limit M → ∞ for
finite momenta q is replaced by the IR limit q → 0 at fixed
M, with μ fixed in both cases (mass-independent renorm-
alization). In perturbation theory, that works if all masses
≠ M are scaled with q, so that, in the IR-limit version of the
theorem, they tend to zero with q.
The problem is that the same argument applied to the

M-dependent extension of the theorem would require
Mres to scale with q, and not with the heavy current mass
M. In the finite-q version of the theorem, all M remain
finite or vanish as M → ∞,

Mres=M → 0; ðA3Þ

so decoupling in the IR limit q ∼ 0 with M fixed can be
concluded only if it is assumed that all Mres vanish.
Clearly, decoupling is a consequence of a current mass

M being large relative to dimensionally transmuted scales
Mres in the residual theory. Light-quark condensates and
their TC analogues do not decouple in the chiral IR limit.

APPENDIX B: NON-LAGRANGIAN METHODS
FOR CHIRAL AND CONFORMAL NG BOSONS

The NG mode for a symmetry is usually explained in
terms of symmetric Lagrangians with potential functions
that have flat directions. This obscures the more general
understanding developed in the 1960s [172,173] that
currents Jμ5 and their divergences are all that is needed.
As preparation for the scaling application in Sec. II, we
present a brief review of the analysis for chiral SUðNfÞL ×
SUðNfÞR symmetry, and extend it to scale and conformal
invariance, where the currents are nonlocal.
The aim is to derive theorems for NG mesons carrying

soft momenta q → 0 as the symmetry limit ∂μJμ5 → 0 for
current divergences is taken. There are two ways of
proceeding (Appendices B 1 and B 2 below); the choice
depends on the order in which these limits are taken. This
matters because there can be factors involving the pseudo-
NG mass m for which the limits do not commute, e.g.,

lim
q→0

lim
m→0

m2

m2 − q2
¼ 0; lim

m→0
lim
q→0

m2

m2 − q2
¼ 1 ðB1Þ

but as long as this lack of uniformity is respected, the
answer ends up being the same. Scale and conformal
invariance are considered in Appendix B 3.

1. Chiral-symmetric theory

Consider a chiral SUðNfÞL × SUðNfÞR-symmetric
TC theory with conserved axial-vector currents Jaμ5 ¼
ψ̄γμγ5Taψ and axial charges

Qa
5 ¼

Z
d3x Ja05ðxÞ; Tr Ta ¼ 0; a ¼ 1;…; N2

f − 1:

ðB2Þ

For any operator (or operator product)Owhich is not chiral
invariant, there is another operator

δa5O ¼ i½Qa
5;O� ≠ 0: ðB3Þ

A nonzero VEVof δa5O can occur only if jvaci is not chiral
invariant. Then the amplitude

hδa5Oivac ≠ 0 ðB4Þ

is called a chiral condensate. In the standard case, O is the
pseudoscalar operator ψ̄γ5Tbψ :

hδa5fψ̄γ5Tbψgivac ¼ −hψ̄ðTaTb þ TbTaÞψivac ≠ 0: ðB5Þ

Let O be a local spin-0 operator OðxÞ. Then the Ward
identity for the time-ordered amplitude

Aa
μ5ðqÞ ¼

Z
d4xeiq·xThJaμ5ðxÞOð0Þivac ðB6Þ

is given by

qμAa
μ5ðqÞ ¼ i

Z
d4xeiq·xδðx0Þh½Ja05ðxÞ;Oð0Þ�ivac: ðB7Þ

At zero momentum q → 0, Eq. (B7) reduces to

lim
q→0

qμAa
μ5ðqÞ¼ ih½Qa

5;Oð0Þ�ivac¼hδa5Oð0Þivac ≠ 0; ðB8Þ

which is possible only ifAa
μ5ðqÞ has anOð1=qÞ singularity.

This implies Goldstone’s theorem: such a singularity can
arise only if there are N2

f − 1 massless technipions πa

coupled to Jaμ5,

Aa
μ5ðqÞ ¼ −

qμ
q2

Fπhπaðq ¼ 0ÞjOð0Þjvaci

þ terms finite at q ¼ 0; ðB9Þ

where the decay constant Fπ is defined by
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hvacjJaμ5ð0ÞjπbðqÞi ¼ iδabFπqμ: ðB10Þ

Equation (B8) fixes the residue of the q2 ¼ 0 pole in
Eq. (B9). The result is a standard soft-π theorem

Fπhπaðq ¼ 0ÞjOð0Þjvaci ¼ −hδa5Oð0Þivac: ðB11Þ

2. Chiral currents partially conserved

The alternative 1960s procedure is to give the currents
small divergences

∂μJaμ5 ¼ Da
5 ¼ 2i

X
ψ

mψ ψ̄γ5Taψ ðB12Þ

by letting each techniquark have a small renormalized mass
mψ and then take the symmetry limit mψ → 0. This is the
forerunner of our approach in Sec. II, where the scale-
breaking divergence θμμ tends to zero as α approaches the
fixed point αIR.
For massive TC fermions, the Ward identity (B7) is

replaced by

qμAa
μ5ðqÞ ¼ i

Z
d4xeiq·xδðx0Þh½Ja05ðxÞ;Oð0Þ�ivac

þ i
Z

d4x eiq·xThDa
5ðxÞOð0Þivac: ðB13Þ

The traditional derivation of the soft-π theorem then runs as
follows [173]. The NG bosons acquire mass, so Aa

μ5ðqÞ
cannot have a 1=q singularity, and the q → 0 limit of
Eq. (B13) is

0 ¼ hδa5Oð0Þivac þ i
Z

d4xThDa
5ðxÞOð0Þivac; ðB14Þ

where the commutators (B3) are now understood to be
taken at equal times. The second term is a zero-momentum
insertion of the current divergence Da

5 . It can be nonzero
in the limit Da

5 → 0 only if there exists a single-particle
intermediate state which becomes massless as

imψ=ðq2 −M2
πÞjq¼0 ¼ −imψ=M2

π → finite: ðB15Þ

When the residue of this π pole is evaluated via
hvacjDa

5ð0Þjπbi ¼ M2
πFπδ

ab, the soft-π result (B11) is
recovered. Note that pole dominance is not assumed: in
the symmetry limit, branch cuts are less singular than poles.

