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We calculate the bag parameters for neutral B-meson mixing in and beyond the Standard Model, in full
four-flavor lattice QCD for the first time. We work on gluon field configurations that include the effect of
u, d, s, and c sea quarks with the highly improved staggered quark (HISQ) action at three values of the
lattice spacing and with three u=d quark masses going down to the physical value. The valence b quarks use
the improved nonrelativistic QCD action and the valence light quarks, the HISQ action. Our analysis was
blinded. Our results for the bag parameters for all five operators are the most accurate to date. For the
Standard Model operator between Bs and Bd mesons we find B̂Bs

¼ 1.232ð53Þ and B̂Bd
¼ 1.222ð61Þ.

Combining our results with lattice QCD calculations of the decay constants using HISQ quarks from
the Fermilab/MILC Collaboration and with experimental values for Bs and Bd oscillation frequencies
allows determination of the Cabibbo-Kobayashi-Maskawa (CKM) elements Vts and Vtd. We find
jVtsj ¼ 0.04189ð93Þ, jVtdj ¼ 0.00867ð23Þ, and jVtsj=jVtdj ¼ 0.2071ð27Þ. Our results agree well (within
2σ) with values determined from CKM unitarity constraints based on tree-level processes (only). Using a
ratio toΔMs;d in which CKM elements cancel in the Standard Model, we determine the branching fractions
BrðBs → μþμ−Þ ¼ 3.81ð18Þ × 10−9 and BrðBd → μþμ−Þ ¼ 1.031ð54Þ × 10−10. We also give results for
matrix elements of the operators R0, R1, and R̃1 that contribute to neutral B-meson width differences.

DOI: 10.1103/PhysRevD.100.094508

I. INTRODUCTION

The Standard Model (SM) description of neutral Bd and
Bs oscillations requires knowledge of hadronic parameters
derived from the matrix elements of 4-quark operators
between Bq and B̄q states. These 4-quark operators come
from the effective electroweak Lagrangian at energy scales
appropriate to B physics, and the matrix elements can only
be determined by lattice QCD calculations, which are now
able to include the full impact of QCD on such hadronic

quantities [1]. The accuracy with which this can be done is
the limiting factor in the constraint that can be obtained
from the now very precise experimental results on the
neutral meson mass difference (seen as an oscillation
frequency). In the Standard Model this constraint leads
to a determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements that accompany the 4-quark
operators of the Standard Model. New physics models
with extra heavy particles extend the effective Hamiltonian
to include additional 4-quark operators. Constraints on the
new physics from experiment then need accurate determi-
nation of the matrix elements of the new operators. Again
this can come only from lattice QCD calculations.
Here we provide the first “second-generation” lattice

QCD calculation of the matrix elements of all five ΔB ¼ 2

operators of dimension six for the Bs and Bd. We improve
on earlier calculations by working on gluon field configu-
rations generated by the MILC Collaboration that include
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u, d, s, and c quarks in the sea with u=d quark masses going
down to their physical values. Although this obviates the
need for a chiral extrapolation, we also include heavier u=d
quark masses in our set of results so that we can map out the
dependence on the light quark mass. The discretization of
QCD that we use is fully improved through Oðαsa2Þ for
both the gluons and the light quarks (including all of those
in the sea) for which the highly improved staggered quark
(HISQ) action is used. For the b quarks we use improved
nonrelativistic QCD, which includes OðαsÞ corrections to
terms at order v4 (where v is the heavy quark velocity). By
linking this calculation directly to our earlier one for the
B-meson decay constants [2] (that parametrize the ampli-
tude to create a meson from the vacuum) we are able to give
results directly for the “bag parameters” associated with
each operator and take advantage of the cancellation of a
number of systematic effects. The bag parameters (to be
defined in Sec. II A) encode the multiplicative factor by
which the operator matrix element differs from that
expected in the vacuum saturation approximation, which
is related to the decay constant. To the extent to which this
approximation works (and we will show here that it does
work well) we expect the bag parameters to have very little
dependence on light quark sea or valence masses and even
on the lattice spacing. This enables improvements in
accuracy over earlier work along with a much simpler
picture of the extrapolation to the physical point.
The first unquenched lattice QCD calculations of the

matrix elements for neutral Bmeson mixing focused purely
on results for the Standard Model operators [3,4] and ratios
for Bs to Bd [5]. Calculations have also been done in the
infinite heavy quark mass limit [6]. More recently calcu-
lations of matrix elements for the full set of SM and beyond
the Standard Model (BSM) operators have been done [7,8].
The calculations in [7] use the twisted mass formalism for
all quarks on gluon field configurations including u and d
quarks in the sea. An extrapolation of results [renormalized
using the regularisation-invariant momentum-subtraction
(RI-MOM) scheme] is made from a heavy quark mass in
the charm region up to the b quark mass using ratios with a
known infinite mass limit. The calculations in [8] use the
Fermilab formalism for the b quark and the asqtad
formalism for the light quarks on gluon field configurations
that include u, d, and s quarks in the sea with the asqtad
formalism. Perturbatively renormalized 4-quark operator
matrix elements (only) are calculated and so bag parameters
must be derived using decay constant results from else-
where. A very recent result in [9] uses domain-wall quarks
on gluon field configurations including u, d, and s in the
sea and extrapolates in heavy quark mass to the b quark
mass for Bs to Bd ratios for SMmixing matrix elements and
decay constants.
In Sec. II we discuss the 4-quark operators relevant to B

mixing and how they are implemented on the lattice.
Section III describes our lattice calculation and results.

We compare our results to previous work in Sec. IV,
determine CKM elements Vts and Vtd using experimental
results on B-meson mass differences, determine branching
fractions for the rare decays of Bd and Bs to μþμ−, and give
matrix elements for derived operators that contribute to
width differences. Section V gives our conclusions and
discusses the prospects for future improvements. Details
about our analysis are contained in four appendixes:
Appendix A on the lattice QCD correlators that we
calculate and how we fit them to obtain matrix elements
and bag parameters; Appendix B on the chiral perturbation
theory fits we use to combine results at physical and
unphysical light quark masses; Appendix C on correlations
in the uncertainties for our final results and last, with more
general applications beyond this analysis, Appendix D
on singular value decomposition (SVD) cuts and fitting
correlators.

II. BACKGROUND

A. Continuum 4-quark operators

Neutral B-meson mixing occurs at lowest order in the
Standard Model through box diagrams involving the
exchange of W bosons and top quarks; see Fig. 1. These
box diagrams can be well approximated by an effective
Lagrangian expressed in terms of 4-quark operators.
Here we will examine all five of the independent local
dimension-6 operators that could contribute to ΔB ¼ 2
processes [8,10]:

O1 ¼ ½Ψ̄i
bðV − AÞΨi

q�½Ψ̄j
bðV − AÞΨj

q�;
O2 ¼ ½Ψ̄i

bðS − PÞΨi
q�½Ψ̄j

bðS − PÞΨj
q�;

O3 ¼ ½Ψ̄i
bðS − PÞΨj

q�½Ψ̄j
bðS − PÞΨi

q�;
O4 ¼ ½Ψ̄i

bðS − PÞΨi
q�½Ψ̄j

bðSþ PÞΨj
q�;

O5 ¼ ½Ψ̄i
bðS − PÞΨj

q�½Ψ̄j
bðSþ PÞΨi

q�; ð1Þ

where V ¼ γμ, A ¼ γμγ5, S ¼ 1, and P ¼ γ5, and sums
over μ and color indices i and j are implicit. In the Standard
Model, the most important of these for B − B̄mixing isO1.
This operator mixes with O2 under renormalization.
Operators O4 and O5 do not appear in the Standard
Model, but do arise in various BSM scenarios.
It is conventional to parametrize matrix elements of these

operators in terms of “bag parameters,”

FIG. 1. An example from the Standard Model of a mechanism
that mixes the neutral Bq and B̄q. The amplitude is well
approximated by a contact term for matrix elements between
Bq-meson states.
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BðiÞ
Bq
ðμÞ≡ hBqjOq

i jB̄qiðμÞMS

ηqi ðμÞf2Bq
M2

Bq

; ð2Þ

where here μ is the renormalization scale, andMBq
and fBq

are the mass and weak decay constant of the Bq meson:

h0jΨ̄i
qγ0γ5Ψi

bjBqðp⃗ ¼ 0Þi ¼ fBq
MBq

: ð3Þ

The normalization parameter ηqi ðμÞ is chosen so that the
bag parameters equal 1 in the “vacuum saturation approxi-
mation,” where gluon (and other QCD) exchanges between
the initial and final B̄q and Bq are ignored (see [8,10] for
more details):

ηq1 ¼
8

3
;

ηq2 ¼ −
5

3

�
MBq

mbðμÞ þmqðμÞ
�

2

;

ηq3 ¼
1

3

�
MBq

mbðμÞ þmqðμÞ
�

2

;

ηq4 ¼ 2

��
MBq

mbðμÞ þmqðμÞ
�

2

þ 1

6

�
;

ηq5 ¼
2

3

��
MBq

mbðμÞ þmqðμÞ
�

2

þ 3

2

�
: ð4Þ

We use renormalization scale μ ¼ mbðmbÞ; the correspond-
ing values for the normalization factors are given in Table I.

The bag parameters provide both computational advan-
tages and physical insights. The leading-order logarithms in
chiral perturbation theory, coming from the matrix element
of the 4-quark operator and f2Bq

, partly cancel in the ratio;

see Appendix B. In particular, the coefficient of the chiral
logarithm from the tadpole diagrams is reduced by a factor
of 4. Therefore bag parameters should be less dependent
upon the light-quark mass; we find very little mass
dependence. Finite-volume effects will be correspondingly
reduced. We also find that most of the dependence on
lattice spacing cancels. Finally, as we will show, the bag
parameters all turn out to be of order one, suggesting that
vacuum saturation is a useful approximation. For these
reasons, we focus here on bag parameters; values for the
matrix elements are easily obtained from the bag param-
eters given values for the decay constants [2,13].

B. Lattice QCD 4-quark operators and matching

Matrix elements of the 4-quark operators are regulator
dependent, and so we need to convert matrix elements
calculated in our simulation (with the lattice regulator) into
the corresponding matrix elements for the more conven-
tional MS scheme. The differences between the two
schemes are ultraviolet and so can be calculated using
QCD perturbation theory. To the lowest and first order in αs
the relationship has the form (for μ ¼ mb)

hOiiðmbÞ
MS

¼ ð1þ αsziiÞhOiilatt þ
X
j≠i

αszijhOjilatt

þO
�
α2s ;

αsΛQCD

mb
; αsðaΛQCDÞ2

�
: ð5Þ

The coefficients zij relevant to our simulation were calcu-
lated in [14] and are summarized in Table II. The scale
for αs depends on the lattice spacing; we use the same
values for αs used in [15] to calculate renormalizations for
the axial-vector current that couples to Bq mesons (see
Table IV for the values).

TABLE I. Normalizations ηqi ðmbÞ for bag parameters [Eq. (4)].
These are calculated using MBs

¼ 5.3669ð2Þ GeV and MBd
¼

5.2796ð2Þ GeV [11]; m̄bðm̄bÞ ¼ 4.162ð48Þ GeV and mb=ms ¼
52.55ð55Þ [12]; and ms=ml ¼ 27.18ð10Þ [13].
Bq ηq1 ηq2 ηq3 ηq4 ηq5

Bs 2.667 −2.669ð62Þ 0.534 (12) 3.536 (74) 2.068 (25)
Bd 2.667 −2.678ð62Þ 0.536 (12) 3.547 (74) 2.071 (25)

TABLE II. Perturbative coefficients used in Eq. (5) to convert matrix elements of lattice NRQCD-HISQ 4-quark operators into MS
matrix elements. Results are given for the NRQCD valence b-quark masses (in lattice units) used with our different ensembles. The
continuum scheme used is the MSNDR scheme of [16] (BBGLN) with μ ¼ mb. The coefficients come from [14], with zij ≡ ρij − ζij
where ρij and ζij are listed in Tables III and IVof that papera. The perturbative coefficients zA0

for the temporal axial current [Eq. (A6)]
are also listed; these are from [2], which used results from [17].

amb z11 z12 z22 z21 z33 z31 z44 z45 z55 z54 zA0

3.297 −0.472ð2Þ −0.299ð2Þ 0.440 (2) 0.041 (2) 0.036 (2) 0.092 (2) 0.646 (2) −0.252ð2Þ −0.141ð2Þ 0.111(2) 0.024(2)
3.263 −0.469ð2Þ −0.296ð2Þ 0.438 (2) 0.041 (2) 0.038 (2) 0.091 (2) 0.640 (2) −0.251ð2Þ −0.140ð2Þ 0.108(2) 0.022(2)
3.25 −0.469ð2Þ −0.294ð2Þ 0.438 (2) 0.041 (2) 0.040 (2) 0.091 (2) 0.639 (2) −0.252ð2Þ −0.139ð2Þ 0.106(2) 0.022(2)
2.66 −0.429ð2Þ −0.235ð2Þ 0.394 (2) 0.044 (2) 0.101 (2) 0.080 (2) 0.514 (2) −0.254ð2Þ −0.127ð2Þ 0.037(2) 0.006(2)
2.62 −0.427ð2Þ −0.229ð2Þ 0.388 (2) 0.044 (2) 0.105 (2) 0.080 (2) 0.501 (2) −0.254ð2Þ −0.128ð2Þ 0.032(2) 0.001(2)
1.91 −0.296ð2Þ −0.108ð2Þ 0.340 (2) 0.045 (2) 0.259 (2) 0.053 (2) 0.299 (2) −0.243ð2Þ −0.063ð2Þ −0.084ð2Þ −0.007ð2Þ

aNote that we have corrected two typographical errors, for ρ21 for amb ¼ 2.66 and ζ22 for amb ¼ 2.62.
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Our lattice analysis uses nonrelativistic QCD (NRQCD)
for the b dynamics. Quarks and antiquarks decouple in
NRQCD, and so correspond to separate fields. As a result
the lattice version of a 4-quark operator has the form [14]

