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Aworkable basis of quark configurations s3, s2p and sp2 at light front has been constructed to describe
the high-Q2 behavior of transition form factors and helicity amplitudes in the electroproduction of the
lightest nucleon resonances, N1=2−ð1535Þ and N1=2þð1440Þ. High-quality data of the CLAS Collaboration
are described in the framework of a model which takes into account mixing of the quark configurations and
the hadron-molecular states. The model allows for a rough estimate of the quark core weight in the
wave function of the resonance in a comparison with high momentum transfer data on resonance
electroproduction.
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I. INTRODUCTION

New data on the electroproduction of low-lying nucleon
resonances (JP ¼ 1

2
�, 3

2
�, 5

2
�) at large momentum transfer

provide important complementary information on the inner
structure of hadron resonances [1–13]. These data provide
evidence in support of the dominance of quark degrees of
freedom in the process of electroproduction and allow to
evaluate theweight of the quark component in the resonance
wave function. The resonance spectrum is remarkably
consistent with the quark-model predictions [14], but the
traditional quarkmodel refers only to the rest frame,whereas
processes at large momentum transfer require a description
of baryons in the moving frame. There are many theoretical
approaches to the problem which start from the first
principles [15–35], e.g., light-front QCD [15], lattice
QCD [16], quark models [17–20], light-cone sum rules
[21], approaches based on solution ofDyson-Schwinger and
Bethe-Salpeter equations [22,23], approaches based on
chiral dynamics [24], AdS/QCD [26–35].
The light-front (LF) wave functions have the advantage

that they undergo interaction-independent transformations
under the action of “front boosts.” In the front form of

dynamics [36] the generators of front boosts are kinematical
and the front boosts itself are elements of a kinematical
subgroup of the Poincaré group. The price to pay is that the
space rotations are not kinematical transformations. The
light front t − z ¼ 0 is not invariant under space rotations
except for rotations about the z axis. Thus the generators of
rotations should depend on the interaction given at the light
front. By contrast, in the instant form of dynamics the
“instant” (t ¼ 0), or canonical, boosts depend on the
interaction and do not generate a kinematical subgroup.
Then the rotation group (together with the spatial translation
group) can be considered as a kinematical subgroup of the
Poincaré group.
In spite of difficulties associated with the rotational

symmetry, the LF approach to the description of the
transition form factors implies the construction of a good
basis of quark configurations possessing definite values of
the orbital (L) and total (J ¼ Lþ S) angular momenta and
satisfying the Pauli exclusion principle. The challenge has
been to modify the standard shell-model (normally har-
monic oscillator) basis to describe the LF three-quark
configurations with simple properties about the relativistic
boosts and without the rotational symmetry in an ordinary
sense. Many works [17–19,37–44] have succeeded in
solving this problem. Now there exist a lot of works
[17–20,40,44] where the recent high-quality data of the
CLAS Collaboration [1–10] on the N þ γ� → N� transition
amplitudes have been successfully described at high
momentum transfer in terms of the covariant formalism.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 094013 (2019)

2470-0010=2019=100(9)=094013(19) 094013-1 Published by the American Physical Society

https://orcid.org/0000-0003-2740-4833
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.094013&domain=pdf&date_stamp=2019-11-15
https://doi.org/10.1103/PhysRevD.100.094013
https://doi.org/10.1103/PhysRevD.100.094013
https://doi.org/10.1103/PhysRevD.100.094013
https://doi.org/10.1103/PhysRevD.100.094013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


A key role in the construction of the basis of quark
configurations at light front plays a specific formalism
which might be considered as an analogue of the non-
relativistic technique of Clebsch-Gordan coefficients and
spherical functions. Such a formalism was developed in the
last century in terms of irreducible representations of the
Poincaré group. In the rest frame, the sum of the spin and
the orbital angular momenta of a two-particle system can be
readily defined in terms of the standard Clebsch-Gordon
coefficients and the spherical functions [45]. A useful
generalization of such a definition of the sum for a three
(few)-body system at light front has been taken to develop a
more complicated technique. Such a development began
with works of Teremt’ev, Berestetsky, Kondratyuk and
Bakker [46–48] in the 70-s and ended with the Hamiltonian
dynamics at light front of Keister and Polyzou [49] (and
also with works of many authors later on). Note the review
[50], where the problem of constructing Clebsch-Gordan
coefficients for the Poincaré group was discussed in the
framework of the formalism developed in [49] and where a
general expression for adding single-particle spins and
orbital angular momenta has been given.
The formalism involves all elements that are necessary to

construct a workable basis of quark configurations except
for the requirement imposed by the Pauli exclusion
principle. The realization of this requirement is trivial in
the case of zero orbital momentum, but in the case of L ≥ 1
particular attention should be given to configurations with
the proper types of permutational symmetry (e.g., the
Young schemes and the Yamanouchi symbols). The LF
approach to the description of reactions N þ γ� → N� at
large momentum transfer was successfully realized in many
works [17–19,38–44]. But in all works, where the above
formalism was used in the case of L ≥ 1, the orbitally
excited quark configurations have not been discussed in
detail. Without a detailed representation of the wave
function it is not evident that, coinciding with the given
values of L and J, the quark configuration satisfies the Pauli
exclusion principle.
Here we compensate this gap and construct a workable

basis of the LF quark configurations s3, s2p and sp2 that
satisfies the Pauli exclusion principle. We use this basis to
represent the LF wave functions of the nucleon and the low-
lying resonances of opposite parity, N�

1=2− and N�
1=2þ .

Finally we went to describe elastic and transition form
factors on a common footing. The phenomenological wave
functions used in the expansion of baryon states in terms of
this basis have a common radial part Φ0 times an angular
(or polynomial) factor—in full analogy with the non-
relativistic shell-model wave functions. The function Φ0

(the baryon “quark core”) differs from the Gaussian usually
used in quark models. We use a polelike wave function
[42], the free parameters of which are fitted by data on the
elastic nucleon form factors in a large interval of 0 ≤
Q2 ≲ 32 GeV2 [18,42].

At moderate momentum transfers, i.e., for Q2≲
1–2 GeV2, a good description of elastic and transition
form factors can be obtained in an equivalent manner by
using different representations of Φ0, with Gaussian
[17,51], polelike [42] or hyper central [52] wave functions,
and also by addition of other degrees of freedom [17,51,53]
or by expanding the quark basis [44]. At the high
momentum transfers the details of the inner structure are
not so important and theQ2 behavior of form factors is only
determined by the high-momentum components of the
wave function. Note that in the region of asymptotically
high momenta a key role in theQ2 behavior of form factors
plays the contribution of leading gluon-exchange diagrams
[54] and, conceivably, the dependence of the running
(dynamical) quark mass on the quark momentum
[13,17,23]. We assume that the phenomenological wave
function Φ0, the free parameters of which are fitted to the
high-momentum behavior of the nucleon form factors,
could effectively take into account such “QCD contribu-
tions.” These contributions should be, in general, the same
both for the nucleon and the low-lying nucleon resonances.
Thus we use a common wave function Φ0 as a first
approximation in both cases and compare the calculated
transition amplitudes to the high-quality CLAS data [1–10]
in the region Q2 ≳ 1–2 GeV2.
A comparison shows that even in a first step, where one

uses a model without new free parameters beyond those
that were fitted to the elastic form factors, one obtains a
realistic description of all the transition form factors at high
momentum transfers up to the maximal values of Q2 ≃
5–7 GeV2 achieved in the CLAS experiment. Therefore,
the quark shell model at light front with a specific (polelike)
wave function for the nucleon quark core is a realistic
model for the description of electromagnetic processes on
the nucleon at high momentum transfers. The model could
be used for the prediction of the transition form factors at
higher Q2 and for the evaluation of momentum distribu-
tions of valence quarks in the state with nonvanishing
values of orbital angular momentum.
Starting from this realistic model we evaluate permis-

sible values of the mixing parameters for the hadron-
molecular components N þ σ and Λþ K in the nucleon
resonances N�

1=2þ and N�
1=2− respectively. We show that

only two complimentary free parameters are needed to
improve the description of the Q2 behavior of helicity
amplitudes for the Roper resonance and to obtain a good
agreement with all experimental data at Q2 ≳ 1–2 GeV2.
The modified wave function of the Roper resonance has a
spatially wider distribution than the wave function of the
nucleon.
The paper is organized as follows. In Sec. II and

Appendix A we briefly discuss the formalism developed
in Refs. [49,50]. Following these references we represent
the basic formulas and definitions for the sector of one- and
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two-particle LF states. In Sec. III we consider three-quark
LF configurations for the cases, in which the total orbital
angular momentum L does not exceed the value l ¼ 1. We
construct the three-quark basis states following step by step
the method developed in Sec. II for the two-quark systems.
In Sec. IV the spin-orbital basis states constructed in
Sec. III are supplemented by the isospin part and a
workable method for constructing the basis satisfying
the Pauli exclusion principle is developed. Matrix elements
of the one-particle quark current between basis states of
LF quark configurations are represented by sums of six-
dimensional integrals of four different types. These result in
expressions for the Dirac (F1) and Pauli (F2) form factors
of the transitions with/without change of baryon parity. In
Sec. V the values of helicity amplitudes and Dirac/Pauli
transition form factors for the electroexcitation of reso-
nances N1=2−ð1535Þ and N1=2þð1440Þ are expressed in
terms of quark transition amplitudes defined in Sec. IV.
In Sec. VI the results of the calculations are compared with
CLAS data and concluding remarks are given.

II. FORMALISM

We have taken the formalism developed in Refs. [49,50]
as a starting point for our study of light front quark
configuration. In this section we represent only basic
formulas and definitions of the formalism [49,50] that will
be very useful for the short presentation of our results in the
following sections. We use notations which are very close
to those used in Refs. [49,50].

