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The nontrivial fixed point discovered for ϕ4-marginal couplings in tensorial group field theories has been
shown to be incompatible with Ward-Takahashi identities. In a previous analysis, we have stated that the
case of models with interactions of order greater than four could probably lead to a fixed point compatible
with local Ward identities. In this paper, we focus on a rank-4 Abelian ϕ6-just-renormalizable tensorial
group field theory and describe the renormalization group flow over the subtheory space where the Ward
constraint is satisfied along the flow, by using an improved version of the effective vertex expansion. We
show that this model exhibits a nontrivial fixed point in this constrained subspace. Finally, the well-known
asymptotically freedom of this model is highlighted.
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I. INTRODUCTION

Group field theories (GFTs) are a type of nonlocal field
theories defined on d copies of a group manifold. For more
than a decade, they have been considered as a promising
way to quantize gravity [1–6]. A well-defined theory for
quantum gravity is necessary to understand the nature of
space, time, and geometry and especially to address
questions about the origins of our Universe. Indeed, the
current description remains incomplete and fails at the
Planck scale lp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
because of the incompatibility

between general relativity and quantum theory [7]. In the
past years, some important developments were given in
various directions to think about the question of quantum
gravity, such as random geometry, canonical quantum
gravity, and the covariant approach with spin-foam models,
which have together converged toward the definition of
GFTs [8–17]. In particular, GFTs provide a unified and
convenient field theoretical framework to discuss the
second quantization of loop quantum gravity (LQG) states,
and their Feynman amplitudes coincide with spin-foam
amplitudes, with a canonical weight [18–26]. Tensorial
group field theories (TGFTs) are an improvement of the
standard GFTs, including tensoriality as a strong criterion

to build interactions [27–33]. Tensoriality comes from
colored random tensors models (RTMs) and corresponds
to a specific invariance with respect to internal unitary
transformations [27–33]. RTMs provide a nice generaliza-
tion of randommatrixmodels and are viewed as a convenient
formalism for studying random geometry for dimensions
higher than two [33]. The first success of RTMs was the
discovery byGurau (in 2009) of a 1=N expansion for tensors,
analogous to the ’t Hooft expansion for matrix models from
which the genus is being replaced by a nontopological
invariant called Gurau’s degree [27–32,33]. Tensoriality
has been pointed out to be a very strong improvement,
allowing one to define the renormalization group and
renormalizable actions. Renormalization and renormaliz-
ability take place in a geometrogenesis scenario for space-
time emergence [34–42]. In this scenario, the large-scale
structure of space-time with respect to the Planck scale is
describe as a GFT condensate, analogous to the Bose-
Einstein condensates in bosonic many-body systems
[20–25]. The renormalization group (RG) allows one to
build effective field theories from an elementary scale and to
understand dynamical phase transitions in statistical and
quantum systems (see [43–80], and references therein). In
this respect, it was considered as a very important tool to
understand the condensation mechanism in GFT.
The RG equations describe how the effective actions

move when quantum fluctuations higher than a reference
running scale are integrated out, building a path from
the deep UV scale toward the large IR scales [43–47].
The trajectories from UV to IR are described as a
flow through the infinite-dimensional functional space of
allowed actions, the theory space. Nonperturbative methods
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to build the RG group exist in standard field theories, the
most popular and tractable being the functional renormal-
ization group (FRG) method, based on the Wetterich-
Morris equation [45–47]. These standard tools have been
successfully applied for TGFT, a success especially due to
the flexibility and the simplicity of the formalism, allowing
one to deal with the specific nonlocalities of the TGFT
interactions. Nonperturbative RG equations are known to
be difficult to solve for TGFTmodels, as well as in standard
field theory. This is why a large part of the studies on this
topic limit their investigation of the truncation approxima-
tion. Truncation consists of a systematic projection into a
reduced dimensional phase space along which the flow
equations may be solved analytically or numerically. This
method has been performed for a very large class of models
[62–69]. Interestingly, all of them reveal the occurrence of a
nonperturbative fixed point in the symmetric phase, that is,
as long as the vanishing mean field remains a good vacuum
around which we can expand the flow equation. These
fixed points play different roles but are crucial, both for UV
consistency of the theory and to support the condensation
scenario. For the first case, the UV fixed point ensures the
UV completion of the models, which are stated to be
asymptotically free (and in the worst cases asymptotically
safe [66]). The IR fixed point, in contrast, corresponds to
nontrivial sums of spin-foam amplitudes at a large scale and
then are reminiscent of a phase transition behavior.
In the deep UV, instead of a crude truncation into the full

theory space, a recent approach [76–80] proposes to solve
the same question, by replacing the truncation by the
effective vertex expansion (EVE) in the reduced phase
space with a closure of the hierarchical system derived from
the exact RG group equation. To be more precise, in the
EVE approach, we make use of relevant and marginal
coupling as drivers of the full RG flow in the deep UVand
solve the RG equations, discarding all the irrelevant
contributions. The resulting equations, moreover, keep
the full momenta dependence of the vertex function,
allowing one to investigate beyond the local potential
approximation. This, in particular, plays an important role
for the derivation of the anomalous dimension and provides
a relevant correction with respect to the truncations. In
addition to these closure relations, the Ward-Takahashi
identities provide some constraints which have to be solved
simultaneously with the flow equations, at the same level of
approximation. Taking into account this constraint seems to
modify the picture drawing from flow equations only, in
particular, for the existence of non-Gaussian fixed points.
In this paper, we will investigate the Ward-constrained

RG flow for a ϕ6-just-renormalizable model in rank 4. This
model has been well defined and studied in Refs. [34,36]
(see also Ref. [41] in the case of a gauge-invariant model).
The motivation to be interested in such a model is the
following: Note that the existence of a non-Gaussian fixed
point can be understood from the following heuristic

argument. As shown in Ref. [73], the TGFT Feynman
amplitudes can be analytically continued with respect to the
group dimension D: Uð1Þ → Uð1ÞD. The power counting
then indicates that there are two just-renormalizable models
in rank 4: the ϕ6 melonic model in group dimensionD ¼ 1
that we will describe in Sec. II and which is asymptotically
free and the formal quartic melonic model in dimension
D ¼ 4=3, which is also asymptotically free. Let jϵj ≪ 1.
The one-loop beta function for the quartic melonic model in
dimension D ¼ 4=3 − ϵ may be straightforwardly com-
puted from the exact RG equation (24) to get

βð1Þλ ¼ −3ϵλ̄ − 2ηð1Þλ̄þ 4λ̄2
ffiffiffi
π

p þOðλ̄2; ϵÞ; ð1Þ

βð1Þ
m2 ¼ −ð2þ ηð1ÞÞm̄2 − 8λ̄

ffiffiffi
π

p þOðλ̄2; ϵÞ; ð2Þ

where λ̄ and m̄2 refer to the renormalized and dimensionless
melonic coupling and mass parameter, respectively, and the
one-loop anomalous dimension ηð1Þ is given by

ηð1Þ ¼ 4λ̄
ffiffiffi
π

p
: ð3Þ

Equations (1) admit a nontrivial fixed point for the values

λ̄� ¼ −
3ϵ

4
ffiffiffi
π

p ; m̄2� ¼ 3ϵ: ð4Þ

Now, let us consider the Ward constraint. From the results
in Refs. [76–78], recalled in Sec. III C, the Ward identities
enforce a relation between beta functions and the anoma-
lous dimension. However, at one-loop order, this relation
reduces to

βð1Þλ ¼ −3ϵλ̄ − ηð1Þλ̄þOðλ̄2; ϵÞ; ð5Þ
which is nothing but the first equation (1).At one loop, and at
the first order in ϵ, the non-Gaussian fixed point (4) is then
compatible with the Ward identities. This fixed point has an
attractive and a repulsive eigendirection in the UV, as
qualitatively illustrated in Fig. 1, but it has the “wrong
sign,” a negative coupling which is able to break down the
boundedness of the effective action. However, we have to
keep in mind that ϵ ≠ 0 increases the strength of the
inessential couplings; as a result, if such a formal fixed
point survives in the limit ϵ → 1=3, when the ϕ6 couplings
become marginal, it may be viewed as a UVattractive fixed
point ensuring UV completion of the RG flow. The same
phenomena has been pointed out in Ref. [73]. However, the
aim of this paper is to determine if such a fixed point remains
compatiblewithWard identities, by describing the flow at all
orders in the coupling and the parameter ϵ and by using the
EVE approach to solve the nonperturbative RG equation.
The outline of this paper is the following. In Sec. II, we

describe the model and argue in favor of a reduced family
of ϕ6 couplings called nonbranched. In Sec. III, we use the
EVE method to solve the nonperturbative RG equation.
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Finally, in Sec. IV, we briefly describe the RG flow in the
vicinity of the Gaussian fixed point, allowing one to
recover the asymptotic freedom property. We then improve
our analysis by implementing the so-calledWard-constraint
melonic flow and conclude that one new nontrivial fixed
point can be found on this subspace.

