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We study a new model of quintessential inflation which is inspired by supergravity and string theory.
The model features a kinetic pole, which gives rise to the inflationary plateau, and a runaway
quintessential tail. We envisage a coupling between the inflaton and the Peccei-Quinn (PQ) field which
terminates the roll of the runaway inflaton and traps the latter at an enhanced symmetry point (ESP),
thereby breaking the PQ symmetry. The kinetic density of the inflaton is transferred to the newly created
thermal bath of the hot big bang due to the decay of PQ particles. The model successfully accounts for
the observations of inflation and dark energy with natural values of the model parameters, while also
resolving the strong CP problem of QCD and generating axionic dark matter, without isocurvature
perturbations. Trapping the inflaton at the ESP ensures that the model does not suffer from the infamous
5th force problem, which typically plagues quintessence.
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I. INTRODUCTION

By now we have most of the history of the Universe
figured out. The hot big bang model covers pretty much the
entire timeline, from a few seconds after the original
explosion until the present time, almost. However, the
edges of the story are still unclear, because observations
suggest that the Universe is undergoing accelerated expan-
sion at very early and very late times and such expansion
cannot be part of the hot big bang, where the Universe is
filled with relativistic and nonrelativistic matter only.
General relativity dictates that accelerated expansion can
occur only if the Universe is filled by an exotic substance,
with negative enough pressure. For the early Universe, the
required substance is usually taken as one (or more)
potentially dominated scalar field and the accelerated
expansion phase is cosmic inflation [1–4] and the scalar
is called the inflaton field. Inflation sets the initial con-
ditions of the hot big bang. For the late Universe however,
the simplest explanation is vacuum density, due to a
nonzero value of the cosmological constant Λ.

The cosmological constant has to be there but what is its
value? The most natural choice is given by the Planck scale,
because this is the only scale in general relativity and also
because this is the cutoff scale of particle theory (beyond
this the theory breaks down). This however is at odds with
nature. This cosmological constant problem [5] predates
the observations of recent accelerated expansion. The way
it used to be addressed is by assuming that the cosmological
constant is set to zero by some unknown symmetry. Once
late accelerated expansion was observed, many authors
suggested that this amounted to observing the true value of
the cosmological constant. The problem is that the asso-
ciated vacuum density has to be comparable to the density
of the Universe today, which is about 120 orders of
magnitude smaller than the “natural” value of Λ. This
has been called (by Lawrence Krauss) “the worst fine-
tuning in physics”. To avoid this fine tuning, it was
suggested that, as in inflation, the current accelerated
expansion is due to another potentially dominated scalar
field, called quintessence; the fifth element after baryons,
dark matter, photons and neutrinos [6–8]. It is important to
point out that the quintessence proposal does not solve the
cosmological constant problem because Λ is still assumed
to be zero due to some unknown symmetry.
Since they are both based on the same idea, it is natural to

unify the two in quintessential inflation [9,10] (for a recent
list of references see [11,12] and [13,14]), which considers
that the inflaton field survives until today and becomes
quintessence. Apart from being economic, quintessential
inflation attempts to treat the early and late accelerated
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expansion phases in a single theoretical framework.
Moreover, there are some practical advantages as well;
for example the initial conditions of quintessence are
determined by the inflationary attractor.
A scalar potential which satisfies all the requirements of

inflation and dark energy observations is hard to formulate
because of the ∼110 orders of magnitude difference in
energy density between the inflationary energy scale and
the energy scale of dark energy today. To incorporate such a
large difference in energy density scales often requires a
very curved scalar potential [15], which produces infla-
tionary predictions incompatible with the Planck satellite
observations [16]. Moreover, after inflation, the field rolls
down the incredibly steep potential and gains so much
kinetic energy that it is transposed many Planckian distance
in field space. This means the potential is at risk from UV
corrections, throwing the predictability of the theory into
question and destabilising the flatness of the potential.
In this paper, to overcome the above problems, we start

with an exponential potential with a noncanonical kinetic
term, featuring a pole at the origin, which can be theoreti-
cally motivated e.g., in supergravity theories. We utilize a
field redefinition to regain canonical kinetic terms and
thereby transpose the pole to infinity. Doing so, introduces
a plateau into the potential, ensuring inflationary observ-
ables match the observations of the Planck satellite (which
favors a plateau inflation model). The model naturally
features a quintessential tail. To ensure the validity of our
setup, we stop the roll of the inflaton field by trapping it at
an enhanced symmetry point (ESP) before it travels over a
super-Planckian distance in field space. We demonstrate in
detail that, through this trapping, we can transform the
kinetic density of the field into the radiation density of the
hot big bang, reheating the Universe.
Reheating in quintessential inflation is a challenging

issue, because it cannot occur through inflaton decay
(as is otherwise typical in inflation) because the inflaton
must survive until the present and become quintessence.
A number of reheating mechanisms have been put forward,
the most important of which are gravitational reheating
[17,18], instant preheating [19,20], curvaton reheating
[21,22] and recently nonminimal reheating [23] (also called
Ricci reheating [24]). Reheating the Universe through
trapping the runaway inflaton is a novel mechanism,
although the trapping mechanism has been considered
before in quintessential inflation [25,26], but only for
being responsible for the inflation part of the scenario as
in trapped inflation [27].
In the spirit of economy, aligned with the philosophy

behind quintessential inflation, we consider that the ESP is
due to a coupling of the inflaton direction with the Peccei-
Quinn field [28,29], so that after trapping, the Peccei-Quinn
phase transition confines the inflaton and generates a large
inflaton mass such that there is no threat of violation of the
equivalence principle (5th force problem), which typically

is a problem with quintessence [30–32]. The field remains
trapped with nonzero potential density, which explains the
dark energy observations, while the theory also incorpo-
rates the QCD axion, which can be the dark matter [33].
We use natural units where c ¼ ℏ ¼ kB ¼ 1 and

8πG ¼ m−2
P , where mP ¼ 2.43 × 1018 GeV is the reduced

Planck mass.

II. THE MODEL

We start with a Lagrangian density well motivated in
both supergravity and string theory1 with a perturbative and
nonperturbative part:

L ¼ α

2

�
mPl

ϕ

�
2

ð∂ϕÞ2 þ ð∂ χÞ2
2

− V0e−κϕ=mPl

− VðχÞ − g2

2
ðϕ − ϕESPÞ2 χ2; ð1Þ

The χ field is taken to be the Peccei-Quinn field [28,29]
associated with the U(1) Peccei-Quinn symmetry, whose
Pseudo-Nambu-Godlstone boson is the QCD axion, which
is a prominent dark matter candidate [33]. The order
parameter f is called the axion decay constant. In this
case, we have

VðχÞ ¼ λ

4
ðχ2 − f2Þ2; ð2Þ

λ ∼ 1; ð3Þ

f ∼ 1012 GeV: ð4Þ

In fact, the most likely range for the axion decay constant
is 1010 GeV≲ f ≲ 1012 GeV. The lower bound in this
range comes from the SN1987A energy loss rate, while the
upper bound is required to avoid overproduction of axions.
However, this latter limit is dependent on assumptions
regarding the initial axion misalignment angle [33]. In this
paper we consider the estimate shown in Eq. (4), noting that
this choice does not make much difference in our results.

1For example, the Kähler potential for a string modulus
T, is K=m2

Pl ¼ −3 lnðT þ T̄Þ ¼ −3 lnð ffiffiffi
2

p
ϕ=mPlÞ, where T ¼

1ffiffi
2

p ðϕþ iσÞ=mPl, with ϕ; σ ∈ IR. Then the kinetic term is given by

Lkin ¼ KTT̄∂μT∂μT̄ ¼ 3

2

�
mPl

ϕ

�
2
�
1

2
ð∂ϕÞ2 þ 1

2
ð∂σÞ2

�
;

where we considered T þ T̄ ¼ ffiffiffi
2

p
ϕ=mPl and the subscripts of the

Kähler potential denote differentiation. In our considerations we
assume that the ESP lies at a minimum in the direction of σ. We
also assume that σ is heavy during inflation so that there are no
issues with excessive non-Gaussianity or isocurvature perturba-
tions. In this example, α ¼ 3=2.
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It is important to point out that no bare cosmological
constant (CC) is included in the Lagrangian density in
Eq. (1). This is because an unknown symmetry is presumed
to set the CC to zero, as was typically assumed even before
the observations of dark energy in order to overcome the
infamous “cosmological constant problem.” This problem
is twofold: First, general relativity may introduce a classical
CC term in the Einstein-Hilbert action. The only mass-scale
in general relativity is due to Newton’s gravitational
constant and is the Planck mass 8πG ¼ 1=m2

Pl. But this
cannot be the mass-scale of the CC, so a new scale must be
included which is at most 10−30mPl. The problem is
explaining why these two scales differ so much. Second,
quantum fields introduce a contribution to vacuum energy
which diverges and is presumed capped at the cutoff-scale
of the theory, resulting in a CC. At the moment this is at
least the supersymmetry breaking scale > 10−15mPl. But
this is unacceptable because observations suggest that the
CC is at most 10−30mPl, for otherwise structure formation
would be inhibited. The “solution” to the CC problem
(which predates the observation of dark energy, as we
mentioned) is to assume that some unknown mechanism
sets the CC to exactly zero. This is why there is no CC in
our model. Then, quintessence is used to explain the dark
energy observations.
To assist our intuition, we can make a field redefinition to

regain a canonical kinetic term with

φ ¼ ffiffiffi
α

p
mPl ln

�
ϕ

mPl

�
; ð5Þ

the Lagrangian density then becomes

L ¼ ð∂φÞ2
2

þ ð∂ χÞ2
2

− V0 expð−κe
φffiffi
α

p
mPlÞ − VðχÞ

−
g2ϕ2

ESP

2
ðe

φ−φESPffiffi
α

p
mPl − 1Þ2 χ2: ð6Þ

The inflaton potential now features a double exponential
providing a bridge between the vastly different energy
scales of inflation and dark energy. The model has a pole
at ϕ ¼ 0, which is transposed to φ ¼ −∞ by the field
redefinition, and a plateau appears in the scalar field
potential, providing the perfect location for slow-roll
inflation.2

After inflation has completed, the field enters a period of
kination [34,35], where the dominant contribution to its
energy density is its kinetic energy, the field is oblivious
to the potential during this time and standard kination
equations can be used [11]. After a brief period of kination,
the field crosses an enhanced symmetry point (ESP) at ϕESP
and, due to its coupling to the χ field, nonperturbative

effects will generate a sea of χ particles. The energy budget
for the particle production comes from the inflaton’s kinetic
energy and as such the particle production promptly traps
the inflaton at ϕESP. If χ is coupled to the standard model,
its subsequent decays reheat the Universe. At this point the
inflaton field’s mass is primarily dependent on χ, which
until this point has been held at χ ¼ 0. At a particular
symmetry breaking scale (given by f) χ moves to its
nonzero vacuum expectation value (VEV), providing the
inflaton with a huge mass which acts to stop its motion. As
such the φ field is trapped at the ESP until late times when
the residual energy density can act as dark energy. We
consider χ to be the radial component of a complex field
(the Peccei-Quinn field), whose angular degree of freedom
is an axionlike particle (ALP) (it can be the QCD axion
itself) which, whilst oscillating in the minimum of its
potential, can describe the dark matter in the Universe.

III. INFLATION

The contribution to the inflaton potential from the
coupling to the χ field will not affect the inflationary
dynamics because χ ¼ 0 during inflation, due to the large
mass it obtains from the interaction term:

m2
χðφÞ ¼ g2ϕ2

ESPðe
φ−φESPffiffi

α
p

mPl − 1Þ2; ð7Þ

where φ → −∞ during inflation. Hence, we have the
inflaton potential:

VðφÞ ¼ V0 exp ð−κe
φffiffi
α

p
mPlÞ: ð8Þ

From the expression above it is easy to compute the slow-
roll parameters, which are given by

ϵ≡m2
Pl

2

�
Vφ

V

�
2

¼ κ2

2α
e

2φffiffi
α

p
mPl ; ð9Þ

η≡m2
PlVφφ

V
¼ κ

α
e

φffiffi
α

p
mPlðκe

φffiffi
α

p
mPl − 1Þ: ð10Þ

Defining the end of inflation as ϵ ¼ 1 leads us to

φend ¼ mPl
ffiffiffi
α

p
ln

ffiffiffiffiffiffi
2α

p

κ
; ð11Þ

and

_φend ≃
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Vend

r
; ð12Þ

where the latter was estimated by using the slow-roll
equation 3H _φ ≃ −Vφ and

Vend ≡ VðφendÞ ¼ V0e−
ffiffiffiffi
2α

p
: ð13Þ2We consider only ϕ > 0.
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We can use φend to find φ when observable scales first left
the horizon3

φ� ¼ −
ffiffiffi
α

p
ln

�
κ

α

�
N� þ

ffiffiffi
α

2

r ��
mPl; ð14Þ

where N� is the number of e-folds of inflation since the
pivot scale exits the horizon. This gives us an idea of the
value of the slow-roll parameters as a function of N�

ϵ� ¼
α=2

ðN� þ
ffiffiffiffiffiffiffiffi
α=2

p Þ2 ≃
α

2N2�
; ð15Þ

η� ¼
α − N� −

ffiffiffiffiffiffiffiffi
α=2

p
ðN� þ

ffiffiffiffiffiffiffiffi
α=2

p Þ2 ≃
α

N2�
−

1

N�
ð16Þ

which it is nice to note are independent of κ. The spectral
index and tensor to scalar ratio are hence also independent
of κ and given by

ns ¼ 1þ 2η� − 6ϵ� ≃ 1 −
α

N2�
−

2

N�
; ð17Þ

r ¼ 16ϵ� ≃
8α

N2�
: ð18Þ

As we would expect for a plateau inflation model, they
match the Planck results [16] exceptionally well for a range
of parameter values. The limiting observational constraint
is ns ¼ 0.968� 0.006 (2σ result) and the upper bound
on the tensor to scalar ratio r < rbound, where rbound ¼ 0.06
(at 2σ confidence level).
Using Eqs. (17) and (18) we can compute the upper

bound on N�. Assuming N� > 31, we find

N� <
16

8ð1 − nsÞ − rbound
: ð19Þ

Moreover, using Eq. (17) we can relate α to the number of
e-folds N�:

α ¼ ð1 − nsÞN2� − 2N�: ð20Þ

Constraining the maximum possible value4 of N� < 70
and α ≥ 1 we find the allowed range for N� and α which is
compatible with CMB observations to be

53 ≤ N� < 70; ð21Þ

1 ≤ α < 37: ð22Þ

Note that the allowed parameter range above depends
sensitively on the value of ns. The above region is the
maximum region within the 2σ range of ns. For compari-
son, fixing ns at the best fit value ns ¼ 0.968 gives
63 ≤ N� < 70 and 1 ≤ α < 15.8.
The normalization of the power spectrum further con-

strains the model. The amplitude of the scalar spectrum at
the pivot scale is given by

As ¼
1

24π2m4
Pl

V
ϵ
: ð23Þ

Plugging Eqs. (8), (14) and (15) into the expression above
we find

V0

m4
Pl

¼ 12π2

e2

�
ð1 − nsÞ −

2

N�

�
eð1−nsÞN�As; ð24Þ

where we used Eq. (20). This expression relates the energy
scale of inflation to the number of e-folds N�. The Planck
collaboration reports the value of As as [16]

ln ð1010AsÞ ¼ 3.094� 0.034 ð25Þ

(at the 1σ confidence level). On the upper panel of Fig. 1 we
display the allowed range of V0 for the best fit value of As.

3We can also use this result to compute the field excursion
during inflation. For the noncanonical field we find

ϕend − ϕ�
mPl

¼
ffiffiffiffiffi
2α

p

κ

N�
N� þ

ffiffi
α
2

p ≃
ffiffiffiffiffi
2α

p

κ
≪ 1;

which is well bellow the Planck range. Switching to the canonical
field we get

φ − φend ¼ −
ffiffiffi
α

p
mP ln

�
1þ

ffiffiffi
2

α

r
N�

�
⇒ Δφ ≃

ffiffiffi
α

p
mP;

which is Planckian. Thus, we expect r ∼ 0.01 from the Lyth
bound.

4We can estimate this as follows. The value of N� is increased
by considering that, after inflation there is an “stiff” epoch when
the barotropic parameter of the Universe is 1

3
< w ≤ 1. The upper

bound ensures that the speed of sound is not superluminal. The
larger w is and the longer this stiff period lasts, the more N�
becomes. Thus, we can take w ¼ 1 as in kination, and we can
assume that kination starts immediately after the end of inflation
and until reheating. Then we have

N� ¼ 57þ 1

3
ln

�
V1=4
end

Treh

�
;

where Treh is the reheating temperature. The observational bound
on the inflation scale is V1=4

end ≲ 1016 GeV. Saturating this bound,
while considering the lowest Treh possible (Treh ≳ 10 MeV, to
avoid spoiling big bang nucleosynthesis) we find Nmax� ≃ 70.
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Using As in Eq. (25) and plugging Eq. (24) into (12) we
can find _φend. For the best fit value of As the allowed range
of _φend is show on the lower panel of Fig. 1. We see that the
range is

0.6 <
_φend

m2
Pl

× 106 < 4.2: ð26Þ

The κ parameter in Eq. (1) determines the ratio of
inflation energy density to the vacuum energy density.5

Plugging ϕ ¼ ϕESP and χ ¼ f into that expression gives

κ ¼ mPl

ϕESP
ln

V0

Vvac
; ð27Þ

where Vvac ¼ Vðϕ¼ ϕESP; χ ¼ fÞ≃ 10−12 eV4≃ 10−120m4
Pl

is the vacuum energy density. Taking V1=4
0 < 10−2mPl (see

Fig. 1) we find

κ
ϕESP

mPl
< 261: ð28Þ

IV. KINATION

Once inflation ends, almost immediately the period of
kination sets in.6 During kination the field is oblivious of
the potential and the Klein-Gordon (KG) equation takes
the form

φ̈þ 3H _φ ≃ 0; ð29Þ

and the Friedmann equation is

3m2
PlH

2 ¼ _φ2

2
: ð30Þ

Substituting Eq. (30) into Eq. (29) gives

φ̈þ
ffiffiffi
3

2

r
_φ2

mPl
¼ 0: ð31Þ

Integrating the above equation, we find the solutions

φ ¼ φ0 þ
ffiffiffi
2

3

r
mPl ln

�
1þ

ffiffiffi
3

2

r
_φ0

mPl
ðt − t0Þ

�
; ð32Þ

_φ ¼ _φ0 exp

�
−

ffiffiffi
3

2

r
ðφ − φ0Þ

mPl

�
: ð33Þ

where the subscript “0” refers to the initial value in the
integration. In our case φ0 ≃ φend and _φ0 ≃ _φend in Eqs. (11)
and (12) respectively, meaning the above equations become

φkin ¼ mPl
ffiffiffi
α

p
ln

ffiffiffiffiffiffi
2α

p

κ
þ

ffiffiffi
2

3

r
mPl ln

�
1þ

ffiffiffiffiffiffiffiffiffi
Vend

p
mPl

ðt − t0Þ
�
;

ð34Þ

_φkin ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2

3
Vend

r � ffiffiffiffiffiffi
2α

p

κ

� ffiffiffi
3α
2

p
e−

ffiffi
3
2

p
φ

mPl : ð35Þ

Taking φ0 ≃ φend and _φ0 ≃ _φend presumes an immediate
transition from inflation to kination, when ϵ ¼ 1.

FIG. 1. The allowed range of V0 values (upper) and the field
velocity at the end of inflation _φend (lower) as a function of N�.
Each curve represents a fixed value of the scalar spectral index
ns. The blue leftmost curve is for the 2σ lower bound ns ¼
0.962 and the red rightmost curve is for ns ¼ 0.971. We used the
central value ln ð1010AsÞ ¼ 3.094 of the spectrum normaliza-
tion in Eq. (25).

5As we have shown in footnote 3, for the noncanonical field
during inflation we have that ϕ ∼

ffiffiffi
α

p
mP=κ. Thus, for the mass

of the χ-field during inflation from Eq. (1) we find m χ∼
ðg ffiffiffi

α
p

=κÞmP. Because α, g ∼ 1 and κ ∼ 100 we have that the
mass of the χ-field during inflation is m χ ∼ 10−2mP, i.e.,
comparable to the scale of grand unification and bigger that
the Hubble scale during inflation. This means that the χ-field is
heavy during inflation, as we have assumed. In contrast, the
inflaton field is light because η, calculated in Eq. (10), is much
smaller than unity and this is why the value of the spectral index is
close to unity. 6We have confirmed this using numerical simulations.
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During kination, the kinetic energy density of the
inflaton scales as _φ2=2 ∝ a−6, where a is the scale factor.
Therefore the false vacuum energy density λf4=4 might
come to dominate at some later times. For the sake of
simplicity we restrict the model to the parameter range
where this never happens until φ reaches ESP.
To find this regime we can compute _φESP using Eq. (35).

Plugging Eqs. (5) and (13) into the latter we obtain

_φESP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0ðαÞ=3

p
e

ffiffiffiffiffiffi
α=2

p
� ffiffiffiffiffiffi

2α
p

mPl

κðαÞϕESP

� ffiffiffi
3α
2

p
; ð36Þ

where the argument in V0ðαÞ and κðαÞ is to remind us that
observations constrain κ and V0 to be functions of α via
Eqs. (27), (24) and (20).
Using Eq. (36), we plot _φESP=2 as a function of α in

Fig. 2 along with the constant value of λf4=4. As we can
easily see the universe is in the regime of kination at the
ESP if

λf4

2 _φ2
ESP

< 1 ⇒ α < 10: ð37Þ

The precise value of course depends on f and (only mildly)
on ns, but we adopt this bound as our reference value.

V. INFLATON TRAPPING AT THE ESP

During the period of kination, the inflaton follows the
equation of motion (29). Once it approaches ϕ → ϕESP, the
tachyonic and resonant excitations of the χ field produce
large numbers of particles. These particles backreact onto
the motion of the inflaton, creating an effective linear
potential for the latter. If the production of χ particles is
efficient, then the inflaton’s fast rolling is halted by trapping
it at the ESP.

As we are going to see, the trapping can be very abrupt.
Therefore, it is a good approximation to neglect the
expansion of the universe. Moreover, as we will show
a posteriori, φ oscillates around the ESP with an amplitude
much smaller than mPl, jφ − φESPj ≪ mPl. Therefore, in
considerations of the trapping process, it is enough to study
the Lagrangian up to the first order in jφ − φESPj=mPl.
In this case, we find from Eq. (6)

V ≃ Vvac

�
Vvac

V0

�φ−φESPffiffi
α

p
mPl þ 1

2
γ2ðφ − φESPÞ2 χ2 þ VðχÞ; ð38Þ

where

γ2 ≡ g2ϕ2
ESP

αm2
Pl

ð39Þ

is the effective quartic coupling constant close to the ESP.
The first term in Eq. (38) sets the scale of the vacuum
energy. It is much smaller than λf4=4 and can be neglected
during the inflaton trapping phase.
With the above assumptions in mind we can write the

equation of motion for the inflaton as

φ̈þ γ2hχ2iðφ − φESPÞ ≃ 0: ð40Þ

Initially the expectation value of the χ field is zero, which
makes φ massless at the classical level. However, quantum
corrections due to the interaction term generate an effective
mass for the φ field. At the first order such corrections can
be accounted for by using the Hartree approximation,
which has been employed in the expression above.
The trapping of the inflaton φ by the resonant production

of χ particles has been studied in great detail in Ref. [27]. In
that work, the primary source of particle production is the
parametric resonance. In our case,ω2

k (defined below) is not
positive definite, therefore the χ field is also excited by the
tachyonic instability close to the ESP. Moreover, in our
model the quartic self-interaction of the χ field can affect
the particle production too. To investigate these processes
we start by writing the equation of motion for the mode
functions of the χ field:

̈χk þ ω2
k χk ¼ 0; ð41Þ

where

ω2
k ¼ k2 þ γ2ðφ − φESPÞ2 þ λð3hχ2i − f2Þ: ð42Þ

Initially hχ2i is negligible and we can clearly see in the
above equation that χk modes with k < kc acquire an
effective imaginary mass as φ → φESP, where kc is the
critical wave number

kc ≡
ffiffiffi
λ

p
f: ð43Þ

FIG. 2. The inflaton kinetic energy density at ESP (blue curve)
and the false vacuum energy density (green line) as a function of
α. In this plot we used the best fit value of ns (within 2σ range the
result depends mildly on the precise value of ns) and we took
λ ¼ 1 and f ¼ 1012 GeV.
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These modes are unstable and start growing due to the
tachyonic instability. The process is similar to the one
analyzed in Ref. [36]. To compute the production of χ
particles note, first, that in a narrow window

jφ − φESPj ≤
ffiffiffi
λ

p
f

γ
ð44Þ

we can approximate the evolution of φ linearly [see
Eq. (32)]

φ − φESP ≃ _φESPτ; ð45Þ

where τ≡ t − tESP and tESP is defined as φðtESPÞ≡ φESP
and _φESP in the above equation is the field velocity at the
ESP from Eq. (36).
Using Eq. (45) we find that after the first crossing of the

ESP the occupation number of χk mode is given by [36]

nk ¼ exp
Z

τþ

τ−

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ω2ðτ0Þ

q
dτ0 ð46Þ

and ω2ðτ�Þ ¼ 0, that is

τ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λf2 − k2

γ2 _φ2
ESP

s
: ð47Þ

It is easy to integrate Eq. (46), which gives

nk ¼ eπ
λf2−k2
γ _φESP : ð48Þ

Integrating over all k wave numbers, we obtain the total
occupation number of newly produced particles after the
first passage of the ESP

n χ1 ≃
1

2π2

Z
∞

0

nkk2dk ð49Þ

≃
ðγ _φESPÞ3=2
ð2πÞ3 ½−2s1=4 þ eπs

1=2
Erfð ffiffiffi

π
p

s1=4Þ�; ð50Þ

where ErfðxÞ≡ 2=
ffiffiffi
π

p R
z
0 e

−t2dt is the error function and

s≡
�

λf2

γ _φESP
þ 2

33=2

�
2

: ð51Þ

The first term in the parenthesis is positive. Therefore,
s1=4 ≥

ffiffiffi
2

p
=33=4 and Erfð ffiffiffi

π
p

s1=4Þ ≃ 1. Moreover,
expfπ ffiffiffi

s
p g > s1=4 and we can write

n χ1 ≃
ðγ _φESPÞ3=2
ð2πÞ3 eπð

λf2

γ _φESP
þ 2

33=2
Þ: ð52Þ

Similarly we can compute the dispersion hχ2i [37]

hχ2i ¼ 1

2π2

Z
nkk2

ωk
dk ð53Þ

≃
n χ

γjφ − φESPj
; ð54Þ

where we used the fact that γðφ − φESPÞ > kc in the
nontachyonic regime.
Plugging Eq. (54) into (40), we can write the inflaton

equation of motion as

φ̈þ γn χsignðφ − φESPÞ ≃ 0; ð55Þ

where signðφ − φESPÞ is the signature of φ − φESP.
This equation describes oscillations in a linear potential:
at the time

τ1 ≡ _φESP

γn χ1
ð56Þ

the field φ reaches the value φ1 ¼ φESP þΦ1 and rolls back
toward φESP, where

Φ1 ≃
1

2

_φ2
ESP

γn χ1
ð57Þ

is the amplitude of the first oscillation.
Up to now we have assumed that the expansion of the

universe does not affect the trapping process. This is
justified if the timescale τ1 ≃ 2ðφ1 − φESPÞ= _φESP is much
shorter than the Hubble time H−1

ESP at the ESP; that is
HESP ≪ _φESP=2Φ1. Using HESP ≃ _φESP=

ffiffiffi
6

p
mPl, in agree-

ment with our assumption α < 10 (see Fig. 2), we find that
this is the case when

Φ1 ≪
ffiffiffi
3

2

r
mPl: ð58Þ

Plugging Eqs. (36) and (52) into Eq. (57), we find

Φ1 ≃
4π3

γ5=2
½2
3
V0ðαÞ�1=4

eπð
λf2

γ _φESP
þ 2

33=2
Þ

� ffiffiffiffiffiffi
2α

p

e1=
ffiffi
3

p
mPl

κðαÞϕESP

�1
2

ffiffiffi
3α
2

p
: ð59Þ

To find the range where Eq. (58) is satisfied we plot
log10Φ1 as a function of α and γ in Fig. 3. We can see that
Eq. (58) can be easily satisfied for reasonable values of γ.
Each time φ crosses the ESP, the χ field experiences a

burst of particle production. New particles strengthen the
backreaction onto the motion of φ, causing an exponential
decay of the oscillation amplitude. Via the quartic self-
interaction term these particles also generate a contribution
to the effective mass of the χ field. At the level of the
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Hartree approximation these interactions are taken care
of by the 3λhχ2i term in Eq. (42). The tachyonic particle
production is effective as long as the 3λhχ2i term is smaller
than λf2.
To compute the occupation number at the end of the

tachyonic instability we first find the minimum of ω2
k¼0 in

Eq. (42) which is located at ½γðφmin − φESPÞ�3 ¼ 3λn χ=2,
where we used Eq. (54). Plugging this back into the
expression of ω2

k¼0 and equating it to zero, we find that
the tachyonic resonance stops at

n χ;tach ≃
2

35=2

ffiffiffi
λ

p
f3· ð60Þ

At this moment the oscillation amplitude is given by

Φtach ≃
35=2

4

_φ2
ESP

γ
ffiffiffi
λ

p
f3

: ð61Þ

We can compare n χ;tach with the number density produced
after the first oscillation in Eq. (52)

n χ1

n χ;tach
≃

35=2

16π3
λ

�
γ _φESP

λf2

�
3=2

eπð
λf2

γ _φESP
þ 2

33=2
Þ: ð62Þ

For γ _φESP=λf2 ¼ 2π=3 the right-hand side of the above
expression is minimal and given by

n χ1

n χ;tach

����
min

∼ λ≲ 1: ð63Þ

Thus, depending on the magnitude of γ _φESP=λf2, it might
take several passages through the ESP before the tachyonic
resonance is terminated.

The end of the tachyonic resonance does not necessarily
imply the end of particle production though. After ω2

k
becomes positive definite for all values of k, particles may
still be produced by the parametric resonance. Such a
production continues as long as the adiabaticity condition

j _ωkj
ω2
k

< 1 ð64Þ

is broken within some range of φ values Δφnad, that is
j _ωkj=ω2

k ≥ 1 for φ − φESP ∈ ½−Δφnad;Δφnad�=2. As hχ2i
continues to grow with each burst of particle production, it
will eventually shut down the parametric resonance too.
The shut-down is caused by one of the two effects,

whichever happens first: either the oscillation amplitude Φ
becomes smaller than Δφnad [27] (Case 1) or quartic self-
interactions of the χ field render it too heavy to be excited
(Case 2). The choice between the two cases is determined
by the magnitude of the ratio λ=γ2.
Let us consider these two possibilities in turn. To do that

we can safely employ Eq. (45) within the narrow non-
adiabaticity window. Hence we can write

_ωk

ω2
k

≃
γ2ðφ − φESPÞ _φESP

½k2 þ γ2ðφ − φESPÞ2 þ λð3hχ2i − f2Þ�3=2 ; ð65Þ

where in the adiabatic regime hχ2i is given by the
expression in Eq. (54).
In Case 1 the resonance stops before the λð3hχ2i − f2Þ

term in Eq. (65) becomes important and we neglect it. This
gives Δφnad ≃ ð _φESP=γÞ1=2. Once the oscillation amplitude
Φ ¼ _φ2

ESP=2γn χ drops below this value, particles no longer
grow via the process of parametric resonance. Equating
Δφnad ¼ Φ we find

Φfin1 ≃
�
_φESP

γ

�
1=2

ð66Þ

and

n χ;fin1 ≃
1

2

_φ3=2
ESP

γ1=2
; ð67Þ

where the subscript “fin1” signifies the case where the
resonance stops because the inflaton oscillation amplitude
drops bellow Δφnad. We can compute the energy density
ρχfin1 ≃ γΦfin1n χ;fin1 in the χ particles at that moment

ρχfin1 ≃
1

2
_φ2
ESP; ð68Þ

which is about the same as the initial kinetic energy density
of the inflaton when it first crosses the ESP.
In Case 1 we could neglect χ field self-interactions in

Eq. (65). This rendered Δφnad ≃ constant. On the other

FIG. 3. A contour plot of log10ðΦ1=mPlÞ values as a function of
α and γ [see Eq. (59)]. In this plot we used λf2=γ _φESP ≪ 2=33=2

and the best fit value ns ¼ 0.968. The plot changes insignificantly
within the allowed 2σ range of ns. The white region is where the
condition in Eq. (58) is violated, i.e., where the expansion of the
Universe cannot be neglected.
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hand, if λ=γ2 is large, which corresponds to Case 2, such
self-interactions cannot be neglected and the hχ2i term in
Eq. (65) becomes significant. As the importance of this
term grows, the nonadiabaticity region Δφnad shrinks to
zero eventually halting the resonance.
To estimate the end of the resonance we find the moment

when the maximum value of the ratio in Eq. (65) becomes
smaller than one. For the k ¼ 0 mode the maximum value
of this ratio is approximately

_ωk¼0

ω2
k¼0

����
max

≃
γ _φESP

6ðλn χÞ2=3
; ð69Þ

where we used 3hχ2i > f2 and Eq. (54). The resonance
becomes inefficient once this value falls bellow unity.
Hence, we can consider the particle production to be over
when

n χ;fin2 ≃
ðγ _φESP=6Þ3=2

λ
: ð70Þ

Plugging this value into Eq. (55) we find that the inflaton
oscillation amplitude at this point is

Φfin2 ≃ 7
λ

γ2

�
_φESP

γ

�
1=2

: ð71Þ

Comparing Eq. (67) with (70) and Eq. (66) with (71) we
see that the first mechanism is responsible for the end of
the resonance if

λ

γ2
<

1

7
: ð72Þ

In this case the energy density of χ particles is comparable
to the inflaton’s initial kinetic energy (see Eq. (68). In the
opposite regime, the strong quartic self-interaction λχ4

shuts down the resonance much earlier, leaving a larger
fraction of the energy budget in the inflaton sector.
Moreover, the inflaton oscillation amplitude is larger too.
In summary, a stronger χ field self-interaction results in less
efficient inflaton trapping.

VI. REHEATING

As we have shown, after crossing the ESP the total
kinetic density of the inflaton decays into radiation through
resonant production of χ-particles.7 Thus we expect

1

2
_φ2
ESP ≃

π2

30
g�T4

reh; ð73Þ

where g� ¼ Oð100Þ is the effective relativistic degrees of
freedom. Using the above and Eq. (36) we obtain

Treh ¼
�
10

π2g�
Vend

� ffiffiffiffiffiffi
2α

p

κ

mPl

ϕESP

� ffiffiffiffi
6α

p �1=4
; ð74Þ

where we used Vend ¼ V0e−
ffiffiffiffi
2α

p
according to Eq. (13).

To get a feeling about the magnitude of Treh we take
ϕESP ¼ mPl and V1=4

end ∼ V1=4
0 ∼ 10−2mPl, in which case

we have

Treh ∼ 10−3mPl

� ffiffiffiffiffiffi
2α

p

κ

� ffiffiffiffiffiffiffi
3α=8

p
: ð75Þ

As we show below κ ¼ Oð100Þ in order to have successful
dark energy. Then α ∈ ½1.5; 10� gives Treh ∼ 1011–13 GeV.
This means that, if Treh is large, thermal corrections might
restore the Peccei-Quinn symmetry, unless κ is rather large,
approaching the bound in Eq. (28). Actually, in this case,
the Peccei-Quinn symmetry is thermally broken later on,
after the onset of radiation domination. In contrast, if the
reheating temperature is not very large, the Peccei-Quinn
symmetry is broken once the inflaton rolls towards the
VEV regardless of thermal corrections. In both cases, the
axion does not exist during inflation and so there is no
problem with axion isocurvature perturbations.
Knowing the reheating temperature in Eq. (74), we can

calculate the number of e-folds of inflation from the
recognisable equation

N� ¼ 61.2þ 1

3ð1þ wÞ ln
�
g�π2

60

�

þ ð3w − 1Þ
3ð1þ wÞ ln

�
V1=4
end

Treh

�
þ ln

�
V1=4
end

mPl

�
: ð76Þ

Presuming the kinetically dominated inflaton field is still
the dominant component of the energy density until the
produced radiation dominates, we have w ¼ 1 and the
above becomes

N� ¼ 61.7þ 1

3
ln

�
V1=4
end

Treh

�
þ ln

�
V1=4
end

mPl

�
: ð77Þ

VII. RESULTS

To find the energy scale at the end of inflation we can
first substitute ns from Eq. (20) into Eq. (24) to obtain

7The case when the quartic self-interaction of the χ-particles
stops their resonant production early (Case 2, discussed above)
introduces the extra complication of the perturbative decay of the
oscillating inflaton condensate. For simplicity, we consider only
Case 1, which amounts to satisfying the bound in Eq. (72).
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V0

m4
Pl

¼ 12π2αAs

N2�
eα=N� ; ð78Þ

which is independent of κ. Using that α < N� and As ¼
ð2.208� 0.075Þ × 10−9 [cf. Eq. (25)], this always gives

V1=4
0 ≃ 2 × 10−3α1=4mPl: ð79Þ

Using this value to find Vend ¼ V0e−
ffiffiffiffi
2α

p
we see

V1=4
end ¼ 2 × 10−3α1=4e−

ffiffiffiffiffiffi
α=8

p
mPl ∼ 10−3mPl; ð80Þ

where α ∈ ½1.5; 10� (see also Fig. 1). This is close to the
scale of a grand unified theory (GUT) as expected.
Rearranging Eq. (74) we readily obtain

V1=4
end

Treh
¼

�
π2g�
10

�
κffiffiffiffiffiffi
2α

p ϕESP

mPl

� ffiffiffiffi
6α

p �1=4
: ð81Þ

Also, using Vend ¼ V0e−
ffiffiffiffi
2α

p
and Eq. (78) we find

V1=4
end

mPl
¼ ð12π2αAsÞ1=4ffiffiffiffi

N
p

�
exp

�
α

4N�
−

ffiffiffi
α

8

r �
: ð82Þ

Combining Eqs. (81) and (82) with Eq. (77) and after some
algebra we end up with

N� ≃ 56.3þ
ffiffiffiffiffi
α

24

r
ln

�
κffiffiffiffiffiffi
2α

p ϕESP

mPl

�
; ð83Þ

where we took exp ð α
4N�

−
ffiffi
α
8

p Þ ∼ 1.
The value of κ is determined by the necessity for the

residual potential energy of φ to act as dark energy at late
times [see Eq. (27)]. As such

VðφESPÞ ¼ V0 exp ð−κe
φESPffiffi
α

p
mPlÞ ≃ 10−120m4

Pl; ð84Þ

which rearranges to

κ ≈ 244e
φESPffiffi
α

p
mPl ð85Þ

[cf. Eq. (28)] Using this, Eq. (83) is written as

N� ≃ 56.3þ
ffiffiffiffiffi
α

24

r �
ln

�
244ffiffiffiffiffiffi
2α

p
�
þ 2φESPffiffiffi

α
p

mPl

�
; ð86Þ

where we used lnðϕESP
mPl

Þ ¼ φESPffiffi
α

p
mPl
, according to Eq. (5).

We know that the pole in the non-canonical field
potential, ϕ ¼ 0 is transposed to φ ¼ −∞ with our field
redefinition, generating a plateau in the model which
provides the slow-roll regime for inflation. The value of
κ effectively shifts the position of the edge of the plateau,

which explains why the value of φESP differs for each κ
value in this equation.
It is straightforward to obtain the inflationary observ-

ables nsðαÞ and rðαÞ using Eqs. (17) and (18) with Eq. (86).
As an indicative choice we consider φESP ¼ 0. In this case,
the results are shown in Table I and depicted in Fig. 4.
As evident, there is excellent agreement with the Planck
results [38].
Remarkably, the values of the inflationary observables

do not change much when varying φESP. For example,
taking φESP ¼ mPl adds 2=

ffiffiffiffiffi
24

p
≃ 0.4 to the value of N�, so

that N�ð3=2Þ ¼ 57.9 (N�ð10Þ ¼ 59.3). Yet, the resulting
values of ns and r remain virtually unchanged, given by the
same values shown in Table I. Thus, our results are robust
and only very weakly dependent on the location of the ESP
(value of φESP), which means that no tuning is required to
match the observations.
This is less so with the value of κ. Indeed, from Eq. (85)

we see that setting φESP ¼ 0 requires

κ ≈ 244; ð87Þ

to obtain the correct energy density for dark energy. If
instead we have φESP ¼ mPl, with α ¼ 10, we have

κ ≈ 335: ð88Þ

FIG. 4. The 1σ and 2σ contours of the Planck constraints from
Ref. [38]. The red curve is the prediction of our model
assuming Eq. (73).

TABLE I. Inflationary observables taking φESP ¼ 0.

α N� ns r

3=2 57.5 0.965 0.0024
10 58.9 0.963 0.023
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In all cases however, we see that κ ¼ Oð100Þ, which means
that the inflaton field in the exponent of the potential in
Eq. (1) is suppressed by the GUT scale mPl=κ ∼ 1016 GeV.

VIII. CONCLUSIONS

Wehave analyzed a newmodel of quintessential inflation,
inspired by supergravity and superstrings. The inflaton field
features a runaway potential with a kinetic pole at the origin
that generates the inflationary plateau. After the field rolls
over the edge of this plateau, it becomes kinetically
dominated, driving a period of kination. The rapid roll of
the inflaton is halted, when it crosses an enhanced symmetry
point (ESP), where its kinetic density is transferred to the
generation of the thermal bath of the hot big bang, through
interaction with the Peccei-Quinn (PQ) field. Thereby, the
roll of the inflaton is stopped before it travels over super-
Planckian distances in field space, which would otherwise
undermine the validity of the scalar potential. Trapping the
field at the ESP not only reheats the Universe but also
ensures that the field becomes heavy and does not give rise to
the 5th force problem, which typically plagues quintessence
models. The residual potential density of the field can
explain dark energy without resorting to a nonzero value
of the cosmological constant. Another aspect of our model
which significantly differs from other quintessential infla-
tion models in the literature is that radiation production
occurs at reheating and not before, meaning that there is no
subdominant thermal bath during kination.8

We have studied in detail how the kinetic density of the
inflaton is transferred to radiation through the tachyonic
and parametric resonant production of PQ particles.
Coupling the inflaton to the PQ field is aligned with the
economy philosophy of quintessential inflation, in that no
arbitrary new field is introduced by hand to interact with the
inflaton field responsible for both inflation and dark energy,
but the field considered (the PQ field) is already envisaged
by beyond the standard model physics to account for the

strong CP problem of QCD and for the dark matter in the
Universe. Moreover, in our model, the interaction between
the inflaton and the PQ field ensures that the PQ symmetry
is restored during inflation. As a result, the axion field does
not exist during inflation, so it does not obtain a super-
horizon spectrum of perturbations of its expectation value.
This means that there is no issue of axion isocurvature
perturbations, which can otherwise be a concern when
considering axionic dark matter.9

Our model manages to account for observations with
natural values of the model parameters. The inflationary
observables obtained (see Table I) are in excellent agree-
ment with the Planck satellite findings and are rather
robust, in that they do not significantly depend on the
location of the ESP down the runaway inflaton direction.
This is not surprising, given that the inflationary plateau
is generated by the presence of a kinetic pole. For dark
energy, the strength of the exponential characterizing the
potential slope only implies that the inflaton is suppressed
by the grand unified theory (GUT) scale.
All in all, we have presented a newquintessential inflation

model which successfully accounts for inflation and dark
energy and may well have a basis in fundamental physics.
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