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The LHCb collaboration has recently discovered three pentaquark-like states—the Pcð4312Þ, Pcð4440Þ
and Pcð4457Þ—close to the D̄Σc and the D̄�Σc meson-baryon thresholds. The standard interpretation is that
they are heavy antimeson-baryon molecules. Their quantum numbers have not been determined yet, which
implies two possibilities for the Pcð4440Þ and Pcð4457Þ: JP ¼ 1

2
− and JP ¼ 3

2
−. The preferred interpretation

within a contact-range effective field theory is that the Pcð4440Þ is the JP ¼ 1
2
− molecule, while the

Pcð4457Þ is the JP ¼ 3
2
− one. Here we show that when the one pion exchange potential between the heavy

antimeson and heavy baryon is taken into account, this conclusion changes, with the contrary identification
being as likely as the original one. The identification is however cutoff dependent, which suggests that
improvements of the present description (e.g., the inclusion of subleading order corrections, like two-pion
exchanges) are necessary in order to disambiguate the spectroscopy of the molecular pentaquarks.

DOI: 10.1103/PhysRevD.100.094028

I. INTRODUCTION

The Pcð4312Þ, Pcð4440Þ and Pcð4457Þ are three hidden-
charm pentaquark-like states recently discovered by the
LHCb collaboration [1]. Owing to their closeness to the
D̄Σc and D̄�Σc thresholds, they have been theorized to be
S-wave meson-baryon bound states [2–8] (other explan-
ations include hadrocharmonium [9] or a compact penta-
quark [10,11]). The most natural identification is that the
Pcð4312Þ is a D̄Σc molecule and the Pcð4440Þ and
Pcð4457Þ are D̄�Σc molecules. This interpretation unam-
biguously predicts the quantum numbers of thePcð4312Þ to
be JP ¼ 1

2
−. In contrast there are two possibilities for the

quantum numbers of the Pcð4440Þ and Pcð4457Þ: JP ¼ 1
2
−

and JP ¼ 3
2
−. That is, the identification is ambiguous. Yet

checking which quantum number corresponds to each one
of these two pentaquarks is important to clarify their nature,
in particular when confronted with future experimental
measurements of their properties. From the recent theo-
retical models for the spectroscopy and decays of these two
molecules, the preferred identification so far seems to be

that the Pcð4440Þ and Pcð4457Þ are the JP ¼ 1
2
− and JP ¼

3
2
− D̄�Σc molecules [3,4,6,12,13], respectively. On the other
hand, from the seminal predictions of molecular hidden-
charm pentaquarks we expect the JP ¼ 1

2
− and JP ¼ 3

2
−

D̄�Σc molecules to be degenerate [14–16] or for the JP ¼
3
2
− D̄�Σc state to be lighter than the 1

2
− one [17].

The present manuscript considers this problem from
the point of view of spectroscopy within the effective
field theory (EFT) framework. Specifically we investigate
the effect of including pion exchanges in the masses
of the Pcð4312Þ, Pcð4440Þ and Pcð4457Þ pentaquarks.
Previously Ref. [18] proposed a contact-range EFT to
describe the D̄Σc molecular states, which was used to
predict a JP ¼ 5

2
− D̄�Σ�

c molecular pentaquark from the old
Pcð4450Þ peak [19] (where we note that this state was first
predicted in Ref. [16]). This EFT has been recently used in
Ref. [4] to analyze the LHCb pentaquark trio, where the
following two conclusions were reached: (i) the molecular
pentaquarks belong to a multiplet with seven members
(among which we count the aforementioned 5

2
− state of

Refs. [16,18]) and (ii) the preferred quantum numbers
for the Pcð4440Þ and Pcð4457Þ are JP ¼ 1

2
− and JP ¼ 3

2
−,

respectively. The first of these conclusions is relatively
robust and has been independently confirmed by other
theoretical works [6,20,21], while the second is not so
stringent, as originally discussed in Ref. [4]. Here we
review these conclusions from the point of view of a
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pionful EFT, i.e., a theory that besides contact interactions
also incorporates pions. As we will see the inclusion of
pions will be able to change the preferred quantum number
identification of the Pcð4440Þ and Pcð4457Þ pentaquarks
(in agreement with the recent work of Ref. [21] which also
considers the effects of pion exchanges).
The central idea of the present manuscript can be

summarized as follows. Heavy-quark spin symmetry
(HQSS) [22,23] when applied to hadronic molecules
indicates that the interaction among heavy hadrons is
independent of the spin of the heavy quarks within the
aforementioned heavy hadrons [24–28]. For the case of
D̄Σc and D̄�Σc molecules, this symmetry implies that their
S-wave potential takes the form [18]

V

�
D̄Σc;

1

2

�
¼ Va; ð1Þ

V

�
D̄�Σc;

1

2

�
¼ Va −

4

3
Vb; ð2Þ

V

�
D̄�Σc;

3

2

�
¼ Va þ

2

3
Vb; ð3Þ

with Va and Vb a central and spin-spin contribution that are
in principle unknown. If the particles are heavy enough we
can assume that the binding energies are proportional to the
potential (E ∼ hVi), in which case we find that the choice

Ea ∼ −10 MeV and
2

3
Eb ∼þ5 MeV ð4Þ

indeed fits the spectrum of the pentaquark trio. The
inclusion of pion exchanges can potentially change this
conclusion though. One pion exchange (OPE) contains a
spin-spin and a tensor piece: while the spin-spin piece
can be easily subsumed into the term Vb of the S-wave
potential, the tensor piece will effectively generate a central
contribution to the D̄�Σc molecules that is not present in the
D̄Σc system. In practice we can modify the previous
relations to

V

�
D̄�Σc;

1

2

�
¼ Va −

4

3
Vb þ δVT

a ; ð5Þ

V

�
D̄�Σc;

3

2

�
¼ Va þ

2

3
Vb þ δVT

a ; ð6Þ

where δVT
a is the contribution to the tensor force.1 If the

effective contribution to the binding energy is δVT
a ∼ 5 MeV,

the preferred quantum numbers of the pentaquark trio will
change. In fact the following identification,

Ea∼−10MeV;
2

3
Eb∼−5MeV; δET

a ∼−5MeV; ð7Þ

also fits the spectrum of the pentaquark trio.
However the previous is merely a heuristic argument

which has to be supported by concrete calculations. HQSS
for heavy hadron molecules does not directly apply to the
binding energies, but rather to the potential between
heavy hadrons. As a consequence, HQSS will in general
not translate into the type of clean relations derived in the
previous paragraph. For instance, in analogy to the dis-
cussion around Eq. (4) the predictions of pionless EFT
prefers indeed the identification of the Pcð4440Þ with the
JP ¼ 1

2
− D̄�Σc molecule, but there is room for the opposite

identification to be possible [4]. In this manuscript we will
investigate how the inclusion of pions modifies the previous
conclusion. In pionful EFT the opposite identification—the
Pcð4440Þ is the JP ¼ 3

2
− D̄�Σc molecule—is preferred, yet

the conclusion is not particularly strong at leading order.
Uncertainties both within pionless and pionful EFT make it
not possible to make a strong point based solely on
spectroscopy. Yet they suggest a preference.
The manuscript is organized as follows: in Sec. II we

review how HQSS applies to heavy baryon-meson
molecules, in which we advocate the use of a particular
notation—the light-quark notation [29]—for the descrip-
tion of the contact range and the OPE potential within EFT.
In Sec. III we derive the one pion exchange potential for
the heavy antimeson-baryon system. In Sec. IV we study
the bound state spectrum for the heavy antimeson-baryon
system within the pionful EFT and discuss their impact on
the quantum numbers of the known hidden-charm penta-
quarks. Finally, we present our conclusions in Sec. V.