½Ψ̄bΓ1Ψq�½Ψ̄bΓ2Ψq�
→ ½Ψ̄NR

b Γ1Ψq�½Ψ̄NR
b̄

Γ2Ψq�

þ 1

2mb
½∇Ψ̄NR

b · γΓ1Ψq�½Ψ̄NR
b̄

Γ2Ψq�

þ 1

2mb
½Ψ̄NR

b Γ1Ψq�½∇Ψ̄NR
b̄

· γΓ2Ψq� þ ðΓ1 ↔ Γ2Þ; ð6Þ

where Ψ̄NR
b creates a b quark and Ψ̄NR

b̄
annihilates a b

antiquark. These are the lattice operators we use on the
right-hand side of Eq. (5). The 1=mb terms are the
OðΛQCD=mbÞ corrections to the operator in NRQCD.
A complication for operators O2 and O3 is the treatment

of “evanescent operators.” Our matching results use the
MSNDR scheme of [16] (BBGLN). These matrix elements
are readily converted to the alternative scheme of [18]
(BJU) using the following equations [through OðαsÞ, with
μ ¼ mb] [19,20]:

O2jBJU ¼ O2 þ αsð−0.318O2 − 0.013O1ÞjBBGLN;
O3jBJU ¼ O3 þ αsð0.106O3 − 0.013O1ÞjBBGLN: ð7Þ

The matching coefficients zij from Eq. (5) are plotted
against amb in Fig. 2. These coefficients are not large and
have a relatively benign dependence on the b-quark mass
across the range that we use, although different coefficients
behave differently. The diagonal coefficients zii are much
larger than the corresponding coefficients for the NRQCD-
HISQ axial current (zA0

in Table II), which are unusually
small. Note that the only nonzero off-diagonal coefficients
are for ij equal to 12, 21, 31, 45, and 54, and that these tend
to be smaller than the diagonal parameters.
It is worth remarking here on the similarities and

differences between the perturbative matching we apply
here and that used by the Fermilab/MILC Collaborations
[8] in their determination of B mixing matrix elements.
They also make use of a perturbative calculation of the
matching to OðαsÞ. They do this after a nonperturbative
determination of factors that are needed to remove nor-
malization artifacts from the clover and asqtad actions that
they use for heavy and light quarks, respectively, and
without which they would have large OðαsÞ coefficients.
We do not need to apply this procedure because the
NRQCD and HISQ actions are well behaved in this respect
[21]. After applying their nonperturbative procedure, the
Fermilab/MILC Collaborations give results for their
OðαsÞ coefficients in Table III of [8]. Their coefficients
differ from ours because they are using a different dis-
cretization of QCD for both heavy and light quarks.

However, qualitatively the coefficients show similar behav-
ior in terms of magnitude and dependence on the lattice b
quark mass (given in their case by the parameter κ0b).

III. LATTICE CALCULATION

A. Simulations

We use seven ensembles of gluon field configurations
recently generated by the MILC Collaboration [22,23].
Details are given in Table III. We use ensembles at three
values of the lattice spacing, a, to control discretization
effects and at three values of the light quark mass down to
the physical point to map out sea quark mass effects.
Discretization effects depend on a2 and sea quark mass
effects are approximately linear, so a range in a2 of a factor
of 3 and in sea light quark mass of a factor of 5 allows us
substantial leverage to pin down these effects. The lattice
spacing values were determined using the mass splitting
between ϒ and ϒ0, as described in [24] where a discussion
of systematic errors can be found. The sea quarks use
HPQCD’s HISQ action [25] which we have shown to have

FIG. 2. Coefficients zij ofOðαsÞ terms in the matching of lattice
NRQCD-HISQ 4-quark operators to the MS scheme plotted as a
function of the bare NRQCD b quark mass in lattice units. The
top plot shows the diagonal coefficients (i ¼ j) that enter the
renormalization of a given operator; the lower plot shows the off-
diagonal coefficients (i ≠ j) corresponding to the mixing of
different operators. See Eq. (5) for the definition of zij and
Table II for the values. The ij values are indicated in the key. “A0”
refers to the OðαsÞ coefficient for the renormalization of the
temporal axial current (zA0

in Table II).
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small discretization errors even for charm quarks [26–28].
This enables four flavors of quarks to be included in the sea,
with masses given in Table III. The u and d quark masses
are taken to be the same.
The valence b quarks are implemented using lattice

NRQCD [29]. The action is described in detail in [24]. It
includes a number of improvements over earlier calcula-
tions, in particular one-loop radiative corrections (beyond
tadpole improvement [30]) to most of the coefficients of the
Oðv4bÞ relativistic correction terms. The tadpole improve-
ment of the action is done using the Landau gauge link,
with u0L values given in Table IV. This action has been
shown to give excellent agreement with experiment in
recent calculations of the bottomonium [24,31,32] and
B-meson spectra [33]. The b quark mass is tuned, giving
the values in Table IV, by fixing the spin-averaged kinetic
mass of the ϒ and ηb states to experiment [24]. NRQCD
breaks down as amb → 0 but all our values of amb are
substantially larger than 1, where there is no problem.

The HISQ valence light quark masses are taken to be
equal to the sea mass except on set 4 where there is a slight
discrepancy. The s quark is tuned using the mass of the ηs
meson [34], a fictitious pseudoscalar ss̄ state which is not
allowed to decay on the lattice. Its properties can be very
accurately determined in lattice QCD, and we find Mηs ¼
0.6885ð22Þ GeV [35]. Values for valence s masses are
given in Table IVand corresponding values ofMηs in lattice
units in [35]. We allow for uncertainties from mistuned
valence masses in our determination of the physical results.

B. Simulation results and error budget

We describe the 2-point and 3-point correlators used in
our analysis in Appendix A. We use the 2-point correlators
to extract the decay constants fBq

, including the 1=mb

corrections [Eq. (A6)]. We also combine them with the
3-point correlators to calculate lattice matrix elements of
the On. Also in that appendix, we discuss the Bayesian fits
used to extract physics from these correlators. Our final
results for hBqjOnjB̄qilatt=ðfBq

MBq
Þ2 are summarized in

Table VIII of Appendix A. As discussed in the appendix,
this was a blind analysis.
We convert the lattice expectation values into MS matrix

elements using Eq. (5) [divided by ðfBq
MBq

Þ2]. Our results
are listed in Table V. In addition to the statistical errors from
the simulation and the (negligible) errors in the zij, we
include uncertainties (for each entry in the table) coming
from three additional sources:

(i) Oðα2sÞ: We estimate this uncertainty to be twice (to
be conservative) αs times the magnitude of the
OðαsÞ correction we include for each of our three
lattice spacings. (These corrections are correlated
between configuration sets with similar lattice
spacings.)

(ii) OðαsΛQCD=mbÞ: OðΛQCD=mbÞ corrections have
been measured for the temporal axial-vector current
and found to be 5% of the leading-order contribution
[2]. This suggests that OðΛQCD=mbÞ corrections,
which are included in our simulations, are 10% for
the 4-quark operators. We account for the OðαsÞ
radiative corrections to these terms by adding the
following uncertainty to our results:

αsðcn;0αs þ cn;1αs δa þ cn;2αs δ
2
aÞ
hOniMS

ðfMÞ2 ; ð8Þ

where each cn;iαs ¼ 0� 0.1 and

δa ≡ ðamb − 2.6Þ=1.4 ð9Þ

allows for variation in the coefficients between the
lattice spacings. (δa is defined to vary from −1=2 to
1=2 over our mass range; see [24] for more details.)

TABLE III. Parameters of the gauge ensembles used in this
calculation. β is the gauge coupling, aϒ is the lattice spacing as
determined by the ϒð2S − 1SÞ splitting in [24], where the three
errors are statistics, NRQCD systematics, and experiment. aml,
ams, and amc are the sea quark masses, L × T gives the spatial
and temporal extent of the lattices, and ncfg is the number of
configurations in each ensemble. We use 16 time sources on each
configuration to improve statistics.

Set β aϒ [fm] aml ams amc L × T ncfg

1 5.8 0.1474(5)(14)(2) 0.013 0.065 0.838 16 × 48 1000
2 5.8 0.1463(3)(14)(2) 0.0064 0.064 0.828 24 × 48 1000
3 5.8 0.1450(3)(14)(2) 0.00235 0.0647 0.831 32 × 48 1000

4 6.0 0.1219(2)(9)(2) 0.0102 0.0509 0.635 24 × 64 1000
5 6.0 0.1195(3)(9)(2) 0.00507 0.0507 0.628 32 × 64 1000
6 6.0 0.1189(2)(9)(2) 0.00184 0.0507 0.628 48 × 64 1000

7 6.3 0.0884(3)(5)(1) 0.0074 0.037 0.440 32 × 96 1007

TABLE IV. Parameters used for the valence quarks. amb is the
bare b quark mass in lattice units, u0L is the Landau link value
used for tadpole improvement, and amval

l and amval
s are the HISQ

light and strange quark valence masses. We also tabulate the
values from [15] for the running coupling constant αs to be used
in Eq. (5) for matching lattice 4-quark operators to the continuum.
This is in the V scheme at scale (2=a).

Set amb u0L amval
l amval

s αs

1 3.297 0.8195 0.013 0.0641 0.346
2 3.263 0.82015 0.0064 0.0636 0.345
3 3.25 0.819467 0.00235 0.0628 0.343

4 2.66 0.834 0.01044 0.0522 0.311
5 2.62 0.8349 0.00507 0.0505 0.308
6 2.62 0.834083 0.00184 0.0507 0.307

7 1.91 0.8525 0.0074 0.0364 0.267
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(iii) OðαsðaΛQCDÞ2; ðaΛQCDÞ4Þ: The NRQCD and HISQ
actions we use in the simulation are highly cor-
rected. In particular, there are no tree-level a2 errors
in either. We account for a2αs errors by adding the
following uncertainty to our results:

αsðaΛQCDÞ2ðcn;0a2
þ cn;1

a2
δa þ cn;2

a2
δ2aÞ

hOniMS

ðfMÞ2

þ ðaΛQCDÞ4ðcn;0a4 þ cn;1a4 δa þ cn;2a4 δ
2
aÞ
hOniMS

ðfMÞ2 ;

ð10Þ

where each cn;i
a2

¼ 0� 1, each cn;i
a4

¼ 0� 1, ΛQCD ¼
0.5 GeV is the QCD scale, and again the δa terms
allow for variation between different lattice
spacings.

The final entries (“phys.”) in both parts of Table Vare our
final results at the physical values of the light-quark masses
after our chiral fit. We use chiral perturbation theory to
combine the values obtained on the different configuration
sets with different light quark masses; see Appendix B for
details. Figure 3 compares our final values for Bs mesons

with the results from individual configuration sets. These
plots show that the dependence on lattice spacing and light-
quark mass is negligible compared with our uncertainties.
The analogous plot for Bd mesons is very similar.
Adding uncertainties to the lattice results to allow for

operator normalization and lattice spacing effects, as we
have done above, is equivalent to including them in our fit
function with the coefficients treated as fit parameters; see
the appendix of [36]. The uncertainties that are included
are correlated between lattice results on different sets
through these coefficients. Figure 3 shows that, for
example, the lattice spacing effects that we allow for
through Eq. (10) are overestimates of what is seen in
the results, since the variation with lattice spacing of the
central values is much smaller than the uncertainties
shown on the coarser lattices. A further test of this is
that omitting the results from the smallest lattice spacing

TABLE V. MS matrix elements obtained from Eq. (5) together
with simulation data from Table VIII. Results are given for each
configuration set and both Bs (top) and Bd (bottom) mesons.
Values are also given (“phys.”) for our final results at physical
quark masses.

hBsjOnjB̄siðmbÞ
MS

=ðfBs
MBs

Þ2

Set O1 O2 O3 O4 O5

1 2.10 (21) −2.14ð22Þ 0.442 (59) 3.56 (41) 1.90 (14)
2 2.16 (21) −2.20ð22Þ 0.441 (59) 3.73 (43) 2.00 (14)
3 2.14 (21) −2.18ð22Þ 0.441 (58) 3.69 (41) 1.97 (14)

4 2.20 (15) −2.19ð16Þ 0.443 (48) 3.76 (28) 2.017 (97)
5 2.15 (14) −2.16ð16Þ 0.432 (47) 3.64 (27) 1.948 (91)
6 2.20 (14) −2.20ð16Þ 0.445 (48) 3.73 (27) 1.990 (93)

7 2.19 (10) −2.19ð12Þ 0.443 (37) 3.70 (16) 1.976 (93)

Phys. 2.168 (93) −2.18ð10Þ 0.436 (29) 3.65 (15) 1.945 (76)

hBdjOnjB̄diðmbÞ
MS

=ðfBd
MBd

Þ2

Set O1 O2 O3 O4 O5

1 2.07 (21) −2.12ð22Þ 0.438 (59) 3.57 (42) 1.89 (14)
2 2.10 (22) −2.13ð22Þ 0.421 (60) 3.77 (44) 2.04 (15)
3 2.06 (21) −2.10ð21Þ 0.398 (58) 3.77 (43) 1.98 (14)

4 2.20 (16) −2.15ð16Þ 0.403 (48) 3.93 (30) 2.11 (11)
5 2.16 (15) −2.06ð15Þ 0.396 (48) 3.70 (28) 1.965 (98)
6 2.11 (16) −2.17ð17Þ 0.447 (52) 3.87 (30) 2.04 (11)