II. MICROSCOPIC MODEL AND
NONPERTURBATIVE RG

As mentioned in the introduction, a GFT is a field theory
whose fields are defined over d copies of a group manifold
G. In this paper, we focus on the d-dimensional torus and

set G ¼ Uð1Þ, for a class of theories describing one
complex field ϕ; ϕ̄∶Uð1Þd → C with the free action:

Skin½ϕ; ϕ̄� ¼
Z
Gd

dgϕ̄ðgÞð−Δg þm2ÞϕðgÞ; ð6Þ

where g ≔ ðg1;…; gdÞ ∈ Gd and where Δg is the Laplace-
Beletrami operator. For TGFTs, the interaction part is built
as a sum of connected tensorial invariants called bubbles.
A bubble involves the same number of fields ϕ and ϕ̄, such
that any variable of a field ϕ is contracted with the
corresponding variable of a field ϕ̄, ensuring a proper
unitary invariance per contracted indices. The elementary
example is a masslike term:

Z
dgϕ̄ðg1; g2;…; gdÞϕðg1; g2;…; gdÞ: ð7Þ

For higher-order interactions, we make use of a convenient
graphical notation. To each field ϕ (respectively, ϕ̄), we
associate a white (respectively, black) node, with d-colored
half edges hooked to it. Each of these colored edges
corresponds to the group arguments, and the colors to
their labels. For a given number of white dotes, the allowed
interactions correspond to the number of different ways to
hook the edges of the black and white nodes together,
following their respective colors. As a result, each bubble
may be graphically pictured as a d-colored bipartite regular
graph, and the interaction part of the classical action is in
full generality written as

ð8Þ

It should be noted that, in the ϕ6
4 terminology, the number 4

corresponds to the rank of the tensors ϕ and ϕ̄, i.e., the
dimension d. On the other hand, the number 6 is the
maximal valence of the interactions. The spectrum of the
Laplace-Beletrami operator introduces a canonical notion
of scale, allowing one to build a renormalization group for
this class of theory. This work has been done in a series of
different works since 2012 [34–42], investigating pertur-
bative and nonperturbative aspects. The most difficulty
with respect to standard quantum field theories or statistical
models comes from the specific nonlocality of the TGFT
interactions. In order to deal with this specificity, an
appropriate notion of locality has been addressed [40].

Definition 1.—For tensorial group field theories, con-
nected bubbles are said to be local interactions.
The Feynman graphs G indexing the amplitudes of the

perturbation theory are 2-simplex, i.e., a set of vertices,
edges, and faces: G ≔ ðV;L ∪ Lext;F ∪ F extÞ, respec-
tively, with cardinality V, L, Lext, F, and Fext. The sets
of edges and faces split into internal and external subsets,
respectively, without an index and with index “ext.” For
this, let us recall the definition of a face.
Definition 2.—A face is a maximal bicolored subset of

edges, including necessarily the color zero awarded from
the Wick contractions. The subset can be closed and/or
opened, respectively, for closed and open faces.

FIG. 1. A qualitative description of the non-Gaussian fixed
point in the ϵ expansion.
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For TGFTs as for any quantum field theory, perturbative
amplitudes are indexed by Feynman graphs. The power
counting has been established [34], and the superficial
degree of divergence ωðGÞ corresponding to the graph G is

ωðGÞ ≔ −2LðGÞ þ FðGÞ: ð9Þ
The power counting allows one to classify the theories
following their renormalizability. For a given order in the
perturbation expansion, the optimal graphs with respect to
the power counting (9) are called melonics. They are the
graphs having the greatest number of faces by fixing L, and
one can show that for melonic diagrams the three numbers
V, L, and F are related as

F ¼ ðd − 1ÞðL − V þ 1Þ: ð10Þ
Denoting ρ ≔ ðd − 1ÞðL − V þ 1Þ − F ≥ 0, the power
counting may be rewritten as

ωðGÞ ¼
X
k

ððd − 3Þk − ðd − 1ÞÞvkðGÞ þ ðd − 1Þ

−
NðGÞ
2

ðd − 3Þ − ρðGÞ; ð11Þ

where vk denotes the number of bubbles valence 2k (i.e.,
having k white nodes) and NðGÞ ¼ N is the number of
external edges of the graph G. For melonic diagrams,
ρðGÞ ¼ 0. The theory is said to be just renormalizable if and
only if ðd − 3Þk − ðd − 1Þ ≤ 0, the maximal valence being
k0 ¼ ðd − 1Þ=ðd − 3Þ. In particular, for d ¼ 4, we get
k0 ¼ 3. The power counting suggests the existence of a
just-renormalizable model involving ϕ6 interactions, with

ωðGÞ ¼ −2v1ðGÞ − v2ðGÞ þ 3 −
NðGÞ
2

− ρðGÞ: ð12Þ

For ρ ¼ 0, only melonic diagrams with N ≤ 6 are diver-
gent. Moreover, one can easily show that ρ ≥ 1, implying
that, for N ≥ 4, all the superficially divergent diagrams are
melonics; see Ref. [34]. An example of two-point super-
ficially subleading divergent graph is given in Fig. 2. From

the locality principle, Definition 1, the divergent subgraphs
can be subtracted with local counterterms. The procedure
may be extended successfully to all orders of the pertur-
bative expansion, allowing one to prove a solid renormaliz-
ability theorem [34–42].
Let G be a melonic diagram, and then its vertex bubbles

have to be melonic. We recall briefly the definition of the
melonic bubbles.
Definition 3.—Any melonic bubble bl of valence l may

be deduced from the elementary melon b1:

ð13Þ

replacing successively l − 1 colored edges as follows,
defining the insertion operator Ri:

ð14Þ

Then bl ≔ ðQl−1
α¼1RiαÞb1.

The melon graphs were introduced in the colored
random tensor models, where they arise as leading-order
graphs in the 1=N expansion.1 This expansion is charac-
terized with an exponent ϖ playing the same role as the
genus for random matrices, the Gurau degree, vanishing
for melons. The Abelian ϕ6

4-melonic model,2 defined with
the classical action

ð15Þ

has been shown to be just renormalizable, and a
Bogoljubow-Parasjuk-Hepp-Zimmermann (BPHZ) theo-
rem has been also proved [34].

The renormalization group flow describes the change of
the couplings in the effective action when UV degrees of
freedom are integrated out. The FRG formalism is a

FIG. 2. A subdivergent two-point diagram built from a six-
point vertex. The dotted edges correspond to the Wick contrac-
tions. From a direct computation, ω ¼ −2 × 2þ ð3þ 1Þ ¼ 0.

1Remark that in the terminology “1=N expansion” N refers to
the size of the tensors but is not the number of external edges of
the graph G which is also denoted by N.

2The expression “melonic” referred to the leading-order
contribution; i.e., the partition and correlation functions admit
perturbative expansions which are dominated by peculiar trian-
gulations of spheres called melons.
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specific way to build such an evolution in the theory space
of all possible actions. It has been shown to be a promising
theoretical framework for tensorial field theory, allowing
one to deal with the specific nonlocality of the interactions
and to investigate the nonperturbative regime. In the FRG
formalism, the quantum model is described by a one-
parameter family of partition functions fZkg, k ∈ R, from
a microscopic action S in the deep UV (k ¼ Λ) to an
effective action Γ in the deep IR (k ¼ 0). For just-
renormalizable models, the microscopic scale Λ becomes
irrelevant and may be removed in the continuum limit
Λ → ∞. If k walks around the interval ½Λ; 0�, we run
through successive effective models, with effective average
action Γk. The step partition function ZkðJ; J̄Þ is defined as

ZkðJ; J̄Þ ≔
Z

dϕdϕ̄e−S½ϕ;ϕ̄�−Rk½ϕ;ϕ̄�þJ̄·ϕþϕ̄·J ∀ k ∈ ½0;Λ�;

ð16Þ
where a · b ≔

R
dgaðgÞbðgÞ. The driving or coarse grain-

ing along the RG flow is ensured by the regulator function
Rk½ϕ; ϕ̄�, which behaves like a momentum-dependent mass
term:

Rk½ϕ; ϕ̄� ≔
Z

dgϕ̄ðgÞrkð−ΔÞϕðgÞ; ð17Þ

ensuring that the UV degrees of freedom with respect to
the running scale k are integrated out, with boundary
conditions:

Γk¼Λ ¼ S; Γk¼0 ¼ Γ: ð18Þ
The regulator rkð−ΔÞ depends on the spectrum values of
the Laplace-Beletrami operator and is positive defined. For
convenience, we work in the momentum representation, the
Fourier components of the fields ϕ and ϕ̄ becoming discrete
tensors on Z4:

ϕðg1; g2; g3; g4Þ ¼
X
p⃗∈Z4

Tp1;p2;p3;p4
ei
P

j
pjθj ;

ϕ̄ðg1; g2; g3; g4Þ ¼
X
p⃗∈Z4

T̄p1;p2;p3;p4
e−i

P
j
pjθj ; ð19Þ

the θ coordinates being angle variables θj ∈ ½0; 2π½, such
that gj ¼ eiθj . In Fourier representation, rk becomes a
function of the square of the momentum only, having
generically the following structure:

rkðp⃗2Þ ≔ k2fðp⃗2=k2Þ: ð20Þ
The function f has to be positive defined as well and has to
satisfy some requirements with respect to the boundary
conditions (18), among which
(1) limk→Λ rkðp⃗2Þ ≫ 1,
(2) limk→0 rkðp⃗2Þ ¼ 0,
(3) rkðp⃗2 > k2Þ ≃ 0.