3. Soft-dilaton theorems for scale
and conformal invariance

Goldstone’s theorem, that the number of NG bosons
equals the number of independent group generators which
transform the vacuum, is generally valid only for local

currents. A separate analysis is necessary for nonlocal
operators such as the dilatation and conformal currents

Dν ¼ xμθμνðxÞ; Kμν ¼ ð2xμxλ − x2gμλÞθλνðxÞ ðB16Þ

which correspond to generators

DðtÞ¼
Z

d3xD0ðt;xÞ; KμðtÞ¼
Z

d3xKμ0ðt;xÞ: ðB17Þ

Given these definitions, the partial conservation equations

∂νDν ¼ θλλ and ∂νKμν ¼ 2xμθλλ ðB18Þ

show that scale invariance θλλ → 0 ensures conformal
invariance.
The result that only one NG boson is needed—the dilaton

of scale invariance—was not obvious at first [101,102],
but it was quickly realized [9] that conformal-invariant
Lagrangians can be constructed by having the derivatives
∂μσ of the dilaton field σðxÞ act as Goldstone fields for the
four conformal generators Kμ. Also, Eq. (B18) shows that a
pseudo-NG boson for either scale or conformal invariance
must have spin 0. The absence of extra NG bosons has been
attributed [174–176] to the failure of Kμ to commute with
the translation generators Pμ in the limit of conformal
invariance,

½Kμ; Pν� ¼ −2iðgμνDþMμνÞ ≠ 0; θλλ → 0 ðB19Þ

where Mμν generate Lorentz transformations.
The literature on the NG mode for scale and conformal

invariance is dominated by Lagrangian models of scale
invariance. Unlike the chiral case [122,137,177], the model
independence of their predictions for multiple soft-dilaton
emission has yet to be proven explicitly, and they have not
been used at all to obtain conformal theorems. Instead,
soft-dilaton results for special conformal transformations
[52–54] were obtained by the non-Lagrangian method,
which we consider now. It is model independent and
resembles the chiral version discussed in Appendices B 1
and B 2, but there are some interesting differences which
are best seen for the symmetric case θλλ ¼ 0.
We begin with the analogue of Appendix B 1 for scale

symmetry (Dν conserved), excluding for a moment the
special case of a single spin-0 operator O. Instead of Oð0Þ,
let us consider a T-ordered product of O1ð0Þ (not neces-
sarily spin-0) and Fourier transforms

ÕnðpnÞ ¼
Z

d4xneipn·xnOnðxnÞ; n > 1 ðB20Þ

of other local operators OnðxnÞ, and hence connected
momentum-space amplitudes h…ic with the δ4 function
for momentum conservation removed.
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The general amplitude involving the dilatation current can be written as

Bν ¼
Z

d4xeiq·xT
D
vac

���DνðxÞO1ð0Þ
Y
n>1

ÕnðpnÞ
���vacE

c
¼ −i

∂
∂qμ Γμνðq; fpgÞ; ðB21Þ

where Γμν is constructed entirely from local operators, including the traceless tensor θμν:

Γμν ¼
Z

d4xeiq·x
Y
m>1

�Z
d4xmeipm·xm

�
T
D
vac

���θμνðxÞO1ð0Þ
Y
n>1

OnðxnÞ
���vacE

c
: ðB22Þ

Then the scaling Ward identity for Bν takes the form

iqνBν¼qν
∂
∂qμΓμνðq;fpgÞ¼−

Z
d4xeiq·x

Y
m>1

�Z
d4xmeipm·xm

�
T

�
vac

����
X
l≥1

δðx0−x0lÞ
�
D0ðxÞ;OlðxlÞ

�Y
n≠l
n≥1

OnðxnÞ
����vac

�
c

�����
x1¼ 0

:

ðB23Þ
For scale invariance in the NGmode, the vacuum state is not scale invariant, so there will be operators fOng for which the

right-hand side of Eq. (B23) does not vanish in the limit of zero momentum q:

lim
q→0

qν
∂
∂qμ Γμνðq; fpgÞ

¼ −Thvacj½D;O1ð0Þ
Y
n>1

ÕnðpnÞ�jvacic

¼ FðfpgÞ ≠ 0: ðB24Þ

Equation (B24) can be satisfied only if there is a singularity
∼qμqν=q2 in Γμν as q → 0:

Γμνðq; fpgÞ ¼
qμqν
3q2

FðfpgÞ þ GμνðfpgÞ þOðqÞ: ðB25Þ

Since this result includes amplitudes FðfpgÞ where
internal momentum transfers are not light-like, the q−2

pole must be due to a massless spin-0 particle, the dilaton σ.
The residue of the pole can be determined from Eq. (1) for
the decay constant Fσ. Given that On has dynamical
dimension dn,

i½D;O1ð0Þ�¼d1O1ð0Þ;
i½D;ÕmðpmÞ�¼ðdm−4−pm ·∂=∂pmÞÕmðpmÞ; m>1

ðB26Þ

the pole term in Eq. (B25) implies the result

FσThσðq ¼ 0ÞjO1ð0Þ
Y
n>1

ÕnðpnÞjvacic

¼
�
d1 þ

X
m>1

ðdm − 4 − pm · ∂=∂pmÞ
�

× ThvacjO1ð0Þ
Y
n>1

ÕnðpnÞjvacic ðB27Þ

which is a standard soft-σ theorem.24

The case where TfO1

Q
n>1 Õng is just a single

spin-0 operator O is special. Consider the unordered
amplitude

Γþ
OμνðqÞ ¼

Z
d4xeiq·xhvacjθμνðxÞOð0Þjvaci: ðB28Þ

It has the remarkable property that momentum conserva-
tion qμΓþ

Oμν ¼ 0 and scale invariance gμνΓþ
Oμν ¼ 0 deter-

mine its nonperturbative dependence on q:

Γþ
OμνðqÞ ¼ 2πkqμqνδðq2Þθðq0Þ; k ¼ const: ðB29Þ

Time ordering introduces a constant ambiguity25 cgμν,

ΓOμνðqÞ ¼ ikqμqν=ðq2 þ iϵÞ þ cgμν; ðB30Þ

24The earliest example appeared in Sec. 5 of Ref. [50]. The
model in Sec. IV is an almost scale-invariant version of the linear
sigma model [74,178] (clarified in the Appendix of Ref. [179]); it
was not used to derive the soft-dilaton theorem.

25Notice that c cannot be chosen such that Γμν is conserved and
has zero trace. That will not matter.
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but the dependence on c drops out when DνðxÞOð0Þ is
time ordered:

i
∂
∂qμ ΓOμνðqÞ ¼

Z
d4xeiq·xThvacjDνðxÞOð0Þjvaci

¼ 3ikqν=ðq2 þ iϵÞ: ðB31Þ

The Ward identity which follows

iqν
∂
∂qμ ΓOμνðqÞ ¼ 3ik ¼ ihvacj½D;Oð0Þ�jvaci ðB32Þ

has a q-independent right-hand side, so there is no need
to expand about q ¼ 0. From26

i½D;OðxÞ� ¼ ðdO þ xμ∂μÞOðxÞ; ðB33Þ

we see that Eq. (B32) fixes the constant k in Eq. (B29):

Γþ
OμνðqÞ ¼

2

3
πdOhvacjOð0Þjvaciqμqνδðq2Þθðq0Þ: ðB34Þ

When the completeness sum I ¼ P
n jnihnj is inserted

between θμν and O in Eq. (B28), only single-dilaton
states jni ¼ jσi can reproduce this q dependence. So
without approximating, we can relate Γþ

Oμν to the dilaton
decay constant Fσ of Eq. (1):