7 2.20 (12) −2.14ð13Þ 0.413 (39) 3.83 (19) 2.03 (11)

Phys. 2.15 (11) −2.06ð11Þ 0.400 (30) 3.82 (18) 2.015 (92)

FIG. 3. Comparison of the hBsjOnjB̄siðmbÞ
MS

=ðfBs
MBs

Þ2 values
from individual configurations sets (colored data points) with the
final extrapolated values (gray bands and dotted lines) for each
4-quark operator. Errors shown include correlated uncertainties
from operator normalization and lattice spacing effects as dis-
cussed in the text. The data are plotted versus amb, falling into
three groups corresponding to lattice spacings of 0.09, 0.12, and
0.15 fm. Results are shown for three different values of light-
quark mass ml ≡ ðmu þmdÞ=2 corresponding to ml=ms ¼ 1=5
(green, × s), ml=ms ¼ 1=10 (blue, boxes), and the physical mass
(red, circles). The dotted lines show the extrapolated values,
while the gray bands show the �1σ uncertainty in those values.
The analogous figure for Bd mesons is very similar.
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(set 7) shifts our final central values by less than half a
standard deviation and often much less.
Finally we convert our final results into bag parameters

using Eq. (2). The bag parameters are listed in Table VI.
Despite the wide variation in values for hOni=ðfMÞ2, the
bag parameters are within 30% of 1. This shows that the
vacuum saturation approximation can be of some utility.
Figure 4 compares our final results for ratios of bag

parameters BðnÞ
Bs
=BðnÞ

Bd
with results from the different

configuration sets. Results are plotted versus the value of
m2

π used in each simulations. Again there is very little
variation with quark mass, with all ratios within 5% of 1.
Our final results are shifted by less than half a standard
deviation if we omit the data with the largest pion masses,
and have errors that are 10%–15% larger.
The error budgets for the Bs bag parameters are shown

in Table VII. The dominant source of error comes from
uncalculated terms in perturbation theory (α2s and
αsΛQCD=mb terms). The sensitivity to these terms depends
on the operator. For example, it is particularly high for O3,
because matrix elements for O3 are a lot smaller than those
ofO1 [see Eq. (4)] which are mixed in by Eq. (5). The error
budgets for Bd mesons are almost identical to those for
Bs, but have twice as large a contribution from statistical
uncertainties in the lattice data. Almost all of the uncer-
tainties, and some of the statistical errors, cancel in ratios of
Bs to Bd meson bag parameters.
Matrix elements of the 4-quark mixing operators can be

obtained from the ratios in Table V given values for the
decay constants and masses. Note that the corresponding
bag parameters for O2���5 have larger fractional errors than
the ratios, and so should not be used for this purpose. The
larger errors result from uncertainties due to the factors ηqi
in the bag-parameter definition [see Table VII and Eq. (2)].

IV. DISCUSSION

A. Comparison to previous results

Our results for the bag parameters for all five SM and
BSM operators given in Table VI are more accurate than
previous lattice QCD results. This is for a number of
reasons:

(i) We work directly with the bag parameters rather
than the 4-quark operator matrix elements. The bag
parameters are expected from chiral perturbation
theory to have little dependence on valence and sea
quark masses (see Appendix B). This expectation is

TABLE VI. MS bag parameters [Eq. (2) with μ ¼ mb] for the
five 4-quark operators. Results are given for both Bs and Bd
mesons, and for the ratios of bag parameters.

Bð1Þ
Bq
ðmbÞ Bð2Þ

Bq
ðmbÞ Bð3Þ

Bq
ðmbÞ Bð4Þ

Bq
ðmbÞ Bð5Þ

Bq
ðmbÞ

Bs 0.813 (35) 0.817 (43) 0.816 (57) 1.033 (47) 0.941 (38)
Bd 0.806 (40) 0.769 (44) 0.747 (59) 1.077 (55) 0.973 (46)
Bs=Bd 1.008 (25) 1.063 (24) 1.092 (34) 0.959 (21) 0.967 (23)

FIG. 4. Comparison of the ratio of bag parameters BðnÞ
Bs
=BðnÞ

Bd

from individual configuration sets (colored data points) with the
final extrapolated values (gray bands and dotted lines) for each
4-quark operator. The data are plotted versus m2

π , falling into
three groups corresponding approximately to the physical value,
2.7 times the physical value, and 5.4 times the physical value.
Results are shown for three different lattice spacings correspond-
ing approximately to 0.15 fm (green, × s), 0.12 fm (blue, boxes),
and 0.09 fm (red, circles). The dotted lines show the extrapolated
values, while the gray bands show the �1σ uncertainty in those
values.

TABLE VII. Percent errors coming from different sources for

the Bs meson’s bag parameters BðnÞ
Bs

and Bð1Þ
Bs
=Bð1Þ

Bd
(Table VI). The

total error for each quantity is also shown. The error budgets for the
Bd meson’s bag parameters are very similar. Systematic errors
from finite-volume, QED, and strong-isospin breaking effects are
estimated to be below 0.1% and hence negligible in Appendix B 5.

Bð1Þ
Bs

Bð2Þ
Bs

Bð3Þ
Bs

Bð4Þ
Bs

Bð5Þ
Bs

Bð1Þ
Bs
=Bð1Þ

Bd

Lattice data 1.4 1.4 1.5 1.6 1.5 1.5
ηqi 0.0 2.3 2.3 2.1 1.2 0.0
α2s terms 2.1 2.9 5.2 1.9 1.5 0.1
αsΛQCD=mb terms 2.9 2.8 2.9 2.8 2.7 0.0
ðaΛQCDÞ2n terms 1.8 1.9 2.3 1.5 1.8 0.1
ml extrapolation 0.4 0.4 0.7 0.5 0.4 1.9

Total 4.3 5.3 7.0 4.6 4.1 2.5
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borne out in our results and means that we are easily
able to combine results at both unphysical and
physical light quark masses.

(ii) We have results for the physical light quark mass at
two values of the lattice spacing improving control
of the chiral extrapolation.

(iii) The gluon field configurations that we use include the
effect of u, d, s, and c quarks in the sea and so we do
not have an uncertainty associated with missing fla-
vors of sea quarks (the Fermilab/MILCCollaboration
includes a 2% uncertainty in their 4-quark operator
matrix elements from missing c in the sea [8]).

Figure 5 shows a comparison of our bag parameters for
the Bs meson to those from [7,8] (and also, for O1, to [4]).

The results from [7] include only u and d quarks in the sea
and the uncertainty does not include an estimate of the
impact of missing s sea quarks. It is therefore not clear
whether we should expect agreement between these nf ¼ 2

results and our nf ¼ 4 results. The fact that the nf ¼ 2

purple diamonds from the ETM Collaboration are around
20% below our results forO4 andO5 is reminiscent of what
is seen in kaon mixing. ETM uses the RI-MOM renorm-
alization scheme for the purple diamonds, and it has been
shown in kaon mixing [37] that the use of the RI-MOM
scheme (rather than RI-SMOM) for the equivalent 4-quark
operators has large systematic errors that push down the
value of the bag parameter. This may then be the main
reason (rather than a difference of nf) for the discrepancy
with our results for O4 and O5, but more work would be
needed to be sure of this.
The nf ¼ 3 and nf ¼ 4 results should be comparable

because the impact of missing c quarks in the sea on the bag
parameters is expected to be very small [8]. Our new results
agree within 2σ in each case with [8] but in every case are

more accurate. The largest discrepancy is for Bð1Þ
Bs

at 1.9σ.
The weighted average of our nf ¼ 4 results and the

nf ¼ 3 results from [8] is given by the grey band in the
figure and the value of that average is given in each panel.
We assume no correlations, here and subsequently, between
our results and those of [8] because they use different
actions for both the b quark and the light quarks and
different gluon field configurations (with a different sea
quark action and generated with a different Monte Carlo
updating algorithm).
Figure 6 shows a comparison of the ratio of bag

parameters for Bs to Bd for each operator for our new
results and those of [8]. Our new results are a lot more
accurate, with 2%–3% total uncertainty. All of the ratios are
very close to 1, but there is a sign of a systematic trend for
the ratio for O2 and O3 to be above 1 and for O4 and O5

below 1. This is not visible in the results of [8] but does start
to emerge with the improved accuracy of our results. This is
in general agreement with the results from using sum rules
in [38,39]. We also include in Fig. 6 results for O1 from
HPQCD [4] and RBC/UKQCD [9]. The RBC/UKQCD
result has a 1% uncertainty.

B. Derived quantities

Our results for the bag parameters can be combined with
results for the B and Bs decay constants to give values for
the 4-quark operator matrix elements using Eq. (B1) and
our results in Table V. For this we use the most accurate
current lattice QCD results obtained on gluon field con-
figurations including u=d, s, and c quarks in the sea. These
have been obtained by the Fermilab/MILC Collaboration
using the HISQ action for all quarks [13]. This “heavy-
HISQ” approach, pioneered by HPQCD [40,41], uses
pseudoscalar meson 2-point correlators that combine heavy

FIG. 5. A comparison of our results (red filled circles at nf ¼ 4)
to previous lattice QCD values for the Bs bag parameters BBs

ðmbÞ
in the MS scheme for all five SM and BSM operators. Previous
results come from the Fermilab/MILC Collaboration on nf ¼ 3

gluon field configurations (blue crosses) [8] and the ETM
Collaboration on nf ¼ 2 gluon field configurations (purple filled
diamonds) [7]. Note that the ETM results for O4 and O5 have
been converted to the definition of the bag parameter given in
Eq. (4). The filled green square at nf ¼ 3 for the O1 operator
comes from an earlier HPQCD calculation using NRQCD b
quarks [4]. The nf ¼ 2 results are missing s sea quarks, whose
impact cannot be estimated perturbatively (and no uncertainty is
included for this in the error bars). It is therefore unclear what
level of agreement to expect between these results and those for
nf ¼ 3 and 4. Since we do not expect missing c in the sea to have
a significant impact on the bag parameters [8] we can mean-
ingfully compare nf ¼ 3 and nf ¼ 4. The grey bands are the
weighted average of our new results with those of [8], and the

average value of the bag parameter BðnÞ
Bs
ðmbÞ for each operatorOn

is indicated in that panel. We include a vertical line at value 1.0
for comparison to the vacuum saturation approximation.
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and light quark propagators calculated with multiple heavy
quark masses, amh, at multiple values of the lattice spacing.
mh reaches the b quark mass for amh < 1 for lattice
spacing values a < 0.045 fm. Since the HISQ action has
very small discretization errors by design, a fit to the mh
and a dependence is possible that allows the continuummh
dependence of the decay constant to be reconstructed. It
can then be evaluated at the b quark mass to enable the
B and Bs decay constants to be determined. Note that the
correlators can be absolutely normalized in this case and
so there is no normalization uncertainty.
Fermilab/MILC obtain the values fBd

¼0.1905ð13ÞGeV,
fBs

¼ 0.2307ð13Þ GeV, and fBs
=fBd

¼ 1.2109ð41Þ.1 Note
that we use the decay constant for the neutral Bd meson (not
the Bu), which is the appropriate choice here. Our bag

parameters are calculated for a light quark l corresponding
to the average of u and d. Our results show (comparing
those for Bs with those for B) that any difference between
bag parameters for Bl and Bd will be much smaller than our
uncertainties. This is not true for the decay constants, where
the differences are significant [13].
For the SM phenomenology to be determined from our

results for the matrix elements of O1 it is convenient to
convert our results from the MSNDR scheme to the

renormalization-group-invariant quantities B̂ð1Þ
Bq
. The con-

version is given by

B̂ð1Þ
Bq

¼ cRGIB
ð1Þ
Bq
ðmbÞ: ð11Þ

The matching factor cRGI is calculated to two loops in
perturbative QCD, and we take cRGI ¼ 1.5158ð36Þ [8].
This corresponds to the result for nf ¼ 5 active flavors in
the sea and ᾱsðMZÞ ¼ 0.1185ð6Þ. Our bag parameters are
obtained at scale mb for four flavors of quarks in the sea.
The impact of missing b quarks in the sea, however, should
be negligible both for the bag parameters and the resulting
4-quark operator matrix elements. A power-counting esti-
mate of such effects would give a relative contribution of
αsðΛQCD=2mbÞ2, which is below 0.1%.
Our results for the RGI bag parameters for O1 are then

B̂ð1Þ
Bs

¼ 1.232ð53Þ;
B̂ð1Þ
Bd

¼ 1.222ð61Þ;
B̂ð1Þ
Bs

B̂ð1Þ
Bd

¼ 1.008ð25Þ: ð12Þ

The ratio of RGI bag parameters is of course the same as
that of the MS bag parameters. Combined with the decay
constant results from [13] we obtain

fBs

ffiffiffiffiffiffiffiffi
B̂ð1Þ
Bs

q
¼ 0.2561ð57Þ GeV;

fBd

ffiffiffiffiffiffiffiffi
B̂ð1Þ
Bd

q
¼ 0.2106ð55Þ GeV;

ξ ¼ 1.216ð16Þ; ð13Þ

where ξ is the ratio of the two results above it. We form ξ by
combining the result for fBs

=fBd
from [13] with our results

for Bð1Þ
Bs
=Bð1Þ

Bd
, taking advantage of the correlations that

reduce uncertainties in each of these ratios. Note that in
combining the decay constant and bag parameter results we
add relative uncertainties in quadrature. We expect no
significant correlation between the two sets of results
because they use a different heavy quark action and, even
though both results use nf ¼ 2þ 1þ 1 gluon field con-
figurations, there is little overlap in the ensembles used.