A. Definitions and notations

Quark state vectors jðmi; siÞ; pi; μii are defined as the
basis states of an unitary irreducible representation of the
Poincaré group characterized by two invariants, m2

i and
siðsi þ 1Þ, which are the proper values of operators M2 ¼
PμPμ (square of the mass) and − 1

M2 WμWμ (square of spin).
The 4-vector Wμ is the Pauli-Lyubansky vector

Wμ ¼ −
1

2
εμαβγPαJβγ ð1Þ

and Pμ and Jμν are generators of the Poincaré group. In the
case of a three-quark system one can use the equations
P ¼ p1 þ p2 þ p3, P0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þM2

p
, where pμ

i is a quark
momentum on its mass shell p0

i ¼ ωiðpiÞ ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i þm2

i

p
.

Starting from the direct products of these “plane-wave”
quark states

Q
3
i¼1jðmi; siÞ; pi; μii, we can construct the

two- and three-quark basis vectors

j½m12; j12ðl12; s12Þ�;P12; μ12i;
j½M0; jððj12ðl12; s12Þ; s3Þ; l3Þ�;P; μji: ð2Þ

These states have definite values for the orbital angular
momentum (l12), the spin (s12) and the sum of them j12 ¼
l12 þ s12 for two-quark clusters (P12 ¼ p1 þ p2) and a
definite value for the total angular momentum j ¼ j12 þ
s3 þ l3 of the three-quark system. Here m12 and M0 are
masses of two- and three-quark free states, respectively.

Two-particle basis vectors of the irreducible representa-
tion j12ðl12; s12Þ of the rotation group can be constructed

[45] in the rest frame, where P12 ¼ P
∘
12 ≔ 0, using standard

methods of nonrelativistic quantum mechanics [the
Clebsch-Gordan coefficients and spherical functions
Ylμlðp̂1Þ]. Setting up the basis of the three-particle irreduc-
ible representation jððj12ðl12; s12Þ; s3Þ; l3Þ with the same
method requires to pass into the three-particle rest frame,

where P ¼ P
∘
≔ 0, but P12 ≠ 0. This requires a relati-

vistic boost on the two-quark cluster to transform its
wave function into the moving (with the 4-velocity
Pμ
12=m12) frame.
The construction of the irreducible representations of the

Poincaré group is performed in the center of mass (CM)
frame where Pμ ¼ fM; 0g. A special role of the rest frame
in construction of the basis of irreducible representations of
the Poincaré group stems from the fact that only in this
frame the 4-vector of spin given in Eq. (1) reduces to
3-vector 1

MWμ ¼ f0; J23; J31; J12g which coincides with
the 3-vector of rotation generators Jij. Thus one can use a
standard technique of the rotation group to construct the
basis vectors. The inner relative momenta of a baryon can
be specified by the quark momenta ki, i ¼ 1, 2.3 in the

baryon CM frame, k1 þ k2 þ k3 ¼ P
∘
≔ 0 (we use letters k

or K for the relative momenta as done in the literature
[44,49,50]). The inner relative momenta of the two-quark
cluster are specified by the quark momenta k01 and k02 in its

rest frame (P
∘ μ
12 ¼ fm12; 0g),

k01 ¼Λ−1
�
k1þ k2
m12

�
k1 ¼ k k02 ¼Λ−1

�
k1þ k2
m12

�
k2 ¼−k;

ð3Þ

where ΛðpmÞ≡ Λμ
ν is the matrix of the Lorentz transforma-

tion that describes the transition from the two-quark rest

frame to the moving frame (the value Pμ
12

m12
≡ ðk1þk2Þμ

m12
is a

4-velocity of the two-quark cluster in the baryon CM
frame). The 3-momentum k defined by Eq. (3) is one of two
independent relative momenta in the three-quark system. A
second independent relative momentum may be identified
with the momentum K ≔ k3 ¼ −ðk1 þ k2Þ. Masses m12

and M0 of the two- and three-quark clusters in the baryon,

m12ðkÞ ¼ ω1ðkÞ þ ω2ð−kÞ
M0ðk;KÞ ¼ ω1ðk1Þ þ ω2ðk2Þ þ ω3ðk3Þ; ð4Þ

are functions of two independent relative momenta k andK.

The state vector of the baryon in its rest frame (P ¼ P
∘
) may

be symbolically (we omit isospin and other details)
represented in terms of a superposition of free basis
vectors (2)
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jðM; jÞ;P
∘
; μji ∼

Z
k2dkK2dKΦM;jðM0Þj½M0; jððj12ðl12; s12Þ; s3Þ; l3Þ�;P

∘
; μji: ð5Þ

ΦMj is a wave function that should depend on an invariant
combination of two relative momenta, k and K. The free
mass M0 defined in Eq. (4) may be used as such an
invariant combination. For example, the wave function
ΦMjðM0Þ could be a solution of the three-particle relativ-
istic equation in the framework of the Bakamjian-Thomas
[55] approach or it could be a phenomenological wave
function.
The important property of the integrand in the right-hand

side (r.h.s.) of Eq. (5) is that the three-quark basis state,
denoted by proper values of orbital/total angular momenta,
can be represented as a superposition of free three-quark
plane-wave states

Q
3
i¼1jðmi; siÞ; pi; μii (see later for

details) which itself realizes the irreducible representation
of the Poincaré group. Therefore the transformation of the

state vector (5) into a moving reference frame P
∘
→ P ≠ 0

can be readily done by the unitary representationU½Λgð P
M0
Þ�

of the one-particle boost Λgð P
M0
Þ in plane-wave basis

jðmi; siÞ; pi; μii Here P
M0

is the spatial part of the 4-velocity

uμ ¼ 1
M0

fP0;Pg and the index g above specifies the little

group used for the transition P
∘
→ P (see definitions of the

canonical and front boosts in Appendix A).

B. Two-particle states and Melosh transformations

The basis state vectors of the irreducible representation
jðlsÞ of the rotation group can be constructed in the
rest frame of the two-particle cluster with the standard
nonrelativistic technique of adding angular momenta
(Clebsch-Gordan coefficients and spherical functions)
[45,49,50]:

j½m12ðkÞ; jðl; sÞ�;P
∘
12; μji ¼

X
fμg

ðs1μ1s2μ2jsμsÞðlμlsμsjjμjÞ
Z

d2k̂Ylμlðk̂Þjk; μ1icj − k; μ2ic; ð6Þ

where fμg ≔ μ1; μ2; μs; μl and m12 is a mass defined in Eqs. (4) and (A14). The state vector of the physical two-particle
system (e.g., a bound state) can be expanded in the basis (6) and represented in form of

j½md; jðl; sÞ�;P
∘
12; μji ¼

Z
∞

0

k2dk
ð2πÞ3ΦjðlsÞ½m12ðkÞ�j½m12ðkÞ; jðl; sÞ�;P

∘
12; μji; ð7Þ

where md is the mass of the bound state and ΦjðlsÞ is the
wave function.
The canonical basis vectors j � k; μiic in the r.h.s. of

Eq. (6) can be transformed into the moving reference frame

P
∘
12 → P12 by making use of the transformation formula of

Eq. (A6). But such a transformation is complicated by the
Wigner rotation which depends on both the initial and final

momenta of the ith quark. Thus, it would be the more
convenient to pass to the front form of the state vector (7)
immediately after the determination of the basis vectors of
the irreducible representation jðlsÞ in Eq. (6). Then one can
use the simpler formula of Eq. (A7) for the transition

P
∘
12 → P12. An additional complication is the Melosh

transformation [56]

jðmi; siÞ; ki; μiic ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
kþi

ωiðkiÞ

s X
μ̄i

jðmi; siÞ; k̃i; μ̄iifDðsiÞ
μ̄iμi ½RfcðkiÞ�; ð8Þ

where RfcðkiÞ is the space rotation which connects the front spin of the quark and its canonical spin. In the case of si ¼ 1
2
the

respective D matrix is equal to the matrix element

Dð1=2Þ
μ̄iμi ½RfcðkiÞ� ¼

�
1

2
; μ̃i

����mi þ kþi − iẑ½σi⊥ × ki⊥�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kþi ðωiðkiÞ þmiÞ

p ���� 12 ; μi
�

ð9Þ

where μ̃i and μi are the z-components of the front and canonical spins, respectively.
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The final expression for the basis vector (6) in the moving reference frame is of the form

ffiffiffiffiffiffiffiffi
Pþ
12

m12

s
j½m12; jðl; sÞ�; P̃12; μjif ≔ U

�
Λf

�
P̃12

m12

�	
jP
∘
12; μji ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

þ
2

ω1ðkÞω2ð−kÞ

s X
fμg

ðs1μ1s2μ2jsμsÞ

× ðlμlsμsjjμjÞ
Z

d2k̂Ylμlðk̂Þ
X
μ̄1μ̄2

jp̃1; μ̄1ifjp̃2; μ̄2ifDð1=2Þ
μ̄1μ1 ½Rfcðk1Þ�Dð1=2Þ

μ̄2μ2 ½Rfcðk2Þ�; ð10Þ

where p̃1 ¼ ΛfðP̃12

m12
Þk̃, p̃2 ¼ ΛfðP̃12

m12
Þð−k̃Þ. The components

of the 3-vector of the relativistic relative momentum kj ¼
fk⊥; kzg are also expressed in terms of invariants,

kz ≔ 1
2
ðkþ − k−Þ ¼ 1

2
½xm12 −

k2⊥þm2

xm12
�, x ¼ kþ

Pþ
12

, k̂ ¼ k
jkj.