The effective average action Γk is defined as a slightly
modified Legendre transform of the free energyWk ≔ lnZk:

Γk½M; M̄� þ Rk½M; M̄� ¼ J̄ ·M þ M̄ · J −Wk½J; J̄�; ð21Þ

where the mean fields M and M̄ are themselves tensor
fields, defined, respectively, as

Mp⃗ ≔
∂Wk

∂J̄p⃗ ; M̄p⃗ ≔
∂Wk

∂Jp⃗ : ð22Þ

The presence of the Rk term in the definition (21) enforces
the initial condition Γk¼Λ ¼ S. Moreover, it means that
the effective two-point function Gk has to be related with
the second derivative of the effective action, i.e.,

Γð2Þ
k ≔∂M∂M̄Γk, as:

Gkðp⃗; p⃗0Þ ≔ ðΓð2Þ
k þ rkIÞ−1ðp⃗; p⃗0Þ; ð23Þ

where I designates the identity matrix. The effective average
actionmoves through the theory spacewith the running scale
k, and its evolution obeys the exact flow equations known as
Wetterich-Morris equations:

_Γk ¼
X
p⃗∈Z4

_rkðp⃗2ÞðΓð2Þ
k þ rkIÞ−1ðp⃗; p⃗Þ; ð24Þ

where the dot designates the derivative with respect to the
normal coordinate along the flow curves: s ≔ ln k. Despite
its simplicity, this equation is very difficult to solve exactly
and requires appropriate approximation schemes. This diffi-
culty may be tracked by taking in theWetterich equation the
successive derivations with respect to the mean fieldsM and
M̄, generating an infinite hierarchical system of coupled
equations. For TGFTs, the nonlocality of the interactions
introduces a substantial difficulty, discarding some powerful
tools used for standard quantum fields. Until recent years,
only the truncation method, which stops crudely the hier-
archical system, seemed to be relevant to solve Eq. (24).
Some progress in solving the flow equation beyond the
truncation method has been made in a series of recent works
[76–80]. The method, called EVE, allows one to truncate
“smoothly” the infinite hierarchical system, closing it around
marginal operators. The strategy is to use relevant and
marginal operators to drive the flow of the highest-order
effective vertices, all expressed in terms of a reduced set of
effective functions. In this approach, moreover, a fixed point
for the reduced system has to be as well a global fixed point.
Until now, there are four limitations for this method. First of
all, it works well only in the UV sector Λ ≫ k ≫ 1, where
only leading-order contributions survive. This condition
plays an important role, the properties of the leading sector
being used to close the hierarchical system. Second, it seems
difficult to use it for branching interactions like the inter-
action associatedwith the coupling λ6;2 in Eq. (15). Third, the
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method is difficult to extend for the highest order of the
derivative expansion. Finally, the EVE method has not been
applied beyond the symmetric phase, where the mean fields
vanish. Among the relevant properties of the region of the
phase space reached from an expansion aroundM ¼ M̄ ¼ 0,
we mention the following, discussed in Refs. [77–79].
Property 1.—In the symmetric phase, all the odd

effective vertex functions not having the same number of
derivatives with respect to M and M̄ vanish. Moreover, the
effective two-point function Gkðp⃗; p⃗0Þ is diagonal:

Gkðp⃗; p⃗0Þ ≔ Gkðp⃗Þδðp⃗; p⃗0Þ: ð25Þ

To fix the initial conditions, we restrict our attention to
the nonbranching sector, defined as follows.
Definition 4.—A nonbranching melonic bubble of

valence l, bðiÞl is labeled with a single index i ∈ ⟦1; 4⟧
and defined such that

bðiÞl ≔ ðRiÞl−1b1: ð26Þ

Figure 3 provides the generic structure of melonic
nonbranching bubbles.
As mentioned before, the method we consider in this

paper to deduce the flow equations works well only for the
nonbranching sector. The same point has been discussed
for another family of graphs called pseudomelons in

Ref. [79], and it is a first source of limitation for our
incoming conclusions. The interest of this sector in the
fixed point investigation has been pointed out in Ref. [66]
for a non-Abelian TGFT over SUð2Þ3 with a closure
constraint. Because we expect that the UV behavior of
this model and the model defined by the action (15) are the
same, the restriction to the nonbranching sector seems to be
not so bad as a starting condition. There is another interest
for this restriction, justifying the terminology “sector.” In
the UV domain Λ ≫ k ≫ 1, the corresponding reduced
theory space is stable under the renormalization group
transformations. Indeed, deriving the flow equation (24)
with respect to M and M̄, and from Property 1, we get that

the flow equation for ΓðnÞ
k involves Γðnþ2Þ

k , ΓðnÞ
k , and the

smallest effective vertices. All these effective vertices can
be labeled with a bubble drawing the pattern following
which external momenta are pairwise identified and cor-
responding to the boundary graph of the relevant Feynman
graphs involved in perturbative expansion of these effective
vertex functions. From a direct inspection, it can be easily
checked recursively that, starting with effective vertices
indexed with nonbranching melonic bubbles as building
blocks, we do not generate leading-order one-loop con-
tributions outside of the nonbranching subspace. The
calculations of Sec. III A support explicitly this argument.
From these considerations, the microscopic action S,

fixed for some fundamental UV scale Λ, is the following:

ð27Þ

where Z−∞, Z2, Z4, and Z6 denote, respectively, the wave
function, mass, and coupling counterterms. From the
renormalizability theorem, they allow one to cancel all
the divergences occurring in the perturbative expansion. In
the standard nonperturbative RG analysis, these counter-
terms are not explicitly introduced, and the choice of the
initial conditions is not extensively discussed. The reason
why we discuss them has been explained in a recent
work [80] for a melonic ϕ4 model. The nonperturbative
equation (24) is divergence free due to the regulator
function _rs. However, we will discuss the compatibility
between flow equations and Ward identities; and some UV
divergences occurs in them, as a consequence of the

nonlocality of the interactions. Counterterms are then
essential to deal with these specific divergences. The index
“−∞” refers to the fact that the finite part of the counter-
terms in fixed in the deep infrared limit k → 0 or s → −∞.
Note that the limit may be formal and simply means that it
is chosen for very small k, i.e., at a scale so far from the
domain k ≪ 1.
To conclude this section, we provide some central notion

for our analysis called the canonical dimension. In standard
quantum field theories (QFTs), the dimension of the
interactions is closely related with their renormalizability.
Interactions with positive or vanishing (momentum) dimen-
sions are renormalizables, while the ones with negative

FIG. 3. Structure of the nonbranching melons, from the smallest one b2.
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dimensions are nonrenormalizables. For GFTs, however,
the situation is more subtle. There is no reference scale in
the classical action (27), and the sums over Zd are
dimensionless in contrast with integrations over space-time
in the ordinary QFT. There are two ways to introduce a
dimension in the GFT framework and recover the standard
classification following the dimension of the couplings.
The first one is to make contact with physical quantities. In
particular, for non-Abelian models over SU(2), the spec-
trum of the Laplacian may be related with the size of the
area operator in LQG, and the result can be extended for
Abelian cases. The second strategy is to fix the dimension
from the renormalization group flow. Indeed, the leading-
order scaling of the operators with respect to the UV cutoff
may be viewed as a dimension; and from the definition
of a just-renormalizable model, one expect that just-
renormalizable interactions scale logarithmically with the
cutoff and then have zero dimension. For melonic diagrams
in the UV, one can easily check the canonical dimension
of the operators from the power-counting law (9). Any
leading-order N-point functions built only with six-point
interactions scale as

ω ¼ 3 −
N
2
: ð28Þ

In particular, the proper scaling of the leading-order six-
point functions vanishes, meaning that it scales logarithmi-
cally with the UV cutoff. Following the definition of the
canonical dimension as the leading-order scaling of the
quantum corrections, it makes sense to associate a dimen-
sion zero for the coupling λ6. For the same reason, setting
N ¼ 4, the dimension of the coupling λ4 has to be 1. Indeed,
from the definition of renormalizability, we expect a pro-
liferation of just-renormalizable interactions, which have to
fix the leading scaling. Note that this condition is compatible
with the “cost” −1 of the ϕ4 melonic bubbles in the power
counting (9). Finally, the dimension of the mass parameter
has to be 2. For interactions with valenceN=2, the canonical
dimension is explicitly given from formula (28). We then
recover the standard classification, renormalizable inter-
actions having a positive dimension and nonrenormalizable
ones having a negative dimension. For an extended dis-
cussion, the reader may consult Ref. [39].

III. SOLVING THE RG EQUATION IN THE
NONBRANCHING SECTOR

In this section, we solve the exact flow equation (24)
using the EVE approximation scheme introduced in
Refs. [76–80]. The melonic model that we consider being
very close to the nonbranching pseudomelonic sector dis-
cussed in Ref. [78], we give only the main steps of the proof.
As explained in the previous section, the strategy is to close
the hierarchical system of coupled equations deduced from
Eq. (24), that is, to explain the effective vertex Γð8Þ

k in terms

of Γð6Þ
k , Γð4Þ

k , and Γð2Þ
k , using the essential and marginal

couplings to drag the RG flow of the highest effective
vertices. Moreover, the method goes beyond a “smooth”
truncation, in the sense that EVE allows one to capture the
momentum dependence of the effective vertex, which plays
the role of the anomalous dimension. To bemore precise, the
Ward identity allows one to compute the momentum
derivative of the effective four-point vertices in term of
the marginal and essential couplings, improving the crude
truncation which does not consider this additional contri-
bution. Indeed, as pointed out in Ref. [76], taking into
account the momentum dependence of the four-point vertex
leads to discarding a line of singularity and to extending
maximally the symmetric phase region. We start from the
derivation of the hierarchical equations in the nonbranching
melonic sector up to six-point effective local vertices. For a

second time, we build the structure equation for the Γð8Þ
k

vertex and use Ward identities to compute the derivative of
the effective four-point vertex. As a result, we get a set of
four autonomous coupled equations, involving only relevant
and marginal dimensionless couplings. Finally, we discuss
an additional constraint coming from the Ward identity

linking Γð4Þ
k and Γð2Þ

k . As pointed out in Ref. [76], in the deep
UV, this equation may be turned locally in the flow as a
constraint linking beta functions for four- and two-point
relevant and marginal couplings. This additional constraint
has to be solved simultaneously with the flow equations,
reducing the dimension of the phase space from three to two.