Γþ
OμνðqÞ ¼

Z
d3p

2p0ð2πÞ3
ð2πÞ4δ4ðq − pÞhvacjθμνð0ÞjσðpÞihσðpÞjOð0Þjvaci

¼ 2πδðq2Þθðq0Þhvacjθμνð0ÞjσðqÞihσðqÞjOð0Þjvaci ¼ 2

3
πFσqμqνδðq2Þθðq0ÞhσðqÞjOð0Þjvaci: ðB35Þ

Comparison of Eqs. (B34) and (B35) yields the soft-
dilaton formula (17).
If scale invariance is in the NG mode, so also is

conformal invariance: Kμjvaci ≠ 0 because of the identity

h½Kμ; ½Pν;O1

Y
n>1

Õn��ivac ¼ 2igμν

��
D;O1

Y
n>1

Õn

��
vac

≠ 0 ðB36Þ

implied by Eq. (B19) and Poincaré invariance of the
vacuum. For the conformal current Kμν, the analogue of
Eq. (B21) is

Bμν ¼
Z

d4xeiq·xThvacjKμνðxÞO1ð0Þ
Y
n>1

ÕnðpnÞjvacic

¼
�
gμλ

∂2

∂qα∂qα − 2
∂2

∂qμ∂qλ
�
Γλ
νðq; fpgÞ: ðB37Þ

Then qνBμν gives a conformal Ward identity similar to
Eq. (B23) but with D0 replaced by Kμ0 in equal-time
commutators. In the limit q → 0, the result is

lim
q→0

qν
�
gμλ

∂2

∂qα∂qα − 2
∂2

∂qμ∂qλ
�
Γλ
νðq; fpgÞ

¼ iThvacj½Kμ;O1ð0Þ
Y
n>1

ÕnðpnÞ�jvacic; ðB38Þ

which is nonzero only if there is a singular term
∼qλqνqβ=q2 in Γλ

ν:

qν
�
gμλ

∂2

∂qα∂qα − 2
∂2

∂qμ∂qλ
�
qλqνqβ
q2

¼ −6gμβ: ðB39Þ

Therefore, Eqs. (B24) and (B25) can be extended to include
the OðqÞ pole term:27

Γμνðq; fpgÞσ pole
¼ −

qμqν
6q2

Thvacj
�
2Dþ iqβKβ;O1ð0Þ

Y
n>1

ÕnðpnÞ
�
jvacic

þOðq2Þ: ðB40Þ

Although Kβ appears as a projection qβKβ in a light-like
direction (q2 ¼ 0, q0 > 0), all space-like directions q0 − q
and hence individual Kβ components can be obtained by
comparing σ states with small on-shell momenta q and q0.
The general soft-σ result for special conformal transforma-
tions is therefore

26Spin-0 operators O are defined such that an extra term on the
right-hand side ∝ I does not appear. See Appendix C 1.

27The connection between OðqÞ terms and special conformal
transformations was noted in Ref. [180] and used to derive soft-
dilaton theorems [52] long ago. The subject has been revived very
recently [53,54]; note the important distinction they made
between NG-mode dilatons and “gravitational dilatons.”
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FσðhσðqÞj − hσðq0ÞjÞ T
�
O1ð0Þ

Y
n>1

ÕnðpnÞ
�
jvacic

¼ 1

2
ðq0 − qÞβThvacj

�
Kβ;O1ð0Þ

Y
n>1

ÕnðpnÞ
�
jvacic

þOððq or q0Þ2Þ: ðB41Þ
As is well known [51,179,181], the Kμ commutators are

best classified via the little group at x ¼ 0. Each time Kμ

commutes with a dimension-d operator, it reduces the
dimension to d − 1. So there are towers of local operators
(mostly derivatives of other operators) above familiar
spin-J operators of minimal dimension such as chiral
currents and θμν whose Kμ commutators necessarily vanish
at x ¼ 0. For all operators On of this type, we have

½D;Onð0Þ� ¼ −idnOnð0Þ;
½Mμν; Onð0Þ� ¼ −ΣnμνOnð0Þ;
½Kμ; Onð0Þ� ¼ 0 ðB42Þ

where Mμν generate the Lorentz group and Σnμν are the
corresponding spin matrices for On. Translating with
expðiPμxμÞ yields the standard formula

i½Kμ; OnðxÞ�
¼ f2xμðdn þ xρ∂ρÞ − x2∂μ − 2ixρΣnμρgOnðxÞ: ðB43Þ

So for operators On → On, Eq. (B41) implies

FσðhσðqÞj − hσðq0ÞjÞ T
�
O1ð0Þ

Y
n>1

ÕnðpnÞ
�
jvacic

¼ ðq0 − qÞμ
X
m>1

��
4 − dm þ pm ·

∂
∂pm

	 ∂
∂pμ

m
−
1

2
pmμ

∂2

∂p2
m
þ iΣmμρ

∂
∂pmρ

�
ThvacjO1ð0Þ

Y
n>1

ÕnðpnÞjvacic

þOððq orq0Þ2Þ: ðB44Þ

The soft-dilaton theorems (B27) and (B44) will be
needed in Appendix D.

APPENDIX C: NONPERTURBATIVE DEFINITION
OF GLUON AND TECHNIGLUON

CONDENSATES

Definitions of the gluon condensate hG2ivac and its TC
analogue hĜ2ivac are problematic because
(1) they are perturbatively divergent nonperturbative

quantities, and
(2) they involve operators like Ĝ2 which are hard to

separate from the identity operator I under renorm-
alization or within operator product expansions.

The issue arises in the discussion following Eq. (7), where
the spectator operator O ¼ ðα=πÞĜ2 is used to obtain soft-
dilaton results such as Eq. (15) and hence Eq. (53) for the
technigluon condensate. To avoid ambiguity, we require that
O be multiplicatively renormalizable28 and (in the sense of
that discussion) α independent.
In this Appendix, we explain the need for these require-

ments, noting that, while they serve our purposes and are
consistent with various proposals to define hOivac, the
results still lack sufficient precision for unambiguous
calculations, e.g., on the lattice. The extent to which a
definitive nonperturbative definition is possible is then

considered. The analysis refers to the physical region,
which is 0 < α < αIR if there is an IR fixed point αIR, and
0 < α < ∞ if not (αIR → ∞).
When the gauge coupling α is finite, functional integrals

for Green’s functions are dominated by nonperturbative
gauge [183] and fermion fields. Evidently these fields are
hard to characterize analytically, i.e., beyond numerical
lattice methods. Instead, attention is focused on a few
physical operators O that form nonperturbative condensates
hOivac which can be given theoretical and phenomenological
meaning. The problem is to define O without introducing
ambiguities proportional to the identity operator I. Only then
does the condensate acquire a physical meaning.
Even before QCD was invented, it was known how to do

this for divergencesDa
5 of partially conserved currents [99]:

they belong to an irreducible representation of an equal-
time non-Abelian chiral group which distinguishes them
from the chiral-invariant operator I. For example, if Da