Since the wave function ΦjðlsÞ and its argument m12 are
relativistic invariants, the expression for the state vector (7)

in a moving reference frame,
ffiffiffiffiffi
Pþ
12

md

q
j½md; jðl; sÞ�; P̃12; μjif,

can be obtained by the substitution j½m12; jðl; sÞ�;P
∘
12; μji →ffiffiffiffiffiffi

Pþ
12

m12

q
j½m12; jðl; sÞ�; P̃12; μjif in the r.h.s. of Eq. (7).

III. THREE-PARTICLE BASIS STATES

Here we consider three-quark configurations at the light
front for cases when the total orbital angular momentum
is not larger than l ¼ 1. Then there are three simple vari-
ants: fl ¼ 0ðl12 ¼ l3 ¼ lÞg, fl ¼ 0ðl12 ¼ l3 ¼ 1Þg and
fl ¼ 1½ðl12 ¼ 0; l3 ¼ lÞ; ðl12 ¼ l; l3 ¼ 0Þ�g. The more
complicated variant fl ¼ 1ðl12 ¼ l3 ¼ lÞg is omitted as
here we only consider the lowest excited state for each
given parity P ¼ �. This is the minimal basis to evaluate
the transition form factors for the low-lying resonances
N1=2þð1440Þ and N1=2−ð1535Þ along with the elastic
nucleon form factors. These configurations are the
analogues to the nonrelativistic translationally-invariant

shell-model (TISM) configurations s3½3�Xðl ¼ 0Þ,
sp2½3�Xðl ¼ 0Þ and s2p½21�Xðl ¼ 1ÞyðnÞX (n ¼ 1, 2), respec-
tively. The Young tableaux ½f�X in the coordinate (orbital)

space (X) and the Yamanouchi symbols yðnÞX are used in the
TISM for classification of multi-particle states. Such a
classification plays a key role in the construction of basis
states satisfying the Pauli exclusion principle. In this case the
quark configuration for the baryon of negative parity
(70−; ½21�X; l ¼ 1) should be constructed in two variants,

with the Yamanouchi symbols yð1ÞX ¼ f112g (symmetric
under permutation Pij of the two first quarks, ij ¼ 12, i.e.,

jl12 ¼ 0; l3 ¼ 1i) and yð2ÞX ¼ f121g (antisymmetric under
the permutation P12, e.g., jl12 ¼ 1; l3 ¼ 0i). Then a fully
antisymmetric state in the product of all subspacesX∘S∘T∘C
(S-spin, T-isospin, C-color) can be readily constructed with
the use of the permutation group S3 technique [57].
We construct the three-quark basis states following step

by step the method developed in Sec. II for the two-quark
state vectors. In the case of low angular momenta l ¼ 0, 1
the three-quark basis vectors are of the same form as the
two-quark states given in Eqs. (6) and (10). Starting from
these expressions one can at once write the three-quark
basis state having the quantum numbers of the TISM

configuration s2p½21�Xðl ¼ 1Þyð1ÞX (i.e., l12 ¼ 0, l3 ¼ 1):

j½21�Xyð1ÞX ½M0;jðl;sðs12ÞÞ�;P̃;μjif¼
Z

d2K̂ J̃ ðpþ;kÞ
�
K
β

�
lX
fμg

YlμlðK̂Þ

×


�
1

2
μ1
1

2
μ2js12μ12

��
s12μ12

1

2
μ3jsμs

�
ðlμlsμsjjμjÞ

X
μ̄

Y3
i¼1

jp̃i; μ̄iifDð1
2
Þ

μ̄iμi
½RfcðkiÞ�

�
; l¼1;

ð11Þ
where p̃i ¼ Λfð P

M0
Þk̃i, P̃ ¼ p̃1 þ p̃2 þ p̃3, K̃ ¼ k̃3, K ¼ fK⊥; Kzg, Kz ¼ 1

2
ðKþ − K−Þ ¼ 1

2
ðð1 − ηÞM0 −

K2⊥þm2
3

ð1−ηÞM0
Þ, η is

defined in Eq. (A13), and J̃ ðpþ; kÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pþ
1
pþ
2
pþ
3
M0

ω1ðk1Þω2ðk2Þω3ðk3ÞPþ

q
. Here β is an arbitrary scale (the nucleon inverse radius as usual).

The three-quark LF state vector analogous to the TISM configuration s2p½21�Xðl ¼ 1Þyð1ÞX is defined by an expression
which is a replica of Eq. (7):

js2p½21�Xyð1ÞX ½M; jðl; sðs12ÞÞ�; P̃; μjif ¼
Z

d3k
ð2πÞ3

Z
∞

0

K2dK
ð2πÞ3 N

ð1Þ
l Φ0ðM0Þ

× js2p½21�Xyð1ÞX ½M0; jðl; sðs12ÞÞ�; P̃; μjif; l ¼ 1; ð12Þ
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where the wave function Φ0ðM0Þ describes the radial part
of the configuration. Note that like the TISM configurations
s3, s2p, … etc. the respective LF configurations have a
common radial part which is the same as the radial wave
function Φ0ðM0Þ of the ground state configuration s3. The

normalization factor N ð2Þ
l in the r.h.s. of Eq. (12) may be

calculated using the normalization condition determined
in Eq. (A3).
In the case of l ¼ 1ðl12 ¼ l; l3 ¼ 0Þ the basis vector

with the quantum numbers of the TISM state s2p½21�Xðl ¼
1Þyð2ÞX is of the form

j½21�Xyð2ÞX ½M0; jðl; sðs12ÞÞ�; P̃; μjif ¼
Z

d2k̂ J̃ ðp; kÞ
�
k
β

�
lX
fμg

Ylμlðk̂Þf…g; l ¼ 1; ð13Þ

where k is a relative momentum defined in Eqs. (3) and (A10)–(A12). Dots in the curly brackets denote the same expression

as in the curly brackets of Eq. (11). The LF state vector analogous to the TISM configuration s2p½21�Xðl ¼ 1Þyð2ÞX is defined
by an equation similar to Eq. (12):

js2p½21�Xyð2ÞX ½M;jðl; sðs12ÞÞ�; P̃;μjif ¼
Z

d3K
ð2πÞ3

Z
∞

0

k2dk
ð2πÞ3N

ð2Þ
l Φ0ðM0Þ× js2p½21�Xyð2ÞX ½M0; jðl; sðs12ÞÞ�; P̃;μjif; l¼ 1:

ð14Þ

In the case of l ¼ 0ðl12 ¼ l3 ¼ lÞ the basis vectors
js3½3�X½M0; jðl ¼ 0; sðs12ÞÞ�; P̃; μjif and the state vector

j½3�X½M; jðl ¼ 0; sðs12ÞÞ�; P̃; μjif are also defined by
Eqs. (11) and (12), respectively, but with the other value

of l ¼ 0 and with the spherical wave function Y00 ¼
ffiffiffiffi
1
4π

q
.

In this case the radial part of the LF configuration s3½3�X (a
nucleon, the ground state) is described by the wave function
Φ0ðM0Þ. The radial part of the excited LF configuration
sp2½3�Xðl ¼ 0Þ (the Roper resonanceN�

1=2þ) is described by

function Φ02ðM0Þ ¼ N 02ð1 − c2
M2

0

β2
ÞΦ0ðM0Þ, where a free

parameter c2 is chosen to satisfy the orthogonality con-
dition hN�

1=2þjNi ¼ 0.

The main drawback of the configurations js2p½21�Xyð1ÞX i
and js2p½21�Xyð2ÞX i defined as orbital states l ¼ 1ðl12 ¼
0; l3 ¼ 1Þ and l ¼ 1ðl12 ¼ 1; l3 ¼ 0Þ is that the partial
waves l3 ¼ 1 and l12 ¼ 1 of the basis vectors are defined
[Eqs, (13) and (11)] in different reference frames. The
angular momentum l3 ¼ 1 is defined in the CM frame,
while the state with angular momentum l12 ¼ 1 is defined
in the rest frame of the two-quark cluster. Such a difference
presents difficulties in constructing state vectors satisfying
the Pauli exclusion principle. In the final step of the
construction of a fully symmetric state ½3�XST one should
reduce the product of two irreducible representations of the

S3 group, ½21�X and ½21�ST . Both orbital states, ½21�Xyð1ÞX and

½21�Xyð2ÞX , should be defined in a common reference frame,
e.g., in the CM, otherwise it will be impossible to use a
standard technique of reducing the product of two irreduc-
ible representations.

To solve the problem we start from basis vector

j½21�Xyð1ÞX i defined in the CM by Eq. (11). We construct

the second basis vector j½21�Xyð2ÞX i of this irreducible
representation given in the CM using pairwise permutations
Pij of quarks in the r.h.s. of Eq. (11). Doing so
we have obtained a new linear-independent component
of the basis of the given irreducible representation, which

we denote as j½21�Xyð2ÞX iCM. The new basis vector is
represented by a modified Eq. (13) in which the angular
part of the integrand has been transformed into the function
ðκ=βÞlYlμlðκ̂Þ. It depends on a modified momentum κ,

κ⊥ ¼ k⊥ þ
�
1

2
− ξ

�
K⊥; κz ¼ kz þ

�
1

2
− ξ

�
Kz; ð15Þ

where kz ¼ 1
2
ðkþ − k−Þ. Starting from the relations

P12k⊥¼−k⊥, P12ξ¼1−ξ, P13K⊥ ¼ k⊥ − ξK⊥, P13k⊥ ¼
K⊥ þ 1−η

1−ξη ðk⊥ − ξK⊥Þ, …, etc., one can verify that the
matrix elements of quark permutations Pij between new

basis states j½21�X; yð1;2ÞX iCM are equal to the standard values
characteristic of the given irreducible representation of the
group S3 [57].
Here we introduce two independent quantities ξ and η,

which parametrize the light-cone variables xi of constituent
quarks in baryon

x1 ¼ ξη; x2 ¼ ð1 − ξÞη; x3 ¼ 1 − η: ð16Þ

As usual, the set of the light-cone variables ðxiÞ defines the
fraction of longitudinal momenta of quarks ðpþ

i Þ with
respect to longitudinal momentum of baryon Pþ:
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xi ¼
pþ
i

Pþ ð17Þ

and obey the condition x1 þ x2 þ x3 ¼ 1. See more details
in Appendix A.