FIG. 6. A comparison of our results (red filled circles at nf ¼ 4)
to previous lattice QCD values for the ratio of Bs to Bd bag
parameters for all five SM and BSM operators. Previous results
come from the Fermilab/MILC Collaboration on nf ¼ 3 gluon
field configurations (blue crosses) [8] using their quoted corre-
lations to reconstruct the ratio. Since we do not expect missing c
in the sea to have a significant impact on the bag parameters [8]
we can meaningfully compare nf ¼ 3 and nf ¼ 4. The grey
bands are the weighted average of these two sets of results and the
average value for each operator is indicated in that panel. For O1

at nf ¼ 3 we also show previous results from HPQCD (green
filled square) using NRQCD b quarks [4] and RBC/UKQCD
(purple filled diamond) using domain-wall quarks with masses of
mc and above and extrapolating results to the b quark mass [9].
We include a vertical line at value 1.0 to make clear which ratios
are above, and which below, this value.

1Our results obtained on nf ¼ 2þ 1þ 1 gluon field configu-
rations from NRQCD-HISQ calculations [2,42] agree with these
numbers but are less accurate.
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The error budgets in the two cases show that the key
sources of uncertainty are not the same. The uncertainties in
the combinations above are dominated by the uncertainties
in our bag parameters and their ratio in Eq. (12) because the
decay constant results are now so accurate.

Figure 7 compares our new result for fBs

ffiffiffiffiffiffiffi
B̂Bs

q
from

Eq. (13) to previous lattice QCD results on nf ¼ 3 gluon
field configurations from Fermilab/MILC [8] and HPQCD
[4]. The Fermilab/MILC results include an uncertainty for
missing c in the sea in their calculation. The difference
between the central value of our new result and that of
Fermilab/MILC is 1.8σ. Because the systematic uncertain-
ties are correlated between our results and those of [4] we
do not include the previous HPQCD results in the new
lattice QCD nf ¼ 3=nf ¼ 4 average, shown by the grey
band in Fig. 7. The average value is shown above the
grey band.
Figure 8 compares lattice QCD results for the ratio ξ

defined in Eq. (13) on nf ¼ 3 gluon field configurations
with our new result here using nf ¼ 4. There is good
agreement between the lattice QCD results with the most
recent (including our new result here) having total uncer-
tainties at the level of 1.5%. The result of averaging our
new result with that of [8] (both results being obtained at
the physical b quark mass) is given by the grey band with
the average value quoted above it.

C. ΔM
The phenomenon of neutral B-meson oscillations is

now well-established experimentally (for recent results
see [43–51]), with an oscillation frequency that is set
by the mass difference between the two eigenstates.

The current experimental average values [11] for the Bs
and Bd systems are

ΔMs;expt ¼ 17.757ð21Þ ps−1;
ΔMd;expt ¼ 0.5065ð19Þ ps−1; ð14Þ

combining statistical and systematic errors in quadrature.
In the SM ΔM is given by

ΔMq ¼
G2

FM
2
WMBq

6π2
S0ðxtÞη2BjV�

tqVtbj2f2Bq
B̂ð1Þ
Bq
: ð15Þ

Here S0 is the Inami-Lim function [52] which describes
electroweak corrections and has argument xt ¼ m2

t =M2
W .

The top quark mass to be used here is in the MS
scheme, m̄tðm̄tÞ [53]. Taking the current average [11] of
direct experimental measurements [54–56] of the top
quark mass [172.9(4) GeV] as the pole mass, gives
m̄tðm̄tÞ ¼ 163.07ð38ÞGeV using the 4-loop expressions
in [57]. Evaluating the Inami-Lim function then gives
S0ð4.116ð19ÞÞ ¼ 2.313ð8Þ. The QCD correction factor,
η2B, is given at next-to-leading order in [58]. We take
η2B ¼ 0.55210ð62Þ [13], again calculated with nf ¼ 5.
The CKM elements Vtq and Vtb can be derived in the SM

by assuming that the CKM matrix is unitary and determin-
ing other CKM elements in the same rows or columns from
the comparison of theory and experiment [59–62]. For
Eq. (15) it is important to use values for Vtq that did not
include ΔMq itself in their determination. So we use the
results from CKMfitter for the case where only tree-level
processes were used in the determination. This gives [61]

FIG. 7. A comparison of our results (red filled circles at nf ¼ 4)
to previous lattice QCD values for the combination of decay

constant and square root of bag parameter fBs

ffiffiffiffiffiffiffiffi
B̂ð1Þ
Bs

q
. Previous

results (blue filled squares) come from the Fermilab/MILC
Collaboration [8] and from HPQCD [4] on nf ¼ 3 gluon field
configurations. The Fermilab/MILC results include a 1% un-
certainty for missing c in the sea. The grey band is the weighted
average of our new results and those of [8] and the new lattice
QCD average value is quoted at the top.

FIG. 8. A comparison of our results (red filled circles at nf ¼ 4)
for ξ, defined in Eq. (13), to previous lattice QCD values for
nf ¼ 3 (filled blue squares). Previous results come from the
Fermilab/MILC Collaboration [8] and from HPQCD [4] using
calculations at the physical b quark mass. Results are also shown
from RBC/UKQCD using domain-wall quarks and extrapolating
to the b from the c quark region and above [9] and using static
(infinitely massive) b quarks [6]. The grey band is the weighted
average of our new results and those of [8] with the result for the
average quoted above it.
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jVtsjCKMfitter; tree ¼ ð41.69þ0.39
−1.45Þ × 10−3;

jVtdjCKMfitter; tree ¼ ð9.08þ0.23
−0.45Þ × 10−3;

jVtd=VtsjCKMfitter; tree ¼ 0.2186þ0.0049
−0.0059 ;

jVtbjCKMfitter; tree ¼ 0.999093þ0.000064
−0.000018 : ð16Þ

The ratio jVtd=VtsjCKMfitter; tree is derived from the
CKMfitter results for A, λ, ρ̄, and η̄ using the formulas
in [59]. The central value differs slightly from the ratio of
the two numbers above.
The final terms in Eq. (15) parametrize the hadronic

contribution to ΔM through the matrix element of the

appropriate 4-quark operator, O1. Our results for f2Bq
B̂ð1Þ
Bq

are given in Eq. (13).
Putting all these pieces together we obtain predictions for

the mass differences for neutral Bs and Bd eigenstates of

ΔMs;SM ¼ 17.59ðþ0.33
−1.22Þð0.78Þ ps−1;

ΔMd;SM ¼ 0.555ðþ28
−55Þð29Þ ps−1;�

ΔMd

ΔMs

�
SM

¼ 0.0318ðþ14
−17Þð8Þ; ð17Þ

where the first error in each case is from the CKM matrix
elements and the second error is primarily from the lattice
analyses. These results agree well with the experimental
values from Eq. (14)—the largest discrepancy is 1.7σ
for the ratio of ΔM values—but they have much larger
uncertainty.

D. Vts and Vtd

Because the experimental values for ΔMq are so accu-
rate, a better approach to understanding the implications of
our improved lattice QCD results for the relevant hadronic
matrix elements is to turn the analysis of the previous
subsection on its head. That is, to use our results and the
experimental values for ΔMq to determine values for jVtsj
and jVtdj from Eq. (15) [taking a value for Vtb from
Eq. (16) [61] ]. jVtsj and jVtdj obtained this way can then be
compared to other determinations that make use of CKM
unitarity as a test of that unitarity.
The ratio of jVtsj to jVtdj can be obtained more

accurately than the separate CKM elements because this
makes use of the hadronic parameter ξ [Eq. (13)] in which a
lot of the lattice QCD uncertainties cancel (see Sec. IVA).
Our results are

jVtdj ¼ 0.00867ð23Þ;
jVtsj ¼ 0.04189ð93Þ;

jVtdj=jVtsj ¼ 0.2071ð27Þ: ð18Þ

Figure 9 plots the �1σ constraints on jVtdj, jVtsj and
their ratio from our results as the dark grey lozenge. Results

determined by other lattice QCD calculations [8,9] are also
shown along with a recent determination using sum rules
[39]. Also shown as light pink and orange lozenges are
results from fits to the CKM unitarity triangle using results
frommany different processes [61,62]. Particularly relevant
here is the green lozenge which results from a unitarity
triangle fit that includes tree-level processes only [61], and
therefore not Bs=Bd oscillations. Tension between results
derived from ΔMq (as here) and the results derived from
tree-level processes and unitarity would imply the existence
of new physics in loop processes.
The Fermilab/MILC results (red lozenge in Fig. 9)

highlighted an approximately 2.0σ tension between their
values for Vts and Vtd and those from unitarity fits. See
[63,64] for examples of the possible implications of this.
Our results show no such tension. Our values for Vts and

Vtd separately agree with the {CKMfitter, tree} results in
Eq. (16) within 1σ and the difference in the ratio amounts to
1.8σ. This limits the scope for new physics in loop-induced
processes. However, our ratio for jVtdj=jVtsj joins the
systematic trend of the previous results shown in Fig. 9
in being below that of {CKMFitter, tree}.

E. Bq → μ+ μ− decay

The rare decays Bq → μþμ− have very small branching
fractions in the SM since they proceed through W box
diagrams and Z penguins and are helicity suppressed. New
physics might then be seen if the experimental and SM
branching fractions can be determined to be different to
sufficient accuracy.

FIG. 9. A comparison of �1σ constraints on Vts and Vtd from
experimental results on Bs and Bd oscillation frequencies
compared to SM calculations. This is an update of Fig. 7 in
[39] to include the results presented here. The lattice QCD
constraints shown come from the following: this paper, dark grey;
[8], red; [9], light blue, jVtsj=jVtdj ratio only. The light blue
lozenge is from sum rules [39]. The lozenges with dashed
boundaries include a full unitarity triangle fit: light pink is from
CKMfitter [59,61] and orange from UTFit [60,62]. The green
lozenge with dotted boundary is the result of a unitarity triangle
fit for tree-level processes only from CKMfitter.
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The hadronic parameter that enters the SM branching
fraction is the Bq meson decay constant [65] but it appears
along with the CKM elements jV�

tqVtbj. The uncertainty in
the value of the appropriate CKM element is now the
largest uncertainty in the value of the SM branching
fraction [13].
An alternative method for determining the branching

fraction is to take a ratio to ΔM [66]. In the SM (and
extensions with minimal flavor violation) the CKM ele-
ments cancel out of this ratio. The decay constant also
cancels and the hadronic parameter that remains in the ratio
is the bag parameter.
The formula for the time-averaged branching fraction

[67], as measured in the experiment, is then given in the
SM by

BrðBq→lþl−Þ
ΔMq

¼3G2
FM

2
Wm

2
l

π3
τBH

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

4m2
l

M2
Bq

s
jCAðμbÞj2

S0ðxtÞη2BB̂ð1Þ
Bq

:

ð19Þ

Here CAðμbÞ includes electroweak and QCD corrections
and is given for μb ¼ 5 GeV in [65]. We use CAðμbÞ ¼
0.4694ð36Þ [8]. The lifetime τBH

q
that appears in this

formula is that of the heavy neutral eigenstate [67]. For
the Bd this can be taken as the average lifetime, 1.520(4) ps
[68,69], but for the Bs there is a measured difference of
lifetimes and the heavy eigenstate has the longer lifetime,
1.615(9) ps [68,69]. Values for S0ðxtÞ and η2B are given in
Sec. IV D.
Using our results for the bag parameters for O1 given in

Eq. (12) and the experimental values for ΔM in Eq. (14) we
obtain the following values for the branching fractions:

BrðBs → μþμ−Þ ¼ 3.81ð18Þ × 10−9;

BrðBd → μþμ−Þ ¼ 1.031ð54Þ × 10−10: ð20Þ

We can also obtain the ratio of branching fractions for Bs
and Bd [66]

BrðBs → μþμ−Þ
BrðBd → μþμ−Þ ¼

τBH
s

τBH
d

B̂ð1Þ
Bd

B̂ð1Þ
Bs

ΔMs

ΔMd
: ð21Þ

Here we have dropped the terms in m2
μ=M2

Bq
since they are

negligible. There is a lot of cancellation in this ratio,
including of systematic errors in the ratio of bag parameters
[see our results in Eq. (12)]. We obtain the result

BrðBd → μþμ−Þ
BrðBs → μþμ−Þ ¼ 0.02706ð70Þ: ð22Þ

Figure 10 shows our predictions in the SM for the
branching fractions from Eqs. (20) and (22) as the grey

lozenge. The red lozenge shows lattice QCD predictions
[13] for the branching fractions using the direct approach
where the hadronic parameter needed is the decay constant
and this is combined with input for the CKM elements Vtq

and Vtb, along with other factors. The errors in the results
from [13] are dominated by uncertainties in the CKM
elements, which are taken from a global unitarity triangle fit
that includes both tree and loop-induced processes.2

Figure 10 shows good agreement between the two lattice
QCD predictions. This reflects the fact that, as described in
Sec. IV D our results for the bag parameters yield CKM
elements jVtsj and jVtdj in agreement with CKM unitarity
determinations. Our results imply consistency of the CKM
matrix (within uncertainties), and hence the two approaches
of using the decay constants plus CKM elements or using
the bag parameters and ΔMq will agree.
Note that our results in Eq. (20) include uncertainties in

the parameters of Eq. (21). They do not include uncer-
tainties from electromagnetic corrections to the decay
process. These are estimated to lead to a reduction of
0.3%–1.1% in the muonic branching fractions in [70]. This
is not significant given the current uncertainties in our SM
predictions, but will need to be addressed to reduce
uncertainties in the future.
The blue band in Fig. 10 shows the current experimental

situation. The decay Bd → μþμ− has only been seen with
3σ significance [71]. Recent LHCb [72] and ATLAS [73]
results give upper bounds to the branching fraction of
3.4 × 10−10 and 2.1 × 10−10, respectively. These bounds

FIG. 10. A comparison of the SM branching fractions forBs and
Bd to decay to μþμ− from lattice QCD results with the current
experimental measurements. The grey lozenge shows results from
our calculation here of the bag parameters and a ratio to exper-
imental results for ΔMq [Eqs. (20) and (22)]. The red lozenge
shows results from a Fermilab/MILC calculation of Bd and Bs
decay constants, combined with input CKM elements [13]. The
blue band shows the current experimental average for BrðBs →
μþμ−Þ [11]; only an upper bound exists for BrðBd → μþμ−Þ.