II. HEAVY-QUARK SPIN SYMMETRY

In this section we briefly explain how HQSS constrains
the interaction between a heavy meson and a heavy baryon.
For this, we will use two different notations. The first is the
standard heavy superfield notation, in which we define a
superfield that groups together the heavy hadrons belong-
ing to the same HQSS multiplet. The second is the light-
quark notation, which is based on the quark model and in
which we simply write down the light-quark subfield of the
heavy hadrons, see Ref. [29] for a detailed exposition and
Refs. [17,30] for previous examples of its use.

A. Heavy superfield notation

We begin by defining the superfields that are commonly
used for the description of heavy meson and heavy baryons.
The quark content of the S-wave heavy mesons is Qq̄ with
Q and q a heavy quark and a light quark, respectively. If the

1This contribution is not necessarily the same in the spin-1
2
and

-3
2
molecules (see Ref. [21]), but the spin dependence can be

reabsorbed in Vb leaving an effective tensor contribution which is
spin independent.
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spin of the Qq̄ pair couples to S ¼ 0 we have the ground
state heavy meson P and if it couples to S ¼ 1 we have the
excited heavy meson P�, where P and P� are degenerate in
the limit in which the heavy-quark mass goes to infinity.
For the P and P� heavy mesons the nonrelativistic super-
field is

HQ ¼ 1ffiffiffi
2

p ½Pþ P⃗� · σ⃗�; ð8Þ

which is adapted from the relativistic definition of
Ref. [31].HQ is a 2 × 2matrix and σ⃗ are the Pauli matrices.
For the S-wave heavy baryons the quark content is Qqq.

If the light-quark pair is in the sextet configuration of the
SU(3)-flavor symmetry group (the case we will be consid-
ering here), the spin of the light-quark pair couples to
SL ¼ 1. This implies that the total spin of the heavy baryon is
S ¼ 1

2
for the ground state ΣQ and S ¼ 3

2
for the excited state

Σ�
Q, where ΣQ and Σ�

Q are degenerate in the heavy-quark
limit. With this we define the nonrelativistic superfield as

S⃗Q ¼ 1ffiffiffi
3

p σ⃗ΣQ þ Σ⃗�
Q; ð9Þ

which again corresponds to the nonrelativistic limit of the
superfield originally defined in Ref. [32].
From the HQ̄ and S⃗Q superfields, the most general

contact-range Lagrangian with no derivatives we can
construct is [18]

L¼CaS⃗
†
Q · S⃗QTr½H̄†

Q̄H̄Q̄�þCb

X3
i¼1

S⃗†Q · ðJiS⃗QÞTr½H̄†
Q̄σiH̄Q̄�;

ð10Þ

where Ji with i ¼ 1, 2, 3 refers to the spin-1 angular
momentum matrices and with Ca and Cb coupling con-
stants. Note that the HQ̄ superfield refers to the heavy
antimeson. If we particularize for the D̄Σc family of
molecules, we obtain the contact-range potential of Table I.

B. Light-quark notation

Actually there is an easier and more direct method to
write the heavy-quark symmetric interactions, in which the
idea is to consider the heavy quark as a spectator, see
Ref. [29] for a detailed explanation. Instead of writing
superfields, we can write the interactions in terms of the
light-quark subfields. For the P and P� heavy mesons we
consider the light-quark field within the heavy mesons: qL.
Equivalently, for the ΣQ and Σ�

Q heavy baryons we use the
light-diquark field within them: dL. With these qL and dL
subfields, the lowest order contact-range Lagrangian can be
written as

L ¼ Caðq†LqLÞðd†LdLÞ þ Cbðq†Lσ⃗LqLÞ · ðd†LS⃗LdLÞ; ð11Þ

where σ⃗L refers to the Pauli matrices as applied to the qL
field and S⃗L to the light-spin operators of the dL field. This
Lagrangian leads to the contact-range potential

VðqLdLÞ ¼ Ca þ Cbσ⃗L1 · S⃗L2; ð12Þ

where the subscripts 1 and 2 refer to the heavy meson and
baryon, respectively. Now the contact-range potential is
written in terms of the light-quark subfields, i.e., in terms of
the light-quark spin. To rewrite the interactions in terms
of the heavy hadron degrees of freedomwe apply a series of
rules for translating the light-quark spin operators into the
heavy hadron spin operators. For the heavy mesons the
translation rules are

hPjσ⃗LjPi ¼ 0; ð13Þ

hP�jσ⃗LjP�i ¼ S⃗1; ð14Þ

where S⃗1 refers to the spin-1 matrices as applied to the
heavy vector meson. For the heavy baryons we have instead

hΣQjJ⃗LjΣQi ¼
2

3
σ⃗2; ð15Þ

hΣ�
QjJ⃗LjΣ�

Qi ¼
2

3
S⃗2; ð16Þ

where σ⃗2 are the Pauli matrices (applied to the spin-1
2
heavy

baryon fields) and S⃗2 are the spin-3
2
angular momentum

matrices (applied to the spin-3
2
heavy baryon fields). If we

apply these substitution rules to the contact-range potential
of Eq. (12) for the light-quark subfields, we arrive to the
contact-range potential of Table I written in the particle

TABLE I. The leading order contact-range potential for the
charmed antimeson–charmed baryon system, i.e., the molecular
hidden-charm pentaquarks. We show the potential for each
particle and spin channel (the “Molecule” and “JP” columns),
where the potential depends on two independent couplings Ca
and Cb. We do not explicitly show the isospin dependence of the
couplings, but merely mention that the couplings in the I ¼ 1

2
and

3
2
isospin configurations are different.

Molecule JP VC

D̄Σc
1
2
− Ca

D̄Σ�
c

3
2
− Ca

D̄�Σc
1
2
− Ca − 4

3
Cb

D̄�Σc
3
2
− Ca þ 2

3
Cb

D̄�Σ�
c

1
2
− Ca − 5

3
Cb

D̄�Σ�
c

3
2
− Ca − 2

3
Cb

D̄�Σ�
c

5
2
− Ca þ Cb
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basis. However the light-quark notation is much more
compact and convenient, as it reduces the seven possible
heavy antimeson-baryon potentials to a single formula.