A. RG equations for marginal local couplings

Deriving for the first time with respect to M and M̄ the
exact flow equation (24), we get an equation for _Γð2Þ,
involving Γð4Þ and Γð2Þ:

_Γkðp⃗Þ ¼ −
X
q⃗∈Zd

Γð4Þ
k ðp⃗; p⃗; q⃗; q⃗Þ_rkG2

kðq⃗Þ; ð29Þ

where we used Property 1. As explained in the previous
section, the effective vertex function may be indexed
with a nonbranching bubble corresponding to the boundary
of the graphs indexed with the amplitudes in their
perturbative expansion. For nonbranching bubbles, these
boundaries are indexed with a single index. Then, as a
consequence, the nonbranching effective vertices ΓðnÞ, for
n > 2, decompose as

Γð2nÞ
k ¼

Xd
i¼1

ΓðbðiÞn Þ
k : ð30Þ

The structure of the partial n-point functions ΓðbðiÞn Þ
k has been

extensively discussed in Ref. [76]. The boundary graph
dictates the ways to identify external momenta. Formally, it
corresponds to a product of Kronecker deltas following the
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path drawn by the corresponding bubble interaction. To simplify the notations, we represent these products of deltas with
d-colored regular bipartite graphs as well, indexed with external momenta. For instance,

ð31Þ

ð32Þ

The partial effective vertex functions ΓðbðiÞn Þ
k then may be written as

ð33Þ

where Sym denotes the permutation of the external momenta. For instance,

ð34Þ

the factor 2 coming from the fact that permuting both the black and white nodes does not change the configuration.

The kernels πðb
ðiÞ
n Þ

k ∶Zn → R depend on the ith component of the external momenta. The zero-momenta values of the
effective vertex functions are related with the effective coupling constants at scale k. For relevant and marginal couplings,
we set

Γð2Þ
k ð0⃗Þ≕m2ðkÞ; Γð4Þ

k ðf0⃗gÞ≕ ð2!Þ2λ4ðkÞ; Γð6Þ
k ðf0⃗gÞ≕ ð3!Þ2λ6ðkÞ; ð35Þ

the k dependence on the couplings allowing one to differentiate them from the “bare” couplings. From definition of the

kernels πðb
ðiÞ
n Þ

k , we have therefore π
ðbðiÞ

2
Þ

k ð0Þ ¼ λ4ðkÞ and π
ðbðiÞ

3
Þ

k ðf0gÞ ¼ λ6ðkÞ. For the rest of this section, we left the
arguments for zero-momenta functions when it is unambiguous. Inserting the decomposition (30) in the flow equation (29),
we get, graphically,

ð36Þ

where the dashed line corresponds to the contraction with
the propagator _rkG2

k. For the last term, we kept only the
melonic contractions, creating three internal faces, the
second contribution having a relative scaling k−2 with
respect to the melonic one and may be discarded in the UV

sector k ≫ 1. The rule follows as soon as we remain in this
domain; and for higher-order interactions we will keep only

the melonic contraction. We get, for Γð4Þ
k and Γð6Þ

k , taking
successive derivatives of Eq. (24) and vanishing their
external momenta, from renormalization conditions (35):
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ð37Þ

where the dotted line on the last diagram corresponds to the contraction with the effective propagator Gk. All the numerical
coefficients count the number of independent melonic contractions or arise from the derivation of Eq. (24). This is the case
of the factor 4, which is in fact 2þ 2: a first factor 2 coming from the derivation of G2

k in Eq. (29) and a second factor 2
coming from an odd term, discarded in the calculation of Eq. (29). In the same way,

ð38Þ

The mass flow may be fixed from the renormalization
conditions (35), setting p⃗ ¼ 0⃗ on both sides of Eq. (29). All
the diagrams may be easily computed. They involve only a
single loop, creating three internal faces. Denoting as p the
external momentum running through the external face of
color i, the explicit expression for the loop of length j,
LjðpÞ is written as

LjðpÞ ≔
X
q⃗∈Z4

δq1p _rkG
jþ1
k ðq⃗Þ: ð39Þ

Therefore, Eqs. (36)–(38) may be written explicitly as
follows:

_m2 ¼ −2λ4L1ð0Þ; ð40Þ

_λ4 ¼ −3λ6L1ð0Þ þ 4λ24L2ð0Þ; ð41Þ

_λ6 ¼ −4πðb
ð1Þ
4
Þ

k L1ð0Þ þ 12λ4λ6L2ð0Þ − 8λ34L3ð0Þ; ð42Þ

where we denote _x ≔ k dx
dk. To close the system, we have to

express the remaining piece π
ðbð1Þ

4
Þ

k , the effective coupling
with valence 4, in terms of the relevant and marginal

couplings. This aims to understand independently the
dependence of the four-, six-, and eight-point effective
vertices with respect to the effective marginal and essential
couplings at scale k. Investigating the structure of the
leading perturbative Feynman graphs building the effective
vertices, assumed to be analytic functions of the effective
couplings, and from renormalization conditions defining
effective couplings at scale k, we deduce some relations
between effective vertices and renormalizable couplings.
The assumption about analyticity of the effective vertex
functions ensures the validity of these relations out of the
perturbative domain, as long as we remain in the symmetric
phase. Indeed, expanding around a nonzero vacuum breaks
the diagonal condition given by Property 1, which is
satisfied in the perturbative sector as well.

B. Closing hierarchy: The EVE method

In a first time we restrict our attention on the quartic
sector, whose graphs building the effective functions are
made with quartic melonic interactions only. We have the
following proposition.
Proposition 1.—Let us denote as π̄ðb

ðiÞ
n Þ

k the leading-order
effective vertices of valence n built of quartic melonic
interactions only. For n ¼ 2, 3, and 4, their expressions in
terms of the bare coupling Z4λ4 are the following:
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π̄
ðbðiÞ

2
Þ

k ¼ Z4λ4
1þ 2Z4λ4Ak;2

; ð43Þ

π̄
ðbðiÞ

3
Þ

k ¼ 8

3
ðπ̄ðb

ðiÞ
2
Þ

k Þ3Ak;3; ð44Þ

π̄
ðbðiÞ

4
Þ

k ¼ −2ðπ̄ðb
ðiÞ
2
Þ

k Þ4Ak;4 þ
16

3
ðπ̄ðb

ðiÞ
2
Þ

k Þ5ðAk;3Þ2; ð45Þ

where Ak;n ≡Ak;nð0Þ, with

Ak;nðpÞ ≔
X
q⃗∈Z4

δpq1G
n
kðq⃗Þ: ð46Þ

To prove this proposition, we recall the following
lemma, already considered in Ref. [79].
Lemma 1.—Let G be a 1PI 2N-points diagram with more

than one vertex. It has N boundary vertices to which
external edges are hooked, d − 1 external faces per external
vertex, and N external faces of the same color running
through the interior of the diagram.
Proof.—We will proceed recursively for each n, and we

will indicates only the first steps of the proof. More details
may be found in Ref. [79].

Four-point effective vertices.—Let us denote as Z4λ4Π4

the part of π̄
ðbðiÞ

2
Þ

k made of at least two vertices. We have,
setting i ¼ 1,

π̄
ðbð1Þ

2
Þ

k ¼ Z4λ4ð1þ Π4Þ: ð47Þ

Let us consider the structure of Π4. Taking into account the
face connectivity and Lemma 1, the boundary vertices may
be such that the two internal faces of the same color running
on the interior of the diagrams building Π4 pass through
them. As a result, we expect the following structure,

compatible with the boundary graph bð1Þ2 :

ð48Þ

where the gray disk indexed with Π̄4 is itself a sum of
Feynman graphs. It is easy to verify that other configura-
tions of the boundary vertices move away from the leading
order. Extracting the one-particle irreducible part Π̄0

4 of Π̄4,
we get, graphically as well,

ð49Þ

where the gray disks indexed byG denote the leading-order effective propagator in the quartic sector (we left the index k to
simplify the figures). The remaining contribution Π0

4 is at least of the order of 1, that is, built with a single vertex. Isolating
this vertex, the next-order terms build an effective vertex made of 1PI graphs having at least two vertices, corresponding to
that we called Π4. As a result, it is easy to check the following closed equation:

ð50Þ

which can be formally solved recursively as

ð51Þ

Consider now Eq. (47), and we then get

ð52Þ

where we used the following graphical conventions:

ð53Þ
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Finally, the effective one-loop diagram on the denominator
of Eq. (52) may be easily computed recursively, leading to

ð54Þ

which proves formula (43).
Six-point effective vertices.—From Lemma 1, the exter-

nal edges have to be hooked to three vertices of the same
type, sharing the three external faces of the same color

running through the interior of the diagrams building π̄
bð1Þ
3

k .
We then expect the following structure:

ð55Þ

As for four-point graphs, the kernelΠ6 may be decomposed
into one-particle irreducible components as

ð56Þ

The procedure may be conduct recursively like for the four-point functions. The perturbative expansion of the connected
one-particle irreducible component Π0

6 starts without a vertex, and a moment of reflection shows that it is nothing but Π6

itself. Solving the recurrence, we get that each of the three arms reconstructs the structure of the effective four-point
function, as a result:

ð57Þ

where the gray bubbles indexed with π̄
bð1Þ
2

k represent effective four-point functions and where, for the last term, we translate
the diagram into a formula. The remaining numerical factor K may be fixed from the leading order in the perturbative
expansion. This term involves three vertices, each of them having two orientations; then we have K ¼ 24=3! ¼ 8=3.
Eight-point effective vertices.—As for four- and six-point functions, because of Lemma 1, we expect the following

configuration for the boundary vertices:

ð58Þ

Decomposing the kernel Π8 following one-particle irreducible parts, we get

ð59Þ
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Note thatΠ00
8 is a one-particle irreducible function, at least of the order of one; and it is not hard to check that it is nothing but

π
ðbð1Þ

2
Þ

k . Recursively, we get, as for a six-point function,

ð60Þ

▪

The structure equations in the full sector, including six-
point vertices, must be easily deduced from Proposition 1.
Let us recall that six-point vertices may be obtained as a
connected sum of two four-point vertices using the follow-
ing definition.
Definition 5.—Let bðiÞ2 and bðjÞ2 be two four-point

bubbles. Let n ∈ bðiÞ2 and n̄ ∈ bðjÞ2 be two white and black
nodes and e a dotted edge joining together the two nodes.