2Note that we include the constraint on the ratio from the July
2019 update of [13].
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are outside the range of Fig. 10. For the branching fraction
for Bs → μþμ−, the Particle Data Group quotes an average
value of 3.0ð4Þ × 10−9 using results from ATLAS [73],
CMS [74], and LHCb [72]. The �1σ variation gives the
width of the band in Fig. 10.
Although no significant tension between experiment and

the SM predictions is visible in this figure, it does give
encouragement that we are reaching a point where further
reductions in uncertainties will start to give serious SM
constraints, at least for Bs → μþμ−.

F. Contributions to ΔΓ
Another physical observable from neutral B meson

systems is that of the decay width difference of the
eigenstates, ΔΓ. This has been measured for the Bs at
13% of the average width, but only an upper limit exists for
the Bd [11]. The prediction for the width differences in the
SM is given in [16,75] in terms of the matrix elements of
several 4-quark operators. We give results here for the
matrix elements of those labeled R0, R1, and R̃1 in [75].
R0 [75] is a combination of O1, O2, and O3 which is a

1=mb-suppressed operator up to corrections ofOðα2sÞ times
a leading order operator,

R0 ¼ O2 þO3 þ
O1

2
þ αsð0.345O1 þ 0.637O3Þ; ð23Þ

evaluating the radiative corrections at μ ¼ mb. We can
obtain the matrix elements for this operator through OðαsÞ
from our lattice calculation. R1 and R̃1 are proportional to
O4 and O5, respectively, and will be discussed further
below.
The matrix elements for R0 in Eq. (23) can be rewritten

in terms of our bag parameters using the definition in
Eq. (4):

hBqjR0jBqi¼−f2Bq
M2

Bq

�
MBq

mbðμÞþmqðμÞ
�

2

×

�
5

3
Bð2Þ
Bq
ðμÞ−1

3
Bð3Þ
Bq
ðμÞð1þ0.637αsÞ

−
4

3
Bð1Þ
Bq
ðμÞð1þ0.690αsÞ

�
mbðμÞþmqðμÞ

MBq

�
2
�
:

ð24Þ

Writing it in this way makes clear (setting BðnÞ
Bq

to 1 and αs
to zero) the expected cancellation at leading order to leave
matrix elements that are Oð1=mbÞ. Our evaluation of the
term in square brackets above yields

hBdjR0jBdi ¼ −f2Bd
M2

Bd
ð3ηd3Þ × 0.22ð12Þ;

hBsjR0jBsi ¼ −f2Bs
M2

Bs
ð3ηs3Þ × 0.27ð11Þ: ð25Þ

Note that the uncertainties here include both those for
missing α2s terms in the matching of lattice QCD operators
to continuum operators and also the effect of missing α2s
terms in the definition of R0. This latter uncertainty is
estimated by calculating the size of the αs corrections in
Eq. (23) and multiplying by αs. This gives a 35%
uncertainty, which dominates the error quoted in
Eq. (25). To assist with numerical evaluation we have
replaced the square ratio of masses in Eq. (24) with 3ηq3;
values for this can be found in Table I. Equation (25) avoids
the use of a perhaps somewhat arbitrary definition of a
bag parameter for R0 given in [75]. The numerical factors
show clearly that this is a 1=mb-suppressed operator by
being of size ΛQCD=mb ≈ 10%.
R1 and R̃1 are defined as [75]

Rq
1 ¼

mq

mb
O4; R̃q

1 ¼
mq

mb
O5: ð26Þ

The matrix elements for Bs and Bd can then be determined
from our results in Table V. Our bag parameters for O4 and
O5 are given in Table VI. In [75] bag parameters for R1 and
R̃1 are defined in such a way as to set the squared mass
ratios in Eq. (4) to 1. This means that the bag parameters for
R1 and R̃1 for the definition in [75] can be recovered from
our bag parameters by multiplying by 3ηq4=7 and 3ηq5=5,
respectively. These factors are larger than 1. Note, however,
that the impact of both R1 and R̃1 on ΔΓ is tiny because of
the mq=mb factors in their definition.
Matrix elements of the numerically more important R2

and R̃2 operators [75], along with those of R3 and R̃3,
cannot be directly obtained from our current results because
they contain derivatives on the light quark fields inside the
4-quark operator. Results of the calculations of these matrix
elements are discussed separately in [76].

V. CONCLUSIONS

We give results from the first “second-generation” lattice
QCD calculation of the matrix elements that contribute to
Bs and Bd mixing in and beyond the Standard Model. We
include c quarks in the sea for the first time and have a
range of u=d quark masses (taken to be equal) that go down
to the physical value. We use radiatively improved NRQCD
for the b quark action. By calculating the ratio of the matrix
elements of the 4-quark operators to the square of the decay
constant times mass (proportional to a quantity known
as the bag parameter) we obtain results with very little
dependence on the u=d quark mass or the lattice spacing.
This gives us more accurate results than previous calcu-
lations for these ratios, and the associated bag parameters,
for all five ΔB ¼ 2 operators.
Our key results are given in Tables V and VI. Table V

gives the ratio of matrix elements to ðfMÞ2 with our final
physical values given in the last row. These are the numbers
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that should be used to reconstruct the 4-quark operator
matrix elements by multiplying by ðfBq

MBq
Þ2. Table VI

converts these ratios into bag parameters, defined in Eq. (4).
These numbers can be compared to unity, the result
expected in the vacuum saturation approximation. Our
error budget for the bag parameters is given in
Table VII. We have uncertainties of 4%–7% for the
individual bag parameters. This uncertainty is dominated
by missing higher orders in the perturbative matching to the
continuum 4-quark operators. The uncertainty is reduced to
around 2% in the ratio of bag parameters for Bs to Bd, since
this renormalization cancels. The correlations between
results for different operators are given in Table X of
Appendix C. Our Bs to Bd ratios are now accurate enough
to see that they are above 1 for O1 and O3 and below 1 for
O4 and O5.
Our results for the key O1 bag parameters that appear in

SM phenomenology are [repeating Eq. (12)]

B̂ð1Þ
Bs

¼ 1.232ð53Þ;
B̂ð1Þ
Bd

¼ 1.222ð61Þ;
B̂ð1Þ
Bs

B̂ð1Þ
Bd

¼ 1.008ð25Þ; ð27Þ

where we give the RGI bag parameter as defined in
Eq. (11). Multiplying by decay constant values obtained
using HPQCD’s approach to b physics with HISQ quarks
[40] by the Fermilab/MILC Collaboration [13], we also
obtain [repeating Eq. (13)]

fBs

ffiffiffiffiffiffiffiffi
B̂ð1Þ
Bs

q
¼ 0.2561ð57Þ GeV;

fBd

ffiffiffiffiffiffiffiffi
B̂ð1Þ
Bd

q
¼ 0.2106ð55Þ GeV;

ξ ¼ 1.216ð16Þ: ð28Þ
In Sec. IV we discuss the phenomenology from our

results. We obtain values for ΔM for Bs and Bd in Eq. (17)
to be compared to experiment.
Alternatively, and more usefully, we can combine our

results with experiment to obtain the CKM elements jVtsj
and jVtdj and their ratio. These values are given in Eq. (18),
and Fig. 9 shows the constraints they give in the Vtd − Vts
plane. Our results are the most accurate determinations of
these CKM elements using lattice QCD and show good
consistency with determinations from tree-level processes
assuming CKM unitarity. This means that we see no signs
of new physics in neutral B-meson oscillations at this
improved level of accuracy.
We derive results, by taking a ratio to ΔM, for the

branching fractions for Bs and Bd to decay to μþμ−, a key
mode for new physics searches at LHC. Our results are
given in Eqs. (20) and (22). Figure 10 shows a comparison
of our predictions to those from the recent Fermilab/MILC

calculation of decay constants [13] along with the current
experimental picture. This is encouraging for future tests of
new physics contributions to these rare decay processes.
Finally, we give values in Eq. (25) and below Eq. (26) for

the matrix elements for the R0, R1, and R̃1 operators that
contribute to the SM prediction for the width differenceΔΓ.
To improve accuracy further in the future requires

improving the matching of the lattice QCD 4-quark oper-
ators to those in the continuum; this is the dominant source
of uncertainty in our bag parameters. Since lattice QCD
perturbation theory is so hard, a renormalizationmethod that
can be implemented within the lattice calculation and then
matched perturbatively to MS in the continuum could be
preferable. A symmetric momentum-subtraction scheme
(RI-SMOM) has been found to work well for kaon mixing
calculations [37] but attention must be paid to removing
nonperturbative artifacts in these schemes if high accuracy
is to be achieved [77]. Such a method would need to be
implemented with a relativistic quark action on lattices with
fine enough lattice spacing to allow quark masses close to
that of the b for am≲ 1. This has been a very successful
strategy for HISQ quarks for B-meson decay constants
[13,40,41], but in that case the decay constants calculated
with HISQ do not need any renormalization. Calculating
4-quark operator matrix elements is much harder, but still
feasible. The ETM work with twisted mass quarks [7] is
encouraging for this program (although they used nf ¼ 2

gluon fields andRI-MOMrenormalization) as is thework by
RBC/UKQCD using domain-wall quarks [9] (although they
have only calculated Bs to Bd ratios so far). It seems clear
that in the next few years improvements in this direction
will be possible, pushing uncertainties on bag parameters
down to the ∼2% level. This will allow jVtsj and jVtdj to be
determined to 1%.
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APPENDIX A: FITTING PROTOCOLS

We extract mixing amplitudes and decay constants by
fitting Monte Carlo data for 2-point and 3-point matrix
correlators for each meson:
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GðtÞ≡X
x

h0jsðx; tÞsTð0Þj0i; ðA1Þ

Gβðt; TÞ≡
X
x;y

h0jsðx; TÞOβðy; tÞsTð0Þj0i; ðA2Þ

where s is a 3-vector of meson sources, the sums over
spatial x and y project onto zero 3-momentum, the times
satisfy 0 < t < T, and β ¼ 1; 2;…; 5 labels the mixing
operator (Fig. 11). The sources include a local source,
corresponding to

Jð0ÞA0
¼ Ψ̄qγ5γ0ΨNR

b ; ðA3Þ
and two smeared sources: see [2] for details. We also
examine the vector of correlators

Gð1ÞðtÞ≡X
x

h0jJð1ÞA0
ðx; tÞsTð0Þj0i; ðA4Þ

where

Jð1ÞA0
≡ −

1

2mb
Ψqγ5γ0γ ·∇ΨNR

b ðA5Þ

is the leading NRQCD correction to Jð0ÞA0
. We use the

corrected current3 to evaluate the decay constant (in lattice
units):

ð1þ zA0
αsÞh0jJð0ÞA0

þ Jð1ÞA0
jBqi ¼ fBq

MBq
; ðA6Þ

where coefficients zA0
depend on the lattice spacing and

were calculated in [2] using [17] (see Table II for the values
we use here). The values for αs (from [15]) are given in
Table IV.
The 2-point and 3-point correlators are calculated in the

standard way. For 3-point correlators this involves combin-
ing propagators from a local source (at t) into “open-
meson” propagators [8] which are then closed off at 0 and T
(which cover all time slices away from t) with local or
smeared meson and antimeson operators. We average

correlators over 16 values of t for improved statistics.
The smearing functions we use are given in [15].
Fits for the Bs proceed in two steps. First the 2-point

correlators GðtÞ and Gð1ÞðtÞ are fit simultaneously. Then
the best-fit amplitudes and energies from that fit are used as
priors for a simultaneous fit of all the 3-point correlators
GnðtÞ. Having finished the Bs fits, we follow the same
approach with the Bd correlators but constraining (via the
priors) the Bd’s fit parameters to be within 20% of the
corresponding values for the Bs. We discuss all of these fits
in what follows.

1. Fitting two-point correlators

We fit the 2-point correlators to a formula of the form (in
lattice units)

Gfitðt;pÞ ¼
XN−1

n¼0

ðe−EntcncTn − ð−1Þte−Eo
ntconcoTn Þ; ðA7Þ

Gð1ÞfitðtÞ ¼
XN−1

n¼0

ðe−EntjncTn − ð−1Þte−Eo
ntjoncoTn Þ; ðA8Þ

where the fit parameters p are composed of all cn, con, En,
and Eo

n. Here cn and con are 3-component vectors, and jn
and jon scalars, where

cn ¼
h0jsjEniffiffiffiffiffiffiffiffiffi

2Mn
p ; con ¼

h0jsjEo
niffiffiffiffiffiffiffiffiffi

2Mo
n

p ; ðA9Þ

jn ¼
h0jJð1ÞA0

jEniffiffiffiffiffiffiffiffiffi
2Mn

p ; jon ¼
h0jJð1ÞA0

jEo
niffiffiffiffiffiffiffiffiffi

2Mo
n

p : ðA10Þ

In the exponents, En and Eo
n are the energies of the lowest-

lying states with zero 3-momentum that couple to the
sources. The second (oscillating in time) term in each
correlator is due to taste doubling caused by the staggered-
quark HISQ action for the light quarks (see [33]). Mn and
Mo

n are the physical masses corresponding to states jEni
and jEo

ni, respectively. We keep N ¼ 6 terms, but fit results
are the same for any N ≥ 5.
We use a Bayesian fit procedure [78]. Fits for the Bs

mesons on our coarsest lattices (0.15 fm) use the following
Bayesian priors for the energies,

logðE0Þ ¼ logð0.6ð3ÞÞ; logðΔEnÞ ¼ logð0.50ð25ÞÞ;
logðEo

0Þ ¼ logð0.90ð45ÞÞ; logðΔEo
nÞ ¼ logð0.50ð25ÞÞ;

ðA11Þ

where ΔEn ≡ En − En−1, and the logarithms indicate log-
normal priors for energies. Energies are rescaled in pro-
portion to the lattice spacing to make priors for the other
lattices. The priors for local and smeared amplitudes are

FIG. 11. A schematic diagram of the 3-point function for B − B̄
mixing. On marks the insertion at time t of a 4-quark operator,
when the meson and antimeson operators are located at times 0
and T.