III. THE ONE PION EXCHANGE POTENTIAL

In this section we derive the OPE potential as applied to
the charmed antimeson and charmed baryon two-body
system. The derivation employs the light-quark notation
presented in Sec. II B. We discuss the coordinate and
momentum space versions of the OPE potential and its
partial wave projection.

A. Derivation of the potential

For the pion interactions, we begin by writing the
following Lagrangians written in terms of the superfields
HQ and S⃗Q:

LHHπ ¼
g1ffiffiffi
2

p
fπ

Tr½H†
Q̄τaσ⃗ · ∇⃗πaHQ̄�; ð17Þ

LSSπ ¼
ig2ffiffiffi
2

p
fπ

S⃗†Q · ðTa∇⃗πa × S⃗QÞ; ð18Þ

with g1, g2 the axial couplings of the pion to the heavy
meson and heavy baryons, respectively, fπ ¼ 132 MeV the
pion decay constant, τa the Pauli matrices in isospin space,
Ta the I ¼ 1 isospin matrices and where the latin index a
refers to the isospin. For the axial couplings we choose

g1 ¼ 0.60 and g2 ¼ 0.84; ð19Þ

where g1 is taken from the D� → Dπ decays [33,34]
(g1 ¼ 0.59� 0.01� 0.07) and g2 from the lattice QCD
calculation of Ref. [35]. We notice that there are several
conventions for g2, which are discussed in Ref. [35] (from
which one can also find the relations among them). The
convention we use here differs by a sign of the one by Cho
[32], i.e., g2 ¼ −g2;Cho. From this Lagrangian we can write
the OPE potential as

VOPE ¼ A1ðq⃗ÞA2ð−q⃗Þ
q2 þm2

π
; ð20Þ

where A1 and A2 refer to the nonrelativistic amplitudes

A1 ¼ AðHQ → H0
QπÞ; ð21Þ

A2 ¼ AðSQ → S0QπÞ; ð22Þ

in the nonrelativistic normalization of the amplitudes used
in Refs. [26,28] (but notice that Ref. [28] uses the
normalization of Cho [32] for the axial coupling of the
heavy baryon). By specifying A1 and A2 for the particular
heavy meson and heavy baryon of interest, we can obtain

the potential for any of the cases. The procedure ends in
seven possible potentials, one for each of the possible
S-wave molecules, which we will not write here in detail.
Alternatively, we can write the Lagrangians of Eqs. (17)

and (18) in terms of the light-quark fields within the heavy
hadrons:

LqLqLπ ¼
g1ffiffiffi
2

p
fπ

q†Lσ⃗L · ∇⃗ðτaπaÞqL; ð23Þ

LdLdLπ ¼
g2ffiffiffi
2

p
fπ

d†LS⃗L · ∇⃗ðTaπaÞdL: ð24Þ

From this, the OPE potential can be written in momentum
space as

VOPEðq⃗Þ ¼ −
g1g2
2f2π

τ⃗1 · T⃗2

σ⃗L1 · q⃗S⃗L2 · q⃗
q⃗2 þm2

π
: ð25Þ

We can Fourier transform the OPE potential into coordinate
space,

VOPEðr⃗Þ ¼ −
g1g2
6f2π

τ⃗1 · T⃗2σ⃗L1 · S⃗L2δð3Þðr⃗Þ ð26Þ

þ τ⃗1 · T⃗2½σ⃗L1 · S⃗L2WCðrÞþSL12 ˆðrÞWCðrÞ�; ð27Þ

where WC and WT are defined as

WCðrÞ ¼
g1g2m3

π

24πf2π

e−mπr

mπr
; ð28Þ

WTðrÞ ¼
g1g2m3

π

24πf2π

e−mπr

mπr

�
1þ 3

mπr
þ 3

ðmπrÞ2
�
: ð29Þ

B. Partial wave projection

Strong interactions preserve the total angular momentum
J⃗ ¼ L⃗þ S⃗, but not the orbital angular momentum or
spin separately. As a consequence the OPE potential will
mix partial waves with the same quantum number J,
but different quantum numbers L and S. If we use the
spectroscopic notation 2Sþ1LJ, the partial waves com-
prising the three pentaquark-like D̄Σc and D̄�Σc molecular
candidates are

����D̄Σc

�
1

2

−
��

¼ f2S1
2
g; ð30Þ

����D̄�Σc

�
1

2

−
��

¼ f2S1
2
; 4D1

2
g; ð31Þ

����D̄�Σc

�
3

2

−
��

¼ f2D3
2
; 4S3

2
; 4D3

2
g; ð32Þ
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plus the corresponding decomposition for the other
four D̄Σ�

c and D̄�Σ�
c molecular configurations containing

S-waves.
The partial wave projection is done by defining a

generalized spherical harmonic for the 2Sþ1LJ wave,

YLS
JMðΩÞ ¼

X
MLMS

YLML
ðΩÞjSMSihLMLSMSjJMi; ð33Þ

where Ω is the solid angle and which can be used to project
the potential into the partial wave basis. For the momentum
space potential this is done as follows:

hk; JLSjVjk0; JL0S0i

¼ 1

4π

Z
dk̂dk̂0 YLS�

JM ðk̂ÞVðk⃗0 − k⃗ÞYL0S0
JM ðk̂0Þ; ð34Þ

while for the coordinate space potential we have

hJLSjVðrÞjJL0S0i ¼
Z

dr̂YLS�
JM ðr̂ÞVðr⃗ÞYL0S0

JM ðr̂Þ; ð35Þ

where the projection is independent of the third component
of the total angular momentum M. In coordinate space a
further simplification is possible by noticing that the partial
wave projection only involves writing the spin-spin and
tensor operators as matrices in the space of the partial
waves comprising a particular state:

σ⃗L1 · S⃗L2 → f12C12 and SL12 → f12S12; ð36Þ

where f12 is a conversion factor (f12 ¼ 2
3
in all cases) and

the matrices C12 and S12 can be consulted in Table V.

IV. THE MOLECULAR PENTAQUARK
SPECTRUM

In this section we discuss the description of the LHCb
pentaquark trio—the Pcð4312Þ, Pcð4440Þ and Pcð4457Þ—
within the molecular picture in a pionful EFT. We will
consider the Pcð4312Þ as a D̄Σc bound state and the
Pcð4440Þ and Pcð4457Þ as D̄�Σc ones. The consistent
description of the pentaquark trio suggests a slight prefer-
ence for the quantum numbers JP ¼ 3

2
− and 1

2
− for the

Pcð4440Þ and Pcð4457Þ, respectively. The pionful EFTwill
also lead to the prediction of the other four molecular
pentaquarks.