The connected sum bðiÞ2 ♯nn̄b
ðjÞ
2 is defined as the bubble

obtained from the two following successive moves:
(i) deleting the edge e and
(ii) connecting together the colored edges hooked to n

and n̄ following their respective colors.
Figure 4 below provides an illustration.
The leading-order graphs in the full sector, including six-

point vertices, can then be obtained from the leading-order
graphs in the restricted quartic sector, contracting some

edges between adjacent quartic vertices. From the defi-
nition, the contracted edges do not change the number of
faces; moreover, each contraction does not change the
power counting: Deleting an edge increases the power
counting of 2, compensating exactly the loss of two quartic
vertices, each of them with canonical dimension 1.
Let us consider a 1PI four-point graphs contributing to

Γð4Þ
k , and e an edge between two adjacent vertices. We have

to distinguish two cases:
(i) The edge e is included into an effective propaga-

tor Gk.
(ii) The edge e is between two consecutive vertices on

the chain.
In the first case, the resulting two-point subgraph is nothing
but a contribution to the full two-point function. In the
second case, the contraction of the edge generates a six-
point graph along the chain as follows:

ð61Þ

Two elementary quartic vertices have been replaced by an
effective quartic vertex, building from an elementary six-
point vertex by contracting two external fields with the
effective propagator Gk to form an effective 3-dipole. Note

that the propagator G is becoming the full effective
propagator, including six-point vertices as well. We call
type-2 quartic vertices these new building blocks in the
chain:

ð62Þ

and their explicit expression may be easily computed. For
zero-external momenta, we getFIG. 4. Connected sum of two quartic bubbles.
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ð63Þ

where Z6λ6 denotes the bare six-point coupling and
the factor 3 in the definition of bk comes from the counting
of all possible contractions. The structure of the full chain,
including six-point vertices, may be deduced exactly
following the same strategy as for the proof of

Proposition 1. Denoting as π̃
ðbð1Þ

2
Þ

k the leading-order four-
point effective kernel made of chains built only of type-2
quartic vertices, we get

π̃
ðbð1Þ

2
Þ

k ¼ Z6λ6bk
1þ 2Z6λ6bkAk;2

: ð64Þ

To find the full effective vertex, we have to take into
account the proliferation of the two types of four-point
vertices along the chain. There are three cases that we have
to distinguish:

(i) the boundary vertices are both of type 1,
(ii) the boundary vertices are both of type 2, and
(iii) the boundary vertices are assorted.

For the first case, starting with π̄
ðbð1Þ

2
Þ

k , we may consider

all the possible insertions of π̃
ðbð1Þ

2
Þ

k without breaking the
boundary constraint. We get

π̄
ðbð1Þ

2
Þ

k þ π̄
ðbð1Þ

2
Þ

k π̃
ðbð1Þ

2
Þ

k π̄
ðbð1Þ

2
Þ

k þ π̄
ðbð1Þ

2
Þ

k π̃
ðbð1Þ

2
Þ

k π̄
ðbð1Þ

2
Þ

k π̃
ðbð1Þ

2
Þ

k π̄
ðbð1Þ

2
Þ

k þ���

¼ π̄
ðbð1Þ

2
Þ

k

1− π̃
ðbð1Þ

2
Þ

k π̄
ðbð1Þ

2
Þ

k

: ð65Þ

Proceeding in the same way for the remaining cases, we get
for the full effective vertex

π
ðbð1Þ

2
Þ

k ¼ π̄
ðbð1Þ

2
Þ

k þ π̃
ðbð1Þ

2
Þ

k þ π̄
ðbð1Þ

2
Þ

k π̃
ðbð1Þ

2
Þ

k

1 − π̃
ðbð1Þ

2
Þ

k π̄
ðbð1Þ

2
Þ

k

: ð66Þ

The structure of the six-point effective vertex may be
deduced in the same way. From Eq. (57), we know that the
structure equation for six-point effective vertices in the
quartic sector is an effective loop built of three effective
propagators, hooked together effective four-point vertices.
To find the contributions involving bare six-point cou-
plings, we have to list all the possible contractions of an

edge e into a typical graph contributing to π̄
bð1Þ
3

k , in order to
build a connected sum of two four-point bare couplings. We
have three different ways:

(i) the edge e is on the effective loop, between two
adjacent effective four-point vertices,

(ii) the edge e is on one of the three effective propa-
gators building the central effective loop, and

(iii) the edge e is on one of the effective four-point
vertices.

Once again, for the last cases, the resulting two-point
subgraph provides a contribution to the full two-point
function. In the sameway, the resulting four-point subgraph
provides a contribution to the full four-point function.
Neither of these two moves modifies the global structure of
the graph: It remains built of three effective four-point
vertices connected together with two-point graphs to form
an effective loop of length three. The first move, however,
modifies the global structure. It generates a six-point vertex
to which three hands building effective four-point graphs
are hooked. Listing all the allowed configurations, distin-
guished from their respective symmetry factors, we get

π
bð1Þ
3

k ¼ 8

3
ðπðb

ð1Þ
2
Þ

k Þ3Ak;3 þ π̃
bð1Þ
3

k ; ð67Þ

where at this stage Ak;3 is not restricted on the quartic
sector and where, graphically,

ð68Þ

The relative symmetry factors for each contribution can be easily computed considering the leading-order contributions in
the perturbative expansion, and we get

π̃
bð1Þ
3

k ¼ Z6λ6ð1 − 6π
ðbðiÞ

2
Þ

k Ak;2 þ 12ðπðb
ðiÞ
2
Þ

k Ak;2Þ2 − 16ðπðb
ðiÞ
2
Þ

k Ak;2Þ3Þ: ð69Þ

As a result, from the renormalization conditions π
bð1Þ
3

k ¼ λ6ðkÞ and π
bð1Þ
2

k ¼ λ4ðkÞ, we then deduce the relation between the
bare six-point coupling and the effective renormalizable couplings:
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Z6λ6 ¼
λ6ðkÞ − 4

3
λ34ðkÞAk;3

1 − 6λ4ðkÞAk;2 þ 12ðλ4ðkÞAk;2Þ2 − 16ðλ4ðkÞAk;2Þ3
: ð70Þ

Finally, it is easy to check that the eight-point kernel πb
ð1Þ
4 decomposes as

πb
ð1Þ
4 ¼ −2ðπ̄ðb

ðiÞ
2
Þ

k Þ4Ak;4 þ π̃b
ð1Þ
4 ; ð71Þ

where, graphically, the last component π̃b
ð1Þ
4 is given by

ð72Þ

where the effective six-point vertex has been pictured as a gray disk labeled with πðb3Þ, the boundary structure being explicit.
Note that we added into π̃b

ð1Þ
4 the second contribution in (70), to build the first contribution in (72). Computing the relative

symmetry factors, using formula (69) to express the bare six-point couplings in term of the effective couplings at scale k, we
get finally

π̃b
ð1Þ
4 ¼ λ6ðkÞ

�
24Ak;3λ

2
4ðkÞ −

9

2

λ6ðkÞ − 4
3
λ34ðkÞAk;3

1 − 6λ4ðkÞAk;2 þ 12ðλ4ðkÞAk;2Þ2 − 16ðλ4ðkÞAk;2Þ3

×Ak;2ð1 − 4λ4ðkÞAk;2 þ 4ðλ4ðkÞAk;2Þ2Þ
�
; ð73Þ

which closes the system (40). The remaining piece required
to complete the set of equations is an equation for Z or,
equivalently for the anomalous dimension, that we will fix
in the next section.