3Note that the NRQCD-HISQ temporal axial current that we
use here is correct through the same order in αs and ΛQCD=mb as
that of our 4-quark operators. In [2] we used a more highly
corrected temporal axial current to determine fB.
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logðcnðloc:ÞÞ ¼ logð0.2ð8ÞÞ; cnðsmearedÞ ¼ 1ð4Þ;
logðconðloc:ÞÞ ¼ logð0.2ð8ÞÞ; conðsmearedÞ ¼ 1ð4Þ;

ðA12Þ

on the coarsest lattices. Amplitudes for the local source are
rescaled by a3=2 for the other lattices. The smeared sources
are designed to be lattice-spacing independent, and so we
use the same prior for the other lattices. Finally the priors
for parameters jn and jon are

jn ¼ −0.015ð60Þ; jon ¼ 0.02ð8Þ ðA13Þ

on the coarse lattice, and again scale as a3=2 for other
lattices.
These central values for these priors were based upon fit

values for the ground state Bs. The uncertainties assigned to
the priors are large: for example, the priors are typically
2000–5000 times broader than the final fit errors for the
ground state parameters that we need for our analysis.
Replacing the central values by random values drawn from
the prior distributions leaves our results unchanged within
errors.
We need to apply SVD cuts to the data’s correlation

matrix because of the large number of correlators being
fit. The procedure for determining the SVD cuts is
described in Appendix D; typically the cuts affect less
than half of the data modes. Fits for GðtÞ were constrained
to t values between the values for tmin and tmax shown in
Table VIII; data from larger t’s was too noisy to be useful.
To keep the number of fit points down (see Appendix D),
we restricted the fits for Gð1ÞðtÞ to the range of t’s between
ðtmin þ tmaxÞ=2 and tmax.

2. Fitting three-point correlators

The fit function for the 3-point correlators is substan-
tially more complicated:

Gfit
β ðt; T;pÞ ¼

XN−1

n;m¼0

e−EntcnVnmðOβÞcTme−EmðT−tÞ

− ð−1ÞT−t
XN−1

n;m¼0

e−EntcnVo
nmðOβÞcoTm e−E

o
mðT−tÞ

− ð−1Þt
XN−1

n;m¼0

e−E
o
ntconVo

mnðOβÞcTme−EmðT−tÞ

þ ð−1ÞT
XN−1

n;m¼0

e−E
o
ntconVoo

nmðOβÞcoTm e−E
o
mðT−tÞ;

ðA14Þ

where the fit parameters p include all of the 2-point
correlator parameters plus the Vnm, Vo

nm, and Voo
nm.

We fit the 3-point amplitudes over the range tmin ≤ t ≤
T − tmin for the values of T shown in Table VIII. Parameters
cn, con, En, and Eo

n are the same as in the 2-point correlators;
we use the results from the fits to the 2-point correlators as
priors for these parameters in our 3-point fits. The priors on
the coarsest lattices for each of the mixing amplitudes VðβÞ,
VoðβÞ, and VooðβÞ are

VðO1Þ ¼ 0.03ð12Þ; VðO2Þ ¼ −0.03ð12Þ;
VðO3Þ ¼ 0.005ð20Þ; VðO4Þ ¼ 0.04ð16Þ;
VðO5Þ ¼ 0.025ð100Þ; ðA15Þ

TABLE VIII. Simulation results for hBqjOnjB̄qilatt=ðfBq
MBq

Þ2 for Bq ¼ Bs; Bd mesons. Results are presented for each of the
configuration data sets described in Table III. Fit ranges for 2-point (tmin ≤ t ≤ tmax) and 3-point (tmin ≤ t ≤ T − tmin) correlators are
tabulated. Sample χ2’s per degree of freedom from fits to both sets of correlators, with SVD and prior noise (see Appendix D 4), are also
listed.

Meson Set tmin tmax T hO1i=ðfMÞ2 hO2i=ðfMÞ2 hO3i=ðfMÞ2 hO4i=ðfMÞ2 hO5i=ðfMÞ2 χ2=dof [dof]

Bs 1 4 17 8–12 2.274(29) −1.887ð24Þ 0.3646(68) 3.041(35) 1.870(23) 0.97 [258]
Bs 2 4 17 8–12 2.336(29) −1.939ð21Þ 0.3625(75) 3.199(33) 1.978(22) 1.11 [258]
Bs 3 4 17 8–12 2.315(31) −1.923ð26Þ 0.3638(73) 3.162(39) 1.951(24) 1.01 [258]
Bs 4 4 22 10–14, 17 2.367(27) −1.979ð21Þ 0.3720(70) 3.382(34) 2.060(22) 0.92 [324]
Bs 5 4 22 10–14, 17 2.319(26) −1.955ð20Þ 0.3636(70) 3.288(34) 1.994(22) 1.13 [324]
Bs 6 4 22 10–14, 17 2.365(32) −1.999ð25Þ 0.3747(80) 3.366(40) 2.037(25) 0.99 [324]
Bs 7 5 33 12–16, 19 2.312(32) −2.029ð29Þ 0.3835(83) 3.548(47) 2.090(28) 1.03 [399]

Bd 1 4 17 8–12 2.238(56) −1.869ð39Þ 0.362(14) 3.054(59) 1.861(41) 1.00 [258]
Bd 2 4 17 8–12 2.283(70) −1.875ð43Þ 0.345(19) 3.232(69) 2.016(49) 1.05 [258]
Bd 3 4 17 8–12 2.228(74) −1.854ð49Þ 0.324(19) 3.232(77) 1.955(53) 1.07 [258]
Bd 4 4 22 10–14, 17 2.377(56) −1.941ð38Þ 0.333(14) 3.539(67) 2.158(44) 1.06 [324]
Bd 5 4 22 10–14, 17 2.332(59) −1.870ð38Þ 0.328(15) 3.341(61) 2.011(43) 0.99 [324]
Bd 6 4 22 10–14, 17 2.265(97) −1.965ð67Þ 0.379(25) 3.49(10) 2.086(71) 1.08 [324]
Bd 7 5 33 12–16, 19 2.332(70) −1.984ð68Þ 0.356(18) 3.68(10) 2.153(63) 1.08 [399]
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these are scaled in proportion to a3 for the other lattices.
Note that Vn;mðβÞ and Voo

n;mðβÞ are symmetric under the
interchange of n and m. We are interested in the ground-
state value for

V00ðOβÞ ¼
hE0jOβjE0i

2M0

: ðA16Þ

We introduce two simplifications to the analysis that
make our fits run 20–100 times faster, without affecting fit
results or precision. The first simplification is to replace
both the data and the fit function in the fits with their sums
over t,

Gβðt; TÞ →
XT−tmin

t¼tmin

Gβðt; TÞ;

Gfit
β ðt; T;pÞ →

XT−tmin

t¼tmin

Gfit
β ðt; T;pÞ; ðA17Þ

while keeping the same fit parameters [79]. This reduces
the number of data points to be fit for our 0.09 fm lattice,
for example, from 1050 to 180. Note that the Monte Carlo
data for Gnðt; TÞ do not vary much with t, as expected
from Eq. (A14).
The second simplification is to marginalize all fit

parameters other than those associated with the ground
state [80]. We do this by splitting the fit function
[Eq. (A14)] into two parts, one that involves only the
ground state (i.e., either the Bs or Bd) and the other with the
remaining terms:

Gfit
β ≡ c0V00ðOβÞcT0 e−E0T þ ΔGfit

β : ðA18Þ

We then replace the fit data Glat
β by

Glat
β ðt; TÞ → Glat

β ðt; TÞ − ΔGfit
β ðt; T;ppriorÞ; ðA19Þ

where the prior values for the fit parameters are used in
ΔGfit

β . At the same time, we replace the fit function by just
its ground-state term:

Gfit
β ðt; T;pÞ → c0V00ðOβÞcT0 e−E0T: ðA20Þ

This reduces the number of fit parameters from 450 to 9 (for
N ¼ 6). Marginalization works particularly well here
because we have excellent priors for the amplitudes and
energies, from the 2-point correlators, and because the
mixing parameters enter the fit function linearly. Also the
marginalized fit function is t independent, making the first
simplification (summing over t) quite natural.
Again we need SVD cuts, but the need is greatly reduced

by summing over t. We used the method outlined in

Appendix D; typically the cuts modified around 70% of
the data modes.
We tabulate simulation results [using Eqs. (A6), (A9),

(A10), and (A16)] for the dimensionless ratio

hBqjOnjBqi
f2Bq

M2
Bq

ðA21Þ

with Bq ¼ Bs; Bd in Table VIII. This table also shows
sample values of χ2 from the various (2-point and 3-point)
correlator fits when we include random SVD and prior
noise, as discussed in Appendix D 4. Without noise, the
χ2’s per degree of freedom are much smaller than 1.0,
as expected. Also following Appendix D 4, we tested the
uncertainties from our fits using simulated data. Fits to
simulated data reproduced the input parameters to within
errors.
We verified that marginalization and averaging over t

have negligible effect on our results. With our smallest
lattice spacing (0.09 fm), for example, undoing both
optimizations gives the following values:

hBsjOnjBsi
f2Bs

M2
Bs

¼

8>>>>>><
>>>>>>:

2.307ð35Þ n ¼ 1;

−2.025ð31Þ n ¼ 2;

0.3847ð86Þ n ¼ 3;

3.547ð51Þ n ¼ 4;

2.094ð31Þ n ¼ 5:

ðA22Þ

These agree well with the values in Table VIII (for set 7),
but took far longer to compute.
In Table IX, we show sample error budgets for these

quantities from simulations on the 0.09 fm lattice; others
are similar. The dominant source of uncertainty is from the
Monte Carlo statistics.

TABLE IX. Sample error budgets from simulations on the
0.09 fm lattice (set 7) for hBqjOnjBqi=ðfBq

MBq
Þ2 for Bs and Bd

mesons. Percentage errors coming from Monte Carlo statistics,
the fit priors, and the SVD cuts are shown; these are added in
quadrature to give the total error.

Bs hO1i=ðfMÞ2 hO2i=ðfMÞ2 hO3i=ðfMÞ2
Statistics 1.25 1.15 2.00
Prior 0.28 0.31 0.47
SVD 0.42 0.74 0.56

Total 1.35 1.41 2.13

Bd hO1i=ðfMÞ2 hO2i=ðfMÞ2 hO3i=ðfMÞ2
Statistics 2.59 2.13 4.25
Prior 0.89 1.00 1.87
SVD 1.38 2.53 1.75

Total 3.07 3.46 4.96
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3. Blind analysis

This analysis was blinded by multiplying the 3-point
correlators by a random normalization factor. The random
factor was removed only after the entire analysis was
completed and this paper written.

APPENDIX B: CHIRAL FIT

Although we have results at physical pion masses we do
not rely on these simply for our final value. We include also
results at heavier-than-physical pion masses, which are
statistically more precise, by using a fit to the dependence
on the pion mass based on chiral perturbation theory. This
gives the coefficients of the nonanalytic “chiral logarithms”
in m2

π logðm2
πÞ; in addition we include analytic terms to

allow both for staggered quark discretization effects, the
unphysically heavy u=d quark masses in the sea, and for
mistuning of valence quark masses. Performing a fit to
results at multiple pion masses then tests the dependence
expected from chiral perturbation theory.
Our principal results consist of values for the “reduced”

matrix elements of the 4-quark operators,

Rn
q ≡

hBqjOnjB̄qiðmbÞ
MS

ðfBq
MBq

Þ2 ; ðB1Þ

on each configuration set (Table V). We fit the Rn
q to the

form

Rðml;msÞ ¼ Rðmphys
l ; mphys

s Þð1þ plogχlog þ pJ3g2J

þ pa4δXa4 þ pm2
πa2δXm2

πa2plδxl

þ pl2ðδxlÞ2 þ pvδvÞ; ðB2Þ

where we suppress the indices n and q on each term and
each parameter, p, for clarity. The functions used in each
term are discussed below. χlog is given in Eq. (B6); J in
Eq. (B7); δX in Eq. (B9); δxl in Eq. (B11); and δv in
Eq. (B12). Note that this fit is done after applying the
additional uncertainties discussed in Sec. III B to allow for
matching and discretization effects.
To derive this form, we make use of the results in [81],

where Appendix A gives the dependence on light meson
masses of the bag parameters at one loop in heavy meson
staggered chiral perturbation theory. This builds on the
continuum heavy meson chiral perturbation theory results
of [82]. There is a lot of cancellation of chiral logarithms
between 4-quark operator matrix elements and decay
constants so that, as we discuss below, the remaining
chiral logarithm terms [χlog and J in Eq. (B2)] in the
bag parameters (and equivalently in R) have small coef-
ficients. This expected very benign dependence on the light
quark mass is another reason for working with the bag

parameters as we do here, rather than the 4-quark operator
matrix elements.
The chiral perturbation theory for the bag parameters is

given in [81] in the form (using our notation)

Rn
q ¼ βn

�
1� Sq þ T̃q

n þ β0n
βn

ðQq
n þ Q̃q

nÞ
�
: ðB3Þ

Here βn is the low-energy constant (value at zero pion
mass) for Rn, and β0n is the equivalent term for 4-quark
matrix elements between vector heavy-light mesons. For
O1, β01 ¼ β1. S comes from “tadpole” diagrams (with þ for
n ¼ 1, 2, and 3 and − for n ¼ 4, 5) and Q from “sunset”
diagrams that connect pseudoscalar and vector mesons. T̃
and Q̃ are “wrong-spin” tadpole and sunset terms, respec-
tively. Below we discuss the content of these functions in
terms of the important nonanalytic chiral logarithms and
the effect on these of the discretization effects in the
staggered quark formalism. This enables us to transcribe
Eq. (B3) into the simpler Eq. (B2) that we will use. We now
discuss each of these terms in turn.