A. Bound state equations

We calculate the binding energies of a heavy baryon-
antibaryon bound state by plugging the EFT potential
into the Lippmann-Schwinger or Schrödinger equation,
depending on whether the EFT potential has been written in
momentum or coordinate space. For momentum space, the
bound state equation takes the form

ϕJ
LSðpÞ¼

X
L0S0

Z
d3q
ð2πÞ3

hp;JLSjVjq;JL0S0i
E− q2

2μ

ϕJ
L0S0 ðqÞ; ð37Þ

where L, S and J are the orbital, intrinsic and total angular
momentum, with ϕJ

LS the vertex function. This bound state
equation can be solved by discretizing this integral equation
and finding the eigenvalues of the ensuing linear equations.
For coordinate space, we use the reduced Schrödinger
equation,

− uJLS
00 þ 2μ

X
L0S0

VJ
LS;L0S0 ðrÞuJL0S0 ðrÞ þ

LðLþ 1Þ
r2

uJLSðrÞ

¼ −γ2uJLSðrÞ; ð38Þ

which is a system of coupled ordinary differential equations
that can be solved by standard means.

B. Regularization and renormalization

The EFT potential is not well behaved at distances below
the pion Compton wavelength, a problem that is taken
care of by means of a regularization and renormalization
procedure. The regularization part is as follows: for the
momentumspaceversion of the potential, we use a separable
regulator of the type

hp0jVΛjpi ¼ hp0jVjpif
�
p0

Λ

�
f

�
p
Λ

�
; ð39Þ

where fðxÞ ¼ e−x
2

, i.e., a Gaussian regulator. For the
coordinate space potential we use a local regulator, which
is different depending on whether it is a applied for the
contact- or finite-range piece of the EFT potential. For the
regularization of the contact-range potential, we use a
Gaussian regulator of the type

δð3Þðr⃗Þ → e−ðr=RcÞ4

4
3
πΓð7

4
ÞR3

c
; ð40Þ

while for the OPE potential we use

VOPEðrÞ → VOPEðrÞ½1 − e−ðr=RcÞ4 �: ð41Þ

This type of local r-space regulators has been recently put in
use in pionful EFT as applied to nuclear physics [36]. We
choose the Gaussian exponent to be n ¼ 4 as this is enough
to suppress the divergence of the tensor force at short
distances.
For the renormalization part, the idea is that the con-

tact-range couplings, Ca and Cb in this case, will be able
to absorb the cutoff dependence. Thus the predictions
derived within the EFT framework are expected to be
cutoff independent. For checking the cutoff independence
hypothesis, we choose the following cutoff window in
momentum space:
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Λ ¼ ð0.75–1.5Þ GeV; ð42Þ

which roughly corresponds to fmρ; 2mρg. This window is
harder than the one we previously used in the contact-range
EFT of Ref. [4], i.e., Λ ¼ 0.5–1.0 GeV. The choice of a
harder cutoff is driven by the experience from pionful EFT
as applied to heavy meson-antimeson molecules [37,38], in
which larger cutoffs than in a purely contact theory seemed
to make a difference. For the coordinate space calculation
we choose

Rc ¼ 0.5–1.0 fm; ð43Þ

which comes from rounding up the fπ=2mρ; π=mρg cutoff
window. This is approximately equivalent to the momen-
tum space window if we consider the relation Rc ¼ π=Λ for
the r- and p-space cutoffs. Unfortunately cutoff independ-
ence is not achieved at the accuracy level we will require to
unambiguously distinguish the quantum numbers of the Pc

pentaquarks.

C. The quantum numbers of the pentaquark trio

The couplings Ca and Cb are actually determined from
observable quantities, for which we will use the binding
energies of the Pcð4440Þ and Pcð4457Þ pentaquarks. The
natural expectation in the molecular picture is that the
Pcð4440Þ and Pcð4457Þ are D̄�Σc bound states with isospin
I ¼ 1

2
, for which two possibilities exist for the total angular

momentum: J ¼ 1
2
and J ¼ 3

2
. We do not know which is the

total angular momentum of each of the molecular penta-
quark candidates, which means that we will consider two
scenarios:

(i) scenario A: the Pcð4440Þ is the J ¼ 1
2
molecule,

while the Pcð4457Þ is the J ¼ 3
2
molecule,

(ii) scenario B: the Pcð4440Þ is the J ¼ 3
2
molecule,

while the Pcð4457Þ is the J ¼ 1
2
molecule,

which are the same two scenarios considered in
Ref. [4]. The values of the couplings Ca and Cb that
are obtained in each scenario can be consulted in
Table II. Each of the scenarios predicts a different mass
for the Pcð4312Þ pentaquark. In momentum space,
scenario A predicts

MA
1 ¼ 4314 − ð4319ÞV MeV; ð44Þ

where the only uncertainty we have taken into account
is the cutoff variation, with the V superscript standing
for the fact that the bound state disappears and becomes
a virtual state instead for Λ ¼ 1.5 GeV. On the other
hand scenario B predicts

MB
1 ¼ 4308–4321 MeV: ð45Þ

This preliminary comparison indicates that scenario B is
slightly favored over scenario A, but the conclusion is
merely tentative at best.
The residual cutoff variation alone already indicates that

the error of the pionful EFT at leading order is probably too
large to distinguish between the two scenarios. Besides
the cutoff uncertainty, there are two other error sources that
we have not explicitly considered: the uncertainty (i) in
HQSS and (ii) in the g2 axial coupling constant of the pion
with the sextet heavy baryons. Regarding (i), HQSS, the
location of the Pcð4312Þ is determined from the contact-
range coupling Ca, but in doing so we are assuming that
HQSS is exact for the hidden-charm molecular penta-
quarks. This is not the case, with HQSS violations expected
to have a size of ΛQCD=mc, with ΛQCD ∼ 200–300 MeV
and mc the charm quark mass, yielding a 15%–20%
variation for the coupling Ca around the determination
we have done. Regarding (ii), the g2 axial coupling, the
uncertainty in the lattice QCD calculation is sizable:
g2 ¼ 0.84� 0.20. Besides, this lattice QCD calculation
applies to the heavy-quark limit (mQ → ∞, with mQ the
mass of the heavy quark). The g2 axial coupling can be
derived from the axial coupling involved in the sextet to
antitriplet heavy baryon transitions, g3, and a quark model
relation (see Ref. [39] for a comprehensive review, which
uses the normalization of Yan [40] for the axial couplings).
In turn the g3 axial coupling can be determined from the
Σc → Λcπ decay. This procedure yields g2 ∼ 1.4 [39], a
value considerably larger than the one we have chosen (and
which indeed makes a difference). If this were not enough,
the location of the Pcð4312Þ is not known with the required
accuracy either. A recent theoretical exploration has pro-
posed that the Pcð4312Þ is a virtual state instead of a bound
state [41]: if this is the case, scenario A should be the
preferred one.

