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Dynamical Lorentz symmetry breaking in a tensor bumblebee model
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In this paper, we formulate a theory of the second-rank antisymmetric (pseudo)tensor field minimally
coupled to a spinor; calculate the one-loop effective potential of the (pseudo)tensor field; and, explicitly,
demonstrate that it is positively defined and possesses a continuous set of minima, both for tensor and
pseudotensor cases. Therefore, our model turns out to display the dynamical Lorentz symmetry breaking.
We also argue that, contrary to the derivative coupling we use here, derivative-free couplings of the
antisymmetric tensor field to a spinor do not generate the positively defined potential and thus do not allow

for the dynamical Lorentz symmetry breaking.
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I. INTRODUCTION

As is well known, Lorentz symmetry breaking can be
introduced in three manners: the explicit one, where the
constant vector or tensor introducing the privileged space-
time direction is added from the very beginning; the
anomalous one, where the spacetime possesses nontrivial
topology allowing for a natural appearing of Lorentz-
breaking terms; and the spontaneous one, where the
constant vector or tensor emerges as a vacuum expectation
of some vector or tensor field, respectively. While the first
manner became paradigmatic, being used to formulate the
Lorentz-breaking extension of the standard model [1,2],
and the second one allowed for a new, very interesting
mechanism of the arising of the Carroll-Field-Jackiw (CFJ)
term, essentially involving the nonperturbative methodol-
ogy [3,4], interest in the third, spontaneous manner, is
based on the fact that this approach provides a mechanism
allowing us to explain the origin of Lorentz symmetry
breaking. This method was originally proposed in [5] (see
also [6]), where the breaking of the Lorentz symmetry was
originally introduced being suggested to occur in the low-
energy limit of the string theory.

The first vector field theory model, involving a potential
allowing for spontaneous Lorentz symmetry breaking, was
introduced in [7]. In [8], where this model was called the
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“bumblebee model” for the first time, it was generalized to
curved spacetime, and some solutions of modified Einstein
equations in the presence of spontaneous Lorentz sym-
metry breaking were obtained. Further, various issues
related to the vector bumblebee model, including the case
of curved background, were considered (see, e.g., [9,10]),
and in [10] it has also been argued that spontaneous Lorentz
symmetry breaking in curved space is the most appropriate
way to introduce the Lorentz-violating extension of gravity.

The aspects of dynamical Lorentz symmetry breaking,
occurring due to perturbative corrections, have been treated
in [11,12]. In [11], by performing the fermion integration of
a self-interacting massive vector theory, the vector bumble-
bee model with the Lagrangian

1

Ly=—-—F

A
1 ;wF”D - Z (BﬂBM _ﬂ2)2 (1)

was obtained, however, with 1 < 0 (where F,, = 9,B, —
0,B, and p= p.p*). This situation was overcome in [12],
where a massless theory and the exact propagator allowed
the authors to take into account all orders of the expansion
in the constant 3, so that 4 was shown to be positive; i.e.,
the potential is positively defined in this latter approach.
Thus, spontaneous Lorentz symmetry breaking has been
relatively well studied for vector field models. Therefore,
taking into account that, due to this mechanism, constant
tensors of various ranks which break the Lorentz symmetry
can arise [13], it is interesting to investigate the sponta-
neous Lorentz symmetry breaking for more generic tensor
field models. Although a systematic approach to this study
has been proposed already in [14], up to now very few
results had been obtained for higher-rank Lorentz-breaking
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tensor field models, with mostly tree-level aspects being
considered; see, e.g., [15-18].