IV. CURRENT MATRIX ELEMENTS IN QUARK
REPRESENTATION

A. Spin-orbital part of the matrix element

At light front, the plus-component of the current IþðxÞ ¼
J0ðxÞ þ J3ðxÞ alone is sufficient to determine the full set of
observables including the transition form factors (if the
current satisfies the continuity equation ∂νJν ¼ 0). In
addition, the current matrix element for a Dirac particle
between front states (A3) does not depend on particle
momenta at all, fhp̃0i; μ0ijIþi ð0Þjp̃i; μiif ¼ eiδμ0iμi . Only if the
quark has an anomalous magnetic moment ϰi, a term
depending on the momentum transfer qν ¼ p0

i
ν − pν

i arises.
In the Breit frame, where qν ¼ f0; q⊥; 0; 0g, a general one-
particle current matrix element is of the form

fhp̃0i;μ0ijIþi ð0Þjp̃i;μiif¼ei

�
δμ0iμi −

ϰiq⊥
2mi

δμ0i;−μið−1Þ1=2−μ
0
i

�
;

ð18Þ

where ei ¼ 1
6
þ 1

2
τiz is the quark charge.

In the case of reactionN þ γ� → N� the transition matrix
element of the quark current (18) between nucleon and
baryon state vectors can be readily represented in a special
Breit (B) frame, where the momenta of the initial nucleon
(PB) and the final baryon (P0

B) are equal with

PB ¼


−
q⊥
2

− Δ⊥; 0
�
; P0

B ¼


q⊥
2

− Δ⊥; 0
�

ð19Þ

and q⊥ ¼ q⊥x̂, Δ⊥ ¼ Δ⊥x̂, Δ⊥ ¼ M�2−M2

2q⊥ .
The desired matrix elements fh½21�X; yðnÞX ;

P̃0jIþi ð0Þj½3�X; P̃if, n ¼ 1, 2, where the initial nucleon is
represented by the ground state configuration
j½3�X½M; jðsðs12ÞÞ�; P̃; μjif and the final baryon is described
by the configurations defined in Eqs. (12) (n ¼ 2) and
(14)–(15) (n ¼ 1), have been reduced to six-dimensional
integrals over invariant light-front variables K⊥; k⊥; ξ
and η,

fh½21�X; yðnÞX ½M�; jðl; sðs012ÞÞ�; P̃0
B; μ

0
jj3Iþ3 ð0Þj½3�X½M; jðsðs12ÞÞ�; P̃B; μjif

¼ N lN 0

ð2πÞ6
Z
R2

d2K⊥
Z
R2

d2k⊥
Z

∞

0

dη
ηð1 − ηÞ

Z
∞

0

dξ
ξð1 − ξÞJ ðfk0ig; fkigÞΦ0ðM0

0ÞΦ0ðM0Þ

×
X
μ0sμ0l

ðlμ0lsμ0sjjμ0jÞ
�
k0ðnÞ

β

�l

Y�
lμ0l
ðk̂0ðnÞÞδs0

12
s12Is12ðfk0ig; fkig; μ0s; μsÞ: ð20Þ

The momentum k0ðnÞ takes the value k0ð1Þ ¼ fK0⊥; K0
zg or k0ð2Þ ¼ fκ0⊥; κ0zg, depending on the index n ¼ 1 or 2 (i.e., the value

of Ymanouchi symbol yðnÞX ), as it follows from (11) and (15). Here J ðfk0ig; fkigÞ ¼ ½ðM0
0M0Þ−1

Q
3
i¼1 ωiðk0iÞωiðkiÞ�1=2 is a

Jacobian. We use the notation I s12ðfk0ig; fkigÞ for the one-particle current matrix element (18) of the third quark, which is
modified by Clebsch-Gordan coefficients used for adding spins and by the D matrices of the Melosh transformations, as
follows from Eqs. (11)–(14),

Is12ðfk0ig; fkig; μ0s; μsÞ ≔ 3
X
fμg

X
fμ0g

�
1

2
μ01

1

2
μ02js012μ012

��
s012μ

0
12

1

2
μ03jsμ0s

��
1

2
μ1

1

2
μ2js12μ12

�

×
�
s12μ12

1

2
μ3jsμs

�X
fμ̄0g

X
fμ̄g

fhp̃03; μ03jIþ3 ð0Þjp̃3; μ3ifδμ̄01μ̄1δμ̄02μ̄2
Y3
i¼1

D
ð1
2
Þ

μ0iμ̄
0
i
½R−1

fc ðk0iÞ�D
ð1
2
Þ

μ̄iμi
½RfcðkiÞ�:

ð21Þ

Equations (20) and (21) are onlywritten for the current of the
third quark, but we use combinatoric factor 3 that allows to
take into account contributions of all 3 quarks. In Eqs. (20)
and (21) the primed symbols indicate that they are of the final
state wave functions. It is important that only the momentum
K⊥ from all the full set of independent momenta in the

three-quark system (K⊥; k⊥; ξ; η) changes its value for the
absorption of a photon, K0⊥¼K⊥þηq⊥. As a result, the indi-
vidual momenta of quarks in the CM frame take the values
k01⊥ ¼ k⊥ − ξK0⊥, k02⊥ ¼ −k⊥ − ð1 − ξÞK0⊥ and k03⊥ ¼ K0⊥
which follows from Eqs. (A10)–(A12). The value ofM0

0 can
also be calculated by substitution K⊥ → K0⊥ into Eq. (A14).
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The direct calculation of spin sums in Eq. (21) results in
a rather cumbersome expression depending on the z-
components of the total 3q spin s ¼ P

3
i¼1 si (s ¼ 1=2 in

our case), μs and μ0s, and on the s12 ¼ s1 þ s2 of the
subsystem spin. This result can be represented by an
expansion of the full set of Hermitian 2 × 2 matrices, I
and fσig

I ðnÞ
s12 ðfk0ig;fkig;μ0s;μsÞ¼e3hμ0sjðdAs12Iþ iσ2dBs12

þ iσ1dCs12 þ iσ3dDs12Þjμsi; ð22Þ

where the coefficients dA, dB, dC and dD depend on q⊥
and on the inner momenta K⊥; k⊥; ξ; η. The expansion in

Eq. (22) is a generalization of the analogous expansion for
the one-particle quark current (18),

fhp̃03; μ03jIþq3ð0Þjp̃3; μ3if ¼ e3hμ03jðaI þ iσ2bÞjμ3i; ð23Þ

where a ¼ 1 b ¼ −ϰ3
q⊥
2m. The full series in the r.h.s. of

Eq. (22) includes all the spin structures which contribute
both to transitionswithout parity change (I and iσ2) andwith
a change in parity (σ1 and σ3). The integration of the effective
current (22) in a product with the spherical functions in the
r.h.s. of Eq. (20) and the convolution with “spin-orbital”
Clebsch-Gordon coefficients over indices μ0l; μ

0
s leads to two

different types of transition matrix elements:

(1) for transitions with parity change (l ¼ 1)

fh½21�X; yðnÞX ½M�; jðl; sðs012ÞÞ�; P̃0
B; μ

0
jj3Iþ3 ð0Þj½3�X½M; jðsðs12ÞÞ�; P̃B; μsif

¼ δs0
12
s12 ½δμ0j;−μsC

ðnÞ
s12 ðq⊥Þ þ δμ0jμsð−1Þ

1=2−μ0jDðnÞ
s12 ðq⊥Þ� ð24Þ

and a corresponding representation
(2) for transitions without a change in parity (l ¼ 0) with the only difference that at l ¼ 0 there is no dependence on the

Yamanouchi symbol yðnÞ and μ0j ¼ μ0s

fh½3�X½M�; sðs012Þ�; P̃0
B; μ

0
sj3Iþ3 ð0Þj½3�X½M; sðs12Þ�; P̃B; μsif

¼ δs0
12
s12 ½δμ0sμsAs12ðq⊥Þ þ δμ0s;−μsð−1Þ1=2−μ

0
sBs12ðq⊥Þ� ð25Þ

The functions As12 , Bs12 , C
ðnÞ
s12 and DðnÞ

s12 represent the full
set of necessary spin-orbital matrix elements to compose a
final expression for the transition/elastic amplitude, but to
do so isospin must be taken into account. The final
expression should be a linear combination of these func-
tions with coefficients depending on the isospin matrix
elements (see below).

B. Radial part

It should be realized that the expression for the spin-
orbital matrix element given in Eq. (21) is also true in the
case of a positive parity final state. Then the angular part of
final wave function ðk0ðnÞβ ÞlY�

lμ0l
ðk̂0ðnÞÞ has to be changed to a

constant Y00 ¼
ffiffiffiffi
1
4π

q
, the Yamanuchi symbols should be

omitted and we substitute the function

N 02Φ02ðM0
0Þ ¼ N 02

�
1 − c2

M02
0

β2

�
Φ0ðM0

0Þ; ð26Þ

for N 1Φ0ðM0
0Þ.