5 and
I appear in an operator product expansion, their contribu-
tions to its VEV can be distinguished, provided that other
operators with poorly defined condensates are known to
have less singular coefficient functions.
In gauge theories, these chiral condensates are formed

when O is a fermion bilinear: q̄ið1� γ5Þqj for QCD and
ψ̄ ið1� γ5Þψ j for TC. As long as the renormalization
procedure respects chiral SUðNfÞL × SUðNfÞR symmetry,
these operators do not have counterterms proportional to I
and so belong to an irreducible chiral representation. The
corresponding condensates are necessarily nonperturbative,

28In QCD with mq ≠ 0, mixing with mqq̄q must also be
considered [100,182].
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so they produce power corrections to short-distance expan-
sions of operator products.
However, any discussion of power corrections at short

distances in QCD would be incomplete without including
terms induced by the gluon condensate [64,69] formed
when O is the operator ðαs=πÞG2. Then group theory
cannot be used to distinguish O from I, so the definition of
hG2ivac remains ambiguous due to counterterms propor-
tional to I. The same problem arises for the technigluon
condensate hĜ2ivac.
A practical approach still in use [184–186] is to impose a

regulator such as the lattice and then identify and subtract
perturbative contributions to hĜ2ivac up to some high but
finite order. The series is not expected to converge because
of renormalons, but perturbative coefficients can be
checked numerically to see if their behavior is consistent
with Borel summability. The theoretical argument for this is
that, if all orders of perturbation theory can in principle be
summed by a well-defined technique and the result is then
subtracted, the remainder will be the nonperturbative
amplitude being sought [187]. However, even if Borel
summability can be proven to all orders, Borel’s method is
not unique: nonperturbative dynamics may choose another
well-defined procedure. Generally, there is no guarantee
that nonperturbative amplitudes can be deduced from
purely perturbative considerations [188,189], so it is not
surprising that these issues remain a source of unease [3].
Another idea is to multiply Ĝ2 by βðαÞ=ð4αÞ and use RG

invariance. Since purely nonperturbative constants can
have no Taylor series about α ∼ 0 [as noted for the constant
M in Eq. (31)], perturbative terms cannot be invariant. But
that is not sufficient, because nothing has been done to
distinguish the desired operator O from I. For example, if
O and I appear in the expansion of a product of physical
currents, hOivac can mix with the VEVof the I term under
RG transformations.
Our proposal is to consider the scaling properties of

operators, not just amplitudes. We consider mainly the TC
case where chiral symmetry of the Lagrangian stops Ĝ2

from mixing with techniquark bilinears.
Let μ set the scale for an arbitrary renormalization

prescription R for composite operators O, including the
trace operator

T ¼ ðβðαÞ=4αÞĜ2: ðC1Þ

We need to distinguish the results of variations μ∂=∂μ at
fixed coupling α and the total variation

μ
d
dμ

≡ μ
∂
∂μþ βðαÞ ∂

∂μ : ðC2Þ

Because subtractions necessarily include perturbative
terms, we do not expect the result TR to be exactly RG
invariant: there must be mixing with I,

μ
d
dμ

TR ¼ FRðμ; αμÞI; ðC3Þ

where FR is an ordinary function. However, the I-
dependent term can be absorbed into the definition of
the trace operator

TR0 ¼ TR −
Z

μ

c

dμ0

μ0
FRðμ0; αμ0 ÞI ðC4Þ

where c is a constant independent of μ and α. Note that the
integral over μ0 takes account of the μ0 dependence of αμ0 .
Evidently the resulting operator is RG invariant:

μ
d
dμ

TR0 ¼ 0: ðC5Þ

We are not done, because the solution of Eq. (C5) is not
unique. Any ordinary function fðMÞ whose dependence
on μ and α is carried solely by the RG invariant massM of
Eq. (31) is itself RG invariant. Therefore all operators

TR00 ¼ TR0 þ fðMÞI ðC6Þ

are RG invariant. To preserve engineering dimensions,
fðMÞ can be chosen to be M4 times a constant indepen-
dent of μ and α. This ambiguity does not affect the
multiplicative renormalizability of operators obtained by
multiplying by α-dependent factors.
Nevertheless, it is necessary to eliminate the ambiguity

(C6) if soft-dilaton results such as Eq. (15) are to be
derivable. That happens when we apply the α-independence
criterion to

OR00 ¼
�
α

π
Ĝ2

	
R00

¼ 4α2

πβ
TR00 ðC7Þ

for use as a spectator operator in the θμμ insertion rule (9),
because

βðαÞ ∂
∂αM ¼ −μ

∂
∂μM ¼ −M ðC8Þ

implies

∂
∂α

�
4α2

πβ
M4

	
¼ −

4α4

πβ2
M4

d
dα

�
β

α2
−
4

α

	
≠ 0: ðC9Þ

Then O has no ambiguity ∝ I, in principle.
In practice, we would like to be able to test our soft-

dilaton results by comparison with experimental or
lattice data. For that, our minimal requirements on Ĝ2

are necessary but not sufficient. It is not even clear how to
implement them for prescriptions currently on offer
for hĜ2ivac.
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Phenomenology is based on the original QCD prescrip-
tion [64,69,190], where mq-independent power corrections
in the small-x expansion of two electromagnetic currents

JμðxÞJνð0Þ ∼ CμνIðxÞI þ CμνG2ðxÞ αs
π
G2 þ… ðC10Þ

are by definition contained entirely within the gluonic
coefficient function CμνG2ðxÞ. Dispersive sum rules for the
operator product (C10) are reasonably consistent with each
other for hðαs=πÞG2ivac ≈ 0.012 GeV4, but there is no
reason to suppose that a similar definition of the gluon
condensate for a different operator product would be
equivalent.
The idea of this definition is to suppose that the I term in

a short-distance expansion is purely perturbative. That is a
difficult concept: even if CμνIðx; αs; μÞ is truncated to a
polynomial in αs, the running of αs depends on dimen-
sionally transmuted masses M which can produce power
corrections.29 And it is unclear how this proposal can be
related to purely theoretical definitions, where perturbative
truncation is also a problem. Examples are directly estimat-
ing the one-point function hĜ2ivac on the lattice (noted
above), or adding a heavy fermion Ψ and taking its massM
to ∞:

lim
M→∞

hvacjMΨ̄ΨjvaciM ¼
def

βðαÞ
12παβ1

hvacjĜ2jvaci: ðC11Þ

A way around this impasse may be to use experimental
data to extend α beyond the UV region where asymptotic
freedom is applicable. If α can be measured at finite values
where the small-α expansion is no longer valid, perturba-
tive truncation would not be needed. This would have to be
done within a renormalization scheme suitable for match-
ing to lattice calculations at these intermediate non-UV
energies. Then, if the thermodynamic limit can be dem-
onstrated for the Euclidean partition function on the lattice,

Z ∼ expf−V4Γðα; μÞg; Euclidean volumeV4 → ∞;