1. Tadpole diagrams

The results in [81] are given in terms of meson masses
that include those for pions of different tastes that appear in
the staggered quark formalism. Thus a term that would be a
simple chiral logarithm in the continuum can appear in a
number of guises, one of which is as an average over the
masses of all tastes of pion. On fine enough lattices this
will become a continuum logarithm plus discretization
effects. In fact, for the fully unquenched case that we
study here (mval ¼ msea), staggered chiral perturbation
theory typically arranges itself to cancel taste effects inside
chiral logarithms so that nonanalyticities in a2 cancel as
mu=d → 0 (see Appendix A of [83]). This also happens
here. The chiral logarithm in Rd from tadpole diagrams
[S in Eq. (B3)] appears in the form

−
1

16

X
tastes;t

m2
π;t

Λ2
χ
log

m2
π;t

μ2χ
þ 1

2

m2
π;I

Λ2
χ
log

m2
π;I

μ2χ
: ðB4Þ

Here I denotes the singlet (largest mass) pion taste. We can
compare this function to the corresponding continuum
chiral logarithm

−
1

2

m2
π;P

Λ2
χ
log

m2
π;P

μ2χ
; ðB5Þ

where P denotes the lightest (Goldstone) pion taste. This
comparison is shown in Fig. 12 using taste splittings for
HISQ pions for the lattice spacing values that we use in this
calculation. We give results for our range of m2

π ≡m2
π;P

values from the physical point, 0.018 GeV2, to 0.09 GeV2.
Λχ ¼ 4πfπ ¼ 1.64 GeV, and we take μχ ¼ 1.0 GeV.
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The difference between the HISQ and continuum chiral
logarithm terms is sufficiently small that we simply allow
for that discrepancy in our treatment of discretization
effects. This is included through the δX terms in Eq. (B2)
discussed below.
We therefore take the chiral logarithm terms in Eq. (B2)

with continuum form:

χdlog;n ¼ −
1

2

m2
π

Λ2
χ
log

�
m2

π

μ2χ

�
−
1

6

m2
η

Λ2
χ
log

�
m2

η

μ2χ

�
− ðphysÞ;

χslog;n ¼ −
2

3

m2
η

Λ2
χ
log

�
m2

η

μ2χ

�
− ðphysÞ: ðB6Þ

Here m2
η ¼ ð2m2

ηs þm2
πÞ=3, and we use masses of

Goldstone taste π and ηs in this expression. “(phys)”
denotes the value of the previous expression evaluated
for physical masses so that the total right-hand side
vanishes at that point.m2

η changes very little asmπ changes,
so these terms in the fit do very little. The parameters pq

log;n

are given priors þ1.0ð3Þ for n ¼ 1, 2, 3 and −1.0ð3Þ for
n ¼ 4, 5 as this logarithm appears with the opposite sign
for O4;5. The prior width allows for modification of
the coefficients from missing higher order terms in chiral
perturbation theory.

2. Sunset diagrams

We now turn to the term denoted J in Eq. (B2) that
comes from the sunset diagram term Q in Eq. (B3). This
would also take the form of a chiral logarithm
m2

π logðm2
π=μ2χ2Þ in the infinite heavy meson mass limit

in the continuum. For finite heavy meson mass, however,

J is modified by terms that depend on heavy meson mass
differences, because there is a pseudoscalar to vector heavy
meson transition inside the sunset diagram. The form of J
as a function of pion mass and heavy meson mass differ-
ence, Δ, is given in Eq. (6.17) of [84], which considers
chiral perturbation theory terms for the heavy-light meson
decay constant. In that case the appropriate value for Δ can
include heavy-strange to heavy-light mass differences as
well as vector to pseudoscalar mass differences. Here, when
we consider Rd and Rs, that does not happen and we only
have to consider the case where Δ ¼ MB�

ðsÞ
−MBðsÞ . Then Δ

takes the value 45 MeV for B� − B [11], and we take the
same value for B�

s − Bs since any differences are expected
[33] and seen to be [11] small. Figure 13 compares the
function Jðmπ;ΔÞ=Λ2

χ with that of the chiral logarithm to
which it is equal when Δ ¼ 0. Even though Δ is small, and
much smaller than mπ through most of the range in which
we work, we see Δ does have an impact, so that J has
smaller magnitude and gradient in m2

π than its associated
chiral logarithm.
J in Eq. (B2) then takes the form

Jdn ¼
1

2

Jðmπ;ΔÞ
Λ2
χ

þ 1

6

Jðmη;ΔÞ
Λ2
χ

− ðphysÞ;

Jsn ¼
2

3

Jðmη;ΔÞ
Λ2
χ

− ðphysÞ; ðB7Þ

where Jðm;ΔÞ is given in [84]. J is multiplied by 3g2,
where g is the BB�π coupling. We take the value of g as 0.5,
based on recent lattice QCD calculations [85–87]. The
uncertainty on g, both from the lattice calculations and also
from the effect of missing higher order terms in chiral
perturbation theory, is absorbed into the coefficient pJ. pJ
is the ratio of low-energy constants associated with the bag
parameters for vector heavy-light mesons to that for
pseudoscalars. For O1 we know that this ratio is 1 [88].

FIG. 12. A comparison of chiral logarithm terms in mπ that
appear in the continuum chiral perturbation theory for Rd
[Eq. (B5)] with those in staggered chiral perturbation theory
[Eq. (B4)] for HISQ quarks. The solid black line gives the
continuum form [Eq. (B5)], and the dashed blue and red curves
give the staggered form in Eq. (B4) for HISQ quarks on very
coarse, coarse, and fine lattices, respectively.

FIG. 13. A comparison of the function Jðmπ ;ΔÞ=Λ2
χ to

the chiral logarithm to which it is equal at Δ ¼ 0

(ðm2
π=Λ2

χÞ logðm2
π=μ2χÞ) as a function of mπ .
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For the other operators, n ¼ 2–5, we do not. We therefore

take a prior value and width on pðd;sÞ
J;n of 0(1), allowing

either sign. For pðd;sÞ
J;1 we take 1.0(3) to allow for uncertainty

in g2. Note that in the case where Δ ¼ 0 the coefficient of
the chiral logarithm ðm2

π=Λ2
χ logðm2

π=μ2χÞÞ in the chiral
perturbation theory for O1 is ð3g2 − 1Þ=2 [89], which is
small (−0.125) when g ¼ 0.5.

3. Wrong spin and other effects

The heavy meson staggered chiral perturbation theory
analysis of [81] showed that O1;2;3 and O4;5 can mix
through wrong-spin staggered taste effects [T̃ and Q̃ in
Eq. (B3)]. The size of these terms depends on the size of the
light meson taste splittings for the staggered action. For the
asqtad action used for light quarks in [8] they were of some
concern, and it was important to include these effects
explicitly in a full fit to all five operators. For the HISQ
action that we use here these effects are much smaller. The
question then becomes whether they are distinct in magni-
tude or form from discretization effects from other sources
that are already included in our analysis.
The wrong-spin contributions from tadpole diagrams for

Bd involve differences of chiral logarithms for different
taste pions (hence canceling in the absence of taste-splitting
effects) along with hairpin terms that have coefficients a2δ0V
and a2δ0A that are themselves the size of the unit of taste
splitting [83]. As an illustration of the impact of these terms
we examine the terms that are differences of chiral
logarithms. These appear in three “signatures”: V − A,
P − I, and −Pþ 2T − I. Here the letter denotes the pion
taste, ordered in increasing mass as P, A, T, V, I. Figure 14
illustrates the size and behavior of these terms for the −Pþ
2T − I example that mixesO2 andO3, the simplest because

there are no additional hairpin corrections. The function
plotted is

X̃ ¼ −
m2

π;P

Λ2
χ
log

�
m2

π;P

μ2χ

�
þ 2

m2
π;T

Λ2
χ
log

�
m2

π;T

μ2χ

�

−
m2

π;I

Λ2
χ
log

�
m2

π;I

μ2χ

�
: ðB8Þ

We see that X̃ falls rapidly with lattice spacing [approx-
imately as ðaΛÞ4] and has a slope with m2

π that also falls
with lattice spacing [approximately as ðaΛÞ2]. This behav-
ior is generic for terms that arise from taste splittings in
this way.
The wrong-spin tadpole terms have a variety of coef-

ficients multiplying them that correspond to ratios of
4-quark operator matrix elements (within the groupings
1,2,3 and 4,5). Most of the coefficients for the wrong-spin
tadpole terms appearing in the chiral expansion for Oy are
of the form βx=ð4βyÞ where βx is the low energy constant
associated with operatorOx. The exception isO1, where the
coefficient is 2ðβ2 þ β3Þ=β1. If all the 4-quark operator
matrix elements were of the same size, then the coefficients
would beOð1=4Þ.O3 andO5 have smaller matrix elements
than the others, however, if we consider the vacuum
saturation approximation. Hence βx=βy can be of size 2 for
O5 and 5 for O3.
We are already including a2 and a4 errors in Eq. (10),

but contributions from wrong-sign tadpole terms differ
between Bd and Bs mesons. The largest contributions are
for the Bd meson; we allow for them and similar terms that
arise from sunset diagrams [and so contain differences of
Jðmπ;t;ΔÞ] along with residual right-sign taste effects by
including terms

δXd
a4 ¼ ðaΛÞ4; δXd

m2
πa2

¼ αsðaΛÞ2δm2
π
; ðB9Þ

in the chiral fit, Eq. (B2). We include them with the chiral
fit rather than with other discretization effects in Eq. (10)
because they arise from the staggered quark action and
hence carry no amb dependence. Here

δm2
π
≡m2

π − 0.054
0.072

ðB10Þ

allows for m2
π dependence; it varies between −0.5 and 0.5

over our range of parameters. Similar terms are not needed
for Bs mesons because the effects are smaller and can be
simulated by Eq. (10). We take the priors pa4 and pm2

πa2 to
be 0(2) since, although this is an unnecessarily broad
prior for some n, it allows a reasonable size for all the
possibilities.

FIG. 14. The function X̃, defined in Eq. (B8), plotted for HISQ
light quarks against the square of the pion mass. We give three
curves, for lattice spacing values corresponding to our very
coarse, coarse, and fine lattices. This function appears in the
“wrong-sign” tadpole terms in heavy meson staggered chiral
perturbation theory.
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4. Analytic terms

The three terms given symbol δ on the last line of
Eq. (B2) are simple polynomials to account for mistuning
of sea and valence quark masses from their physical values.
We use

δxl ¼
1

10

�
ml

ms
−
ml

ms

����
phys

�
; ðB11Þ

where ml and ms are the sea u=d and s quark masses from
Table III. The physical value for the ml=ms ratio we take as
27.18(10) from [13]. The factor of 1=10 converts ml=ms to
the size of the parameters that appear in chiral perturba-
tion theory as a ratio of meson masses to Λχ ¼ 4πfπ .
Equation (B2) includes terms in δxl and ðδxlÞ2. We take a
prior of size 0(1) for each coefficient pl and pl2 (for each
operator and each q). We do not allow for mistuning effects
for c quarks in the sea since we expect these effects to be
negligible compared to those from light sea quarks. δv
accounts for the mistuning of light and strange valence
masses appropriate to Bd or Bs. We take

δlv ¼
m2

π −m2
π;phys

Λ2
χ

; δsv ¼
m2

ηs −m2
ηs;phys

Λ2
χ

: ðB12Þ

Again the coefficients for this term, pq
v;n, have prior 0(1) for

each n and q. We do not include terms for b quark mass
mistuning since the tuning is very accurate and we expect
any small mistuning to have a negligible effect on bag
parameters.

5. Finite-volume, strong isospin-breaking,
and QED effects

Finite-volume effects can be estimated based on chiral
perturbation theory. The results in [90] show finite-volume
effects of Oð1%Þ for the bag parameters of O1 in small
lattice volumes of size L ¼ 2.5 fm for physical u=d quark
masses. On our much larger lattices, with a minimum size
of L ¼ 4.6 fm at physical u=d masses for set 3, finite-
volume effects will be a lot smaller. We conclude that this is
a negligible effect at our current level of uncertainties.
Strong-isospin breaking and electromagnetic effects can

also be estimated to be negligible at present. Our bag
parameters show very little sensitivity to the u=d quark
mass and our ratios for Bs to Bd differ from 1 by at most
10% (Table VI). This suggests that changing ml to md
should only have a Oð0.1%Þ effect. Effects from the fact
that the valence quarks have electromagnetic charge are
estimated at below 0.1% for the decay constants in [13].
They come largely from QED effects on the tuning of quark
masses. Since bag parameters are less sensitive to both
heavy and light quark masses than decay constants, we
conclude that QED effects on the bag parameters will be
less than 0.1%, and we neglect them. Note that QED effects

can still enter ΔMq or BrðBq → μþμ−Þ through corrections
to these processes from adding photons; these effects need
to be considered separately.