Therefore, it is natural to generalize the methodology
developed for the vector bumblebee model to the analogous
theory of the antisymmetric tensor field, which can display
spontaneous Lorentz symmetry breaking as well (for
different issues related to the antisymmetric tensor field,
without the context of Lorentz symmetry breaking, see
[19,20] and references therein). Originally, the bumblebee
model in the basis of the antisymmetric tensor field theory
was introduced in [ 14]. Here we present its simplest version
with the quartic potential looking like

1 _ . . v
L = =55 HupH" 4 (i) = ieB"7,0,174 = m)y

A
_Z(B}UJB”” _ﬁZ)Z’ (2)

where H,,, = 9,B,; + 0,B,, + 0,B,, is a stress tensor for
B 71,0y =3 (7,0, —7,0,); and g = 1, 2, with 3 = 1.
We note that this coupling differs from the spinor-tensor
interactions considered in [21,22] and [23,24], where the
vertices look like e, ., H**yysy and we,,,, H**y v,
respectively, involving the stress tensor H,,, rather than the
B, itself. So, unlike these couplings, our interaction can be
treated as a minimal one.

We observe that only our coupling iz/"/B"”ywa,,]ygz//
allows us to obtain a potential for B,,, while the other
ones yield contributions depending on the stress tensor
only, which justifies our choice of this coupling for the
study of dynamical Lorentz symmetry breaking. Then, we
introduce the spontaneous Lorentz symmetry breaking in
the standard way; that is, we shift the bumblebee field B,
by the rule B, — p,, + B, where (B,)=p, is a

nontrivial vacuum expectation value (VEV) of B,,, and
P = PP . So, the Lagrangian (2) becomes
1 o
'CB - _EH/wiH”M + W(l@ - lbﬂuy[ﬂau]yg
— ieB"y, 0,y — m)y
A 2 2
- Z <Bbe’w + ;Bﬂybﬂy) P (3)

where b,, = ep,,. Thus, we see that the spontaneous
Lorentz violation in (2) implied the appearance of the
new term irb*'y,0, ydw. This term is nothing more than a
particular form of the Lorentz-breaking extension of the
free spinor action, introduced in [2], for the case when H*¥
(denoted there as d* and c*, for ¢ =1 and g =2,
respectively) is antisymmetric. Although in most studies
this coefficient is assumed to be symmetric (see, e.g., [25]),
there is nothing that forbids it to be antisymmetric. We note
that the situation with ¢ = 2, i.e., when b*” is a constant
tensor and not a pseudotensor, allows for the possibility to

remove the coupling of the spinor to the antisymmetric b,
term in the case of a free spinor theory [26], through some
transformation of the spinor field. However, in the case of a
nontrivial interaction between a spinor and a dynamical
antisymmetric field, this transformation will generate addi-
tional spinor-tensor vertices which clearly modify quantum
contributions. Hence, even at ¢ = 2 the quantum impact of
this new term is nontrivial, and, certainly, this will be the
case for ¢ = 1, where the new term iyb*"y|,0,)ysy cannot
be ruled out.

The structure of the paper is as follows. In Sec. II, the
effective potential is calculated for tensor and pseudotensor
cases, and the possibility of having minima is discussed. In
Sec. III, we obtain the kinetic term and the bumblebee
potential for the (pseudo)tensor field. Finally, Sec. IV is a
summary where our results are discussed.

II. EFFECTIVE POTENTIAL AND ITS MINIMA

As we already said, different issues related to the
bumblebee model have been studied in a number of papers
(besides the works cited above, see also, e.g., Refs. [27-31]).
In this work, we will follow the idea originally proposed in
[32], that the quantum corrections can give an origin to the
spontaneous symmetry breaking, and will show that the
bumblebee potential for the tensor field can be dynamically
induced through radiative corrections from a self-interact-
ing fermion theory, given by the Lagrangian

. G
Ly = l/_/(l@—m)l//—zfﬂuﬂw’ (4)

where the currentis J,, = iy, 0, 4w, as follows from (3).
Indeed, it is convenient to introduce an auxiliary field B,,,,
in order to eliminate the term J,,J*, with G = Z—;, so that

the above expression can be rewritten as

2 2
g e
£:£0+E<B”V_?JWJ)

2
g vy ; v
= EBMDB” + V/(la —ieB* 7[/481/]},;[ - m)l// (5)

In this section, we generate the bumblebee potential in a
very simple way. In order to obtain the effective action, and

consequently the bumblebee effective potential, we start
with the generating functional