ðC12Þ

a practical nonperturbative definition of the Euclidean
condensate would be

hvacjĜ2jvaciEucl ¼
def

− 4α
∂Γ
∂α : ðC13Þ

Equation (C13) is equivalent to a condition [75,194] arising
from the Feynman-Hellmann theorem.
In crawling TC, where there is a fixed point αIR, the

technigluon condensate at αIR appears in results such as
Eqs. (50) and (53). It is obtained as a limit α ⇁ αIR of the
amplitude

hvacjðĜ2ÞR00 jvaci ¼ fβðαÞ=4αg−1hvacjTR00 jvaci; ðC14Þ

where 0 < α < αIR. The operator ðĜ2ÞR00 is local, so the
amplitude (C14) is a one-point function where intermediate
states such as jσi cannot occur. It follows that hðĜ2ÞR00 ivac is
continuous in the scaling limit:

hvacjðĜ2ÞR00 jvaciat αIR
¼ lim

θμμ→0
hvacjðĜ2ÞR00 jvaci0<α<αIR

:

ðC15Þ

1. Relation to commutators with the
dilatation generator D

A conventional soft-dilaton theorem such as Eq. (17) is
valid for operators O which scale homogeneously with
operator dimension dO, i.e.,

i½D;OðxÞ� ¼ ðdO þ xμ∂μÞOðxÞ ðC16Þ
with other operators absent. As seen above, ifO has spin 0,
mixing with the identity operator I is hard to control,
producing ambiguities such as Eq. (C6). Since Eq. (C16) is
not invariant under the shiftO → Ǒ ¼ Oþ cI (c ¼ const),

i½D; ǑðxÞ� ¼ ðdO þ xμ∂μÞǑðxÞ − cdOI; ðC17Þ

it could act as an alternative to α independence as a criterion
for resolving the ambiguity in Eq. (C7). These commuta-
tors (equal-time for α < αIR where D is not conserved) are
determined by short-distance expansions of θμνðxÞOð0Þ. As
noted in Sec. II [footnote 5 and Eq. (27)], short-distance
behavior for 0 < α < αIR is determined by the fixed
point α ¼ 0 (asymptotic freedom), whereas, when α is
first fixed at αIR, it cannot run: short-distance behavior is
then controlled by the nonperturbative world at αIR

(Appendix D). Therefore the cases α ¼ αIR and α < αIR

must be considered separately.
At αIR, the condition (C16) would resolve the ambiguity

in spin-0 operators O, e.g., the operator Ĝ2 in the mass
formula (53) with dO identified as 4þ β0 [Eqs. (51) and
(E9)]. However, we have been unable to relate this to the α-
independence criterion for the operator (C7) which defines
Ĝ2 in the mass formula. In Eq. (9), we considered replacing
θμμ by ∂μDμ in order to obtain a scaling Ward identity, but
could not circumvent the facts that Eq. (9) is valid only for
α < αIR and the limits x → 0 and α ⇁ αIR do not commute.
In Appendices B and D, we assume that spin-0 operators
can be classified according to the condition (C16).

29Sometimes the presence of nonperturbative power correc-
tions is attributed to a “breakdown” of the Wilson expansion. It is
true that a fully rigorous proof [191] has so far been possible only
within perturbation theory, but Wilson and Zimmermann [192]
gave convincing arguments for operator product expansions to be
valid in any nonperturbative theory consistent with axiomatic
field theory. See also Ref. [193].
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In all cases α ≤ αIR, the relevant operator product expansion for spin-0 operators O takes the form

θμνðxÞOð0Þ ∼ CμνIðxÞI þ CμνOðxÞfdOOð0Þ þ kOIg þ Cμνα∂OðxÞ∂αOð0Þ þ fless singular; or other operatorsg; ðC18Þ
where the constant kO has mass dimension 4, and where the leading singularities

CμνOðxÞ ¼
1

12π2
∂μ∂ν

1

x2
; ðC19Þ

Cμνα∂OðxÞ ¼ −
1

4π2

�
gμα∂ν þ gνα∂μ −

1

3
gμν∂α −

2

3
∂μ∂ν∂−2∂α

�
1

x2
; ðC20Þ

have x dependence determined by conservation and trace-
lessness in the indices μν [compare Eq. (B29)]. Here the
iϵ prescription x2 → x2 − iϵx0 for unordered products
should be understood, so we have ∂2ðx2Þ−1 ¼ 0 with no
δ4ðxÞ term 25 and can define ∂−2∂αðx2Þ−1 to be 1

2
xαðx2Þ−1.

The coefficient function Cμνα∂O is normalized to produce
the correct commutators of Oð0Þ with the Poincaré gen-
erators Pμ and Mμν. It also corresponds to the term x ·
∂OðxÞ in Eq. (C16).
At αIR where θ

μ
μ ¼ 0, CμνI is both traceless and conserved

and hence proportional to ∂μ∂νð1=x2Þ. Therefore, given the
presence of the term kOCμνOI in Eq. (C18), we can set
CμνI ¼ 0. The commutator condition (C16) is reproduced
if we set

kO ¼ 0: ðC21Þ
On the lattice, it would be hard to insulate a test of this
condition from α ≠ αIR effects.
For α < αIR, the problem is that asymptotic freedom and

the trace anomaly require the coefficient function

CμνIðxÞ ¼
1

3
ðgμν∂2 − ∂μ∂νÞGðx2Þ ðC22Þ

to be far more singular than the Oðx−4Þ coefficient
function CμνOðxÞ.
For example, let O be the RG-invariant trace operator T

discussed in Eqs. (C1) and (C6). Then asymptotic freedom
requires the trace amplitude

F ðx2Þ ¼ hvacjθλλðxÞT invð0Þjvaci ¼ ∂2Gðx2Þ ðC23Þ
to have the following short-distance behavior,

F ðx2Þ ∼ 1

16
β21ðln μ2x2Þ−2β1hvacjĜ2ðxÞĜ2ð0Þjvaciα¼0

∼ Kðln μ2x2Þ−2β1=ðx2Þ4; ðC24Þ
where K ≠ 0 is a constant and β1 > 0 is the one-loop
β-function coefficient (23). That corresponds to

Gðx2Þ ∼ 1

12
Kðln μ2x2Þ−2β1=ðx2Þ3 ðC25Þ

and hence

CμνIðxÞ ¼ Oðx−8ln−2β0 ðx2ÞÞ; ðC26Þ

which is Oðx−4 ln−2β0 ðx2ÞÞ compared with Eq. (C19) for
CμνO¼TðxÞ as x ∼ 0.
Since G is RG invariant, it can be written as a function

of x2 and a dimensionally transmuted scale M:

G ¼ ðx2Þ−3fðx2M2Þ: ðC27Þ

It is therefore likely that an x ∼ 0 expansion of G contains a
nonleading term ∝ M4=x2 whose contribution to CμνI in
Eq. (C18) cannot be distinguished from fkOCμνOgO→TI.
Then the latter term should be absorbed into CμνI by setting
kT ¼ 0. We conclude that a study of x ∼ 0 behavior for
α < αIR does not produce a criterion to resolve the
ambiguity (C6). All we can say is that asymptotic freedom
requires dO¼T ¼ 4, as noted in Eq. (20), and hence

½Dðx0 þ ϵÞ; TðxÞ� ∼ ð4þ x · ∂ÞTðxÞ þOðϵ−4 ln−2β1ðϵÞÞI
ðC28Þ

in the equal-time limit ϵ → 0.