APPENDIX C: CORRELATIONS
IN FINAL RESULTS

In this appendix we describe the correlations between the
uncertainties in different final results from our analysis. Our
principal results consist of values for the reduced matrix
elements of the 4-quark operators, Rn

q, defined in Eq. (B1),
evaluated for physical quark masses (Table V). The results
for a given meson and different operators are only weakly
correlated, as shown in Table X for the Bs meson. There is
more correlation, but still small, between values of the bag
parameters [Eq. (2)], because of the normalization factors
ηsn [Eq. (4)]. The means and standard deviations for these
quantities are collected in Table XI.
Values of Rn

s are highly correlated with values of Rn
d,

for the same n, which is why the ratios Rn
s=Rn

d have much
smaller uncertainties. Uncertainties in these ratios are
almost uncorrelated, however, with those in the Rn

q (corre-
lations are 0.06 or smaller). Thus correlations for the Bd
matrix elements Rn

d can easily be constructed from the
results in Table XI and Table X for Rn

s and Rn
s=Rn

d. The ratio

TABLE X. Correlations in the uncertainties of the Rn
s [Eq. (B1)]

for different values of n. Correlations are also shown for the bag

parameters BðnÞ
Bs

[Eq. (2)] and for the ratio Rn
s=Rn

d. Correlations for

BðnÞ
Bs
=BðnÞ

Bd
are the same as for Rn

s=Rn
d.

R1
s R2

s R3
s R4

s R5
s

R1
s 1.000 −0.069 0.013 0.041 0.040

R2
s 1.000 −0.039 −0.040 −0.026

R3
s 1.000 0.023 0.012

R4
s 1.000 0.144

R5
s 1.000

Bð1Þ
Bs

Bð2Þ
Bs

Bð3Þ
Bs

Bð4Þ
Bs

Bð5Þ
Bs

Bð1Þ
Bs

1.000 0.062 0.012 0.037 0.038

Bð2Þ
Bs

1.000 0.177 0.233 0.150

Bð3Þ
Bs

1.000 0.170 0.107

Bð4Þ
Bs

1.000 0.256

Bð5Þ
Bs

1.000

R1
s=R1

d R2
s=R2

d R3
s=R3

d R4
s=R4

d R5
s=R5

d

R1
s=R1

d 1.000 0.296 −0.034 0.064 0.047
R2
s=R2

d 1.000 0.144 0.068 0.045
R3
s=R3

d 1.000 0.035 0.018
R4
s=R4

d 1.000 0.350
R5
s=R5

d 1.000
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of bag parameters BðnÞ
Bs
=BðnÞ

Bd
is almost equal to Rn

s=Rn
d (the

difference being only from small quark mass effects) and
has the same correlation matrix.

APPENDIX D: SVD CUTS

1. The problem

There are three inputs for our least-square fits to sets of
correlators: (1) a collection of Ns random (Monte Carlo)
samples GðsÞ, where each sample is packaged as an NG-
dimensional vector; (2) a (vector) fitting function GðpÞ of
fit parameters p; and (3) a priori estimates (priors) for the
fit parameters.
In the fit, the sample average

Ḡ≡ 1

Ns

X
s

GðsÞ ðD1Þ

is assumed to be a random sample drawn from a Gaussian
distribution with mean Gðp�Þ for some set p� of fit para-
meters, and a covariance matrix given approximately by

Mcov ≈
1

NsðNs − 1Þ
X
s

ðGðsÞ − ḠÞðGðsÞ − ḠÞT ðD2Þ

≡ DMcorrD: ðD3Þ

Here D is the diagonal matrix of standard deviations,
Dij ¼ δijσGi

, and Mcorr is the correlation matrix. The best-
fit parameters are obtained by minimizing

χ2ðpÞ≡XNG

n¼1

ððḠ −GðpÞÞTD−1vnÞ2
λn

þ χ2prior ðD4Þ

as a function of the parameters p, where λn and vn are the
eigenvalues and eigenvectors of the correlation matrix:

Mcorrvn ¼ λnvn: ðD5Þ
Note that

Mcov
−1 ¼

XNG

n¼1

D−1vnvTnD−1

λn
: ðD6Þ

χ2priorðpÞ is the part of χ2ðpÞ associated with the Bayesian
priors used in the fit.
The approximation for the covariance matrix, Eq. (D2),

causes problems if the number of samples Ns is insuffi-
ciently large compared with the number of data points NG
[91,92]. In particular, the smaller eigenvalues of the
correlation matrix are underestimated. Indeed, it is obvious
from Eq. (D2) that there must be NG − Ns modes with zero
eigenvalue when Ns < NG. Underestimating eigenvalues
exaggerates their importance in χ2ðpÞ [Eq. (D4)], com-
promising the fit; and χ2ðpÞ is undefined if there are zero
eigenvalues.
The underestimation of small eigenvalues is illustrated in

Fig. 15, which shows the ratio of λapproxn =λexactn for approxi-
mate eigenvalues estimated from random samples of differ-
ent sizes drawn from a simulation of a known distribution
(so we know the exact eigenvalues). The small eigenvalues
are dragged down to zero by the need for zero modes when
Ns < NG. They then increase slowly as new samples are
added, until λapproxn =λexactn ≈ 1 for all n when Ns ≫ NG.
Note that good approximations for all eigenvalues require
Ns to be 10–100 times larger than NG. The figure shows
results for NG ¼ 512 pieces of correlated data; curves for
NG ¼ 50 (or 5000) would be similar, but with more (or
less) noise. The range of values covered by the eigenvalues
also has little effect on the overall picture.

2. Choosing an SVD cut

The problematic eigenvalues are those for which

λapproxn

λexactn
< 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
2=NG

p
ðD7Þ

TABLE XI. Means and standard deviations for the reduced

matrix elements Rn
s and bag parameters BðnÞ

s for each 4-quark
operator On, together with values for their Bs=Bd ratios.

Rn
s Rn

s=Rn
d BðnÞ

s BðnÞ
s =BðnÞ

d

O1 2.1678(928) 1.0081(250) 0.8129(348) 1.0081(250)
O2 −2.1801ð1035Þ 1.0589(242) 0.8169(431) 1.0626(243)
O3 0.4357(288) 1.0886(339) 0.8163(572) 1.0924(340)
O4 3.6532(1480) 0.9558(213) 1.0332(471) 0.9589(214)
O5 1.9448(759) 0.9650(232) 0.9406(384) 0.9668(233)

FIG. 15. The ratio of approximate to exact eigenvalues of
the correlation matrix for NG ¼ 512 correlated data points is
plotted versus the size of the exact eigenvalues divided by the
maximum eigenvalue. The approximate eigenvalues are deter-
mined [Eq. (D2)] from random samples of different sizes ranging
(by powers of 2) from Ns ¼ NG=4 to Ns ¼ 32NG. The red
(dashed) line corresponds to Ns ¼ NG. Both sets of eigenvalues
(approximate and exact) are ordered from smallest to largest.
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since, on average, individual terms in χ2ðpÞ should con-
tribute approximately 1� ffiffiffiffiffiffiffiffiffiffiffiffi

2=NG

p
to the total (based on

the width of the χ2 distribution). Following [91,92], we deal
with these eigenvalues by introducing a cutoff κ such that
eigenvalues smaller than κλmax are replaced with κλmax,
where λmax is the largest eigenvalue:

λn → maxðλn; κλmaxÞ: ðD8Þ

Tuning κ appropriately, this replacement increases the
underestimated eigenvalues to a value that is at least as
large as the exact eigenvalue (and probably a lot larger).
Unlike in [91,92], we do not renormalize the eigenvalues to
preserve the trace of the modified matrix (see below).
We need curves such as those in Fig. 15 to set κ, but we

do not know the exact eigenvalues in real applications.
An approximate curve can be generated by comparing the
eigenvalues of bootstrapped copies of our simulation
results fGðsÞg with the eigenvalues from the full ensemble.
Each bootstrapped copy has Ns samples, as the original
ensemble. In this analysis, bootstrapped eigenvalues play
the role of the approximate eigenvalues above, while
eigenvalues computed directly from ensemble fGðsÞg
now play the role of the exact eigenvalues (since they
specify the underlying distribution for the bootstrapped
copies).
Ratios of these eigenvalues are plotted in Fig. 16 (blue

points) for examples with NG ¼ 50 (top panel) and NG ¼
500 (bottom panel) data points, and Ns ¼ 4NG random
samples for each data point. The error bars show the spread
of values across the different bootstrapped copies. These
points give us an approximate curve for λn=λexactn , from
which we can determine an SVD cutoff.
The ensembles used in these examples were generated

from a known distribution, so in this case we know the
correct curve for λapproxn =λexactn —that is, the ratio of the
eigenvalues from the original ensemble to the exact
eigenvalues from the underlying distribution. The (solid)
red line in the plots shows this curve; it agrees well with the
bootstrap estimates.
The vertical (dotted) red lines in each figure show the

position where the ratio curves intersect with 1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
2=NG

p
[bottom dotted line, see Eq. (D7)]. We set the SVD cutoff at
this point in each case. Fitting these data we find that

χ2=NG ¼
�
0.90 with no SVD cut

0.82 with κ ¼ 0.00003
ðD9Þ

for NG ¼ 50, showing that the SVD cut has a minimal
effect (as expected), while for NG ¼ 500 we have

χ2=NG ¼
�
1.30 with no SVD cut

0.41 with κ ¼ 0.025;
ðD10Þ

which shows that the SVD cut is essential since χ2=NG ¼
1.30 is much too large forNG ¼ 500—it corresponds to a p
value of order 3 × 10−5.

3. Conceptual framework

The nature of the SVD modification can be understood
by representing the ensemble-averaged data as a vector of
Gaussian random variables,

G ¼ Ḡþ δG; ðD11Þ

where

δG≡XNG

n¼1

zn
ffiffiffiffiffi
λn

p
Dvn; ðD12Þ

and the uncorrelated random variables zn satisfy

FIG. 16. Correlation-matrix eigenvalues computed from Ns
random samples of NG correlated data points are compared with
eigenvalues computed from bootstrapped copies of the random
sample. Results are shown for NG ¼ 50 (top) and NG ¼ 500
(bottom), with Ns ¼ 4NG in each case. The blue data points are
ratios of bootstrapped eigenvalues to eigenvalues from the
random sample itself; the error bars show the spread across
different bootstrapped copies. The solid red line (mostly hidden
in the bottom panel) shows ratios of eigenvalues from the random
sample to those from the underlying distribution used to generate
the random sample. The locations of the SVD cuts κ are shown by
the vertical dashed red lines.
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hzni ¼ 0; hznzmi ¼ δnm: ðD13Þ

Here δG represents the uncertainty associated with the
ensemble average,

hδGδGTi ¼
X
n

λnDvnvTnD ¼ Mcov: ðD14Þ

The effect of the SVD cut is to add more uncertainty,
δGSVD,

G → Ḡþ δGþ δGSVD; ðD15Þ

where

δGSVD ≡ X
λn<κλmax

z̃n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κλmax − λn

p
Dvn; ðD16Þ

and z̃n are new random variables with zero mean and unit
covariance matrix. Then

hðδGþ δGSVDÞðδGþ δGSVDÞTi
¼ hδGδGTi þ hδGSVDδGT

SVDi
¼

X
n

maxðλn; κλmaxÞDvnvTnD ðD17Þ

is the SVD-modified covariance data. The SVD noise
discussed above is a random sample drawn from the
distribution described by δGSVD.
These formulas underscore the fact that introducing an

SVD cut is a conservative move: it always increases the
uncertainties in the data. This would not necessarily be the
case if we renormalized the eigenvalues after introducing
the SVD cut, as is done in [91,92]. In practice, however, the
difference between the two approaches is small.
Finally note that another option in an SVD analyses is to

discard modes below the cutoff. This corresponds to setting
λn ¼ ∞ for these modes, which is much larger than is
reasonable, much too conservative. We find that fits are
more accurate and more stable using the prescription
outlined above.

4. Goodness of fit

Note that χ2=NG ¼ 0.41 in Eq. (D10) is much smaller
than expected for NG ¼ 500: one expects 1.00(6) instead.
The small value arises because random fluctuations in Ḡ
are characteristic of the uncertainties in δG, but not those
in δGSVD. We can demonstrate this by adding a random
sample to Ḡ drawn from the distribution specified by
δGSVD,

δGSVD → sampleðδGSVDÞ þ δGSVD; ðD18Þ

and refitting. In the case of Eq. (D10), a typical fit with
SVD noise gives χ2=NG increases to 0.96, which is
consistent with expectations.
Parenthetically, we note that overly broad priors—for

example, 0� 10 for a set of parameters that are all order
1—can also result in a small χ2. This situation is addressed
in a similar fashion, by replacing the prior distribution P:

P≡ P̄þ δP → P̄þ sampleðδPÞ þ δP: ðD19Þ

A good fit should have χ2=NG ≈ 1� ffiffiffiffiffiffiffiffiffiffiffiffi
2=NG

p
when both

SVD and prior noise is included, and the fit results should
agree (within errors) with the results without noise.
A more direct test of a fitting protocol than adding extra

noise is to replace the fit data [Eq. (D11)] with simulated
data,

Gsim ≡GðpsimÞ þ sampleðδGÞ þ δG; ðD20Þ

which has the same covariance matrix (from δG) as the real
data, but whose mean is a random sample drawn from a
distribution whose mean is known [GðpsimÞ]. A good fit to
this simulated data should give best-fit results for the
parameters that agree with psim to within errors. An obvious
choice for the simulation parameters psim are the best-fit
results obtained when fitting the real data.
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