TABLE II. The contact-range couplings Ca and Cb from the
condition of reproducing the mass of the Pcð4440Þ and Pcð4457Þ
as molecular pentaquarks in p- and r-space (as indicated by type
of cutoff: Λ and Rc). Scenario A corresponds to considering that
the spin parities of the Pcð4440Þ and Pcð4457Þ are JP ¼ 1

2
− and

3
2
−, respectively, while scenario B corresponds to the opposite
identification.

Scenario Λ (MeV) Ca (fm2) Cb (fm2)

A 0.75 −1.1199 −0.1183
A 1.50 −0.3466 −0.1669
B 0.75 −1.2755 −0.5494
B 1.50 −0.4001 −0.3760

Scenario Rc (fm) Ca (fm2) Cb (fm2)

A 0.5 −0.5741 þ0.1345
A 1.0 −1.7447 þ0.4074
B 0.5 −0.6494 −0.0400
B 1.0 −2.0142 −0.3503
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We recognize the following three factors influencing the
preference over scenarios A and B:

(i) softer cutoffs (Λ ∼ 0.5 GeV) favor scenario A, while
harder ones (Λ≳ 1 GeV) favor scenario B,

(ii) larger axial couplings (g2 ∼ 1.4) favor scenario B,
(iii) a less bound (or virtual) Pcð4312Þ favors scenario A.

The first of these factors refers to the inner workings of the
EFT and probably can be only dealt with by improving the
current EFT description, e.g., calculating the subleading
order corrections,2 which will require new data as the next-
to-leading order contact-range potential will involve new
couplings. The second of these factors is difficult to settle
experimentally—the g2 axial coupling does not directly
appear in decays or other quantities that are directly
observable [39]—but can probably be determined by lattice
QCD calculations that take into account the finite charm
quark mass. The third factor can eventually be determined
in future experiments with smaller uncertainties.
At this point it is important to comment about cutoff

independence. In principle we expect cutoff independence
to be achieved by means of the renormalization process,
where the contact-range couplings—Ca and Cb in this
case—are expected to absorb the divergences associated
with the short-range quirks of the EFT potential. However
this is not the case for the calculations presented here: the
effects of the tensor force have not been completely
reabsorbed in the couplings Ca and Cb. The manifestation
of this problem is the binding energy prediction of the
Pcð4312Þ pentaquark. If we assume it to be a D̄Σc mole-
cule this system cannot exchange pions. As the cutoff
Λ grows, the effect of the tensor force will be increa-
singly attractive, forcing the Ca coupling to be less and
less attractive. Eventually, for Λ hard enough, the Pcð4312Þ
will cease to be bound and will become a virtual state
instead. In momentum space this indeed happens for
scenario A and a cutoff of the order of 1.5 GeV. It also
happens for scenario B, though in this case a harder cutoff
is required (around 2.0 GeV, give or take).
This is bad news because it partially invalidates one of

the expected advantages of the EFT framework over
phenomenological models: systematic error estimations.
In a properly renormalized EFT, where calculations do not
strongly depend in the cutoff, the cutoff variation might be
used as a proxy of the EFT uncertainty. However it is
impossible to describe the LHCb pentaquark trio in a cutoff

independent way: large cutoffs invariably lead to the
disappearance of the Pcð4312Þ member of the trio. Of
course this happens for relatively hard cutoffs in the
1.5–2.0 GeV range, which means that this disappearance
is not physically relevant but rather an artifact. Yet, despite
being an artifact, it prevents the systematic estimation of the
theoretical uncertainty. Basically, even if the experimental
error in the determination of the Pcð4312Þ mass was
negligible, there will be no completely model independent
way to distinguish both scenarios in the pionful EFT
proposed here. Despite this drawback, pionful calculations
are still useful even if they begin to show a sizable cutoff
dependence at Λ > 1.5 GeV. It is interesting to notice that
a similar cutoff dependency has been discussed for EFTs
involving heavy flavor symmetry [43], which is a different
manifestation of heavy-quark symmetry. Be it as it may, the
degree of model dependence is probably smaller than for
phenomenological models.
The conclusion is that there is a preference for

scenario B. The fact that this preference is not particularly
strong is in line with the early speculations about the
existence of molecular pentaquarks, in which predictions
showed a clear degeneracy in spin [14–16]. Later it was
realized that the inclusion of pions in the hidden-gauge
approach will break this degeneracy [44], leading to the
conclusion that the JP ¼ 3

2
− pentaquark is lighter than the

JP ¼ 1
2
− one, in agreement with scenario B. In turn this is

compatible with the hypothesis of Karliner and Rosner
[17], where the JP ¼ 3

2
− molecular pentaquark is expected

to be more bound than its JP ¼ 1
2
− partner. In contrast in the

traditional one boson exchange model this pattern is
apparently inverted [2,11], with the lower spin molecules
being more bound than the higher spin ones. However a
recent work [45], which has revisited the application of the
one boson exchange model to heavy antimeson-baryon
molecules, suggests that this is not necessarily the case and
that scenario B might be the most probable.

D. The pentaquark HQSS septuplet

The consistent description of the Pcð4312Þ, Pcð4440Þ
and Pcð4457Þ pentaquark trio in the molecular picture fully
determines the LO potential in pionful EFT. As a conse-
quence we can compute the binding energies of all the
S-wave molecular configurations. The results are summa-
rized in Tables III and IV for the momentum and coordinate
space versions3 of the LO potential. As happened in the
pionless EFT at LO [4], we predict the seven possible
HQSS partners of the pentaquark trio, independently of

2We notice in passing that the subleading EFT potential has
been calculated in Ref. [42], though with the aim of deducing the
existence of the pentaquark trio from the two-nucleon system (by
extrapolating the contact-range couplings from the two-nucleon
system to the heavy antimeson-baryon system). That is, the use of
pionful EFT in Ref. [42] is very different from the one in the
present manuscript. Nonetheless we point out that it might be
possible to combine the subleading potential of Ref. [42] with the
ideas of Ref. [38] (properly adapted from the heavy meson-
antimeson to the heavy baryon-antimeson case) to better pinpoint
the quantum numbers of the pentaquark trio.

3The momentum space calculation contains all the partial
waves, including the G-waves in the JP ¼ 3

2
− and 5

2
− D̄�Σ�

c
molecules (see Table V), the contribution of which can be
checked to be negligible (less than 0.1 MeV). In view of this
result, the coordinate space calculation ignores the G-waves,
which greatly simplifies the required computations.
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whether we use scenario A or B for the Pcð4440Þ and
Pcð4457Þ quantum numbers. The most important differ-
ence with the contact-range theory is that the predictions for
the D̄Σc and D̄Σ�

c molecules are less bound, leading to a
marginal preference of scenario B over A. In every other
respect, Tables III and IVonly confirm the patterns already
discovered in Ref. [4]: scenario A (B) leads to the higher
spin states being more (less) massive. If this were not
enough, further confirmation can be found in the recent
pionless EFT calculation of Ref. [20], which also considers
transitions among the D̄Σc, D̄Σ�

c, D̄�Σc and D̄�Σ�
c channels.