APPENDIX D: NG-MODE
CONFORMAL-INVARIANT WORLD AT αir

Unlike a scale-invariant theory in the WW mode, the
world at αIR is somewhat similar to the physical world (TC
or QCD) for 0 < α < αIR. It has a particle spectrum with
(1) non-NG masses close to their physical values,

because in the physical world, scale invariance is
approximate at low energies, and

(2) an NG sector which is massless because at αIR, scale
and chiral invariance are exact.

This situation is allowed because amplitudes at αIR can have
a complicated dependence on scales set by the dilaton
decay constant (Fσ or fσ ≠ 0) and other dimensionally
transmuted masses M and condensates. As we emphasize
in various sections of this paper, the effects of M
dependence must be carefully distinguished from those
due to an explicit breaking of scale invariance in the
Lagrangian, e.g., by fermion mass parameters or
Coleman-Weinberg potentials.
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In case this picture seems counterintuitive, recall the fact
that the NG scaling mode for the ground state at αIR requires
it to have a noncompact scaling degeneracy in addition to
compact chiral degeneracies. Under a finite scaling trans-
formation, the ground state jvaci of a scale-invariant world
W is transformed to the ground state jvaci0 of another
scale-invariant world W 0:

jvaci → jvaci0 ¼ eiDρjvaci; x → x0 ¼ e−ρx: ðD1Þ

The same is true for all members of a complete set of states
fjnig for W,

fjnig → fjni0g; eiDρjni ¼ jni0; ðD2Þ

where fjni0g span the state space of W 0. The well-known
identity [10,179]

eiDρP2e−iDρ ¼ e2ρP2 ðD3Þ

implies that if jni has mass M, the mass of jni0 is

M0 ¼ eρM: ðD4Þ

Clearly this applies generally: all dimensionally transmuted
masses M associated with a given world W are scaled up
or down to M0 in the transformed world W 0.
Identities such as Eq. (D4) are often quoted as a reason

for supposing that a scale- or conformal-invariant world
must be entirely unphysical. How can there be a particle
spectrum if for every massive particle, there is a continuum
of particles [195] with the same quantum numbers
except for their mass, which ranges from infinitesimal
values to infinity? Must we conclude that we have an
unparticle theory [128] with power-law branch cuts at zero-
momentum thresholds, or that particles, if they exist, are
necessarily massless, as in free-field theory?
To answer these concerns, note that such arguments

depend on an implicit assumption that the ground state is
either unique or that, while it may exhibit a compact chiral
degeneracy, it lacks the scaling degeneracy specified by
Eq. (D1). Scaling degeneracy changes the picture com-
pletely, because different members of each particle con-
tinuum belong to different worlds.
Consider observers O and O0 in their respective uni-

verses, W and W 0. Assume that these observers choose
(say) natural units when making measurements. Since these
units involve reference to a dimensionally transmuted mass,
a scale transformation necessarily scales the units used in
W to those in W 0, e.g.,

GeV → GeV0: ðD5Þ

Since no observer is able to compare measurements in
different worlds, all experimental data in one world
would be exactly the same as in another world.
Therefore these worlds must be physically equivalent,
as is the case for any other symmetry with a vacuum
degeneracy. Each observer could rely on the same scale-
invariant version of the PDG tables, i.e., with particle
masses at αIR differing slightly from those of our world
0 < α < αIR, as described above.
Crawling TC picks out one of these scale-degenerate

vacua via tiny values of the parameter ϵ ¼ αIR − α which
cause scale invariance to be broken explicitly by the
nonvanishing trace anomaly on 0 < α < αIR.
Clearly, conformal group theory fails forM-dependent

amplitudes at αIR. However, it has always been accepted
that symmetries of the Hamiltonian, whether hidden
or approximate, become exact for coefficient functions
in short-distance expansions. These rules were originally
proposed [66] for approximate scale and chiral
SUðNfÞL × SUðNfÞR symmetry (hidden in the chiral
case), and later applied to hidden scale and conformal
invariance [196]. Subsequently, asymptotic chiral invari-
ance was derived from soft-pion identities [65]. Here we
extend this method to derive asymptotic scale and
conformal invariance from the soft-dilaton theorems
(B27) and (B44).
We begin with the coordinate-space version of the

scaling identity (B27) for a general operator product:

FσThσðq ¼ 0Þj
Y
m

OmðxmÞjvacic

¼
X
l

ðdl þ xl · ∂lÞ Thvacj
Y
m

OmðxmÞjvacic: ðD6Þ

In what follows, neighborhoods of coinciding points are
excised to avoid time-ordering ambiguities involving
δ4ðxm − xm0 Þ and its derivatives, as in Ref. [66]. For a
subset m ∈ S of the operators Om in Eq. (D6), there is an
operator-product expansion

Y
m∈S

OmðxmÞ ∼
X
n

Cnðfxl∈SgÞOnð0Þ ðD7Þ

for the short-distance limit xl∈S → 0with other coordinates
xl∉S held fixed at values ≠ 0. When Eq. (D7) is inserted
into each side of Eq. (D6), the result is an equivalence
between asymptotic expansions:

CRAWLING TECHNICOLOR PHYS. REV. D 100, 095007 (2019)

095007-35



X
n

Cnðfxl∈SgÞFσThσðq ¼ 0ÞjOnð0Þ
Y
m∉S

OmðxmÞjvacic

∼
X
n

X
l∈S

ðdl þ xl · ∂lÞCnðfxl∈SgÞ ThvacjOnð0Þ
Y
m∉S

OmðxmÞjvacic

þ
X
n

Cnðfxl∈SgÞ
X
l∉S

ðdl þ xl · ∂lÞ ThvacjOnð0Þ
Y
m∉S

OmðxmÞjvacic: ðD8Þ

The soft-σ amplitude on the left-hand side can be eliminated via Eq. (D6)

FσThσðq ¼ 0ÞjOnð0Þ
Y
m∉S

OmðxmÞjvacic ¼
�
dn þ

X
l∉S

ðdl þ xl · ∂lÞ
�
ThvacjOnð0Þ

Y
m∉S

OmðxmÞjvacic; ðD9Þ

with the result

X
n

�
−dn þ

X
l∈S

ðdl þ xl · ∂lÞ
�
Cnðfxl∈SgÞ ThvacjOnð0Þ

Y
m∉S

OmðxmÞjvacic ∼ 0: ðD10Þ

Since
Q

m∉S Om can be chosen at will, this asymptotic
expansion is valid only if all coefficients of hOn

Q
m∉SOmi

vanish:

�
−dn þ

X
l∈S

ðdl þ xl · ∂lÞ
�
Cnðfxl∈SgÞ ¼ 0: ðD11Þ

Therefore all coefficient functions Cn scale with dimensionP
l∈S dl − dn:

Cnðfρxl∈SgÞ ¼ ρdn−
P

l∈S
dlCnðfxl∈SgÞ: ðD12Þ

This is the same as Wilson’s rule [66] for leading
singularities in a theory of WW-mode scale invariance
explicitly broken by generalized mass terms such as
current fermion masses. The difference is that our result
is for all coefficient functions in a theory of exact
scale invariance in the NG mode. All dependence on
dimensionally transmuted “constituent” masses arises
from scale condensates formed from vacuum amplitudes
hOn

Q
m∉SOmivac ≠ 0.