C. Anomalous dimension and Ward identities

Following the standard definition in the symmetric
phase, the wave function normalization ZðkÞ and the
anomalous dimension ηðkÞ, completing the set of power-
counting renormalizable operators, are defined as follows.
Definition 6: Wave function renormalization and

anomalous dimension.—In the symmetric phase, the wave
function renormalization is the flow-dependent weight of
the Laplacian term and is the derivative expansion of the
two-point function Γð2Þ

k :

ZðkÞ ≔ d
dp2

1

Γð2Þ
k ðp⃗ ¼ 0⃗Þ: ð74Þ

The anomalous dimension ηðkÞ is then defined as

ηðkÞ ≔ d
dk

lnðZðkÞÞ: ð75Þ

Note that outside of the symmetric phase, i.e., ifwe expand
around a nonzero vacuum, an additional dependence of Z on

the mean fields may be expected. A standard approximation,
already discussed in Ref. [79], is to keep only the leading-
order terms of the derivative expansion (DE) for the
computation of the loop integrals LjðpÞ involved in the
system (40). More precisely, we define it as follows.
Definition 7: Leading DE approximation.—In the rel-

evant windows of momenta allowed by the distribution
_rkðp⃗Þ, the renormalized effective two-point function

Γð2Þ
k ðp⃗Þ is approximated by the two first terms of the

derivative expansion:

Γð2Þ
k ðp⃗Þ ¼ m2ðkÞ þ ZðkÞp⃗2: ð76Þ

In order to get fixed points, we will consider the
dimensionless and renormalized couplings, extracting the
flow dependence coming from proper canonical dimension
and wave function renormalization.
Definition 8: Renormalized and dimensionless cou-

plings.—In the deep UV (k ≫ 1), the renormalized and
dimensionless couplings are defined as

m2 ¼ZðkÞk2m̄2; λ4 ¼Z2ðkÞkλ̄4; λ6 ¼Z3ðkÞλ̄6: ð77Þ

These are the RG flow equations for these couplings that
we have to compute. To this end, we have to get the flow
equation for ZðkÞ. From Definition 6, we obtain
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_ZðkÞ¼−2
�
dπ

ðbðiÞ
2
Þ

k

dp2
ðp¼0Þ

�
L1ð0Þ−2λ4ðkÞ

�
dL1

dp2
ðp¼0Þ

�
:

ð78Þ

The second piece of the right-hand side may be computed
from Definition 7, once the regulator function rkðp⃗Þ is
chosen. In order to get a tractable closed system, the first
term of the right-hand side has to be computed in terms of
the other couplings as well. WT identities come from the
unitary invariance of the tensorial interactions and the
formal translation invariance of the Lebesgue measure in
the path integral (16). Considering an infinitesimal unitary
transformation along a single axis on the torus Uð1Þd, and
following the proof given in Refs. [80–83], we may deduce
the following theorem.
Theorem 1.—The partition function Zk½J; J̄�≕ eWk½J;J̄�

of the theory defined by Eq. (16) verifies the WT identity:

X
p⃗⊥;p⃗0⊥

Y
j≠1

δpjp0
j

�
½C−1

s ðp⃗2Þ − C−1
s ðp⃗02Þ�

� ∂2Ws

∂J̄p⃗0∂Jp⃗ þ M̄p⃗Mp⃗0

�

− J̄p⃗Mp⃗0 þ Jp⃗0M̄p⃗

�
¼ 0; ð79Þ

with p⃗⊥ ≔ ð0; p2;…; pdÞ ∈ Zd and the mean fieldsM and
M̄ defined from Eqs. (22).
Deriving twice with respect to M and M̄, and vanishing

all the odd vertex functions, required in the symmetric
phase, we then deduce a relation between six-point and
four-point effective functions. In particular, the dependence
with respect to the four-point functions involves a differ-
ence between functions having different momenta. Taking
the continuum limit, and setting to zero the external
momenta, we then deduce the following relation (see
Appendix A of Ref. [80]).
Corollary 1: Second zero-momenta WT identity.—In the

symmetric phase, the zero-momenta six- and four-point
functions satisfy

Z−∞

�
3

2
πðb3ÞL1−4ðπðb2ÞÞ2L2

�
¼−

d
dp2

πðb2Þðp¼ 0Þ; ð80Þ

where Z−∞ denotes the wave-function counterterm, can-
celing the UV divergences and computed for k ¼ 0, and
where we defined the loop functions Lj as

Lj≔
X
p⃗⊥

�
1þ∂r̃sðp⃗⊥Þ

∂p2
1

�
½Gsðp⃗⊥Þ�jþ1; rs≕Z−∞r̃s: ð81Þ

This relation links the derivative of the four-point
effective vertex with the six- and four-point vertices.
However, to be exploitable, this relation has to be com-
pleted with the WT identity obtained from Eq. (79),

deriving one time with respect to M and M̄ and setting
to zero the external momenta.
Corollary 2: First zero-momenta WT identity.—In the

symmetric phase, the zero-momenta four-point function
satisfies

2πðb2ÞZ−∞L1 ¼ −ðZ − Z−∞Þ: ð82Þ

To obtain this relation, we used the definition (3.3). Note
that, in Eqs. (80) and (82), the derivative of the bare
covariance C−1

s ðp⃗2Þ does not involve “boundary terms”
coming from the UV cutoff. This is because, to derive these
equations, we chose to regularize the divergent integrals
using dimensional regularization, exploiting the analytic
properties of the integrals with respect to the group
dimension D. The continuum limit in this case is then
defined when D → 1.
For our purpose, the interest of the Ward identity (82) is

that it allows one to express Z−∞ in terms of effective
quantities at scale k:

Z−∞ ¼ ZðkÞ
1 − 2L1λ4ðkÞ

: ð83Þ

Let Lj≕Ak;jþ1 þ 1
Z−∞

ΔjðkÞ. Because of the derivative of

the regulator ∂rk=∂p2 into the last term ΔjðkÞ, one expect
that it can be computed using the linear differential
equation (LDE) approximation given by definition (3.3),
as well as the functions LjðpÞ defined in (39) and involved
in the flow equations (40). In particular, for the choice of
the modified Litim regulator [52,53]

rkðp⃗Þ ¼ ZðkÞðk2 − p⃗2Þθðk2 − p⃗2Þ; ð84Þ

the allowed window of momenta is the same for _rk and
∂rk=∂p2–θðxÞ denoting the standard Heaviside step func-
tion. In the rest of this paper, we restrict our attention to this
choice, extensively used in the tensor literature and shown
to be optimal [52,53] in some practical applications. In the
continuum limit, replacing the sums by the corresponding
well-defined integrations, we get for Δj and Lj

ΔjðkÞ ¼ −
ZðkÞΩ3

ðZk2 þm2Þjþ1
k3; ð85Þ

LjðpÞ¼ZðkÞΩ3ðk2−p2Þ3=2 2k
2þ 2

5
ηðkÞðk2−p2Þ

ðk2ZðkÞþm2ðkÞÞjþ1
; ð86Þ

where Ω3 ¼ 4π
3
≈ 4.19 denotes the volume of the 3-ball.

The computation of the last piece Ak;2 is a little bit subtle,
the momentum integration being over the full momentum
space:

WARD-CONSTRAINED MELONIC RENORMALIZATION GROUP … PHYS. REV. D 100, 086009 (2019)

086009-15



Ak;jþ1 ¼
X

p⃗⊥∈Z3

θðk2 − p⃗2⊥Þ
ðΓð2Þðp⃗⊥Þ þ rkðp⃗⊥ÞÞjþ1

þ
X

p⃗⊥∈Z3

θðp⃗2⊥ − k2Þ
ðΓð2Þðp⃗⊥ÞÞjþ1

: ð87Þ

Once again, the first term on the right-hand side can be
computed using the LDE approximation, the allowed
windows of momenta being the same as for rk. For the
second term, however, the use of this approximation would
be an additional approximation, beyond the domain where
it can be justified. In Ref. [79], we have shown explicitly
that this approximation applied for a superficially divergent
integral leads to badly defined results, especially because it
introduces a dependence on ZðkÞ in the deep UV, far away
from the scale k. However, in the same discussion, the
authors show that, for the superficially convergent inte-
grals, this approximation may be not so bad, because no
additional dependence on k is expected on the deep UV. In
other words, we assume that the smooth cutoff arising from
the convergence of the integrals allows us to use the LDE
approximation. We get explicitly

Ak;jþ1 ¼
Ω3k3

ðZðkÞk2þm2ðkÞÞjþ1
þ 3Ω3

Z
∞

k

p2dp
ðZp2þm2Þjþ1

:

ð88Þ

For any quantity Xðfλig; m2Þ depending on the couplings,
we denote by X̄ðfλ̄ig; m̄2Þ the corresponding renormalized
and dimensionless quantity:

Xðfλig; m2Þ ¼ kdXZqxX̄ðfλ̄ig; m̄2Þ: ð89Þ

Defining

I jðm̄2Þ ≔
Z

∞

1

x2dx
ðx2 þ m̄2Þjþ1

; ð90Þ

we get

Āk;jþ1 ¼ −Δ̄j þ 3Ω3I j; Δ̄j ¼ −
Ω3

ð1þ m̄2Þjþ1
; ð91Þ

and Eq. (83) is written as

Z−∞ ¼ ZðkÞ
1 − 2λ̄4ðkÞ Ω3

ð1þm̄2Þ2

1 − 2λ̄4ðkÞĀk;2
: ð92Þ

Introducing this expression into the relation (80), we
obtain

dπðb2Þ

dp2
ðp ¼ 0Þ ¼ −3Ω3

3
2
λ̄6I1ðm̄2Þ − 4λ̄24ðI2ðm̄2Þ − 2λ̄4Ω3

ð1þm̄2Þ2 I2ðm̄2ÞÞ − λ̄4 λ̄6Ω3

ð1þm̄2Þ2 I1ðm̄2Þ
1 − 2λ̄4Āk;2

: ð93Þ

From Eqs. (93) and (86), and from definition (3.3) giving
the anomalous dimension ηðkÞ, Eq. (78) for _Z becomes

η ¼ −2
dπðb2Þ

dp2
Ω3

2þ 2
5
η

ð1þ m̄2Þ2 þ 2λ̄4Ω3

3þ η

ð1þ m̄2Þ2 : ð94Þ

η can be extracted simply as

η ¼ 2Ω3

3λ̄4 − 2dπ
ðb2Þ

dp2

ð1þ m̄2Þ2 − 2λ̄4Ω3 þ 4
5
dπðb2Þ
dp2 Ω3

: ð95Þ

Using Definition 8, we deduce the flow equations for
dimensionless and renormalized couplings. We summarize
all these results in the following proposition.
Proposition 2.—In the deep UV limit k ≫ 1, denoting