Function (26) is the analogy of the TISM wave function
jsp2½3�X;l¼0iTISM¼N ½ϕ20ðk=βρÞþϕ20ðK=βξÞ�Φ̃0ðk;KÞ,
where ϕ20ðuÞ ¼ 1 − 2

3
u2 and Φ̃0ðk; KÞ ¼ exp½− k2

2βρ
− K2

2βξ
�

(k and K are nonrelativistic momenta, βξ and βρ are the
respective scales). Similarly, in the case of the elastic
process N þ γ� → N the radial part of the ground state
wave function N 0Φ0ðM0

0Þ should be substituted into
Eq. (21) instead of the resonance radial part.
Here we use the polelike function [42]

Φ0 ¼ ½1þM2
0=β

2�−γ; ð27Þ

which gives a good description of elastic nucleon form
factors [18,42] in a wide interval of Q2, where data exist,
0 ≤ Q2 ≲ 32 GeV2. The relative values of u- and d-quark
contributions to the form factors are also well described in
this model [58].
One might expect (and this is supported by our calcu-

lations, see below) that the transition form factors of the
low-lying nucleon resonances can be described by a
common function (27) for both the nucleon and the
resonances. However, the use of function (27) in the case
of the Roper resonance leads to an overestimate of the
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transition form factors [18], at least in the region of
moderate/high values of Q2 ≳ 1–2 GeV2. This possibly
means that the Roper resonance is a more loosely bound
system than the nucleon. Such an assumption is well
correlated with the results [17,18,33,53] obtained with
modified wave functions for the resonance. The question
arises as to whether there is a soft 3q component of the
Roper resonance. Otherwise the standard (hard) 3q wave
function should be modified by the addition of a soft
hadronic component [18]. In an effort to test these
hypotheses we consider here a “hybrid variant” of the
wave function Φ0 for the Roper resonance,

ΦR
0 ¼ αΦ0ðM0Þ þ ð1 − αÞΦ̃0ðM0Þ;

Φ̃0 ¼ exp½−M2
0=2β

2
1�; β1 ≈ β ð28Þ

with a considerable weight for the Gaussian component
(α ≃ 0.25–0.5).The Gaussian adds a loose 3q component to
the polelike wave function (27).
We also tried to describe an extended structure of the

Roper resonance by taking a smaller β in Eq. (27) or by
taking a sum of two polelike terms (27) with two different
values of parameter β, but it did not lead to a considerable
improvement of the description, while the addition of a
Gaussian to a polelike term given in Eq. (28) works well.
Following a common practice for representation of

LF radial wave functions [17,18,40–44] we use in

Eqs. (26)–(28) the radial wave functions Φ02, Φ0 and
ΦR

0 which only depend on a (virtual) mass of the 3q system
[the M0 defined by Eqs. (4) and (A14)] and do not depend
on a (virtual) 2q mass m12 as an independent variable.
It should be noted that the M0 does depend on the m12

[see Eq. (A14)]. Moreover, the “independence” of variables
m12, m13 and m23 is considerably limited by the permu-
tation symmetry constrains (see Appendix B).

C. Isospin and the Pauli exclusion principle

From the Pauli exclusion principle which requires the
use of fully antisymmetric state vectors in initial and final
states, it would be convenient to rewrite all the transition
matrix elements in terms of Young schemes and
Yamanouchi symbols. Initial and final states in the matrix
elements (24) and (25) are given, in fact, in the required
form, since the value of the total spin s ¼ 1

2
corresponds to

the Young scheme ½21�S, while the value of the spin of a
two-particle subsystem, s12 ¼ 1 and 0, corresponds to the

Yamanouchi symbols yð1ÞS and yð2ÞS , respectively. The
isospin basis vectors jT ¼ 1

2
ðT12 ¼ 1; 0Þ;Tz ¼ ti are

equivalent to the states jð½21�T; yðkÞT Þ; ti, k ¼ 2, 1. Hence,
taking into account the isospin T in the current matrix
elements given in Eqs. (24)–(25) one can write the full
matrix element of the current in terms of Young schemes
and Yamanouchi symbols

fhM�; jð½21�X; yðnÞX ; yðmÞ
S ; yðkÞT Þ; P̃0

B; μ
0
j; tj3Iþ3 ð0ÞjM; jð½3�X; yðmÞ

S ; yðkÞT Þ; P̃B; μj; tif; ð29Þ

Here the Young schemes ½21�S and ½21�T are omitted to minimize the complexity of notations. The value of this matrix
element is a product of the charge matrix element

h½21�T; yðkÞT ; t0je3j½21�T; yðkÞT ; ti ¼ 2

3
δk;2δt0t; t ¼ 1

2
;

¼ 1

3
ðδk;1 − δk;2Þδt0t; t ¼ −

1

2
: ð30Þ

and the expression given by the r.h.s. of Eq. (24).
To take into account the principle Pauli constraints we modify initial and final states of these matrix elements passing to

states with a definite value of the Young scheme (½21�XS) and Yamanouchi symbols yðnÞXS in the united spin-orbital (XS)
space. We use Clebsch-Gordon coefficients of the S3 group to construct the ½21�XS final state

j½21�XS; yð1ÞXSi ¼
ffiffiffi
1

2

r
j½21�X; yð1ÞX ij½21�S; yð1ÞS i −

ffiffiffi
1

2

r
j½21�X; yð2ÞX ij½21�S; yð2ÞS i;

j½21�XS; yð2ÞXSi ¼ −
ffiffiffi
1

2

r
j½21�X; yð1ÞX ij½21�S; yð2ÞS i −

ffiffiffi
1

2

r
j½21�X; yð2ÞX ij½21�S; yð1ÞS i: ð31Þ

and use a trivial relation j½21�XS; yðnÞXSi ¼ j½3�Xij½21�S; yðnÞS i for the initial state.
In the final step we take into account the isospin T and define a fully symmetric state with the Young scheme ½3�XST in the

united XST space,
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j½3�XSTi ¼
ffiffiffi
1

2

r
j½21�XS; yð1ÞXSij½21�T; yð1ÞT i þ

ffiffiffi
1

2

r
j½21�XS; yð2ÞXSij½21�T; yð2ÞT i; ð32Þ

which satisfies the Pauli exclusion principle (with the color Young scheme ½13�C).
These transformations of initial and final states of the current matrix element defined in Eqs. (24)–(25) and (29) result in

the final expression for the amplitude of the physical transition N1=2þ þ γ� → N�
JP , which is of the form (in the case of

JP ¼ 1
2
−, t ¼ þ 1

2
)

fhðM�;j0P;T 0Þ;P̃0
B;μ

0
j;t

0j3Iþq3ð0ÞjðM;jP;TÞ;P̃B;μj;tif¼
1

2
ffiffiffi
2

p
X
n;s12

ζðn;s12Þ
2

3
½δμ0j;−μsC

ðnÞ
s12 ðq⊥Þþδμ0jμsð−1Þ

1=2−μ0jDðnÞ
s12 ðq⊥Þ�δt0t:

ð33Þ

j0P ¼ JP ¼ 1
2
−, jP ¼ 1

2
þ, j ¼ s; μj ¼ μs, q⊥x̂ ¼ P̃0

B − P̃B, and factor ζðn; s12Þ is the sign of a term with the given value of
indices n; s12. This sign corresponds to the sign of the respective term of the Clebsch-Gordon series in the r.h.s. of Eq. (31).

The absolute value of each coefficient in the r.h.s. of Eqs. (31)–(32) is
ffiffi
1
2

q
, and thus a common multiplier 1

2
ffiffi
2

p is factored out

in the summation in Eq. (33).
Equation (33) would be also true in the case of JP ¼ 1

2
þ if one omits index n and changes functions CðnÞ

s12 and D
ðnÞ
s12 to As12

and Bs12 . The factor
ffiffi
1
2

q
in the r.h.s. should also be omitted:

f

��
M�;

1

2

þ
; T 0

�
; P̃0

B; μ
0
j; t

0j3Iþq3ð0Þj
�
M;

1

2

þ
; T

�
; P̃B; μj; t

�
f
¼ 1

2

X
s12

ζðs12Þ
2

3
½δμ0jμsAs12ðq⊥Þ þ δμ0j;−μsð−1Þ

1=2−μ0jBs12ðq⊥Þ�δt0t:

ð34Þ

D. Transition amplitudes with/without change of parity

We started from the general expressions (33)–(34) for the transition amplitudes of the reactionsN1=2þ þ γ� → N�
JP , which

was obtained in the framework of a LF quark model in the special Breit frame (19). We also derived the following
representations [in terms of the functions A, B, C and D defined in Eqs. (24)–(25)] for the (elastic and inelastic) amplitudes
and transition form factors:
(1) elastic scattering N1=2þ þ γ� → N1=2þ

f

�
M;

q⊥
2
; μ0

����3Iþq3ð0Þ
����M;−

q⊥
2
; μ

�
f
¼ δμ0μf1 − δμ0;−μð−1Þ1=2−μ0

q⊥
2M

f2; ð35Þ

where

f1ðq2⊥Þ ¼
1

3
½A0ðq⊥Þ þ A1ðq⊥Þ�; f2ðq2⊥Þ ¼

2M
3q⊥

½B0ðq⊥Þ þ B1ðq⊥Þ�; ð36Þ

[the function (27) is used in the calculation of As12ðq⊥Þ and Bs12ðq⊥Þ];
(2) transition without parity change N1=2þ þ γ� → N�

1=2þ

f

�
M�;

q⊥
2

− Δ⊥; μ0
����3Iþq3ð0Þ

����M;−
q⊥
2

− Δ⊥; μ
�

f
¼ δμ0μfR1 − δμ0;−μð−1Þ1=2−μ0

q⊥
M� þM

fR2 ; ð37Þ

where

fR1 ðq2⊥Þ ¼
1

3
½AR

0 ðq⊥Þ þ AR
1 ðq⊥Þ�; fR2 ðq2⊥Þ ¼

M� þM
3q⊥

½BR
0 ðq⊥Þ þ BR

1 ðq⊥Þ�; ð38Þ

[the modified function (28) is used in the calculation of As12ðq⊥Þ and Bs12ðq⊥Þ];
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(3) transition with a change of parity N1=2þ þ γ� → N�
1=2−

f

��
M�;

q⊥
2

− Δ⊥; μ0
����3Ĩþq3ð0Þ

����M;−
q⊥
2

− Δ⊥; μ
�

f
¼ δμ0μð−1Þ1=2−μ0 f̃1 − δμ0;−μ

q⊥
M� þM

f̃2; ð39Þ

where

f̃1ðq2⊥Þ ¼ −
1

3
ffiffiffi
2

p ½D0ðq⊥Þ þD1ðq⊥Þ�; f̃2ðq2⊥Þ ¼ −
M� þM

3
ffiffiffi
2

p
q⊥

½C0ðq⊥Þ þ C1ðq⊥Þ�; ð40Þ

[the function (27) is used in the calculation of Ds12ðq⊥Þ and Cs12ðq⊥Þ].