The same procedure works for special conformal trans-
formations. We give details for operators Om of the
type (B42) which commute with Kμ at x ¼ 0:

Y
m∈S

OmðxmÞ ∼
X
n

Cnðfxl∈SgÞOnð0Þ þ operators ∉ fOmg:

ðD13Þ

Let the action of an infinitesimal Lorentz transformation on
the tensor or spinor indices of an operator Ol inside a field
product be denoted as follows:

Σlμν

�Y
m∈S

OmðxmÞ
�

≡
�Y

m<l

OmðxmÞ
	
ΣlμνOlðxlÞ

�Y
n>l

OnðxnÞ
	
: ðD14Þ

In coordinate space, the conformal soft-σ theorem (B44)
becomes

Fσ

��
σðqÞ

���� −
�
σðq0Þ

����
	

T

�Y
m

OmðxmÞ
�����vac

�
c

¼ −
i
2
ðq0 − qÞμ

X
l

f2xlμðdl þ xl · ∂lÞ − x2l∂lμ − 2ixρlΣlμρgT
�
vac

����
Y
m

OmðxmÞ
����vac

�
c
þOððq or q0Þ2Þ: ðD15Þ

When the expansion (D13) is applied to both sides of Eq. (D15), the result for the coefficient function of On is

X
l∈S

f2xlμðdl þ xl · ∂lÞ − x2l∂lμ − 2ixρlΣlμρgCnðfxl∈SgÞ ¼ 0: ðD16Þ
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Here we made use of the observation above Eq. (B41) that
the four components of q − q0 can be chosen independently.
Together with Eq. (D12) and Poincaré symmetry, this shows
that exact conformal invariance can be applied to asymptotic
coefficient functions despite the M dependence of ampli-
tudes outside the short-distance region.

APPENDIX E: SCALING DIMENSION OF THE
TECHNIGLUON (FIELD-STRENGTHOPERATOR)2

This appendix concerns the origins and derivation of
formulas for the anomalous scaling function (51) and
dimension 4þ β0 of the trace anomaly. These formulas,
derived in Refs. [13,14], were common private knowledge
as far back as the 1970s. Only recently, we rediscovered the
original version

fscaling dimensiong ¼ 4þ β̄0ðg∞Þ;
g∞ ¼ g at fixed point ðE1Þ

below Eq. (28) of Ref. [58], where β̄ and g are given by

β̄ðgÞ ¼ μ
dg
dμ

and α ¼ g2

4π
: ðE2Þ

For Eq. (51), see also Refs. [61] and [100,197] (drawn to
our attention by R. Zwicky and E. Pallante, respectively).
First, let us review the derivation in Refs. [13,14] of

Eq. (51), simplified for the case of TC with massless
fermions. Construct CS equations for RG invariant ampli-
tudes A

�
μ
∂
∂μþ βðαÞ ∂

∂α
�
A ¼ 0 ðE3Þ

and apply the operator α∂=∂α:
�
μ
∂
∂μþ βðαÞ ∂

∂αþ β0ðαÞ − βðαÞ
α

�
α
∂A
∂α ¼ 0: ðE4Þ

Since α∂A=∂α is proportional to the amplitude AĜ2 where
Ĝ2 is inserted at zero momentum into A, Eq. (E4) implies

�
μ
∂
∂μþ βðαÞ ∂

∂αþ γĜ2ðαÞ
�
AĜ2 ¼ 0; ðE5Þ

where

γĜ2ðαÞ ¼ β0ðαÞ − βðαÞ
α

ðE6Þ

is the anomalous scaling function (51) in the form given in
Refs. [13,14] and confirmed in Ref. [198]. [There is an
incorrect factor of 2 in Eq. (13) of Ref. [197].] This result
was given originally for massless QCD in the form [100]

γG2ðgÞ ¼ g
∂
∂g

�
β̄ðgÞ
g

	
ðE7Þ

which corresponds to Eq. (E6) because of the fixed-μ
identity

g
∂
∂g

�
β̄ðgÞ
g

	
¼ α

∂
∂α

�
βðαÞ
α

	
: ðE8Þ

The dynamical dimension of the technigluon operator in
the IR limit α → αIR is therefore

dĜ2 ¼ 4þ γĜ2ðαIRÞ ¼ 4þ β0ðαIRÞ: ðE9Þ

This corresponds to the rule 4þ β0 found for QCD [13,14].
The same rule holds for a UV fixed point g∞ or α∞,

which was the context of the original version (E1); the
relation β̄0ðg∞Þ ¼ β0ðα∞Þ is a consequence of Eq. (E8). In
the UV case, the plus sign in dĜ2 ¼ 4þ β0 is crucial [58]
because β0 is negative: scaling corrections have dimension
dĜ2 < 4 and so do not upset the leading short-distance
behavior of operator product expansions.
For an IR fixed point, where β0 > 0, such as in chiral-

scale perturbation theory or crawling TC, the expansion is
at low energies, so the dimension of scale-breaking terms
can be either d > 4 due to the trace anomaly or (if there are
fermion mass terms) dmass < 4. The main proviso is to
ensure the condition ðmassÞ2 ≥ 0 for all particles appearing
in the expansion.
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CATÀ, CREWTHER, and TUNSTALL PHYS. REV. D 100, 095007 (2019)

095007-38

https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1103/PhysRevD.94.054502
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1103/PhysRev.174.1741
https://doi.org/10.1103/PhysRev.174.1741
https://doi.org/10.1103/PhysRevD.2.685
https://doi.org/10.1016/0550-3213(70)90422-0
https://arXiv.org/abs/1203.1321
https://arXiv.org/abs/1203.1321
https://doi.org/10.1103/PhysRevD.91.034016
https://doi.org/10.1103/PhysRevD.91.034016
https://arXiv.org/abs/1510.01322
https://arXiv.org/abs/1510.01322
https://doi.org/10.1103/PhysRevLett.79.2767
https://doi.org/10.1103/PhysRevLett.79.2767
https://doi.org/10.1103/PhysRevD.3.1818
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1103/PhysRevD.95.125006
https://doi.org/10.1103/PhysRevLett.100.171607
https://doi.org/10.1103/PhysRevLett.100.171607
https://doi.org/10.1103/PhysRevLett.102.149902
https://doi.org/10.1103/PhysRevLett.102.149902
https://doi.org/10.1103/PhysRevD.79.076010
https://doi.org/10.1103/PhysRevD.79.076010
https://arXiv.org/abs/1102.4066
https://doi.org/10.1142/S0217751X14450067
https://doi.org/10.1142/S0217751X14450067
https://doi.org/10.1103/RevModPhys.88.015001
https://doi.org/10.1007/JHEP12(2015)103
https://doi.org/10.1007/JHEP12(2015)103
https://doi.org/10.1103/PhysRevD.94.091501
https://doi.org/10.1103/PhysRevD.94.091501
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1007/JHEP02(2018)132
https://doi.org/10.1016/j.ppnp.2016.04.003
https://doi.org/10.1016/0370-2693(70)90277-7
https://doi.org/10.1103/PhysRevD.13.3333
https://doi.org/10.1007/BF02785664
https://doi.org/10.1103/PhysRevD.22.200
https://doi.org/10.1103/PhysRevD.22.1166
https://doi.org/10.1007/JHEP07(2012)101
https://doi.org/10.1007/JHEP07(2012)101
https://doi.org/10.1142/S0217751X93001946
https://doi.org/10.1103/PhysRevD.49.1246
https://doi.org/10.1103/PhysRevD.49.1246
https://doi.org/10.1103/PhysRevD.50.3218
https://doi.org/10.1142/S0217751X02009813
https://doi.org/10.1088/0256-307X/25/6/017
https://doi.org/10.1103/PhysRevD.76.073002
https://doi.org/10.1103/PhysRevD.76.073002
https://doi.org/10.1007/JHEP05(2010)089
https://doi.org/10.1016/j.physletb.2013.04.037
https://doi.org/10.1016/j.physletb.2013.09.028
https://doi.org/10.1016/j.nuclphysb.2014.01.018
https://doi.org/10.1016/j.nuclphysb.2014.01.018
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP07(2017)035
https://doi.org/10.1007/JHEP03(2018)039
https://doi.org/10.1007/JHEP03(2018)039