β2 ≔ _̄m2, β4 ≔ _̄λ4, and β6 ≔ _̄λ6, we have

β2 ¼ −ð2þ ηÞm̄2 − 2Ω3λ̄4
2þ 2

5
η

ð1þ m̄2Þ2 ; ð96Þ

β4 ¼ −ð1þ 2ηÞλ̄4 − 3λ̄6Ω3

2þ 2
5
η

ð1þ m̄2Þ2 þ 4Ω3λ̄
2
4

2þ 2
5
η

ð1þ m̄2Þ3 ;

ð97Þ

β6 ¼ −3ηλ̄6 − 4Ω3π
ðbð1Þ

4
Þ

k

2þ 2
5
η

ð1þ m̄2Þ2 þ 12Ω3λ̄4λ̄6
2þ 2

5
η

ð1þ m̄2Þ3

− 8Ω3λ̄
3
4

2þ 2
5
η

ð1þ m̄2Þ4 ; ð98Þ

where π
ðbð1Þ

4
Þ

k is given from the structure equation (73) as

π
ðbð1Þ

4
Þ

k ¼ −2λ̄44Āk;4 þ 3λ̄6

�
4λ̄24Āk;3 −

3Āk;2

2

ðλ̄6 − 4
3
λ̄34Āk;3Þð1 − 4λ̄4Āk;2 þ 4ðλ̄4Āk;2Þ2Þ

1 − 6λ̄4Āk;2 þ 12ðλ̄4Āk;2Þ2 − 16ðλ̄4Āk;2Þ3
�
: ð99Þ
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IV. MELONIC PHASE SPACE INVESTIGATIONS

In this section, we investigate the phase space of the RG
flow described with the system (96)–(98) in the vicinity of
the Gaussian fixed point, where the constraint (108) is
trivially satisfied. However, beyond the Gaussian fixed
point, we will show that this constraint is violated. Finally,
we described the flow on the constrained subspace E.

A. Vicinity of the Gaussian fixed point

Expanding the flow equations (96)–(98) in power of
couplings, and keeping only the leading-order contribu-
tions in power of couplings, we get a simplified system
describing the flow in the vicinity of the Gaussian fixed
point, where couplings vanish. For instance, in the exact
formula (95), we retain [Ī1ð0Þ ¼ 1]:

η ≈ 6Ω3λ̄4 þ 18Ω2
3λ̄6: ð100Þ

For our analysis, however, we restrict ourselves to the one-
loop contributions, which simplifies the incoming analysis.
As a consequence, we discard the last term in the right-hand
side of the previous equation:

η ≈ 6Ω3λ̄4: ð101Þ

With this approximation, the relations (96)–(98) reduce to

β2 ≈ −2m̄2 − 4Ω3λ̄4; ð102Þ

β4 ≈ −λ̄4 − 6Ω3λ̄6; ð103Þ

β6 ≈þ6Ω3λ̄4λ̄6: ð104Þ

The same kind of equations have been obtained for all ϕ6

models studied in the literature, and extended discussions
may be found in Refs. [65–67,70,73]. A qualitative phase
portrait may be easily deduced from the system (102). We
split the vicinity of the Gaussian fixed point into four
regions, I, II, III, and IV as pictured in Fig. 5 below. The
boundary between regions I and II on the upper side, and
between regions III and IVon the lower side, corresponds to
the line defined by the equation β4 ¼ 0. The line defined by
the equation λ̄6 ¼ 0 is the boundary between regions I and
IV, on one hand, and between regions II and III, on the
other hand.
In the positive neighborhood of region II, where the

couplings are both positive, and the beta functions β4 and
β6 have opposite signs, λ̄4 decrease whereas λ̄6 increase,
and the RG trajectory is then repelled from the horizontal
axis and goes to the vertical axis. The maximum for λ̄6
arises for λ̄4 ¼ 0, that is, when the RG trajectory reaches the
vertical axis. Because λ̄6 > 0, β4 remains negative, so that
λ̄4 pass through the vertical axis and become negative.
From now, β4 and β6 have the same sign, and the couplings
decrease together. The coupling λ̄6 goes to zero, whereas
the coupling λ̄4 becomes more negative. The trajectory then
goes far away from the vertical axis and closer to the
horizontal axis. Let us focus on the region λ̄6 ≥ 1. In the
vicinity of the vertical axis, λ̄4 remains very close to zero,
and as soon as jλ̄4j < 1, the tangent vectors of the RG
trajectory are almost horizontal. The more jλ̄4j grows, the
more the tangent vectors become vertical, so that the
trajectory goes faster and faster to the horizontal axis, until
the trajectory touches the line β4 ¼ 0 and passes through,
reaching region I. In region I, β6 remains negative, but β4
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FIG. 5. The qualitative picture of the RG trajectories in the plane ðλ̄4; λ̄6Þ (a). The numerical RG flow (b), where the green line
corresponds to a typical trajectory on the upper plane, illustrating the discussion.

WARD-CONSTRAINED MELONIC RENORMALIZATION GROUP … PHYS. REV. D 100, 086009 (2019)

086009-17



becomes positive, and then λ̄4 begins to grow. At this stage,
stuck at the bottom with the red trajectory, the considered
trajectory has to reach the Gaussian fixed point.
In Fig. 5(a), we draw a qualitative picture obtained from

our previous analysis, and Figs. 5(b) and 6 give the
numerical analysis. In a sufficiently small neighborhood
in the vicinity of the Gaussian fixed point, the sign of the
coupling λ̄6 is then conserved along the flow, and the
positivity of the initial ϕ6 action ensures that the starting
point has to be in the upper plane, for positive λ̄6; our
discussion shows that any theory starting in this region
must be well defined in the UV.

The additional term is 18Ω2
3λ̄6 in Eq. (100) with respect

to the one-loop approximation. Indeed, it introduces a
strong attractive term in β6, −3 × 18Ω2

3λ̄
2
6 coming from the

contribution −3ηλ̄6. Another attractive term −2 × 18Ω2
3λ̄

2
6

arises from the effective vertex π
ðbð1Þ

4
Þ

k , so that the equation
for β6 is replaced by

β6 ≈þ6Ω3λ̄4λ̄6 − 5 × 18Ω2
3λ̄

2
6

¼ 6Ω3λ̄6ðλ̄4 − 15Ω3λ̄6Þ: ð105Þ

This additional attractive term enhances the return of the
flow lines toward the horizontal axis. The trajectories in the
upper plane λ̄6 > 0 escape far away from this axis and do
not reach the Gaussian fixed point. Figure 6 represents the
numerical RG trajectories in a small neighborhood of
the Gaussian fixed point, taking into account this additional
term.
These conclusions seem to indicate that the expected

UV-protected scenario in the positive region is lost.
However, so far from the perturbative region, the behavior
of the RG trajectories remains unclear with the perturbative
approach. A complementary analysis has to be performed
using the full RG equation given by system (96)–(98).
Figure 7 provides a numerical integration of the RG
equations in the plane m̄2 ¼ 0 for different sizes of the
neighborhood surrounding the Gaussian fixed point. In
Fig. 7(a), in the vicinity of the Gaussian fixed point, we
recover the landscape pictured in Fig. 6(c). Furthermore,
far away from the origin in the lower plane λ̄6 < 0, the
trajectory seems to go away from the horizontal axis.
Moreover, following the same arguments used to build
Fig. 5(a), the incoming trajectories in the lower plane have
no chance to reach the Gaussian fixed point and are repelled
before joining it. Figures 7(b) and 7(c) seem to indicate the
existence of an attractive vortex in the upper plane λ̄6 > 0.
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FIG. 7. The behavior of the numerical RG flow in the plane m̄2 ¼ 0, from a very small region in the vicinity of the Gaussian fixed point
(a) to a (relatively) large region (c). Again, the scale is adapted to optimize the visibility.
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FIG. 6. The qualitative picture of the RG trajectories in the
plane ðλ̄4; λ̄6Þ. In this figure is the same region of the phase space
taking into account the additional term 18Ω2

3λ̄6 in Eq. (100). The
relative scales of the figures are chosen to optimize their visibility.
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As for the one-loop analysis, the trajectory escaping from
the Gaussian region returns to it, attracted along a river
reaching the Gaussian fixed point, after a long loop into the
phase space. However, we have to be careful. For instance,
we have completely neglected the role and the evolution of
the mass parameter in this analysis. In the next section, we
discuss the existence of a UV-attractive fixed point,
completing this picture of the RG flow.
Investigating the solutions of the flow equations in the

theory space, we get the nontrivial fixed points (106) and
(107), in which we can identify the Wilson-Fisher fixed
point FP2, which was previously announced in our
introduction. None of these fixed points are compatible
with the Ward identities:

FP1 ¼ ðm̄2 ≈ 0.019; λ̄4 ≈ −0.0019; λ̄6 ≈ −2.8 × 10−7Þ;
ð106Þ

FP2 ¼ ðm̄2 ≈ −0.3701; λ̄4 ≈ 0.34; λ̄6 ≈ −0.367Þ: ð107Þ

ForFP1 we get the following critical exponent: ðθ11¼21.63;
θ12¼1.50;θ13¼−0.81Þ, which shows that this fixed point
have two attractive directions and one repulsive direction in
the UV. Note that the value of θ11 shows how this attraction
behaves very fast in this UV limit. For FP2 we get
ðθ2;1 ¼ 2.8 þ 41.7i; θ22 ¼ 2.8–41.7i; θ23 ¼ −5.2 þ 1.6iÞ.
Then the fixed point attracts the trajectories in two directions,
and the trajectory is repelled by the fixed point in one
direction. We will show in the next section that, in the
physical subspace of the theory space, all the nontrivial fixed
point solution of the constraint flow equation disappeared in
the domain with positive values of η.