V. CURRENT MATRIX ELEMENTS IN HADRONIC REPRESENTATION

A. Form factors

The form factors fi, fRi and f̃i are invariant functions which can be used to describe observables in any reference frame.
The calculated observables (cross sections, helicity amplitudes,… etc.) should therefore be independent on the forms of the
dynamics. Hence, one can describe an observable, e.g., the helicity amplitude, by using the nucleon current in the instant
form,

JμNð0Þ ¼ ūN� ðp0Þ
��

γμ −
=qqμ

q2

�
F1 þ

iσμνqν
M� þM

F2

	
ΓuNðpÞ; Γ ¼ I; γ5; qμ ¼ p0μ − pμ; ð41Þ

and transform the current matrix elements to the light front without changing the value of the observable. This can be used to
relate the LF quark form factors fi, fRi ; f̃i to standard ones Fi, FR

i ; F̃i used in the parametrization of the instant nucleon
current.
Here we consider the plus-component of the nucleon current (41), JþN ¼ J0N þ J3N , as a matrix element of an operator

IþNð0Þ between initial and final states represented by Dirac spinors uNðpÞ and ūN� ðp0Þ (note the quark operator Iþð0Þ has
been defined by just the same method). It follows from Eq. (41) that the operators which generate transitions with parity
change (ĨþN) or without (I

þ
N) are of the form

IþNð0Þ ¼ γþF1 þ
iσþνqν
M� þM

F2; ĨþNð0Þ ¼
�
γþF̃1 þ

iσþνqν
M� þM

F̃2

�
γ5; γþ ¼ γ0 þ γ3: ð42Þ

Starting from the matrix elements ūN�ðp0ÞIþNð0ÞuNðpÞ and ūN� ðp0ÞĨþNð0ÞuNðpÞ written in the special Breit frame (19) we
transform the initial/final states to state vectors at light front using the Melosh transformation (8)–(9). In the end we obtain
the LF matrix elements of the nucleon current parametrized by the form factors Fi; FR

i ; F̃i:
(1) elastic scattering N1=2þ þ γ� → N1=2þ

f

�
M;

q⊥
2
; μ0

����IþNð0Þ
����M;−

q⊥
2
; μ

�
f
¼ δμ0μF1 − δμ0;−μð−1Þ1=2−μ0

q⊥
2M

F2; ð43Þ

(2) transition without parity change N1=2þ þ γ� → N�
1=2þ

f

�
M�;

q⊥
2

− Δ⊥; μ0
����IþNð0Þ

����M;−
q⊥
2

− Δ⊥; μ
�

f
¼ δμ0μFR

1 − δμ0;−μð−1Þ1=2−μ0
q⊥

M� þM
FR
2 ; ð44Þ

(3) transition with a change in parity N1=2þ þ γ� → N�
1=2−

f

�
M�;

q⊥
2

− Δ⊥; μ0
����ĨþNð0Þ

����M;−
q⊥
2

− Δ⊥; μ
�

f
¼ δμ0μð−1Þ1=2−μ0F̃1 − δμ0;−μ

q⊥
M� þM

F̃2: ð45Þ

Comparing the matrix elements of the nucleon current of Eqs. (43)–(45) to the LF quark model predictions given by
Eqs. (35)–(40) one can see that both parametrizations of the transition/elastic form factors, fi, fRi ; f̃i and Fi, FR

i ; F̃i,
are formally identical
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Fiðq2⊥Þ ¼ fiðq2⊥Þ; FR
i ðq2⊥Þ ¼ fRi ðq2⊥Þ; F̃iðq2⊥Þ ¼ f̃iðq2⊥Þ; q2⊥ ¼ Q2 ≡ −ðqμÞ2: ð46Þ

Thus the form factors fi; fRi ; f̃i, which are related to the functions A, B, C and D by Eqs. (36), (38) and (40)
respectively, give definite predictions for the observables Fi; FR

i ; F̃i.

B. Helicity amplitudes

We use the standard definitions (PDG [59]) for the transverse (A1=2) and longitudinal (S1=2) helicity amplitudes, written in
the resonance CM frame (CM momenta are denoted by an asterisk, p� ¼ −q�),

A1=2 ¼
ffiffiffiffiffiffiffiffiffi
4πα

2Kw

s
hN�; p�0; μ0j ¼ 1=2jϵðþÞ

ν ðq�ÞJνð0ÞjN; p�; μj ¼ −1=2i;

S1=2 ¼
ffiffiffiffiffiffiffiffiffi
4πα

2Kw

s
hN�; p�0; μ0j ¼ 1=2jϵð0Þν ðq�ÞJνð0ÞjN; p�; μj ¼ 1=2i: ð47Þ

In above equations Kw ¼ M2�−M2

2M�
, q�2 ¼ QþQ−

4M2�
, Q� ¼

ðM� �MÞ2 þQ2, and the vectors of the transverse and
longitudinal polarizations of the (virtual) photon are

ϵðλ¼�1Þ
ν ðq�Þ ¼ � 1ffiffi

2
p f0; 1;�i; 0g and ϵðλ¼0Þ

ν ðq�Þ ¼ 1
Q fjq�j;

0; 0;−q�0g, respectively.
Substituting the nucleon current (41), parametrized by

the form factors FR
i and F̃i, into the r.h.s. of Eq. (47) one

obtains [17,20,60,61] expressions for the desired helicity
amplitudes:
(1) for the electroproduction of positive parity

resonances,

A1=2 ¼ b
ffiffiffiffiffiffiffiffiffi
2Q−

p
ðFR

1 þ FR
2 Þ;

S1=2 ¼ b
ffiffiffiffiffiffiffi
Q−

p jq�j
Q2

�
ðM� þMÞFR

1 −
Q2

M� þM
FR
2

�
;

ð48Þ

(2) for the electroproduction of negative parity
resonances,

Ã1=2 ¼ b
ffiffiffiffiffiffiffiffiffi
2Qþp �

F̃1þ
M� −M
M� þM

F̃2

�
;

S̃1=2 ¼ −b
ffiffiffiffiffiffiffi
Qþp jq�j

Q2

�
ðM� −MÞF̃1 −

Q2

M� þM
F̃2

�
;

ð49Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πα
MðM2�−M2Þ

q
.

VI. RESULTS AND CONCLUSIONS

We study the electroproduction of low-lying nucleon
resonances in the framework of a relativistic quark model.
Quark configurations at light front are developed here for

orbitally/radially excited states satisfying the Pauli exclu-
sion principle. The next step in the study could be, in
analogy to the nuclear shell model, to take into account
configuration mixing. In hadron physics, however, it would
be more effective to take into account a nonquark compo-
nent of the baryon considering the lowest quark configu-
rations as the “quark core” of the resonance while adding
higher Fock states, e.g., a “meson cloud.”
Previously we have used another important ingredient of

our approach—the hadron molecule model [18,51,62],
which allows us to represent effectively a hadronic com-
ponent of the resonance. The corresponding technique has
been first suggested and thereafter developed in Refs. [63]
for the description of certain hadronic resonances dropping
out from the standard quark model classification.
In the first approximation a baryon resonance can be

represented as a mixed state of the quark core (3q�) and the
hadron molecule (BþM),

N�
1=2þ ¼ cos θRð3q�Þ þ sin θRðN þ σÞ;

N�
1=2− ¼ cos θ̃ð3q�Þ þ sin θ̃ðΛþ KÞ: ð50Þ

The hadron molecule as a loosely bound BþM state can
only give a “soft” contribution to the transition amplitude.
This contribution should be important at small/moderate
values of Q2 ≲ 1–2 GeV2, e.g., in the case of Roper
resonance [51], where the helicity amplitude A1=2 crosses
the zero value at Q2 ≃ 0.5 GeV2. In the region of high
momentum transfers the contribution of the hadron mol-
ecule to the transition form factors approaches zero, and can
be neglected. It should be mention that this component has a
weight of sin2 θ in the normalization integral, and thus the
observable contribution of the quark core to the form factors
will be reduced as compared with the ordinary quark model
prediction. This should be taken into account when one
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compares the quark model results to data at high Q2. A
possible underestimate of the quarkmodel predictions to the
data can lead to an estimate for the mixing angle θ.
Our results for the transition form factors and helicity

amplitudes are shown in Figs. 1 and 2 in comparison with
the high-quality data of the CLAS collaboration [1–10,12].
We have used only three free parameters, m, β and γ, in the
wave function of quark coreΦ0 of Eq. (27) in both cases the
nucleon and the negative parity resonance. Herem ¼ m1 ¼
m2 ¼ m3 is the mass of a light constituent quark (u, d). In
the case of the Roper resonance we also use two additional
parameters, the coefficients α and β1 of Eq. (28). The
parameters m, β and γ are common to all the resonances.
The parameter c2 in the wave function of the radially
excited quark core (26) is not free, since it is determined
from the orthogonality condition hΦ0jΦ02i ¼ 0. We neglect

the quark anomalous magnetic moments (ϰ1 ¼ ϰ2 ¼
ϰ3 ¼ 0) in the quark current defined in Eq. (18) as their
values are too small (ϰi ≲ 0.03, according to Ref. [18]).
The only influence they have is on the precise value of the
baryon magnetic momentum. Parameters m, β and γ are
taken from Refs. [18,42] where they were fitted to the
nucleon data in a large interval of 0 ≤ Q2 ≲ 32 GeV2. Only
the coefficients α and β1 for a superposition of the Gaussian
and the polelike wave function of Eq. (28) has been varied
to obtain the best description of the Roper resonance
helicity amplitudes. In the end we obtain a decent descrip-
tion (Figs. 1 and 2) of form factors and helicity amplitudes
of the three baryons (including the elastic nucleon form
factors described in Ref. [18]) at moderate/high momentum
transfer, Q2 ≳ 1–2 GeV2, making use of the following
values of parameters:
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FIG. 1. Helicity amplitudes and form factors of the γ�N → N�ð1535Þ transition. CLAS data: circles (bold) [2], squares (bold) [5],
triangle (bold) [6], circles (empty) [7], triangles (empty) [8], squares (empty) [9], diamonds [10]. Theoretical description in terms of a
light front (LF) quark model: dashed curves—results of calculations on the basis of three-quark configurations, s2p for the N� and s3 for
N, using a polelike quark core wave function Φ0 (denoted by LFQM(P) in the legends); solid curves—results for the model of Eq. (50)
with the “strong” value of mixing parameter cos θ ¼ 0.951 (θ ¼ 0.1π); dotted curves—results of the soft-wall AdS/QCD model [35].
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β ¼ 0.579 GeV; γ ¼ 3.51;

m ¼ 0.251 GeV; α ¼ 0.245; β1 ¼ 0.85β: ð51Þ

Transition form factors and helicity amplitudes for the
electroproduction of resonances of negative (Fig. 1)
and positive (Fig. 2) parity calculated with a common
for the nucleon and for the both resonances polelike
wave function Φ0 given in Eq. (27) are shown in Figs. 1
and 2 by dashed lines. In this case we neglect mixing of
the polelike wave function with the Gaussian for the
Roper resonance and use the function (28) with the zero
mixing (α ¼ 1).The obtained results are close to the data in

the case of N1=2−ð1535Þ, but in the case of N1=2þð1440Þ
there are strong deviations. In the latter case one
can improve the agreement by using a large mixing angle
θR for the molecular state N þ σ in Eq. (50), taking e.g.,
cos θR ≃ sin θR ≈ 0.7 as we have done in our previous
work [18]. However, the most realistic variant is a large
mixing parameter for another (loose) quark configura-
tion given in Eq. (28), (thin small-dashed lines in Fig. 2
which correspond to the value of α ¼ 0.245). Then we
obtain a good agreement with the data for the both
resonances, N1=2−ð1535Þ and N1=2þð1440Þ, using small
values of the mixing angle for the respective molecular
states, cos θ̃ ≃ cos θR ≃ 0.93 − 0.95 (Figs. 1 and 2, solid
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FIG. 2. Helicity amplitudes and form factors of the γ�N → N�ð1440Þ transition. Theoretical description in terms of a light front quark
model (LFQM): dashed curves—results on the basis of three-quark configurations, sp2 for the N�ð1440Þ and s3 for Nð940Þ, using a
polelike quark core wave function Φ0; short dashed curves—results of calculations using a superposition given in Eq. (28) of polelike
function (P) and Gaussian (G) in the quark core wave function ΦR

0 with α ¼ 0.245 (denoted by LFQMðPþ GÞ in the legends); solid
curves—results for the mixed-state model given in Eq. (50) with a “strong” value of the mixing angle, cos θR ¼ 0.930 (θR ¼ −0.12π)
(denoted by LFQMðPþ GÞ þ Nσ in the legends); dotted curves—results obtained in the soft-wall AdS/QCD approach [33]; dashed-
dotted curves—results for the nonrelativistic quark model (NRQM) with contributions of virtual q̄q pairs in terms of the 3P0 model [51].
The CLAS data (bold and empty circles) on one-pion [2,17] and two-pion [3] electroproduction off the proton. The A1 data on π0 (the
empty square) electroproduction [11].
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lines). The shaded region in Fig. 2 (left upper panel) shows
the range of the Roper helicity amplitude A1=2 with the
mixing angle changing from θR ¼ 0 to θR ¼ 180.
Our results demonstrate that the contribution of the

hadron molecule to the transition amplitude quickly dies
out with rising Q2 and might be neglected at high Q2. The
contribution of the quark core correlates well with the data
at Q2 ≳ 1–2 GeV2, if the parameter of mixing cos θ is
about 0.93-0.95. On this basis we predict the Q2-behavior
of amplitudes at high Q2 ≳ 5–7 GeV2 starting from the
quark core wave function alone.
In the case of the Roper resonance there are discrepan-

cies between the predictions of the model with the polelike
wave function Φ0 (dashed curves in Fig. 2) and the data.
We have shown that one can considerably improve the
agreement with data modifying only the quark core wave
function by the replacement Φ0 → ΦR

9 following Eq. (28).
This can be considered as an argument in support of the
inner quark structure of the Roper resonance contrary to
what might be expected from the above mentioned large
discrepancies between predictions and data.
It is possible that in the case of the Roper resonance the

unknown multiparticle component of the quark current
plays a more important role than in the case of other
resonances. It can be instructive to compare the results of
our model (solid curves in Figs. 1 and 2) with a good
description of the Roper resonance transition form factors
recently obtained in Ref. [33] (dotted curves in Fig. 2) in a
soft-wall AdS/QCD. The results of both LF models are
close to each other (and close to the data) at
Q2 ≳ 1–2 GeV2, but at low Q2 the results of the LF quark
model considerably differs from the AdS/QCD results
which stay close to the CLAS data. This discrepancy
can especially be traced to the strict requirement of
orthogonality for the ground (0S) and excited (2S) radial
wave functions of the N and R states belonging to quark
configurations with the same spin-isospin (S ¼ 1=2,
T ¼ 1=2) and symmetry (½3�ST ½3�X) quantum numbers.
Then, for the transition N → R (Roper), the matrix element
of the single-particle current (18), which does not act on the
orbital part of the wave function, should vanish for Q2 → 0
(because of the orthogonality of the orbital parts of the
baryon wave functions hRorbjNorbi ¼ 0), as it really seen in
Fig. 2 (solid and dashed curves are close to zero at
Q2 → 0). But the A1=2 data at Q2 ≃ 0 are not small.
Instead they cross the Q2 axis at Q2 ≃ 0.5 GeV2. The
discrepancy of the quark model results and the data in this
region can be an effect of multiparticle currents. We have
modeled such an effect in our preceding work [51] using a
non-relativistic 3P0 model for vacuum q̄q pairs. As a result
we have obtained a realistic description of the amplitude
A1=2 at small values of Q2 (dotted-dashed curves in Fig. 2).
In the region of Q2 ≲ 1–2 GeV2, where a nonrelativistic
quark model can be used reliably, such descriptions are

very close to the CLAS data. In both cases of the N →
N1=2þð1440Þ and N → N1=2−ð1535Þ transitions AdS/QCD
approach [33,35] (dotted lines) gives very good description
of data and large Q2 it is very close to the LF quark model
results (solid lines). Note that successful description of data
in AdS/QCD approach in low energy domain is explained
by inclusion of higher Fock states contribution into the
structure of nucleon and nucleon resonances, while at high
Q2 it is provided by the correct power scaling of the form
factors/helicity amplitudes consistent with quark counting
rules. Summarizing the results shown in Figs. 1 and 2 it is
worth noting that a good basis of quark configurations
constructed at the light front, as performed in Secs. III–IV,
might be an effective tool in the study of the inner structure
of baryons. This is particularly true when the study is based
on high-quality data on the baryon electroproduction at
high momentum transfer.
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APPENDIX A: CANONICAL AND FRONT
BOOSTS FOR PLAIN-WAVE STATES

The standard “rotationless” Lorentz transformation
Λð P

M0
Þ which connects the momenta of a free particle in

two different reference frames pμ
i → p0μ

i ¼ Λð P
M0
Þμνpν

i is
denoted by index c (canonical boost). The boosts Λc are
used in the case of the instant form of the dynamics. The
respective canonical basis is defined [49,50] as a basis of
the unitary representation of the Poincaré group

ffiffiffiffiffiffiffiffiffiffiffiffi
ωiðpiÞ
mi

s
jðmi; siÞ; pi; μii ¼ U

�
Λc

�
pi

mi

�	
jðmi; siÞ; p∘ i; μii;

pi ¼ Λc

�
pi

mi

�
p
∘
i; ðA1Þ

where p
∘ μ
i ¼ fmi; p

∘
ig, p∘ i ¼ 0. The factor

ffiffiffiffiffiffiffiffiffi
ωiðpiÞ
mi

q
follows

from the standard normalization condition
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chp0i; μ0ijpi; μiic ¼ ð2πÞ3δð3Þðp0i − piÞδμ0iμi : ðA2Þ