In this regard, the eventual discovery of a 5
2
− D̄�Σ�

c molecule
will probably settle the question about the quantum
numbers of the Pcð4440Þ and Pcð4457Þ: the prediction
of the location of this D̄�Σ�

c molecules varies by about
20–25 MeV depending on the scenario. However, owing to
its angular momentum J ¼ 5

2
, the experimental detection of

a D̄�Σ�
c pentaquark state is not probable in the J=Ψp

channel where the other pentaquarks have been discovered.
The J ¼ 5

2
state might indeed be difficult to observe from its

decays to a charmonium: all possible charmonium decays
for this state are p- or d-wave, which indicates that they
might be relatively suppressed.
Notice that other works lead to different predictions of

the septuplet. In Ref. [6] the binding energy of the
molecular pentaquarks is almost independent of the spin
and the identification between scenarios A and B is done on
the basis of the predicted decay widths. This approximate
degeneracy of the binding energy is however a conse-
quence of explicitly ignoring the coupling Cb: Ref. [6]
determines the couplings from resonance saturation in the
hidden gauge model, with Cb receiving its main contribu-
tion from OPE, which is assumed to be weak. Reference [7]
also predicts a multiplet structure for the hidden charm
pentaquarks, which relies on HQSS and OPE. But the
multiplet structure of Ref. [7] is merely a subset of the
septuplet of Refs. [4,6]. The reason for the difference is that
Ref. [7] only considers the longest-range part of the heavy
antimeson-baryon potential, i.e., OPE. More recently,
Ref. [21] improves over the OPE calculation of Ref. [7]
by explicitly including the D̄Λc and D̄�Λc channels and a
compact cc̄qqq core. These improvements lead Ref. [21] to
predict the existence of the full pentaquark septuplet and to

TABLE III. Predictions for the S-wave HQSS molecular
multiplet of heavy antimeson-baryon molecules, as derived from
the lowest-order potential in pionful EFT (p-space). This poten-
tial contains a contact-range piece with two unknown couplings
Ca and Cb and a finite-range piece, given by OPE. In all cases we
assume that the isospin of the listed molecules is I ¼ 1

2
. We

determine the value of the Ca and Cb couplings from the
condition of reproducing the location of the Pcð4440Þ and
Pcð4457Þ resonances, which are known to be close to the
D̄�Σc threshold. We do not know however the quantum numbers
of the Pcð4440Þ and Pcð4457Þ, but consider two possibilities
instead, scenario A and B, where in the first the Pcð4440Þ is the 1

2
−

molecule and in the second the Pcð4457Þ is the 1
2
− molecule. If a

molecular pentaquark becomes unbound but survives as a virtual
state (a situation that happens for the D̄Σc and D̄Σ�

c systems), we
indicate this situation with the superscript V. Calculations are
done in momentum space with the regularization described in
Eq. (39) and a cutoff Λ ¼ 0.75–1.5 GeV.

Scenario Molecule JP B (MeV) M (MeV)

A D̄Σc
1
2
− ð2ÞV�7 4314�ð4319ÞV

A D̄Σ�
c

3
2
− ð1ÞV�7 4378�ð4384ÞV

A D̄�Σc
1
2
− Input 4440.3

A D̄�Σc
3
2
− Input 4457.3

A D̄�Σ�
c

1
2
− 27–44 4483–4500

A D̄�Σ�
c

3
2
− 16–20 4507–4512

A D̄�Σ�
c

5
2
− 4–6 4520–4523

B D̄Σc
1
2
− 0–12 4308–4321

B D̄Σ�
c

3
2
− 0–13 4372–4385

B D̄�Σc
1
2
− Input 4457.3

B D̄�Σc
3
2
− Input 4440.3

B D̄�Σ�
c

1
2
− 4–14 4513–4523

B D̄�Σ�
c

3
2
− 11–16 4511–4516

B D̄�Σ�
c

5
2
− 26–29 4497–4501

TABLE IV. Predictions for the S-wave HQSS molecular
multiplet of heavy antimeson-baryon molecules, as derived from
the lowest-order potential in pionful EFT (r-space). We refer to
Table III for details. Calculations are done in coordinate space
with the regularization described in Eqs. (40) and (41) and a
cutoff Rc ¼ 0.5–1.0 fm. The G-wave components are ignored for
the JP ¼ 3

2
− and 5

2
− D̄�Σ�

c molecules, as their contribution to the
binding energy is negligible.

Scenario Molecule JP B (MeV) M (MeV)

A D̄Σc
1
2
− 1–8 4313–4320

A D̄Σ�
c

3
2
− 1–8 4377–4384

A D̄�Σc
1
2
− Input 4440.3

A D̄�Σc
3
2
− Input 4457.3

A D̄�Σ�
c

1
2
− 28–36 4490–4499

A D̄�Σ�
c

3
2
− 17–20 4507–4510

A D̄�Σ�
c

5
2
− 4–7 4520–4523

B D̄Σc
1
2
− 5–14 4307–4315

B D̄Σ�
c

3
2
− 6–14 4371–4379

B D̄�Σc
1
2
− Input 4457.3

B D̄�Σc
3
2
− Input 4440.3

B D̄�Σ�
c

1
2
− 3–8 4518–4523

B D̄�Σ�
c

3
2
− 11–15 4512–4516

B D̄�Σ�
c

5
2
− 28–33 4494–4499

MANUEL PAVON VALDERRAMA PHYS. REV. D 100, 094028 (2019)

094028-8



determine that the quantum numbers of the Pcð4440Þ and
Pcð4457Þ are JP ¼ 3

2
− and 1

2
−, i.e., scenario B. But there are

two important differences between Ref. [21] and the
calculations in the present manuscript: (i) Ref. [21] takes
g2 ∼ 1.5 (notice that they use the normalization of Yan [40]
for the axial coupling, where g2 ¼ 3

2
g1;Yan), (ii) the treat-

ment of the short-range piece of the interaction is phe-
nomenological and is modeled with a compact cc̄qqq core,
which in turn leads to a short-range potential.

V. SUMMARY

In this manuscript we have described the impact that
pion exchanges have in the description of the hidden-charm
pentaquarks, provided they are indeed molecular. Pion
exchanges are an important factor in the ordering of the
pentaquark spectrum, a factor that might determine which
quantum numbers are more/less bound.
If we try to describe consistently the LHCb pentaquark

trio with a pionful EFT, the preliminary conclusion is that

the Pcð4440Þ and the Pcð4457Þ are the JP ¼ 3
2
− and 1

2
−

D̄�Σc molecular pentaquarks, respectively. This conclusion
agrees with the previous works of Uchino, Liang and Oset
[17] and Karliner and Rosner [44], which is not surprising
once we take into account that this is a consequence
of OPE being attractive (repulsive) in the 3

2
− (1

2
−) channel.