[46] Y. Aoki et al. (LatKMI Collaboration), Light composite
scalar in eight-flavor QCD on the lattice, Phys. Rev. D 89,
111502(R) (2014).

[47] Y. Aoki et al. (LatKMI Collaboration), Light flavor-singlet
scalars and walking signals in Nf ¼ 8 QCD on the lattice,
Phys. Rev. D 96, 014508 (2017).

[48] T. Appelquist et al. (LSD Collaboration), Strongly inter-
acting dynamics and search for new physics at the LHC,
Phys. Rev. D 93, 114514 (2016).

[49] T. Appelquist et al. (LSD Collaboration), Nonperturbative
investigations of SUð3Þ gauge theory with eight dynamical
flavors, Phys. Rev. D 99, 014509 (2019).

[50] G. Mack, Partially conserved dilatation current, Nucl.
Phys. B5, 499 (1968).

[51] P. Carruthers, Broken scale invariance in particle physics,
Phys. Rep. 1, 1 (1971).

[52] R. J. Crewther, Spontaneous breakdown of conformal and
chiral invariance, Phys. Rev. D 3, 3152 (1971); Erratum, 4,
3814 (1971).

[53] P. Di Vecchia, R. Marotta, M. Mojaza, and J. Nohle, New
soft theorems for the gravity dilaton and the Nambu-
Goldstone dilaton at subsubleading order, Phys. Rev. D 93,
085015 (2016).

[54] P. Di Vecchia, R. Marotta, and M. Mojaza, Double-soft
behavior of the dilaton of spontaneously broken conformal
invariance, J. High Energy Phys. 09 (2017) 001.

[55] R. F. Dashen, Chiral SUð3Þ ⊗ SUð3Þ as a symmetry of the
strong interactions, Phys. Rev. 183, 1245 (1969), end of
sec. IIC.

[56] P. Minkowski, On the anomalous divergence of the
dilatation current in gauge theories, Berne Report
No. PRINT-76-0813, 1976.

[57] S. L.Adler,J. C.Collins,andA.Duncan,Energy-momentum-
tensor trace anomaly in spin 1=2 quantum electrodynamics,
Phys. Rev. D 15, 1712 (1977).

[58] N. K. Nielsen, The energy momentum tensor in a non-
Abelian quark gluon theory, Nucl. Phys. B120, 212
(1977).

[59] J. C. Collins, A. Duncan, and S. D. Joglekar, Trace and
dilatation anomalies in gauge theories, Phys. Rev. D 16,
438 (1977).

[60] P. Breitenlohner and D. Maison, Dimensional renormali-
zation and the action principle, Commun. Math. Phys. 52,
11 (1977).

[61] V. P. Spiridonov, Anomalous dimension of G2
μν and β-

function, Institute for Nuclear Research (Moscow) Report
No. IYal-P-0378, 1984.

[62] V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and V. I.
Zakharov, Are all hadrons alike?, Nucl. Phys. B191, 301
(1981).

[63] J. C. Collins, Renormalization (Cambridge University
Press, Cambridge, England, 1984).

[64] A. I. Vainshtein, V. I. Zakharov, and M. A. Shifman, Gluon
condensate and leptonic decays of vector mesons, Pis’ma
Eksp. Teor. Fiz. 27, 60 (1978); JETP Lett. 27, 55 (1978).

[65] C. Bernard, A. Duncan, J. LoSecco, and S. Weinberg,
Exact spectral-function sum rules, Phys. Rev. D 12, 792
(1975), Appendix.

[66] K. G. Wilson, Non-Lagrangian models of current algebra,
Phys. Rev. 179, 1499 (1969).

[67] S. Coleman and E. Weinberg, Radiative corrections as the
origin of spontaneous symmetry breaking, Phys. Rev. D 7,
1888 (1973).

[68] M. Bando, K. Matumoto, and K. Yamawaki, Technidila-
ton, Phys. Lett. B 178, 308 (1986).

[69] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD
and resonance physics. Theoretical foundations, Nucl.
Phys. B147, 385 (1979).

[70] L. Del Debbio and R. Zwicky, Hyperscaling relations in
mass-deformed conformal gauge theories, Phys. Rev. D
82, 014502 (2010).

[71] L. Del Debbio and R. Zwicky, Scaling relations for the
entire spectrum in mass-deformed conformal gauge theo-
ries, Phys. Lett. B 700, 217 (2011).

[72] L. Del Debbio and R. Zwicky, Conformal scaling and the
size of m-hadrons, Phys. Rev. D 89, 014503 (2014).

[73] T. Appelquist et al. (LSD Collaboration), Toward TeV
Conformality, Phys. Rev. Lett. 104, 071601 (2010).

[74] M. Gell-Mann, Symmetries of baryons and mesons, Phys.
Rev. 125, 1067 (1962), Footnote 38.

[75] L. Del Debbio and R. Zwicky, Renormalisation group,
trace anomaly and Feynman-Hellmann theorem, Phys.
Lett. B 734, 107 (2014).

[76] S. Weinberg, Implications of dynamical symmetry break-
ing, Phys. Rev. D 13, 974 (1976).

[77] S. Weinberg, Implications of dynamical symmetry break-
ing: An addendum, Phys. Rev. D 19, 1277 (1979).

[78] L. Susskind, Dynamics of spontaneous symmetry breaking
in the Weinberg-Salam theory, Phys. Rev. D 20, 2619
(1979).

[79] I. Caprini, G. Colangelo, and H. Leutwyler, Mass and
Width of the Lowest Resonance in QCD, Phys. Rev. Lett.
96, 132001 (2006).

[80] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).
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