Apart from the canonical boost, the momenta p0μ
i

and pμ
i can be connected by another element G of the

homogeneous Lorentz group. In particular, it might
be the “front boost” Λfð P̃

M0
Þ with the respective front

basis jðmi; siÞ; p̃i; μiif, where p�
i ¼ ωiðpiÞ � piz, and

p̃i ≔ fpþ
i ; pi⊥g,ffiffiffiffiffiffi

pþ
i

mi

s
jðmi;siÞ;p̃i;μiif¼U

�
Λf

�
p̃i

mi

�	
jðmi;siÞ;p∘ i;μii;

p̃i¼Λf

�
p̃i

mi

�
p
∘
i;

fhp̃0i;μ0ijp̃i;μiif¼ð2πÞ3δð2Þðp0i⊥−pi⊥Þδðp0
i
þ−pþ

i Þδμ0iμi ;
ðA3Þ

which are used in the front form of the dynamics. The
matrices Λf which connect the momenta p̃0

i and p̃i,

p̃0μ̃
i ¼ Λfð P̃MÞμ̃ν̃p̃ν̃

i , are elements of the “front subgroup” of
the homogeneous Lorentz group. The light front t − z ¼ 0
is invariant under transformations of the front subgroup.
Canonical boosts Λð P

M0
Þ itself do not form a subgroup of

the Poincaré group, since the product of two boosts Λc
gives rise to the Wigner rotation Rw

Λ
�
Pa

M

�
Λ
�
Pb

M

�
¼Λ

�
P
M

�
Rw

�
Pa

M
;
Pb

M

�
; P¼Λ

�
Pa

M

�
Pb;

ðA4Þ

while the product of front boosts does not give rise to the
Wigner rotation,

Λf

�
P̃a

M

�
Λf

�
P̃b

M

�
¼ Λf

�
P̃
M

�
; P̃ ¼ Λf

�
P̃a

M

�
P̃b:

ðA5Þ
Starting from Eqs. (A1) and (A4) and using the relationship
RΛcðpi

mi
ÞR−1 ¼ ΛcðRpi

mi
Þ [49,50] one readily obtains that the

unitary irreducible representation of the canonical boost in
the free basis (A1) is of the form

U

�
Λc

�
P
M0

�	
jki;μiic¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ωiðpiÞ
ωiðkiÞ

s X
μ̄i

jRwpi; μ̄iicDð1=2Þ
μ̄iμi

ðRwÞ;

pi¼Λc

�
P
M0

�
ki; ðA6Þ

where the arguments of the D function are the Euler angles
of the Wigner rotation (A4). The unitary irreducible
representation of the front boost is of a trivial form

U

�
Λf

�
P̃
M0

�	
jk̃i;μiif¼

ffiffiffiffiffiffi
pþ
i

kþi

s
jp̃i;μiif; p̃i¼Λf

�
P̃
M0

�
k̃i:

ðA7Þ

According to Eq. (A7) the z component of the front spin is a
kinematical variable with the value of μi being constant at
any transformation which leaves the light front t − z ¼ 0
invariant (including the spatial rotations around the z axis).
Therefore the μi can be identified with an additive quantum
number, the helicity of the particle at the light front [64].
In Eqs. (A6) and (A7) the connection between the

momenta ki and pi is symbolically written as pi ¼ Λki.
This implies the following 4 × 4matrices for boosts Λc and
Λf [49,50]:

pμ
i ¼ Λc

μ
νkνi ¼

0
BB@

P0

M0

P
M0

P
M0

�
δij þ PiPj

M2
0
ð1þP0

M0
Þ

�
1
CCA
�
ωiðkiÞ
ki

�
; μðνÞ ¼ 0; 1; 2; 3; ðA8Þ

p̃μ̃
i ¼ Λf

μ̃
ν̃ k̃

ν̃
i ¼

0
BBB@

Pþ
M0

0 0

P⊥
M0

1 0

P⊥2

M0Pþ
2P⊥
Pþ

M0

Pþ

1
CCCA
0
BB@

kþi
ki⊥
k−i

1
CCA; μ̃ðν̃Þ ¼ þ;⊥;−: ðA9Þ

The front boost (A9) does not mix the “kinematical component” (k̃i ¼ fkþi ; ki⊥g) of momentum k̃ν̃i with its “dynamical

component” (k−i ¼ m2
iþk2i⊥
kþi

), while the canonical boost (A8) mixes the ki and the ωiðkiÞ. However in both cases the 3-

momentum is an additive quantum number: Pþ
12 ¼ pþ

1 þ pþ
2 , P

þ ¼ pþ
1 þ pþ

2 þ pþ
3 , P12⊥ ¼ p1⊥ þ p2⊥;…, etc. A similar

property holds for the relative momenta, k̃ ¼ Λ−1
f ðP̃12

m12
Þp̃1 and K̃ ≡ k̃3 ¼ Λ−1

f ð P̃
M0
Þp̃3, which are connected with the momenta

p̃i by the linear relations
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k⊥ ¼ x2p1⊥ − x1p2⊥
x1 þ x2

; K⊥ ¼ ðx1 þ x2Þp3⊥ − x3ðp1⊥ þ p2⊥Þ
x1 þ x2 þ x3

; ðA10Þ

kþ ¼ m12

Pþ
12

pþ
1 ¼ x1

x1 þ x2
m12; Kþ ≡ kþ3 ¼ M0

Pþ pþ
3 ¼ x3

x1 þ x2 þ x3
M0; ðA11Þ

where

xi ¼
pþ
i

Pþ ¼ kþi
M0

: ðA12Þ

These relations can be readily obtained by using the inverse of the matrices (A9). Since x1 þ x2 þ x3 ¼ 1, only two
independent parameters, ξ and η, instead of xi,

x1 ¼ ξη; x2 ¼ ð1 − ξÞη; x3 ¼ 1 − η; ðA13Þ

are used.
The important property of the variables (A10)–(A12) is that the values of k⊥ ¼ jk⊥j; K⊥ ¼ jK⊥j and xi are relativistic

invariants [it can be readily verified with the relations (A9)] and the invariant masses m12 and M0 defined in Eq. (4) are
functions only of k⊥, k⊥, ξ and η,

m2
12 ¼

k2⊥ þm2

ξð1 − ξÞ ; M2
0 ¼

m2
12

η
þ K2⊥ þ ηm2

ηð1 − ηÞ ; m1 ¼ m2 ¼ m3 ¼ m: ðA14Þ

In particular, one can use the functionM0ðk⊥; K⊥; ξ; ηÞ as an argument of the relativistic wave functionΦLF
MjðM0Þ in Eq. (5)

rewritten at the light front.

APPENDIX B: FORMS OF THE RADIAL PART OF THE RESONANCE WAVE FUNCTION

Following the Bakamjian-Thomas approach [55] we use here the M0-dependent radial wave functions (26)–(28).
Besides, the origin of theM0-dependance of radial 3q wave functions can be seen if one starts from configurations sp2 and
s22s which are symmetric relative to quark permutations Pij. In the CM reference frame (P ¼ k1 þ k2 þ k3 ¼ 0) the
configurations read

jsp2½3�XL ¼ 0i ¼ N 1

k1k2 þ k1k3 þ k2k3
β2

Φ0; js22s½3�XL ¼ 0i ¼ N 2

X
i

ð1 − 3k2i =ð2β2ÞÞΦ0: ðB1Þ

Each factor in the r.h.s. of Eq. (B1) is symmetric relative to quark permutations Pij, e.g., PijΦ0 ¼ Φ0,
Pijðk1k2 þ k1k3 þ k2k3Þ ¼ k1k2 þ k1k3 þ k2k3. Furthermore, the factor

P
i≠j kikj can be represented by a sum of two

symmetric terms,

k1k2 þ k1k3 þ k2k3 ¼ 3m2 −M2
0 þ 2ðω1ω2 þ ω1ω3 þ ω2ω3Þ

≡m2

C

��
1 − C

M2
0 − 9m2

m2

�
−
�
1 − 2C

ω1ω2 þ ω1ω3 þ ω2ω3 − 3m2

m2

�	
; ωi ≡ ωðkiÞ; ðB2Þ

PijM0 ¼ M0, Pijðω1ω2 þ ω1ω3 þ ω2ω3Þ ¼ ω1ω2 þ ω1ω3 þ ω2ω3. Both terms in the last row of Eq. (B2) depend on a
common free parameter C which can be used to define the new coefficients

CR ¼ Cβ2

1þ 9C
; cr ¼

2Cβ2

ð1þ 6CÞm2
; N R ¼ N 1

1þ 9C
2C

m2; nr ¼
1þ 6C
1þ 9C

; ðB3Þ

and to rewrite Eq. (B2) in the final form
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N 1

k1k2 þ k1k3 þ k2k3
β2

¼ N R

��
1 − CR

M2
0

β2

�
−nr

�
1 − cr

ω1ω2 þ ω1ω3 þ ω2ω3 − 3m2

β2

�	
: ðB4Þ

The analogous term N 2
k2
1
þk2

2
þk2

3

β2
of the configuration s22s has the same representation and eventually a superposition of

configurations sp2 and s22s can be written in the form

jðsp2 − s22sÞ½3�XL ¼ 0i ¼ Ñ R

��
1 − C̃R

M2
0

β2

�
þñr

�
1 − c̃r

ω1ω2 þ ω1ω3 þ ω2ω3 − 3m2

β2

�	
Φ0; ðB5Þ

where new (final) values of coefficients C̃R, c̃r and ñr are
only limited by constrains which follow from the ortho-
gonality condition

hs3½3�Xjðsp2 − s22sÞ½3�XL ¼ 0i ¼ 0 ðB6Þ
The value of the coefficient ñr depends on relative

weights of configurations sp2 and s22s used in the
superposition sp2 þ s22s. It is instructive to vary the

relative weights (it is equivalent to variation of coefficient
ñr). Our calculations show that observables (the helicity
amplitudes) depend only slightly on the value of ñr and the
best result in description of the data corresponds to the limit
value ñr → 0. Therefore, the M0-dependent radial wave
functions (26)–(28) for the Roper resonance correspond to
the limit value of the parameter ñr in the r.h.s. of
Eq. (B5), ñr ¼ 0.
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