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We show that for every Sasaki-Einstein manifold, M5, the AdS5 ×M5 background of type IIB
supergravity admits two universal deformations leading to supersymmetric AdS4 solutions. One class of
solutions describes an AdS4 domain wall in AdS5 and is dual to a Janus configuration with N ¼ 1

supersymmetry. The other class of backgrounds is of the form AdS4 × S1 ×M5 with a nontrivial SLð2;ZÞ
monodromy for the IIB axiodilaton along the S1. These AdS4 solutions are dual to three-dimensional
N ¼ 1 superconformal field theories (SCFTs). Using holography, we express the S3 free energy of these
theories in terms of the conformal anomaly of the four-dimensional N ¼ 1 SCFT arising from D3-branes
on the Calabi-Yau cone over M5.
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I. INTRODUCTION

Defects and interfaces play an important role in the
dynamics of quantum field theory and find many applica-
tions ranging from condensed matter physics to string
theory. Their physics is often strongly coupled and thus
difficult to study with conventional techniques. It is there-
fore natural to use AdS=CFT to study properties of defects
and interfaces in strongly interacting quantum field theories
(QFTs). The best understood examples of the holographic
correspondence arise from string or M-theory with some
amount of unbroken supersymmetry. Indeed, the codimen-
sion-1 interfaces and defects have been studied extensively
in the context of the duality between IIB string theory on
AdS5 × S5 andN ¼ 4 supersymmetric Yang-Mills (SYM).
A particular class of interfaces of interest to us here is the

so-called Janus interfaces [1,2]. In N ¼ 4 SYM, they arise
from studying the theory with a position dependent gauge
coupling along one of the spatial directions on R1;3. By
choosing a specific position dependence of the coupling and
turning on additional operators in the N ¼ 4 theory, the
interface can preserve three-dimensional superconformal
symmetry. For Janus interfaces with three-dimensional (3d)
N ¼ 4 supersymmetry, this setup was studied in detail in
Refs. [3–5]. S-duality and a nontrivial profile for the θ angle
of the N ¼ 4 theory imply the existence of new strongly
coupled 3dN ¼ 4 SCFTs localized on the interface. These

so-called T½UðNÞ� theories serve as strongly coupled build-
ing blocks. which can be used to construct 3dN ¼ 4QFTs.
In particular, it was shown in Ref. [6], see also Refs. [7–9],
that one can gauge the UðNÞ × UðNÞ global symmetry and
introduce Chern-Simons interaction terms to arrive at new
three-dimensional N ¼ 4 SCFTs. We refer to this type of
construction as a J-fold [6].
These Janus and J-fold constructions in N ¼ 4 SYM

have a natural realization in type IIB supergravity. The
Janus solutions are realized as deformations of AdS5 × S5

to a domain wall with AdS4 slicing, two asymptotic AdS5
regions, and a squashed metric on S5 [10]. The J-fold
configuration is holographically dual to an AdS4 × S1 × S5

solution with a nontrivial profile for the IIB axiodilaton
along the S1 [6,11].
Our goal here is to use IIB supergravity to generalize the

Janus and J-fold constructions to four-dimensional (4d)
SCFTs where the theory on the interface preserves three-
dimensional N ¼ 1 supersymmetry. A natural starting
point is to consider deformations of the AdS5 ×M5 back-
grounds of type IIB supergravity where M5 is a Sasaki-
Einstein (SE) manifold. There are infinite classes of such
manifolds with explicit metrics known as Yp;q [12] and
La;b;c [13,14]. The 4d N ¼ 1 quiver gauge theories dual to
these supergravity solutions are well understood [15–18]
and arise from the dynamics of D3-branes probing the tip of
the Calabi-Yau cone overM5; see Fig. 1. The deformations
of this D3-brane setup we study are illustrated in Fig. 2.
To construct theN ¼ 1 AdS4 solutions describing Janus

and J-fold configurations, we make use of the fact that, for
every SE manifold, IIB supergravity admits a consistent
truncation to five-dimensional N ¼ 2 gauged supergravity
coupled to one hypermultiplet. This is a subtruncation of
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the more general truncation of IIB supergravity on SE
manifolds studied in Refs. [19–21]; see also Refs. [22,23]
for some related results. We can thus first construct Janus
and J-fold solutions in five dimensions by solving a system
of coupled nonlinear differential equations and then uplift
the result to IIB supergravity.
We note that for the special case whenM5 is the round S5

the Janus solution was found in Refs. [24–26] and the
J-fold solution was very recently presented in Ref. [27].
The local form of the J-fold solutions for general SE M5

was also presented in Ref. [28]. Here, we show how to
make this solution globally well defined by imposing an
appropriate SLð2;ZÞ monodromy, characterized by an
integer, n, along the S1 direction. We also derive a universal
relation, valid in the planar limit, between the S3 free
energy of the 3d N ¼ 1 SCFT dual to the J-fold solution
and the conformal anomaly of the 4d N ¼ 1 SCFT dual to
the original AdS5 ×M5 solution.