But this identification is only marginally preferred
over the opposite one: the different uncertainties within
the pionful EFT description we use make it impossible to
reach a definite conclusion. This is further compounded
with the uncertainties in the location of the Pcð4312Þ,
m ¼ 4311.9� 0.7þ6.8

−0.7 , where the systematic uncertainty
(i.e., the þ6.8

−0.7 error) leans in the direction which results in
a less bound molecular pentaquark. The recent amplitude
analysis of Ref. [41], which claims that the Pcð4312Þ could
be a virtual state, cements this idea further. If this is
the case, the preferences of both scenarios could likely
change.
Besides the quantum numbers of the molecular penta-

quarks, pion exchanges lead to the prediction of a total of

TABLE V. Matrix elements of the spin-spin and tensor operator for the partial waves we are considering in this work.

Molecule Partial waves JP a⃗1 · a⃗2 S12 ¼ 3a⃗1 · r̂a⃗2 · r̂ − a⃗1 · a⃗2

D̄Σc
2S1=2 1

2
− 0 0

D̄Σ�
c

4S3=2-4D3=2
3
2
−

�
0 0

0 0

� �
0 0

0 0

�

D̄�Σc
2S1=2-4D1=2

1
2
− �

−2 0

0 1

� �
0

ffiffiffi
2

pffiffiffi
2

p
−2

�

D̄�Σc
2D3=2-4S1=2-4D1=2

3
2
− 0

@−2 0 0

0 1 0

0 0 1

1
A

0
@ 0 −1 1

−1 0 2

1 2 0

1
A

D̄�Σ�
c

2S1=2-4D1=2-6D1=2
1
2
− 0

@− 5
2

0 0

0 −1 0

0 0 3
2

1
A

0
@

0 − 7

2
ffiffi
5

p − 3ffiffi
5

p

− 7

2
ffiffi
5

p − 8
5

− 3
10

− 3ffiffi
5

p − 3
10

− 12
5

1
A

D̄�Σ�
c

2D3=2-4S3=2-4D3=2

-6D3=2-6G3=2

3
2
− 0

BBBBB@

− 5
2

0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 3
2

0

0 0 0 0 3
2

1
CCCCCA

0
BBBBBBBBBB@

0 7

2
ffiffiffiffi
10

p − 7

2
ffiffiffiffi
10

p 3ffiffiffiffi
35

p −3
ffiffiffiffi
6
35

q
7

2
ffiffiffiffi
10

p 0 8
5

− 3
10

ffiffi
7
2

q
0

− 7
2
ffiffiffiffi
10

p 8
5

0 − 3

2
ffiffiffiffi
14

p − 3
5

ffiffi
3
7

q
3ffiffiffiffi
35

p − 3
10

ffiffi
7
2

q
− 3

2
ffiffiffiffi
14

p − 6
7

9
ffiffi
6

p
35

−3
ffiffiffiffi
6
35

q
0 − 3

5

ffiffi
3
7

q
9
ffiffi
6

p
35

− 15
7

1
CCCCCCCCCCA

D̄�Σ�
c

2D5=2-4D5=2-4G5=2-6S5=2
-6D5=2-6G5=2

5
2
− 0

BBBBB@

− 5
2

0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 3
2

0 0

0 0 0 0 3
2

0

0 0 0 0 0 3
2

1
CCCCCA

0
BBBBBBBBBBBBB@

0 1
2

ffiffi
7
5

q
−

ffiffiffiffi
21
10

q
−

ffiffi
3
5

q
2

ffiffiffiffi
6
35

q
−3

ffiffiffiffi
2
35

q
1
2

ffiffi
7
5

q
8
7

16
ffiffi
6

p
35

ffiffiffiffi
21

p
10

− 1
7

ffiffi
3
2

q
− 12

ffiffi
2

p
35

−
ffiffiffiffi
21
10

q
16

ffiffi
6

p
35

− 8
7

0 9
70

− 3
ffiffi
3

p
14

−
ffiffi
3
5

q ffiffiffiffi
21

p
10

0 0 2
ffiffiffiffi
14

p
5

0

2
ffiffiffiffi
6
35

q
− 1

7

ffiffi
3
2

q
9
70

3
ffiffiffiffi
14

p
5

6
7

27
ffiffi
3

p
35

−3
ffiffiffiffi
2
35

q
− 12

ffiffi
2

p
35

− 3
ffiffi
3

p
14

0 27
ffiffi
3

p
35

− 6
7

1
CCCCCCCCCCCCCA
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seven hidden-charm molecular pentaquarks in the isodoub-
let I ¼ 1

2
sector. This confirms the previous conclusions

obtained in a pionless EFT [4], a more sophisticated
pionless EFT including coupled channels [20], the hidden
gauge model (as constrained by HQSS) [6] and a recent
phenomenological pionful calculation [21]. In turn this
points toward the idea that the existence of the HQSS
multiplet is more a consequence of HQSS than of the
explicit dynamics leading to binding. In particular the most
important factor determining the details of the binding

energy is the quantum numbers of the Pcð4440Þ and
Pcð4457Þ.

ACKNOWLEDGMENTS

This work is partly supported by the National Natural
Science Foundation of China under Grant No. 11735003,
the fundamental Research Funds for the Central
Universities, and the Thousand Talents Plan for Young
Professionals.

[1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
222001 (2019).

[2] H.-X. Chen, W. Chen, and S.-L. Zhu, Phys. Rev. D 100,
051501 (2019).

[3] R. Chen, Z.-F. Sun, X. Liu, and S.-L. Zhu, Phys. Rev. D 100,
011502 (2019).

[4] M.-Z. Liu, Y.-W. Pan, F.-Z. Peng, M. S. Sánchez, L.-S.
Geng, A. Hosaka, and M. Pavon Valderrama, Phys. Rev.
Lett. 122, 242001 (2019).

[5] F.-K. Guo, H.-J. Jing, U.-G. Meißner, and S. Sakai, Phys.
Rev. D 99, 091501 (2019).

[6] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 100,
014021 (2019).

[7] Y. Shimizu,Y.Yamaguchi, andM.Harada, arXiv:1904.00587.
[8] Z.-H. Guo and J. A. Oller, Phys. Lett. B 793, 144 (2019).
[9] M. I. Eides, V. Y. Petrov, and M. V. Polyakov, arXiv:1904

.11616.
[10] Z.-G. Wang, arXiv:1905.02892.
[11] J.-B. Cheng andY.-R. Liu, Phys. Rev. D 100, 054002 (2019).
[12] C.-J. Xiao, Y. Huang, Y.-B. Dong, L.-S. Geng, and D.-Y.