2Gn) = [ DBDyDge ) e
— /DBﬂUeifd4xéB"”Byb
« /DWDII—/eifd“‘X(u‘/S“waﬂ?n) (6)

where S7! = i@ — ieB"”y[ﬂ@y]yg —m is the operator
describing the quadratic action. Now, by performing the
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shift of the fermionic fields, w — v — Sy and ¥ — @ — 7S,
so that S~y + iy + Yy — S~y — 7Sy, we obtain

Z(Fy, ’7) _ /DBﬂeifd4x§BWBw /DwDy_leifd“x(y/S“v/—nSn).

()

Finally, integrating over fermions, we get

2G.1) = [ DB, exp (i8al8) =1 [ a9
where the effective action is given by

Sei[B] = % / d*xB,,B" — iTrIn(pf — eB, yV ply? — m).

©)

The Tr symbol stands for the trace over Dirac matrices as
well as for integrating over momentum or coordinate
spaces. The matrix trace can be readily calculated, so that
for the effective potential, we have

2 d4
Veﬂ::—g—B”DBMD‘I‘l'U'/( p

2 7)41“(15— eB,,yV plyl —m).

(10)

‘We note that, unlike the case of the vector field [12], here,
we have no essential simplifications in the massless case,
since there is no convenient exact form for the massless
spinor propagator in the case of its dependence on the
constant second-rank tensor.

The nontrivial minima of this potential can be obtained
as usual, from the condition of vanishing the first derivative
of the potential:

gz
= T _jerrr =0, (11)
Bubzﬁup ¢

dVeff
dB

v

where, again, b,, = ef,, and the one-loop tadpole ampli-
tude is

4
p 1

m = tr/ Y py?. (12)

(27)* P = by pPlyd —m :

Let us calculate the above expression by expanding the
propagator in terms of b, and considering, initially, ¢ = 1.
This situation is more involved than for ¢ = 2, since we
must use dimensional regularization together with ’t Hooft
and Veltman prescription [33]. To do this, we first extend
the four-dimensional spacetime to a D-dimensional one, so
that d*p/(2x)* goes to u*PdPp/(27)P, where u is an
arbitrary scale parameter with the mass dimension 1. In the

following, we introduce the anticommutation relation
{r*. 7"} = 2¢", with the contraction g, ¢ = D. Then,
we split the D-dimensional Dirac matrices y* and the
D-dimensional metric tensor ¢*¥ into four-dimensional
parts and (D — 4)-dimensional parts, i.e., y* =p* + 7
and ¢ = g" + ¢, and consider the commutation rela-
tions {#*, 7>} = 0 and [p*, y°] = 0. Thus, using the identity

prm ayp, XM
p2 — m2 (1/)’7/ P75 p2 — m2
P+m)p-ptm,
= (pz _ mz)z baﬁy[ pﬁ]J/S

— 2y
- Z?)z( g mzf; ) e pys (13)

where 7 = p,y,0*, with g9 = D — 4, we can write the
tadpole amplitude (12) as a series in by, ie., I, =

]
ZHH,(;D"H), where

it = [ A ey 20+ m)]"*!

Hy 271.)4 (p2 _ m2)2n+2

X (bag?* pPys) "y upuyys. (14)

Note that only odd contributions of b,; survive, since
in the opposite case we have tr[(f + m)(f — 2/ +
m)]" (bagypPlys)*" (P + m)yppirs = (=1)"(bapp’ )"
wl(p + m)(¢ = 27 + m)|"(¢ + m)yyp,ys, which van-
ishes for any n.

To study the minima of effective potential, in the usual
case of the weak field, so that the potential can be presented
as a power series in the field, it is sufficient to consider only
two lower contributions to I1,,, that is, those with n =0
and n = 1, which are linear and cubic in the field b*,
respectively. So, for n = 0, we have

. 1 Sem* (1 3
(—le)H,(w) = __87[2 Z"’Z b/,un (15)

whereas for n = 1, we obtain

(—ie)Hfs,) _ 35em* <1 3

82 \e T Z) (bubaph™ + 2buabypb™).

(16)

where 7,

=1_ Inf, with e =4 —-D and W? = dnue .
This last contribution can be simplified by using the

expression
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1 1- ~
Db, pb® = 3 b, basb®™ + Zbﬂybaﬂbaﬂ , (17)

o

Ty 1 vkl
where b = 3 e b,;.

Then, the gap equation (11) can be rewritten as

— i 5em4 l+§ 1 z b/“’
s, L G 822 \& 4 37

35em* (1 3 ~
I HY JRp— 1
t e (€,+4)x2b + 0, (18)

dveff
dB

uv

where x; = b,;b% and x, = b,zb".
Let us now calculate the tadpole amplitude (12) for
g = 2. To do this, we use the identity

r+m (¥ +m)(=p +m)

w g P M .
22— m? ba/ﬂ’[ p’ P2 —m? = (7% —m)? ba/}?’[ P’
besy'®
== 2ﬁ 20 (19)
pP—m

so that we can also write the tadpole amplitude as a series in
baps i T, = 52 12", where

d4p (_l)rH-l

(20)

Again, only odd contributions of b,; survive because
in the opposite case the result is proportional to
tr(bosr PP (f + m)ypy = (bapp? )" tw(p + m)yypy.
which vanishes for any n.

Now, writing (ba,ﬁ}/["p/"])z”+1 = (bpgp”)znbaﬂy[“pﬁ], we
can easily calculate the trace in (20). Then, we obtain

4 n+1
2n+1) _ d 14 (_1) o\2n
Hﬂl/ - 4/ (271.)4 (])2 _ m2>n+1 (bﬂﬂp )2 b[ﬂﬂpﬂpl’]’

(21)

where by;p’p,) =3 (bsp’p, — bosp’p,) is the product
antisymmetrized with respect to p and v. In order to
calculate the integral, we use the Feynman formula

/ @p Pu Py _(CDET@-3-8) o,

Qo)P (P =m*)* (4m)f  2i(a)
X Zgﬂngﬂw “ Gupapy (22)
perm

where the sum is taken over all permutations, with
a=n-+1and p =2n+ 2, so that we get

4itP (=1)" (=1)F
(4m)F2 T + 1)

D D
2\2 n
X F<_ 5) (=m )zbmmbmm Dy, O,

X b[ﬂllzwrl Zgﬂlﬂzgﬂsm .. .g"Z;H»lU]‘ (23)

perm

H;(iwrl)

We note that in this case we can easily obtain all orders of
the expansion, while in the ¢ =1 case, we can only
calculate the amplitude order by order [see Eq. (14)],
but the complete sum apparently cannot be found in a
closed form.

Thus, taking into account (23), forn = 0 and n = 1, we

have
471 3
- <— + —) b (24)

. (1 _
(—ie)l = 872 \¢ 4

and

4
. 3 em® (1 3 ° o
(_le)n;(w> = 1622 (g + Z) (b/wba[)’b 4 + Zb;mby/)’b ﬁ)»

(25)

so that the gap equation (11) takes the form

e em* /1 3
= |- = — | — — 1 — b
Bu—by { G 8 (6’ " 4>( xl)]

em* (1 3 ~
A T L R— 2
+ 32772 (6/ + 4> Xzb + 0 ( 6)

d Veff
dB

v

Let us discuss the implications of Egs. (18) and (26)
above. First of all, we note that when we integrate them, we
arrive at the result looking like a linear combination of
(B,,B")* and (B, B")?, with both coefficients accompa-
nying these terms being positive. Hence, our effective
potentials are positive definite and thus display minima
(the explicit form of one of these potentials will be given
further). Second, while the first term possesses a minimum at
some definite value of x; different from zero, which allows
us to find the square of b,,, the second term displays the
minimum at x, = 0, which imposes an additional restriction
on relations between components of the b,,. At the same
time, it is interesting to note that if we take the second
derivative of Vg in both cases, we find that its lower order in
b, will be proportional to 77,,,,, with the positive sign; i.e., we
indeed have a minimum. It means that different values of b,,,,,
either in tensor or pseudotensor cases, will correspond to
different vacua, and hence the spontaneous Lorentz sym-
metry breaking is possible in both situations.

It is worth mentioning that if the current is derivative
free, J,, = o, yly, instead of J, = iy}, 0,7y that we
are considering in this paper, the result for (11) is
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Wl _[Le em (1 1\ _2ex],,
dB,, Bu=p G 0\ 2 3n€
2exy ~
- 4. =0, 27
3% + (27)

for both possibilities, ¢ = 1 and g = 2. In this expression,
we can observe that the terms proportional to x,b,,
and le;,w [or, after integrating Eq. (27), to (B, B")?
and (B, B")?, respectively] have a negative sign, which
indicates that the potential is not positive definite, and,
hence, it does not display minima. This perception will be
clearer below, when we will integrate the gap equation (26)
to obtain the potential.

In order to get more information about Eq. (26), let us try
to evaluate Eq. (12), for ¢ = 2, in a general way, by writing
it as

a* !
e — tr/_PLmMD]

(2n)* p* —m
d4p plypu _ p}tp/l/
2 @

where pl, = Msp”, with M5 = gus — bys. Thus, we

have d*p’ = det(%’[’;)d“p, ie., d*p’ = det(M*g,)d*p =

—det(M**)d*p, so that

d*p = —det™' (M*)d*p'. (29)
Now, as p, = (M™"),;p”, we must calculate (M),

which is given by

X X ~
(M) = [(1 + 31) Gap + bap + Doy b7 — Zzba/i

2\ -1
X1 X5
1 — — =
x< +5 16) , (30)

where we have used the expression (17). Then, Eq. (28) can
be rewritten as

[ = —det™! (M)(g (M~ — (M~ gt

d*p’  PaPy
<[ G oy

Finally, by using the expression (22) and (30), as well as the
fact that det(M**) = —(1 + %), we obtain the gap equation

e em* (1 3 x\ 7!
= ——pw [ 1 1 —
B~ C 87 <€/ +4> ( ’ 2)

2\ -1
X1 )Cz Xy ~
1 —_—— HY = pHY = 0.
x( +2 16> (b 4b> 0

(32)

dveff
dB

uv

We can observe that this Eq. (32), up to first orders in x;
and x,, reproduces exactly Eq. (26), as expected.
Requiring x, = 0, as we have argued above, we get

dV o e em* (1 3 x\ 2
ST =|-=—-—5 |5+ ){1+% b =0,
dBy,|p,—p, { G 8z*\¢ *3 )
(33)

so that

1 X1 -2
where my = Z,_,ll/4m, with

1 1 1 3

= (=+2). 35

Z, 8r* <€’ + 4> (35)
So, we found that G < 0; i.e., we can write G = —|G]|.

Now, we can rewrite the expression (33) as

dV o
dB,

© (_1)k
- [—é—em@ e 1)X’f] b, (36)
v Bub:ﬂ;w k=0

so that, by integrating it, we arrive at

1 X,
Vegg = — ==X, — m} , 37
off TR mR2+X1+a (37)
where X; = ezBWB’“’, a is an integration constant, and we
have employed the power series Y & <2_k1+)1k X = %

Finally, by using (34), we obtain

4 ) -1
my X X
=—X 1+ —= —(14+—= .
Veff > 1 |:< + 2) < + 2) :| +a (38)

We see that this expression, first, involves arbitrary orders
in fields, being nonpolynomial, and second, includes terms
with different signs. This means that our effective potential
possesses a set of minima (B,,) satisfying the condition
e*(B,,)(B*) = b,,b*. Clearly, the most interesting sit-
uation is described by the approximation of small fields,
which is more natural from the physical viewpoint, so that
we can keep only some lowest orders in the expansion of
the effective potential in power series in X, and x; ;. The
lowest contribution to the effective potential is described by

zero and first order in x; and X;, and by choosing the
my

additive constant o to be a = 7

form of the effective potential,

x}, we get the simplest

4
PR (2B, B — b b 4+, (39)

V pm—
eff 4

which is the bumblebee potential for the tensorial field B,,,,
and dots are for higher-order terms.
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The key feature of this potential that we generated is its
positiveness. Therefore, it indeed possesses a set of minima
where ezBWB”” = b, 0", so that a choice of one of
these minima evidently generates a privileged spacetime
direction and thus breaks the Lorentz symmetry in a
spontaneous manner. So, we succeeded at generalizing
the methodology developed in [12] for an antisymmetric
tensor field. In principle, it is natural to expect that these
calculations can be generalized as well for the finite
temperature regime, and the possibility of phase transitions
can be studied. We note that the main difference between
tensor and pseudotensor cases consists in the fact that only
in the tensor case can one obtain an exact result for the one-
loop effective potential including all orders in the dynami-
cal field. Nevertheless, in both cases, the effective potential
possesses a continuous set of minima and hence allows for
spontaneous Lorentz symmetry breaking.

III. ONE-LOOP LOW-ENERGY
EFFECTIVE ACTION

After we have proved that the one-loop effective poten-
tial indeed displays the minima, let us find the explicit form
|

. . 2
2 L K v te KApV
St B] = 3 TrS(p)eBar plrS(peByuy* plyt = = / d*IT B, B

where

d4
[ — tr/Ql;‘S(p)y[Kp/ﬂ}/gS(p— i0)y¥(p — i0)y!
T

of the one-loop low-energy effective action, where not only
potential terms are taken into account, but also the second
derivative terms as well. To do this, we can rewrite
Eq. (9) as

2
g v n
SulB) =% [ @is e+ sGB. (40)
with
etf lTI'Z eB/wy[”p ]},5] (41)
and S(p) = (¥ —m)~!, where we have disregarded the

field independent term —iTr In(p — m).

Our aim is to study the expression (41) up to the fourth
order in fields, in order to obtain lower terms of the
derivative and field expansion of the effective action.

First, for n =1 and n = 3, evidently, Sefz [B] and Sf:?f) [B]
vanish. Then, let us focus our attention on contributions
with n = 2 and n = 4. First, for n = 2, we have

(42)

[

(43)

In order to calculate the above integral, we use the Feynman parametrization, so that, for ¢ = 1, we obtain

2.2 2.2

2 _ Se'm e m
Eeff.l - _4877,'26’ B#Uszm/ +24 2 ¢ IW
2

e

2880 388072

e? B [ <240m4
1440722 k?

whereas, for ¢ = 2, we have

€2m2
16 1621 /
2

576x* B
2

£y, = (KRB — 2Kk, Br) +

+

+

k¥ kBt + B

32
— 110m? + 3k2> — 60m? <— - 1> csc! (—)] kYk, Bt
k> Vi2 o

e 4m? 172 2m
18m? — k%) — 12m?*( —5-—1 csc™ Kk, B,
s (7 -) "o ()]

2
15¢2m B e B KW

482/!”/ 962//4u

4 5/2 2
[(1155m — 430mk> + 46k*) — 30k* (i - 1) csc™! <—m>] B

e vie

4dm (44)

2,4 e2
B, B" + ———

4 puv
1672 967> BkBM

m2 3/2
{(27;11 — 42m*k* + 8k*) + 6k* <— - 1> csc” < 2m ﬂ B

K V2

(45)

with the external momentum being related with the derivative of the field through the relation k, = i0,, where we have
taken into account that the effective action is the integral from the effective Lagranglan over the spacetime,

ett - fd4
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Now, by imposing the limit of slowly varying fields, which is formally written as 8> < m? (while m # 0), for g = 1,
we get

5¢2m* (1 1 5¢2m* (13
LR =" (‘*‘)BmaZBW—za”aaBm+ o (—ﬁ‘)BHUBW
’ €

4872 \e 2 1672 4
ezm2 1 1 , u &2 " 84
and, for ¢ = 2,
2.2 2,4 ) 2
2) eem” (1 1 . ) o ooemt (13 . ” 8
Lir = 1622 <Z+§> Bﬂy(azB" —20"9,B") + 1622 <Z+Z B, B" + 06,2 ,Bﬂ,ﬁ“Bf + 0| — (47)
We can rewrite the above expressions as
1 e2m? 2 >
Ll = — B, (*B™ —200,B" RB,BY + _—B,d0,B" + O =), 48
eff,1 423 /w( a )+ 2 y22% +SZ3 y22% a + m2 ( )
and
2 4 2
(2) 1 ) v a e mp v 9
L, = 4Z D(aZB% —200,B") + > B, B" + O(W) (49)
where
1 5m* /1 1
Y (i 50
Zy 1277 (e' - 2> (50)
and
1 em? /(1 1
S 51
Z3 47[2 (6/ + 2) ( )

respectively. By defining the renormalized field By = Z;l/ 2B, as well as the renormalized coupling constant
ep = Zé/ze, for ¢ = 1, we obtain

2 1 2 erms
Eéff),l = _EHR;MH%M 3 (0,BR)* + R2 R BBy, (52)
and, for g = 2,
2 1 erms
Eéff),Z = __HRuvAijeM +—F Bru, By (53)

12 2

where we have disregarded the terms contributing to higher orders of the derivative expansion.
Finally, for n = 4, we have

i
Seit |B) = S TAS(p)eBosy pPr4S(p)eB ot pyiS(p)eBoy 74S(p)eByur ply'

4
- ’i AT B BB, (54)
where
afydxiuw d'p o B],,4 7 81,4 [k ;A4 1 ]9 4
[1eProximy = tr 1) (P)rep?vaS(p)r? p?viS(p)r* phyiS(p)y¥ p*ye + O(0). (55)

Repeating the calculations of the integrals over the momenta carried out above, we arrive at the following results for the
fourth-order contribution to the effective Lagrangian:
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4 35¢*m* /1 3 . , »
éff).l T 772 (B.;B**B,, B" + 2B,;,B*B,, B"), (56)
for ¢ =1, and
4, 4
4 em* (1 3 . . o
£, =- o (Z + Z) (B,B*B,,B" + 2B,,B*"B,,B"), (57)

for g = 2, where we have disregarded the derivative terms, which contribute only to higher orders of the expansion. Now, by
using the identity (17), with b,, replaced by B,,, we can rewrite the above expressions as

v
4 Tehm® Tetm? - -
‘Céff),l == fz . BRKABgBRﬂuBl;eD - %BRMB’ICQABRMVBI;QU’ (58)
for g =1, and
4.4 4.4
4 epm epm - -
‘Ciff),z == R4 K BBy Bru By — Rl 6R BRMBII(QABR#DB%D’ (59)
for ¢ = 2, where we have defined
1 5 /1 3
Z, 87 <z+z> (60)
and
1 1 /1 3
z—:@@*z)’ (61)
m
respectively.

Therefore, using (40), (52), and (58), we arrive at the complete expression for the low-energy tensorial bumblebee
Lagrangian, for ¢ = 1, i.e., in the pseudotensor case, given by

1 . exms e Tehm’
L=~ EHR;UMH’;: + R2 R BRm,B’;: + ﬁ BRWB’;: - f2 R BRMBE’{BRWB’;:
Term% N ) .
- 28 R BRK}.BEABR/IVBI;QV - g (aaBét?( )2’ (62)

and taking into account (40), (53), and (59) as well, for ¢ = 2, i.e., in the tensor case, we find

2 4 2 4 4 44

1 esrm e erm erm ~ ~
Lpr=— EHRMH’;” + 2R BBl + ﬁBR,,DB’;: - %BMB;*BRWB’;{ -~ ’*1—6’*BMB§§BR,,DB’§”. (63)
To simplify these expressions, we can use ¢ = —my(1 —1b,,b*) of Eq. (18), for ¢ = 1, and £ = —mj(1 — b, b*) of
Eq. (26) [as well as of (34) taken up to first order in x], for ¢ = 2, so that we obtain
1 uvi T 2 s )2 2 a2 Tegpmy V)
'CB,I = _EHRW/IHR _F(eRBR/wBR - b/wb ) _g(aaBR ) - 48 (BR;wBR) ’ (64)
and
1 m’ etms -
*CBA,Z = _EHRMMHI;?M - TR (e%?BR/wBI;: - b/wblw)Q - R16R (BR#DB};?U)Z’ (65)

Tm' m# .
where we have added the constants — 3¢ x7 and — "% x{, respectively.

085009-8



DYNAMICAL LORENTZ SYMMETRY BREAKING IN A TENSOR ...

PHYS. REV. D 100, 085009 (2019)

Thus, we conclude that we have succeeded at generating
the low-energy effective actions for the tensor bumblebee
field. This action includes the usual kinetic term for the
second-rank antisymmetric tensor field, and the positively
defined potential given by the sum of two terms, with the first
of them displays the set of minimax; = 2(1/|G|m% — 1), for
q =2, according to Eq. (33), allowing for spontaneous
Lorentz symmetry breaking, and another one with the trivial
minimum x, = (. We note that both currents, corresponding
both to ¢ = 1 and ¢ = 2 (pseudotensor and tensor cases),
display rather similar dynamical impacts allowing us to
achieve a set of minima, implying the possibility for sponta-
neous Lorentz symmetry breaking, in both cases. We also
observe that other, derivative-free forms of the second-rank
tensor current, such as J,, = il/"/am,yg’y/, do not possess this
feature; i.e., the one-loop effective potentials generated with
their use do not display minima [see Eq. (27)]. Hence, the
spontaneous Lorentz symmetry breaking cannot occur for
these couplings.

IV. SUMMARY

Now, let us discuss our results. Within this paper, we
have successfully generalized the mechanism of the
dynamical Lorentz symmetry breaking for theories of the
second-rank antisymmetric tensor and pseudotensor fields;
ie., for the first time, we have generated the tensor
bumblebee action as a quantum correction, while, earlier,
only the vector bumblebee model was studied within the
perturbative methodology. Therefore, it is natural to expect
that our results can open the way for further studies of
spontaneous Lorentz symmetry breaking for generic
dynamical tensor fields. The approach we have used
continues the line of our earlier paper [12] and guarantees
that our effective potential indeed possesses minima, which
justifies the consistency of our results. We note that,
actually, our paper represents itself as one of the first
studies of quantum aspects of Lorentz symmetry breaking

for the higher-rank tensor field models. Especially, it must
be emphasized that the one-loop effective potential we have
obtained displays a continuous set of minima both in tensor
and pseudotensor cases; hence, in both of these cases,
spontaneous Lorentz symmetry breaking can occur. It is
important to note that unlike the previous papers [15-18],
in our paper, the constant antisymmetric second-rank
pseudotensor has been introduced for the first time, which
opens the way for constructing new Lorentz-breaking terms
involving such a pseudotensor.

It is natural to expect that our methodology can be
applied to more sophisticated tensor models. First, it is
important to note that apparently our results can be useful
within the string context. To present a possible relation of
our results to string theory, it is worth mentioning that, from
one side, spontaneous Lorentz symmetry breaking was
originally introduced within the string context [5], and from
another side, the antisymmetric tensor field arises within
the low-energy limit of the string theory [34]. Therefore,
actually our paper explicitly demonstrates the essence of
the mechanism proposed in [5]. Thus, it is natural to expect
that our results can be applied for detailed studies of various
low-energy consequences of the string theory and of
different higher-rank tensor models. Another continuation
of the present work could consist in introducing the finite
temperature, with the subsequent study of the possibility of
phase transitions, generalizing the results of [12] for a
tensor field case, as well as in introducing a curved
background, extending thus a study carried out in [14]
for a level of quantum corrections. We expect to carry out
these generalizations in forthcoming papers.
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