B. Ward-constrained phase space in the deep UV

In addition to these flow equations (96)–(98), Ward
identities introduce a nontrivial constraint, which reduces
the dimensionality of the effective flow, from 3 to 2. Indeed,
in Eq. (92), Z−∞ does not depend on the running scale k,
implying that the right-hand side has to be a constant along
the flow. Differentiating both sides with respect to k, this
conservation may be translated locally as a constraint
binding together the anomalous dimension η and the beta
functions fβng:

η

�
1 −

2λ̄4Ω3

ð1þ m̄2Þ2
�
−

2Ω3

ð1þ m̄2Þ2
�
β4 −

2λ̄4β2
1þ m̄2

�

þ 2
1 − 2λ̄4Ω3

ð1þm̄2Þ2

1 − 2λ̄4Āk;2
ðβ4Āk;2 − 2λ̄4Āk;3β2Þ ¼ 0; ð108Þ

where we used _̄Ak;2 ¼ −2Āk;3. For any fixed point p ¼
ðm̄2�; λ̄�4; λ̄

�
6Þ, where the beta functions vanish, the previous

relation split into two conditions:

η� ¼ 0 or 1 −
2λ̄�4Ω3

ð1þ m̄2�Þ2
¼ 0: ð109Þ

To be physical, any fixed point of the system (96)–(98) has to
be verify at least one of these two conditions. In order to get
physical flow,we thenhave to project theRGequations given
by the system (96)–(98) into the reduced phase spacewith the
constraint (108). This is the aim of the next section, to
investigate this constrained physical phase space. However,
before moving on to this investigation, we close this section
with some comments about our results. First of all, the
constraint given by Eq. (80) has been taken into account in
the derivation of η, Eq. (95). As a result, the flow equations
given by the system (96)–(98) partially include the constraint
coming from the Ward identities. The constraint (92),
corresponding to the conservation of Z−∞ along the flow,
is the only missing information coming from the Ward
identities in the three-dimensional parametric phase space
building from the EVE method. The second comment is
about the approximation used to compute the integrals.
We used the LDE approximation, which is standard for
TGFTin the symmetric phase for the computation of the flow
equations. However, for the computation of the Ward
constraint, and especially for the computation of the con-
vergent integrals Ak;j, we used the same approximation, up
to the hypothesis that the slow decreasing of the denominator
for large p⃗2may support the same approximation as the sharp
cutoff coming from Heaviside functions. The consistency of
the approximation has been checked in Ref. [76], but not for
the same model. As a result, this additional approximation
has to be taken into account in our final claims.
Strong violations of the Ward identity (92) can be easily

checked for several solutions of the flow equations (96)–
(98) (see Ref. [78] for an explicit violation concerning a
rank 5 TGFT). In this section, we propose to take into
account the constraint (108) along the flow following the
strategy described in Ref. [76]. As explained by the authors,
the difficulty comes from the definition (68) or (69),
inherited from the structure of the melonic diagrams.
This definition is too rigid to be conserved on the global
phase space without introducing hard singularities. To
describe the flow along the constrained subspace E along
which (108) is satisfied, we proceed as follows.

(i) Keeping Eq. (96) for β2, we replace the definition of
β4 provided by the flow equation by its expression
coming from (108):

β4 ¼
4β2λ̄4Xðm̄2; λ̄4Þ þ ηðm̄2 þ 1Þð2Āk;2λ̄4 − 1Þððm̄2 þ 1Þ2 − 2λ̄4Ω3Þ

2ðĀk;2ðm̄2 þ 1Þ3 − ðm̄2 þ 1ÞΩ3Þ
; ð110Þ
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where

Xðm̄2; λ̄4Þ ≔ Ω3ð2Āk;2λ̄4 − 2Āk;3ðm̄2 þ 1Þλ̄4 − 1Þ
þ Āk;3ðm̄2 þ 1Þ3: ð111Þ

(ii) Equaling this equation with Eq. (97), we fix the
value of λ̄6.

(iii) Substituting into Eqs. (93) and (94), we get an
explicit expression for the anomalous dimension
over E, replacing (95): ηE .

With this construction, the flow equations and the
Ward identity are simultaneously verified along the RG
trajectories. Moreover, as λ6, the higher-order local observ-

ables like πðb4Þk are fixed by the flow itself. πðb4Þk is fixed by
Eq. (98), the left-hand side being explicitly computed from
the explicit dynamical solution for λ6, and so on.
Obviously, our effective equation differs from the uncon-
strained ones (96)–(98), except in the vicinity of the
Gaussian fixed point.

C. Numerical solution of the flow equations
in the constraint theory space

The numerical investigation of the flow equations
provided from the EVE method [see (96)–(98)] can be
given carefully. First of all, by considering the expression

(98) we can remark that the quantity π
ðbð1Þ

4
Þ

k is specific from
the EVE method. This expression does not exist by
implementing the truncation as an approximation. In this
section, we discuss the solution of the new flow equations
taking into account both the Ward constraint and the EVE,
with the construction given in Sec. IV B. Then we may
compare this analysis with what follows in the last
section. Finally, we discuss in detail the asymptotic free-
dom behavior of this model. After solving the Ward
constraint flow equation numerically, we get the
Gaussian fixed point p0 ≈ ðm̄2 ¼ 0; λ̄4 ¼ 0Þ, one new point
p1 ≈ ðm̄2 ¼ −0.36; λ̄4 ¼ 0.018Þ, and the following critical
exponents and eigendirections:

p0∶ ðθ01; θ02Þ ≈ ð2; 1Þ; v01 ≈ ð1; 0Þ;
v02 ≈ ð−1; 0.05Þ; ηp0

¼ 0; ð112Þ

p1∶ ðθ11; θ12Þ ≈ ð1.3;−0.1Þ; v11 ≈ ð1; 0.034Þ;
v12 ≈ ð1; 0.004Þ; ηp1

¼ 0.10: ð113Þ

For p0, the trajectory approaches the fixed points and then
is UV attractive. In conclusion, our computation enforced
our argument about the difficulty to find a physical fixed
point compatible with the Ward identities apart from the
Gaussian fixed point which represents the trivial solution.
Now let us discuss the behavior around the Gaussian fixed
point and try to show that the theory is asymptotically free.

Using the constraint flow equation described above, we get
asymptotically the following result around the Gaussian
fixed point:

β2 ≈ −2m̄2 − 4Ω3λ̄4; β4 ≈ −λ̄4 − 6Ω3λ̄6;

λ̄6 ≈ −4λ̄24 η ≈ 8πλ̄4; ð114Þ

which is in agreement with the results obtained using only
the EVE. Note that the β function β4 will be

β4 ≈ −λ̄4 þ 24Ω3λ̄
2
4 þOðλ̄24Þ: ð115Þ

Then all values of the coupling tend to zero in the UV limit.
The expression of β4 ¼ β04λ̄4 þ β14λ̄

2
4, and the sign of β04

in the one-loop perturbation computation, show that the
theory is asymptotically free in this UV limit; i.e., the flow
is attractive around the Gaussian fixed point. The flow
diagram around this fixed point is given in Fig. 8 from a
numerical integration.
Now consider the fixed point p1, which has one

attractive direction, one repulsive direction, and anomalous
dimension η� ¼ 0.1. This anomalous dimension enhances
the canonical dimension, and following the definition of
renormalized couplings, in the vicinity of the non-Gaussian
fixed point, the N-point interaction scales with k as kd

�
N ,

with d�N ¼ dN þ Nη�
2
, dN ¼ 3 − N=2 being the canonical

dimension, i.e., the scaling in the vicinity of the Gaussian
fixed point. Obviously, d�N is negative for N > 6, showing
qualitatively that the list of relevant couplings is the same as
in the perturbative regime. The values for the critical
exponents are in accordance with this argument, in favor
of the reliability of our conclusions.
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FIG. 8. The behavior of the numerical RG flow in the vicinity of
the non-Gaussian fixed points in the space E.
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V. CONCLUSION

In this work, we build a solution to the nonperturbative
functional renormalization group equation applied to a
tensorial just-renormalizable ϕ6

4 model, merging together
the effective vertex expansion and the Ward-Takahashi
identities. In the strictly local potential approximation,
these identities can be translated as a nontrivial relation
between beta functions along the flow. Focussing only on
the nonbranching sector, we prove asymptotic freedom
(already conjectured in Ref. [36]), as well as the existence
of two non-Gaussian fixed points using the standard EVE
method, and, in particular, the existence of a UV-attractive
fixed point matching with the heuristic arguments given in

the introduction. These nontrivial solution of the renorm-
alization group equation, however, are not compatible with
the strong Ward constraint. Investigating the fully con-
strained space E, connected to the Gaussian region, we
discovered the existence of a new nontrivial fixed point,
with one attractive and one repulsive direction. The
characteristics of this fixed point seem to be in accordance
with our approximations, in particular, in regard to
the derivative expansion around marginal operators.
Obviously, deep investigations have to be provided to
improve this result, especially about interactions with
disconnected boundaries or derivative couplings, sorting
out to the strictly local potential approximation.
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