Chen, Phys. Rev. D 100, 014022 (2019).
[13] Q. Wu and D.-Y. Chen, arXiv:1906.02480.
[14] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. Lett.

105, 232001 (2010).
[15] J.-J. Wu, R. Molina, E. Oset, and B. S. Zou, Phys. Rev. C 84,

015202 (2011).
[16] C. W. Xiao, J. Nieves, and E. Oset, Phys. Rev. D 88, 056012

(2013).
[17] M. Karliner and J. L. Rosner, Phys. Rev. Lett. 115, 122001

(2015).
[18] M.-Z. Liu, F.-Z. Peng, M. S. Sánchez, and M. P. Valderrama,

Phys. Rev. D 98, 114030 (2018).
[19] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115,

072001 (2015).
[20] S. Sakai, H.-J. Jing, and F.-K. Guo, Phys. Rev. D 100,

074007 (2019).
[21] Y. Yamaguchi, H. Garcia-Tecocoatzi, A. Giachino, A.

Hosaka, E. Santopinto, S. Takeuchi, and M. Takizawa,
arXiv:1907.04684.

[22] N. Isgur and M. B. Wise, Phys. Lett. B 232, 113 (1989).
[23] N. Isgur and M. B. Wise, Phys. Lett. B 237, 527 (1990).
[24] A. E. Bondar, A. Garmash, A. I. Milstein, R. Mizuk, and

M. B. Voloshin, Phys. Rev. D 84, 054010 (2011).

[25] T. Mehen and J. W. Powell, Phys. Rev. D 84, 114013
(2011).

[26] M. P. Valderrama, Phys. Rev. D 85, 114037 (2012).
[27] J. Nieves and M. P. Valderrama, Phys. Rev. D 86, 056004

(2012).
[28] J.-X. Lu, L.-S. Geng, and M. P. Valderrama, Phys. Rev. D

99, 074026 (2019).
[29] M. P. Valderrama, arXiv:1906.06491.
[30] A. V. Manohar and M. B. Wise, Nucl. Phys. B399, 17

(1993).
[31] A. F. Falk and M. E. Luke, Phys. Lett. B 292, 119 (1992).
[32] P. L. Cho, Nucl. Phys. B396, 183 (1993); 421, 683(E)

(1994).
[33] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett. 87,

251801 (2001).
[34] A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D

65, 032003 (2002).
[35] W. Detmold, C. J. D. Lin, and S. Meinel, Phys. Rev. D 85,

114508 (2012).
[36] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi,

K. Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90,
054323 (2014).

[37] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, U.-G.
Meißner, and A. V. Nefediev, Phys. Lett. B 763, 20 (2016).

[38] V. Baru, E. Epelbaum, A. A. Filin, C. Hanhart, and A. V.
Nefediev, J. High Energy Phys. 06 (2017) 158.

[39] H.-Y. Cheng and C.-K. Chua, Phys. Rev. D 92, 074014
(2015).

[40] T.-M. Yan, H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin,
and H.-L. Yu, Phys. Rev. D 46, 1148 (1992); 55, 5851(E)
(1997).

[41] C. Fernández-Ramírez,A. Pilloni,M.Albaladejo,A. Jackura,
V. Mathieu, M. Mikhasenko, J. A. Silva-Castro, and A. P.
Szczepaniak (JPAC Collaboration), Phys. Rev. Lett. 123,
092001 (2019).

[42] L. Meng, B. Wang, G.-J. Wang, and S.-L. Zhu, Phys. Rev. D
100, 014031 (2019).

[43] V. Baru, E. Epelbaum, J. Gegelia, C. Hanhart, U. G.
Meißner, and A. V. Nefediev, Eur. Phys. J. C 79, 46 (2019).

[44] T. Uchino, W.-H. Liang, and E. Oset, Eur. Phys. J. A 52, 43
(2016).

[45] M.-Z. Liu, T.-W. Wu, M. S. Sánchez, M. P. Valderrama,
L.-S. Geng, and J.-J. Xie (to be published).

MANUEL PAVON VALDERRAMA PHYS. REV. D 100, 094028 (2019)

094028-10

https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevLett.122.222001
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.051501
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevD.100.011502
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevLett.122.242001
https://doi.org/10.1103/PhysRevD.99.091501
https://doi.org/10.1103/PhysRevD.99.091501
https://doi.org/10.1103/PhysRevD.100.014021
https://doi.org/10.1103/PhysRevD.100.014021
https://arXiv.org/abs/1904.00587
https://doi.org/10.1016/j.physletb.2019.04.053
https://arXiv.org/abs/1904.11616
https://arXiv.org/abs/1904.11616
https://arXiv.org/abs/1905.02892
https://doi.org/10.1103/PhysRevD.100.054002
https://doi.org/10.1103/PhysRevD.100.014022
https://arXiv.org/abs/1906.02480
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevLett.105.232001
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevC.84.015202
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevD.88.056012
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevLett.115.122001
https://doi.org/10.1103/PhysRevD.98.114030
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.074007
https://arXiv.org/abs/1907.04684
https://doi.org/10.1016/0370-2693(89)90566-2
https://doi.org/10.1016/0370-2693(90)91219-2
https://doi.org/10.1103/PhysRevD.84.054010
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.84.114013
https://doi.org/10.1103/PhysRevD.85.114037
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.86.056004
https://doi.org/10.1103/PhysRevD.99.074026
https://doi.org/10.1103/PhysRevD.99.074026
https://arXiv.org/abs/1906.06491
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0550-3213(93)90614-U
https://doi.org/10.1016/0370-2693(92)90618-E
https://doi.org/10.1016/0550-3213(93)90263-O
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1016/0550-3213(94)90522-3
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevLett.87.251801
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.65.032003
https://doi.org/10.1103/PhysRevD.85.114508
https://doi.org/10.1103/PhysRevD.85.114508
https://doi.org/10.1103/PhysRevC.90.054323
https://doi.org/10.1103/PhysRevC.90.054323
https://doi.org/10.1016/j.physletb.2016.10.008
https://doi.org/10.1007/JHEP06(2017)158
https://doi.org/10.1103/PhysRevD.92.074014
https://doi.org/10.1103/PhysRevD.92.074014
https://doi.org/10.1103/PhysRevD.46.1148
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevD.55.5851
https://doi.org/10.1103/PhysRevLett.123.092001
https://doi.org/10.1103/PhysRevLett.123.092001
https://doi.org/10.1103/PhysRevD.100.014031
https://doi.org/10.1103/PhysRevD.100.014031
https://doi.org/10.1140/epjc/s10052-019-6560-7
https://doi.org/10.1140/epja/i2016-16043-0
https://doi.org/10.1140/epja/i2016-16043-0