II. FIVE DIMENSIONS

The solutions we consider can be described within five-
dimensional N ¼ 2 gauged supergravity coupled to one

hypermultiplet. All solutions of this theory can be uplifted
to type IIB supergravity as we review below.
The five-dimensional theory consists of a metric, two

gravitinos, and a U(1) gauge field, which together form the
N ¼ 2 gravity multiplet, in addition to two spin-1=2
fermions and four scalars forming the hypermultiplet.
Here, we consider solutions of theN ¼ 2 theory for which
both the gauge field and the fermions are set to zero. This is
a consistent truncation at the level of equations of motion.
The bosonic Lagrangian of this truncated subsector is

L ¼
ffiffiffiffiffiffiffijg5j

p
16πGN

�
R5 þ

1

4
Tr½∂μM∂μM−1� − P

�
; ð1Þ

where P is the potential on the scalar manifold

M ¼ SUð2; 1Þ
Uð2Þ ; ð2Þ

parametrized by the four hypermultiplet scalars through the
sigma model matrix M. We will parametrize this manifold
in a nonstandard but convenient way. We start by defining
the four noncompact generators of suð2; 1Þ,

½ea�ij ¼ δai δ
3
j þ δajδ

3
i ; ½fa�ij ¼ −iϵabϵbij; ð3Þ

where a; b ¼ 1; 2 and i; j ¼ 1; 2; 3. Together with the
compact generators h1 ¼ ½e1; f1� and h2 ¼ ½e2; f2�, these
generators form two copies of suð1; 1Þ ≃ slð2;RÞ. Note
that these two suð1; 1Þ’s do not commute. Now, the scalar
matrix is given by

M ¼ U†U; U ¼ e χe
1

· e
2ωþc
4

h2 · eφe
2

· e−
c
4
h2 : ð4Þ

In this parametrization, the scalar kinetic terms take the
explicit form

Lkin ¼
1

4
Tr½∂μM∂μM−1�

¼ −2ð∂ χÞ2 − 1

2
sinh22 χð∂ω − sinh2φ∂cÞ2

−
1

2
cosh2 χ½4ð∂φÞ2 þ sinh22φð∂cÞ2�: ð5Þ

Note that this parametrization differs from the one used in
Refs. [24,26] and allows for a more streamlined presenta-
tion of the Janus and J-fold solutions. The potential can be
written in terms of a superpotential,

P ¼ 1

2

�
ð∂ χWÞ2 − 8

3
W2

�
; W ¼ −

3g
2
cosh2 χ: ð6Þ

This theory enjoys an exact SLð2;RÞS symmetry that will
play an important role in the following. This symmetry is a
direct consequence of the SLð2;RÞ symmetry of type IIB

FIG. 2. Left: A Janus configuration for the D3-brane world
volume theory in Fig. 1 with gauge couplings τL and τR on the left
and right sides of the interface. Right: The J-fold configuration
associated with the same SE manifold.

FIG. 1. Four-dimensional N ¼ 1 SCFT realized on N coinci-
dent D3-branes probing a Calabi-Yau (CY) cone over a SE
manifold.
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supergravity. In five dimensions, the SLð2;RÞS in question
is generated by fe2; f2; h2g. It acts on the scalars as

M ↦ R†MR ð7Þ

and does not act on the five-dimensional metric g5. We are
interested in solutions for which the metric takes the form

ds25 ¼ dr2 þ e2AðrÞds2AdS4 ; ð8Þ

and the scalars are functions only of r. The complete set of
Bogomol’nyi-Prasad-Sommerfield (BPS) equations for this
ansatz can be derived in a straightforward manner [29]; see
also Refs. [24,26]. The spin-1=2 supersymmetry variations
lead to the following three equations,

ð χ0Þ2 ¼ 1

4
ð∂ χWÞ2 − cosh2 χsec2ðcþ 2ωÞðφ0Þ2;

ω0 ¼ sinh2φðc0Þ;
sinh 2φðc0Þ ¼ −2 tanðcþ 2ωÞðφ0Þ; ð9Þ

where the prime denotes a derivative with respect to r. The
spin-3=2 supersymmetry variations yield

A0 ¼ −
1

3
coth χð χ0Þ;

φ0 ¼ 3e−A cosðcþ 2ωÞsech χ tanh χ: ð10Þ

To solve this system of equations, we first notice that the
equations for c and ω can be solved directly in terms of the
scalar φ,

sinðcþ 2ωÞ ¼ J
sinh 2φ

;

cos2ðc − c0Þ ¼
sinh22φ − J 2

sinh22φð1þ J 2Þ ; ð11Þ

where we have introduced two integration constants J and
c0. Similarly, we can integrate for A in (10),

e−6A ¼
�
3g
5

�
6 5sinh2 χ

I3
; ð12Þ

where I is another integration constant. We are now left
with solving for the scalars φ and χ. In order to simplify the
remaining expressions, we define a shifted metric function
e−3X ¼ sinh χ. Using the BPS equations and (12), one finds
that X satisfies

4

g2
ðX0Þ2 þ Veff ¼ 0;

Veff ¼ 4e−2X
�

9

55=3I
− e−4Xcosh2ð3XÞ

�
: ð13Þ

This reduces the problem of finding X to that of a classical
particle with zero energy scattering off the potential Veff .
As X tends to �∞, the metric function A diverges, while
the scalar χ → 0. In this limit, we recover the AdS5
vacuum. In order to get a regular Janus solution with
two asymptotic AdS5 regions, the integration constant I
must lie in the range 0 ≤ I ≤ 1. Only in this range, Veff has
a maximum on the positive real axis for which Veff ≥ 0; see
Fig. 3. Restricting to this range, the classical mechanics
problem is solved by

rðXÞ ¼ rtp �
Z

X

Xtp

2dx

g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−VeffðxÞ

p ; ð14Þ

where the subscript tp indicates the turning point where the
classical particle scatters of the potential, VeffðXtpÞ ¼ 0.
This is the center of the Janus interface, and we are free to
choose coordinate such that rtp ¼ 0. Note that we must
change the branch of the square root in (13) at the location
of the turning point to obtain a regular solution. For r < 0,
we pick the lower sign in (14), and for r > 0, we pick the
upper. The dilaton φ can then be written as

cosh 2φ ¼ cosh 2F þ 1

2
e−2FJ 2; ð15Þ

where

FðXÞ ¼ F0 �
Z

X

Xtp

9e−xdx

coshð3xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−55=3IVeffðxÞ

p : ð16Þ

Using the classical mechanics problem and the integral
expression for F, we can perform two numerical integra-
tions to completely solve the system. The scalar fields φ, c,
and ω are then obtained from (15) and (11). In Fig. 4, we
display a sample numerical solution.
Now, let us focus on I ¼ 1. Here, we can again construct

the Janus solution for which the scalar X comes in from

0.0 0.5 1.0 1.5 2.0

1

0

1

2

X

V
ef

f

FIG. 3. A plot of the effective potential (13) in the allowed
range 0 ≤ I < 1. The black curve has I ¼ 1.
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þ∞ and scatters off the potential. However, now the critical
point of the effective potential has exactly zero energy; see
Fig. 3. This implies that the particle can stay as long as we
wish at the critical point located at 6X ¼ log 5 before
returning back to X ¼ ∞. In fact, it can stay there
indefinitely; i.e., there are exact solutions to the BPS
equations for which X is constant. These solutions do
not have asymptotic regions where the metric approaches
the AdS5 vacuum. Instead, the metric is simply of the
product form AdS4 ×R,

ds25 ¼
5

9g2
ð4dρ2 þ 5ds2AdS4Þ; ð17Þ

where we have changed to the coordinate ρ ¼ 3gr=ð2 ffiffiffi
5

p Þ.
Although sinh2 χ ¼ 1=5 is constant, the remaining scalar
fields are nontrivial functions of ρ and are determined by
the function F, see (11) and (15), which is given by

F ¼ F0 þ ρ: ð18Þ

A particular solution of this type can be compactified to an
S-fold solution. An S-fold is a solution of type IIB string
theory that is periodic up to an SLð2;ZÞ transformation of
the fields. The S-folds we construct are closely related to
the Janus solutions above, and we refer to them as J-folds.
In five dimensions, this compactification is achieved by
periodically identifying the ρ coordinate ρ ∼ ρþ ρ0 while
making sure that that all fields are periodic up to an
SLð2;RÞS transformation. In order to obtain a physical
background of type IIB string theory, we must act with an
element of SLð2;ZÞS. The hyperbolic element we consider
is the same as the one used in Refs. [6,11] [30]:

Jn ¼
�

n 1

−1 0

�
: ð19Þ

This transformation acts on the scalar matrix M as
in (7), where Jn is considered as an element of
SLð2;RÞS ⊂ SUð2; 1Þ. It turns out that both χ and
cþ 2ω do not transform under the action of SLð2;RÞS
and so they must be periodic functions of ρ for a consistent
compactification. For the solution in question, this is only
possible when these scalars are constant. The condition
χ ¼ constant is already implied by setting I ¼ 1. Setting
cþ 2ω to be constant implies that J ¼ 0 or cþ 2ω ¼ 0. In
order to properly compactify the solution into a J-fold
using (19), we must take c ¼ π=2 and perform a global
SLð2;RÞS rotation of the scalar matrix such that U in (4)
takes the form

U ¼ e χe
1

· eðφ0þρ0=2þρÞe2 · e−π
8
h2 · e

1
2
log cothðρ0=2Þe2 ; ð20Þ

where sinh2 χ ¼ 1=5 and we use φ0 þ ρ0=2 instead of the
constant F0. This solution has the desired property

J†
nMðρþ ρ0ÞJn ¼ MðρÞ; n ¼ 2 cosh ρ0: ð21Þ

The identification of nwith ρ0 implies that the period of our
compactified coordinate is quantized, n ∈ Z and n > 2. We
have verified that for this solution the supersymmetry
transformation parameters do not depend on the coordinate
ρ and they do not transform under the SLð2;ZÞ trans-
formation (19). We therefore conclude that the J-fold
preserves N ¼ 1 supersymmetry.

III. UPLIFT TO IIB

The five-dimensional model above uplifts to the follow-
ing IIB background. The metric in an Einstein frame is [31]

ds210 ¼ cosh χds25 þ
4

g2

�
ds24

cosh χ
þ cosh χζ2

�
: ð22Þ

Here, ds24 is a local Kähler-Einstein metric with Kähler
form, J, which satisfies 2J ¼ dσ, and ζ ¼ dϕþ σ. To
present the 2-form fluxes in a compact form, we make use
of the holomorphic (2,0)-form, Ω, on the Kähler-Einstein
base, which satisfies the identities (see Ref. [34] for a
review on Sasaki-Einstein geometry)

Ω ∧ Ω̄ ¼ 2J ∧ J; dΩ ¼ 3iσ ∧ Ω: ð23Þ

The 2-form potential can be written as

C2 − τB2 ¼ −
4i
g2

e−iω tanh χ

coshφþ ieic sinhφ
e3iϕΩ: ð24Þ

The type IIB 4-form is

C4 ¼
16

g4
dϕ ∧ σ ∧ J; ð25Þ

4 2 0 2 4

0.0

0.5

1.0

1.5

g r

1.0

0.5

FIG. 4. A plot of the function 2ðFðrÞ − F0Þ (solid curve) for
I ¼ 4=5. We also display the function X − 1 (dashed curve),
which determines the metric function A.
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and the axiodilaton is given by

τ ¼ C0 þ ie−Φ ¼ sinh 2φ cos cþ i
cosh 2φ − sinh 2φ sin c

: ð26Þ

The BPS equations in (9) and (10) imply the equations of
motion of IIB supergravity. This is expected on general
grounds based on the consistent truncation results in
Refs. [19–21]. In our context, this implies that the Janus
and J-fold solutions [35] discussed in the previous section
lead to a supersymmetric solution of IIB supergravity for
any five-dimensional SE manifold.
Note that the 2-forms C2 and B2 in (24) have an explicit

dependence on ϕ and thus the Reeb vector isometry of the
Sasaki-Einstein manifold is not a symmetry of the IIB
background. If the metric ds24 in (22) on the Kähler-Einstein
base has any isometries, they are preserved by the fluxes
and the axiodilaton.

IV. J-FOLDS

Since we performed a global SLð2;RÞ transformation to
obtain the J-fold solution, we must separately uplift that
solution to type IIB supergravity. The IIB J-fold solution
has the metric

ds210 ¼
ffiffiffi
5

6

r
2

3g2

�
4dρ2 þ 5ds2AdS4 þ 6ds24 þ

36

5
ζ2
�
: ð27Þ

The axiodilaton is

τ ¼ C0 þ ie−Φ ¼ coshð2φþ ρ0Þ þ i sinh ρ0
cosh 2φ

: ð28Þ

The 2-form is

C2 − τB2 ¼ −
2i
g2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3
sinh ρ0

q
coshφþ i sinhφ

e3iϕΩ: ð29Þ

The 4-form is the same as in (25). The only nontrivial
function in the solution above is

φ ¼ φ0 þ ρ; ð30Þ

where φ0 is an integration constant. The coordinate ρ is
periodic with the identification ρ ∼ ρþ ρ0. Consistency
with the SLð2;ZÞ symmetry of IIB string theory imposes
the constraint [36]

n ¼ 2 cosh ρ0; n ∈ Z; n > 2: ð31Þ

We note in passing that similar J-fold solutions were
constructed in Ref. [37]; however, those solutions are

nonsupersymmetric, and it is unclear whether they are
perturbatively stable.
Equipped with theseN ¼ 1 AdS4 solutions of IIB string

theory with a compact internal space, it is natural to
conjecture that for each such solution there is a dual 3d
N ¼ 1 SCFT. The S3 free energy of this SCFT, in the
planar limit, can be computed from the supergravity
solution above using the standard AdS=CFT dictionary
and reads

F S3 ¼
ffiffiffiffiffi
55

36

s
arccoshðn=2Þa4d: ð32Þ

Here, a4d is the central charge of the 4d N ¼ 1 SCFT
associated with the Sasaki-Einstein manifoldM5. The form
of (32) suggests that there is a similarly universal derivation
of this relation from the dual SCFT perspective, and it will
be most interesting to understand it.

V. DISCUSSION

We studied infinite families of supersymmetric AdS4
solutions of IIB supergravity arising from D3-branes at a
tip of a CY cone over a SE manifold. The Janus solutions
are interpreted as holographic duals of interfaces in the 4d
N ¼ 1 SCFTs associated with the SE manifolds which
preserve 3d N ¼ 1 superconformal symmetry. When the
SE manifold is S5, the Janus solution described above
reduces to the one studied in Refs. [24–26]. Therefore,
it is natural to expect that for a general SE manifold
the Janus configurations are similar to the N ¼ 1 inter-
faces in N ¼ 4 SYM studied in Ref. [3]. It is desirable
to investigate further this construction with QFT
methods.
The J-fold solutions should be dual to 3dN ¼ 1 SCFTs,

and it will be most interesting to understand these theories.
One possible strategy is to look for a generalization of the
construction in Ref. [6] where the 3d N ¼ 4 T½UðNÞ�
theory of Gaitto-Witten [4,5] accompanied by appropriate
gauging of the flavor symmetries is used to construct the
3d N ¼ 1 SCFTs. As in Ref. [6], the integer n in (31) is
perhaps dual to the Chern-Simons level of the gauge theory.
The low amount of supersymmetry makes this system both
very interesting and challenging to study.
Finally, we note that it is natural to ask whether there are

similar Janus and J-fold solutions of IIB supergravity
with N ¼ 2 supersymmetry. We will present some explicit
examples of such backgrounds in Ref. [29].

ACKNOWLEDGMENTS

We are grateful to S. Pufu and N. Warner for useful
discussions. N. B. is supported in part by an Odysseus
grant, Grant No. G0F9516N from the FWO. F. F. G. is a

JANUS AND J-FOLD SOLUTIONS FROM SASAKI-EINSTEIN … PHYS. REV. D 100, 081901 (2019)

081901-5



Postdoctoral Fellow of the Research Foundation—Flanders.
K. P. is supported in part by DOEGrant No. DE-SC0011687.
M. S. is supported by the National Research Foundation of
Korea under Grant No. NRF-2019R1I1A1A01060811. The

work of J. v. M. is supported by a doctoral fellowship from the
Research Foundation—Flanders (FWO). N. B., F. F. G., and
J. v. M. are also supported by the KU Leuven C1 Grant
No. ZKD1118 C16/16/005.

[1] D. Bak, M. Gutperle, and S. Hirano, J. High Energy Phys.
05 (2003) 072.

[2] A. B. Clark, D. Z. Freedman, A. Karch, and M. Schnabl,
Phys. Rev. D 71, 066003 (2005).

[3] E. D’Hoker, J. Estes, and M. Gutperle, Nucl. Phys. B753, 16
(2006).

[4] D. Gaiotto and E. Witten, J. High Energy Phys. 06 (2010)
097.

[5] D. Gaiotto and E. Witten, Adv. Theor. