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In this paper, we formulate a theory of the second-rank antisymmetric (pseudo)tensor field minimally
coupled to a spinor; calculate the one-loop effective potential of the (pseudo)tensor field; and, explicitly,
demonstrate that it is positively defined and possesses a continuous set of minima, both for tensor and
pseudotensor cases. Therefore, our model turns out to display the dynamical Lorentz symmetry breaking.
We also argue that, contrary to the derivative coupling we use here, derivative-free couplings of the
antisymmetric tensor field to a spinor do not generate the positively defined potential and thus do not allow
for the dynamical Lorentz symmetry breaking.
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I. INTRODUCTION

As is well known, Lorentz symmetry breaking can be
introduced in three manners: the explicit one, where the
constant vector or tensor introducing the privileged space-
time direction is added from the very beginning; the
anomalous one, where the spacetime possesses nontrivial
topology allowing for a natural appearing of Lorentz-
breaking terms; and the spontaneous one, where the
constant vector or tensor emerges as a vacuum expectation
of some vector or tensor field, respectively. While the first
manner became paradigmatic, being used to formulate the
Lorentz-breaking extension of the standard model [1,2],
and the second one allowed for a new, very interesting
mechanism of the arising of the Carroll-Field-Jackiw (CFJ)
term, essentially involving the nonperturbative methodol-
ogy [3,4], interest in the third, spontaneous manner, is
based on the fact that this approach provides a mechanism
allowing us to explain the origin of Lorentz symmetry
breaking. This method was originally proposed in [5] (see
also [6]), where the breaking of the Lorentz symmetry was
originally introduced being suggested to occur in the low-
energy limit of the string theory.
The first vector field theory model, involving a potential

allowing for spontaneous Lorentz symmetry breaking, was
introduced in [7]. In [8], where this model was called the

“bumblebee model” for the first time, it was generalized to
curved spacetime, and some solutions of modified Einstein
equations in the presence of spontaneous Lorentz sym-
metry breaking were obtained. Further, various issues
related to the vector bumblebee model, including the case
of curved background, were considered (see, e.g., [9,10]),
and in [10] it has also been argued that spontaneous Lorentz
symmetry breaking in curved space is the most appropriate
way to introduce the Lorentz-violating extension of gravity.
The aspects of dynamical Lorentz symmetry breaking,

occurring due to perturbative corrections, have been treated
in [11,12]. In [11], by performing the fermion integration of
a self-interacting massive vector theory, the vector bumble-
bee model with the Lagrangian

LB ¼ −
1

12
FμνFμν −

λ

4
ðBμBμ − β2Þ2 ð1Þ

was obtained, however, with λ < 0 (where Fμν ¼ ∂μBν −
∂νBμ and β2 ¼ βμβ

μ). This situation was overcome in [12],
where a massless theory and the exact propagator allowed
the authors to take into account all orders of the expansion
in the constant βμ so that λ was shown to be positive; i.e.,
the potential is positively defined in this latter approach.
Thus, spontaneous Lorentz symmetry breaking has been

relatively well studied for vector field models. Therefore,
taking into account that, due to this mechanism, constant
tensors of various ranks which break the Lorentz symmetry
can arise [13], it is interesting to investigate the sponta-
neous Lorentz symmetry breaking for more generic tensor
field models. Although a systematic approach to this study
has been proposed already in [14], up to now very few
results had been obtained for higher-rank Lorentz-breaking
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tensor field models, with mostly tree-level aspects being
considered; see, e.g., [15–18].
Therefore, it is natural to generalize the methodology

developed for the vector bumblebee model to the analogous
theory of the antisymmetric tensor field, which can display
spontaneous Lorentz symmetry breaking as well (for
different issues related to the antisymmetric tensor field,
without the context of Lorentz symmetry breaking, see
[19,20] and references therein). Originally, the bumblebee
model in the basis of the antisymmetric tensor field theory
was introduced in [14]. Here we present its simplest version
with the quartic potential looking like

LB ¼ −
1

12
HμνλHμνλ þ ψ̄ði=∂ − ieBμνγ½μ∂ν�γ

q
5 −mÞψ

−
λ

4
ðBμνBμν − β2Þ2; ð2Þ

where Hμνλ ¼ ∂μBνλ þ ∂νBλμ þ ∂λBμν is a stress tensor for
Bμν; γ½μ∂ν� ¼ 1

2
ðγμ∂ν − γν∂μÞ; and q ¼ 1, 2, with γ25 ¼ 1.

We note that this coupling differs from the spinor-tensor
interactions considered in [21,22] and [23,24], where the
vertices look like iψ̄ϵμνλρHμνλγργ5ψ and ψ̄ϵμνλρHμνλγρψ ,
respectively, involving the stress tensorHμνλ rather than the
Bμν itself. So, unlike these couplings, our interaction can be
treated as a minimal one.
We observe that only our coupling iψ̄Bμνγ½μ∂ν�γ

q
5ψ

allows us to obtain a potential for Bμν, while the other
ones yield contributions depending on the stress tensor
only, which justifies our choice of this coupling for the
study of dynamical Lorentz symmetry breaking. Then, we
introduce the spontaneous Lorentz symmetry breaking in
the standard way; that is, we shift the bumblebee field Bμν

by the rule Bμν → βμν þ Bμν, where hBμνi ¼ βμν is a
nontrivial vacuum expectation value (VEV) of Bμν, and
β2 ¼ βμνβ

μν. So, the Lagrangian (2) becomes

LB ¼ −
1

12
HμνλHμνλ þ ψ̄ði=∂ − ibμνγ½μ∂ν�γ

q
5

− ieBμνγ½μ∂ν�γ
q
5 −mÞψ

−
λ

4

�
BμνBμν þ 2

e
Bμνbμν

�
2

; ð3Þ

where bμν ¼ eβμν. Thus, we see that the spontaneous
Lorentz violation in (2) implied the appearance of the
new term iψ̄bμνγ½μ∂ν�γ

q
5ψ . This term is nothing more than a

particular form of the Lorentz-breaking extension of the
free spinor action, introduced in [2], for the case when bμν

(denoted there as dμν and cμν, for q ¼ 1 and q ¼ 2,
respectively) is antisymmetric. Although in most studies
this coefficient is assumed to be symmetric (see, e.g., [25]),
there is nothing that forbids it to be antisymmetric. We note
that the situation with q ¼ 2, i.e., when bμν is a constant
tensor and not a pseudotensor, allows for the possibility to

remove the coupling of the spinor to the antisymmetric bμν
term in the case of a free spinor theory [26], through some
transformation of the spinor field. However, in the case of a
nontrivial interaction between a spinor and a dynamical
antisymmetric field, this transformation will generate addi-
tional spinor-tensor vertices which clearly modify quantum
contributions. Hence, even at q ¼ 2 the quantum impact of
this new term is nontrivial, and, certainly, this will be the
case for q ¼ 1, where the new term iψ̄bμνγ½μ∂ν�γ5ψ cannot
be ruled out.
The structure of the paper is as follows. In Sec. II, the

effective potential is calculated for tensor and pseudotensor
cases, and the possibility of having minima is discussed. In
Sec. III, we obtain the kinetic term and the bumblebee
potential for the (pseudo)tensor field. Finally, Sec. IV is a
summary where our results are discussed.

II. EFFECTIVE POTENTIAL AND ITS MINIMA

As we already said, different issues related to the
bumblebee model have been studied in a number of papers
(besides theworks cited above, see also, e.g., Refs. [27–31]).
In this work, we will follow the idea originally proposed in
[32], that the quantum corrections can give an origin to the
spontaneous symmetry breaking, and will show that the
bumblebee potential for the tensor field can be dynamically
induced through radiative corrections from a self-interact-
ing fermion theory, given by the Lagrangian

L0 ¼ ψ̄ði=∂ −mÞψ −
G
2
JμνJμν; ð4Þ

where the current is Jμν ¼ iψ̄γ½μ∂ν�γ
q
5ψ , as follows from (3).

Indeed, it is convenient to introduce an auxiliary field Bμν,

in order to eliminate the term JμνJμν, with G ¼ e2

g2, so that

the above expression can be rewritten as

L ¼ L0 þ
g2

2

�
Bμν −

e
g2

Jμν

�
2

¼ g2

2
BμνBμν þ ψ̄ði=∂ − ieBμνγ½μ∂ν�γ

q
5 −mÞψ : ð5Þ

In this section, we generate the bumblebee potential in a
very simple way. In order to obtain the effective action, and
consequently the bumblebee effective potential, we start
with the generating functional

Zðη̄; ηÞ ¼
Z

DBμDψDψ̄ei
R

d4xðLþη̄ψþψ̄ηÞ

¼
Z

DBμνe
i
R

d4xg
2

2
BμνBμν

×
Z

DψDψ̄ei
R

d4xðψ̄S−1ψþη̄ψþψ̄ηÞ; ð6Þ

where S−1 ¼ i=∂ − ieBμνγ½μ∂ν�γ
q
5 −m is the operator

describing the quadratic action. Now, by performing the
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shift of the fermionic fields, ψ → ψ − Sη and ψ̄ → ψ̄ − η̄S,
so that ψ̄S−1ψ þ η̄ψ þ ψ̄η → ψ̄S−1ψ − η̄Sη, we obtain

Zðη̄; ηÞ ¼
Z

DBμe
i
R

d4xg
2

2
BμνBμν

Z
DψDψ̄ei

R
d4xðψ̄S−1ψ−η̄SηÞ:

ð7Þ

Finally, integrating over fermions, we get

Zðη̄; ηÞ ¼
Z

DBμ exp

�
iSeff ½B� − i

Z
d4xη̄Sη

�
; ð8Þ

where the effective action is given by

Seff ½B� ¼
g2

2

Z
d4xBμνBμν − iTr lnð=p − eBμνγ

½μpν�γq5 −mÞ:

ð9Þ

The Tr symbol stands for the trace over Dirac matrices as
well as for integrating over momentum or coordinate
spaces. The matrix trace can be readily calculated, so that
for the effective potential, we have

Veff ¼ −
g2

2
BμνBμν þ itr

Z
d4p
ð2πÞ4 lnð=p− eBμνγ

½μpν�γq5 −mÞ:

ð10Þ

We note that, unlike the case of the vector field [12], here,
we have no essential simplifications in the massless case,
since there is no convenient exact form for the massless
spinor propagator in the case of its dependence on the
constant second-rank tensor.
The nontrivial minima of this potential can be obtained

as usual, from the condition of vanishing the first derivative
of the potential:

dVeff

dBμν

����
Bμν¼βμν

¼ −
g2

e
bμν − ieΠμν ¼ 0; ð11Þ

where, again, bμν ¼ eβμν and the one-loop tadpole ampli-
tude is

Πμν ¼ tr
Z

d4p
ð2πÞ4

1

=p − bαβγ½αpβ�γq5 −m
γ½μpν�γq5: ð12Þ

Let us calculate the above expression by expanding the
propagator in terms of bαβ and considering, initially, q ¼ 1.
This situation is more involved than for q ¼ 2, since we
must use dimensional regularization together with ’t Hooft
and Veltman prescription [33]. To do this, we first extend
the four-dimensional spacetime to a D-dimensional one, so
that d4p=ð2πÞ4 goes to μ4−DdDp=ð2πÞD, where μ is an
arbitrary scale parameter with the mass dimension 1. In the

following, we introduce the anticommutation relation
fγμ; γνg ¼ 2gμν, with the contraction gμνgμν ¼ D. Then,
we split the D-dimensional Dirac matrices γμ and the
D-dimensional metric tensor gμν into four-dimensional
parts and (D − 4)-dimensional parts, i.e., γμ ¼ γ̄μ þ γ̂μ

and gμν ¼ ḡμν þ ĝμν, and consider the commutation rela-
tions fγ̄μ; γ5g ¼ 0 and ½γ̂μ; γ5� ¼ 0. Thus, using the identity

=pþm
p2 −m2

bαβγ½αpβ�γ5
=pþm
p2 −m2

¼ ð=pþmÞð=̄p − =̂pþmÞ
ðp2 −m2Þ2 bαβγ½αpβ�γ5

¼ ð=pþmÞð=p − 2=̂pþmÞ
ðp2 −m2Þ2 bαβγ½αpβ�γ5; ð13Þ

where =̂p ¼ pκγλĝκλ, with gκλĝκλ ¼ D − 4, we can write the
tadpole amplitude (12) as a series in bαβ, i.e., Πμν ¼P

nΠ
ð2nþ1Þ
μν , where

Πð2nþ1Þ
μν ¼ tr

Z
d4p
ð2πÞ4

½ð=pþmÞð=p − 2=̂pþmÞ�nþ1

ðp2 −m2Þ2nþ2

× ðbαβγ½αpβ�γ5Þ2nþ1γ½μpν�γ5: ð14Þ

Note that only odd contributions of bαβ survive, since

in the opposite case we have tr½ð=p þ mÞð=p − 2=̂pþ
mÞ�nðbαβγ½αpβ�γ5Þ2nð=p þ mÞγ½μpν�γ5 ¼ ð−1ÞnðbαβpβÞ2n×
tr½ð=p þ mÞð=p − 2=̂p þ mÞ�nð=p þ mÞγ½μpν�γ5, which van-
ishes for any n.
To study the minima of effective potential, in the usual

case of the weak field, so that the potential can be presented
as a power series in the field, it is sufficient to consider only
two lower contributions to Πμν, that is, those with n ¼ 0

and n ¼ 1, which are linear and cubic in the field bμν,
respectively. So, for n ¼ 0, we have

ð−ieÞΠð1Þ
μν ¼ −

5em4

8π2

�
1

ϵ0
þ 3

4

�
bμν; ð15Þ

whereas for n ¼ 1, we obtain

ð−ieÞΠð3Þ
μν ¼ 35em4

48π2

�
1

ϵ0
þ 3

4

�
ðbμνbαβbαβ þ 2bμαbνβbαβÞ;

ð16Þ

where 1
ϵ0 ¼ 1

ϵ − ln m
μ0, with ϵ ¼ 4 −D and μ02 ¼ 4πμ2e−γ .

This last contribution can be simplified by using the
expression
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bμαbνβbαβ ¼
1

2
bμνbαβbαβ þ

1

4
b̃μνbαβb̃

αβ; ð17Þ

where b̃μν ¼ 1
2
ϵμνκλbκλ.

Then, the gap equation (11) can be rewritten as

dVeff

dBμν

����
Bμν¼βμν

¼
�
−
e
G
−
5em4

8π2

�
1

ϵ0
þ 3

4

��
1 −

7

3
x1

��
bμν

þ 35em4

96π2

�
1

ϵ0
þ 3

4

�
x2b̃

μν þ � � � ¼ 0; ð18Þ

where x1 ¼ bαβbαβ and x2 ¼ bαβb̃
αβ.

Let us now calculate the tadpole amplitude (12) for
q ¼ 2. To do this, we use the identity

=pþm
p2 −m2

bαβγ½αpβ� =pþm
p2 −m2

¼ ð=pþmÞð−=pþmÞ
ðp2 −m2Þ2 bαβγ½αpβ�

¼ −
bαβγ½αpβ�

p2 −m2
; ð19Þ

so that we can also write the tadpole amplitude as a series in

bαβ, i.e., Πμν ¼
P

nΠ
ð2nþ1Þ
μν , where

Πð2nþ1Þ
μν ¼ tr

Z
d4p
ð2πÞ4

ð−1Þnþ1

ðp2 −m2Þnþ1
ðbαβγ½αpβ�Þ2nþ1γ½μpν�:

ð20Þ

Again, only odd contributions of bαβ survive because
in the opposite case the result is proportional to
trðbαβγ½αpβ�Þ2nð=p þ mÞγ½μpν� ¼ ðbαβpβÞ2ntrð=p þ mÞγ½μpν�,
which vanishes for any n.
Now, writing ðbαβγ½αpβ�Þ2nþ1 ¼ ðbρσpσÞ2nbαβγ½αpβ�, we

can easily calculate the trace in (20). Then, we obtain

Πð2nþ1Þ
μν ¼ 4

Z
d4p
ð2πÞ4

ð−1Þnþ1

ðp2 −m2Þnþ1
ðbρσpσÞ2nb½μβpβpν�;

ð21Þ

where b½μβpβpν� ¼ 1
2
ðbμβpβpν − bνβpβpμÞ is the product

antisymmetrized with respect to μ and ν. In order to
calculate the integral, we use the Feynman formula

Z
dDp
ð2πÞD

pμ1 � � �pμp

ðp2 −m2Þα ¼
ið−1Þ−D

2

ð4πÞD2
Γðα − D

2
− p

2
Þ

2
p
2ΓðαÞ ð−m2ÞD2þp

2
−α

×
X
perm

gμ1μ2gμ3μ4 � � � gμp−1μp ; ð22Þ

where the sum is taken over all permutations, with
α ¼ nþ 1 and p ¼ 2nþ 2, so that we get

Πð2nþ1Þ
μν ¼ 4iμ4−Dð−1Þnþ1ð−1Þ−D

2

ð4πÞD22nþ1Γðnþ 1Þ

× Γ
�
−
D
2

�
ð−m2ÞD2bρ1μ1bρ1μ2 � � � bρnμ2n−1bρnμ2n

× b½μμ2nþ1

X
perm

gμ1μ2gμ3μ4 � � � gμ2nþ1
ν�: ð23Þ

We note that in this case we can easily obtain all orders of
the expansion, while in the q ¼ 1 case, we can only
calculate the amplitude order by order [see Eq. (14)],
but the complete sum apparently cannot be found in a
closed form.
Thus, taking into account (23), for n ¼ 0 and n ¼ 1, we

have

ð−ieÞΠð1Þ
μν ¼ −

em4

8π2

�
1

ϵ0
þ 3

4

�
bμν; ð24Þ

and

ð−ieÞΠð3Þ
μν ¼ em4

16π2

�
1

ϵ0
þ 3

4

�
ðbμνbαβbαβ þ 2bμαbνβbαβÞ;

ð25Þ
so that the gap equation (11) takes the form

dVeff

dBμν

����
Bμν¼βμν

¼
�
−
e
G
−
em4

8π2

�
1

ϵ0
þ 3

4

�
ð1 − x1Þ

�
bμν

þ em4

32π2

�
1

ϵ0
þ 3

4

�
x2b̃

μν þ � � � ¼ 0: ð26Þ

Let us discuss the implications of Eqs. (18) and (26)
above. First of all, we note that when we integrate them, we
arrive at the result looking like a linear combination of
ðBμνBμνÞ2 and ðBμνB̃μνÞ2, with both coefficients accompa-
nying these terms being positive. Hence, our effective
potentials are positive definite and thus display minima
(the explicit form of one of these potentials will be given
further). Second,while the first termpossesses aminimumat
some definite value of x1 different from zero, which allows
us to find the square of bμν, the second term displays the
minimum at x2 ¼ 0, which imposes an additional restriction
on relations between components of the bμν. At the same
time, it is interesting to note that if we take the second
derivative ofVeff in both cases, we find that its lower order in
bμν will be proportional to ημν, with the positive sign; i.e., we
indeed have aminimum. Itmeans that different values ofbμν,
either in tensor or pseudotensor cases, will correspond to
different vacua, and hence the spontaneous Lorentz sym-
metry breaking is possible in both situations.
It is worth mentioning that if the current is derivative

free, Jμν ¼ iψ̄σμνγ
q
5ψ , instead of Jμν ¼ iψ̄γ½μ∂ν�γ

q
5ψ that we

are considering in this paper, the result for (11) is
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dVeff

dBμν

����
Bμν¼βμν

¼
�
−
e
G
þ em2

π2

�
1

ϵ0
−
1

2

�
−

2ex1
3π2ϵ0

�
bμν

−
2ex2
3π2ϵ0

b̃μν þ � � � ¼ 0; ð27Þ

for both possibilities, q ¼ 1 and q ¼ 2. In this expression,
we can observe that the terms proportional to x1bμν
and x2b̃μν [or, after integrating Eq. (27), to ðBμνBμνÞ2
and ðBμνB̃μνÞ2, respectively] have a negative sign, which
indicates that the potential is not positive definite, and,
hence, it does not display minima. This perception will be
clearer below, when we will integrate the gap equation (26)
to obtain the potential.
In order to get more information about Eq. (26), let us try

to evaluate Eq. (12), for q ¼ 2, in a general way, by writing
it as

Πμν ¼ tr
Z

d4p
ð2πÞ4

=p0 þm
p02 −m2

γ½μpν�

¼ 2

Z
d4p
ð2πÞ4

p0μpν − pμp0ν

p02 −m2
; ð28Þ

where p0
α ¼ Mαβpβ, with Mαβ ¼ gαβ − bαβ. Thus, we

have d4p0 ¼ detð∂p0μ
∂pν Þd4p, i.e., d4p0 ¼ det ðMμαgανÞd4p ¼

− detðMμαÞd4p, so that

d4p ¼ −det−1ðMμαÞd4p0: ð29Þ

Now, as pα ¼ ðM−1Þαβp0β, we must calculate ðM−1Þαβ,
which is given by

ðM−1Þαβ ¼
��

1þ x1
2

�
gαβ þ bαβ þ bαγbγβ −

x2
4
b̃αβ

�

×

�
1þ x1

2
−
x22
16

�
−1
; ð30Þ

where we have used the expression (17). Then, Eq. (28) can
be rewritten as

Πμν ¼ −det−1ðMκλÞðgμβðM−1Þνα − ðM−1ÞμαgνβÞ

×
Z

d4p0

ð2πÞ4
p0
αp0

β

p02 −m2
: ð31Þ

Finally, by using the expression (22) and (30), as well as the
fact that detðMκλÞ ¼ −ð1þ x1

2
Þ, we obtain the gap equation

dVeff

dBμν

����
Bμν¼βμν

¼ −
e
G
bμν −

em4

8π2

�
1

ϵ0
þ 3

4

��
1þ x1

2

�
−1

×

�
1þ x1

2
−
x22
16

�
−1
�
bμν −

x2
4
b̃μν

�
¼ 0:

ð32Þ

We can observe that this Eq. (32), up to first orders in x1
and x2, reproduces exactly Eq. (26), as expected.
Requiring x2 ¼ 0, as we have argued above, we get

dVeff

dBμν

����
Bμν¼βμν

¼
�
−
e
G
−
em4

8π2

�
1

ϵ0
þ 3

4

��
1þ x1

2

�
−2
�
bμν ¼ 0;

ð33Þ

so that

1

G
¼ −m4

R

�
1þ x1

2

�
−2
; ð34Þ

where mR ¼ Z−1=4
m m, with

1

Zm
¼ 1

8π2

�
1

ϵ0
þ 3

4

�
: ð35Þ

So, we found that G < 0; i.e., we can write G ¼ −jGj.
Now, we can rewrite the expression (33) as

dVeff

dBμν

����
Bμν¼βμν

¼
�
−
e
G
− em4

R

X∞
k¼0

ð−1Þk
2k

ðkþ 1Þxk1
�
bμν; ð36Þ

so that, by integrating it, we arrive at

Veff ¼ −
1

2G
X1 −m4

R
X1

2þ X1

þ α; ð37Þ

where X1 ¼ e2BμνBμν, α is an integration constant, and we

have employed the power series
P∞

k¼0
ð−1Þk
2kþ1 Xkþ1

1 ¼ X1

2þX1
.

Finally, by using (34), we obtain

Veff ¼
m4

R

2
X1

��
1þ x1

2

�
−2

−
�
1þ X1

2

�
−1
�
þ α: ð38Þ

We see that this expression, first, involves arbitrary orders
in fields, being nonpolynomial, and second, includes terms
with different signs. This means that our effective potential
possesses a set of minima hBμνi satisfying the condition
e2hBμνihBμνi ¼ bμνbμν. Clearly, the most interesting sit-
uation is described by the approximation of small fields,
which is more natural from the physical viewpoint, so that
we can keep only some lowest orders in the expansion of
the effective potential in power series in X1;2 and x1;2. The
lowest contribution to the effective potential is described by
zero and first order in x1 and X1, and by choosing the

additive constant α to be α ¼ m4
R
4
x21, we get the simplest

form of the effective potential,

Veff ¼
m4

R

4
ðe2BμνBμν − bμνbμνÞ2 þ � � � ; ð39Þ

which is the bumblebee potential for the tensorial field Bμν,
and dots are for higher-order terms.
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The key feature of this potential that we generated is its
positiveness. Therefore, it indeed possesses a set of minima
where e2BμνBμν ¼ bμνbμν, so that a choice of one of
these minima evidently generates a privileged spacetime
direction and thus breaks the Lorentz symmetry in a
spontaneous manner. So, we succeeded at generalizing
the methodology developed in [12] for an antisymmetric
tensor field. In principle, it is natural to expect that these
calculations can be generalized as well for the finite
temperature regime, and the possibility of phase transitions
can be studied. We note that the main difference between
tensor and pseudotensor cases consists in the fact that only
in the tensor case can one obtain an exact result for the one-
loop effective potential including all orders in the dynami-
cal field. Nevertheless, in both cases, the effective potential
possesses a continuous set of minima and hence allows for
spontaneous Lorentz symmetry breaking.

III. ONE-LOOP LOW-ENERGY
EFFECTIVE ACTION

After we have proved that the one-loop effective poten-
tial indeed displays the minima, let us find the explicit form

of the one-loop low-energy effective action, where not only
potential terms are taken into account, but also the second
derivative terms as well. To do this, we can rewrite
Eq. (9) as

Seff ½B� ¼
g2

2

Z
d4xBμνBμν þ SðnÞeff ½B�; ð40Þ

with

SðnÞeff ½B� ¼ iTr
X∞
n¼1

1

n
½SðpÞeBμνγ

½μpν�γq5�n ð41Þ

and SðpÞ ¼ ð=p −mÞ−1, where we have disregarded the
field independent term −iTr lnð=p −mÞ.
Our aim is to study the expression (41) up to the fourth

order in fields, in order to obtain lower terms of the
derivative and field expansion of the effective action.

First, for n ¼ 1 and n ¼ 3, evidently, Sð1Þeff ½B� and Sð3Þeff ½B�
vanish. Then, let us focus our attention on contributions
with n ¼ 2 and n ¼ 4. First, for n ¼ 2, we have

Sð2Þeff ½B� ¼
i
2
TrSðpÞeBκλγ

½κpλ�γq5SðpÞeBμνγ
½μpν�γq5 ¼

ie2

2

Z
d4xΠκλμνBκλBμν; ð42Þ

where

Πκλμν ¼ tr
Z

d4p
ð2πÞ4 SðpÞγ

½κpλ�γq5Sðp − i∂Þγ½μðp − i∂Þν�γq5: ð43Þ

In order to calculate the above integral, we use the Feynman parametrization, so that, for q ¼ 1, we obtain

Lð2Þ
eff;1 ¼ −

5e2m2

48π2ϵ0
Bμνk2Bμν þ e2m2

24π2ϵ0
BμνkνkαBμα þ 15e2m4

48π2ϵ0
BμνBμν þ e2

96π2ϵ0
Bμνk4Bμν

þ e2

2880π2
Bμν

�
ð1155m4 − 430m2k2 þ 46k4Þ − 30k4

�
4m2

k2
− 1

�
5=2

csc−1
�
2mffiffiffiffiffi
k2

p
��

Bμν

−
e2

1440π2
Bμν

��
240m4

k2
− 110m2 þ 3k2

�
− 60m2

�
4m2

k2
− 1

�
3=2

csc−1
�
2mffiffiffiffiffi
k2

p
��

kνkαBμα; ð44Þ

whereas, for q ¼ 2, we have

Lð2Þ
eff;2 ¼ −

e2m2

16π2ϵ0
Bμνðk2Bμν − 2kνkαBμαÞ þ e2m4

16π2ϵ0
BμνBμν þ e2

96π2ϵ0
Bμνk4Bμν

þ e2

576π2
Bμν

�
ð27m4 − 42m2k2 þ 8k4Þ þ 6k4

�
4m2

k2
− 1

�
3=2

csc−1
�
2mffiffiffiffiffi
k2

p
��

Bμν

þ e2

96π2
Bμν

�
ð18m2 − k2Þ − 12m2

�
4m2

k2
− 1

�
1=2

csc−1
�
2mffiffiffiffiffi
k2

p
��

kνkαBμα; ð45Þ

with the external momentum being related with the derivative of the field through the relation kμ ¼ i∂μ, where we have
taken into account that the effective action is the integral from the effective Lagrangian over the spacetime,
Sð2Þeff ¼

R
d4xLð2Þ

eff .
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Now, by imposing the limit of slowly varying fields, which is formally written as ∂2 ≪ m2 (while m ≠ 0), for q ¼ 1,
we get

Lð2Þ
eff;1 ¼

5e2m2

48π2

�
1

ϵ0
þ 1

2

�
Bμνð∂2Bμν − 2∂ν∂αBμαÞ þ 5e2m4

16π2

�
1

ϵ0
þ 3

4

�
BμνBμν

þ e2m2

6π2

�
1

ϵ0
þ 1

2

�
Bμν∂ν∂αBμα þ e2

96π2ϵ0
Bμν∂4Bμα þO

�∂4

m4

�
; ð46Þ

and, for q ¼ 2,

Lð2Þ
eff;2 ¼

e2m2

16π2

�
1

ϵ0
þ 1

2

�
Bμνð∂2Bμν − 2∂ν∂αBμαÞ þ e2m4

16π2

�
1

ϵ0
þ 3

4

�
BμνBμν þ e2

96π2ϵ0
Bμν∂4Bμν þO

�∂2

m2

�
: ð47Þ

We can rewrite the above expressions as

Lð2Þ
eff;1 ¼

1

4Z3

Bμνð∂2Bμν − 2∂ν∂αBμαÞ þ e2m4
R

2
BμνBμν þ 2

5Z3

Bμν∂ν∂αBμα þO
�∂2

m2

�
; ð48Þ

and

Lð2Þ
eff;2 ¼

1

4Z3

Bμνð∂2Bμν − 2∂ν∂αBμαÞ þ e2m4
R

2
BμνBμν þO

�∂2

m2

�
; ð49Þ

where

1

Z3

¼ 5e2m2

12π2

�
1

ϵ0
þ 1

2

�
ð50Þ

and

1

Z3

¼ e2m2

4π2

�
1

ϵ0
þ 1

2

�
; ð51Þ

respectively. By defining the renormalized field Bμν
R ¼ Z−1=2

3 Bμν, as well as the renormalized coupling constant

eR ¼ Z1=2
3 e, for q ¼ 1, we obtain

Lð2Þ
eff;1 ¼ −

1

12
HRμνλH

μνλ
R −

2

5
ð∂αB

μα
R Þ2 þ e2Rm

4
R

2
BRμνB

μν
R ; ð52Þ

and, for q ¼ 2,

Lð2Þ
eff;2 ¼ −

1

12
HRμνλH

μνλ
R þ e2Rm

4
R

2
BRμνB

μν
R ; ð53Þ

where we have disregarded the terms contributing to higher orders of the derivative expansion.
Finally, for n ¼ 4, we have

Sð4Þeff ½B� ¼
i
4
TrSðpÞeBαβγ

½αpβ�γq5SðpÞeBγδγ
½γpδ�γq5SðpÞeBκλγ

½κpλ�γq5SðpÞeBμνγ
½μpν�γq5

¼ ie4

4

Z
d4xΠαβγδκλμνBαβBγδBκλBμν; ð54Þ

where

Παβγδκλμν ¼ tr
Z

d4p
ð2πÞ4 SðpÞγ

½αpβ�γq5SðpÞγ½γpδ�γq5SðpÞγ½κpλ�γq5SðpÞγ½μpν�γq5 þOð∂4Þ: ð55Þ

Repeating the calculations of the integrals over the momenta carried out above, we arrive at the following results for the
fourth-order contribution to the effective Lagrangian:
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Lð4Þ
eff;1 ¼ −

35e4m4

192π2

�
1

ϵ0
þ 3

4

�
ðBκλBκλBμνBμν þ 2BκλBλμBμνBνκÞ; ð56Þ

for q ¼ 1, and

Lð4Þ
eff;2 ¼ −

e4m4

64π2

�
1

ϵ0
þ 3

4

�
ðBκλBκλBμνBμν þ 2BκλBλμBμνBνκÞ; ð57Þ

for q ¼ 2, where we have disregarded the derivative terms, which contribute only to higher orders of the expansion. Now, by
using the identity (17), with bμν replaced by Bμν, we can rewrite the above expressions as

Lð4Þ
eff;1 ¼ −

7e4Rm
4
R

12
BRκλBκλ

R BRμνB
μν
R −

7e4Rm
4
R

48
BRκλB̃κλ

R BRμνB̃
μν
R ; ð58Þ

for q ¼ 1, and

Lð4Þ
eff;2 ¼ −

e4Rm
4
R

4
BRκλBκλ

R BRμνB
μν
R −

e4Rm
4
R

16
BRκλB̃κλ

R BRμνB̃
μν
R ; ð59Þ

for q ¼ 2, where we have defined

1

Zm
¼ 5

8π2

�
1

ϵ0
þ 3

4

�
ð60Þ

and

1

Zm
¼ 1

8π2

�
1

ϵ0
þ 3

4

�
; ð61Þ

respectively.
Therefore, using (40), (52), and (58), we arrive at the complete expression for the low-energy tensorial bumblebee

Lagrangian, for q ¼ 1, i.e., in the pseudotensor case, given by

LB;1 ¼ −
1

12
HRμνλH

μνλ
R þ e2Rm

4
R

2
BRμνB

μν
R þ e2R

2G
BRμνB

μν
R −

7e4Rm
4
R

12
BRκλBκλ

R BRμνB
μν
R

−
7e4Rm

4
R

48
BRκλB̃κλ

R BRμνB̃
μν
R −

2

5
ð∂αB

μα
R Þ2; ð62Þ

and taking into account (40), (53), and (59) as well, for q ¼ 2, i.e., in the tensor case, we find

LB;2 ¼ −
1

12
HRμνλH

μνλ
R þ e2Rm

4
R

2
BRμνB

μν
R þ e2R

2G
BRμνB

μν
R −

e4Rm
4
R

4
BRκλBκλ

R BRμνB
μν
R −

e4Rm
4
R

16
BRκλB̃κλ

R BRμνB̃
μν
R : ð63Þ

To simplify these expressions, we can use 1
G ¼ −m4

Rð1 − 7
3
bμνbμνÞ of Eq. (18), for q ¼ 1, and 1

G ¼ −m4
Rð1 − bμνbμνÞ of

Eq. (26) [as well as of (34) taken up to first order in x1], for q ¼ 2, so that we obtain

LB;1 ¼ −
1

12
HRμνλH

μνλ
R −

7m4
R

12
ðe2RBRμνB

μν
R − bμνbμνÞ2 −

2

5
ð∂αB

μα
R Þ2 − 7e4Rm

4
R

48
ðBRμνB̃

μν
R Þ2; ð64Þ

and

LB;2 ¼ −
1

12
HRμνλH

μνλ
R −

m4
R

4
ðe2RBRμνB

μν
R − bμνbμνÞ2 −

e4Rm
4
R

16
ðBRμνB̃

μν
R Þ2; ð65Þ

where we have added the constants − 7m4
R

12
x21 and − m4

R
4
x21, respectively.
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Thus, we conclude that we have succeeded at generating
the low-energy effective actions for the tensor bumblebee
field. This action includes the usual kinetic term for the
second-rank antisymmetric tensor field, and the positively
defined potential given by the sum of two terms, with the first
of them displays the set ofminima x1 ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jGjm4

R

p
− 1Þ, for

q ¼ 2, according to Eq. (33), allowing for spontaneous
Lorentz symmetry breaking, and another one with the trivial
minimum x2 ¼ 0. We note that both currents, corresponding
both to q ¼ 1 and q ¼ 2 (pseudotensor and tensor cases),
display rather similar dynamical impacts allowing us to
achieve a set of minima, implying the possibility for sponta-
neous Lorentz symmetry breaking, in both cases. We also
observe that other, derivative-free forms of the second-rank
tensor current, such as Jμν ¼ iψ̄σμνγ

q
5ψ , do not possess this

feature; i.e., the one-loop effective potentials generated with
their use do not display minima [see Eq. (27)]. Hence, the
spontaneous Lorentz symmetry breaking cannot occur for
these couplings.

IV. SUMMARY

Now, let us discuss our results. Within this paper, we
have successfully generalized the mechanism of the
dynamical Lorentz symmetry breaking for theories of the
second-rank antisymmetric tensor and pseudotensor fields;
i.e., for the first time, we have generated the tensor
bumblebee action as a quantum correction, while, earlier,
only the vector bumblebee model was studied within the
perturbative methodology. Therefore, it is natural to expect
that our results can open the way for further studies of
spontaneous Lorentz symmetry breaking for generic
dynamical tensor fields. The approach we have used
continues the line of our earlier paper [12] and guarantees
that our effective potential indeed possesses minima, which
justifies the consistency of our results. We note that,
actually, our paper represents itself as one of the first
studies of quantum aspects of Lorentz symmetry breaking

for the higher-rank tensor field models. Especially, it must
be emphasized that the one-loop effective potential we have
obtained displays a continuous set of minima both in tensor
and pseudotensor cases; hence, in both of these cases,
spontaneous Lorentz symmetry breaking can occur. It is
important to note that unlike the previous papers [15–18],
in our paper, the constant antisymmetric second-rank
pseudotensor has been introduced for the first time, which
opens the way for constructing new Lorentz-breaking terms
involving such a pseudotensor.
It is natural to expect that our methodology can be

applied to more sophisticated tensor models. First, it is
important to note that apparently our results can be useful
within the string context. To present a possible relation of
our results to string theory, it is worth mentioning that, from
one side, spontaneous Lorentz symmetry breaking was
originally introduced within the string context [5], and from
another side, the antisymmetric tensor field arises within
the low-energy limit of the string theory [34]. Therefore,
actually our paper explicitly demonstrates the essence of
the mechanism proposed in [5]. Thus, it is natural to expect
that our results can be applied for detailed studies of various
low-energy consequences of the string theory and of
different higher-rank tensor models. Another continuation
of the present work could consist in introducing the finite
temperature, with the subsequent study of the possibility of
phase transitions, generalizing the results of [12] for a
tensor field case, as well as in introducing a curved
background, extending thus a study carried out in [14]
for a level of quantum corrections. We expect to carry out
these generalizations in forthcoming papers.
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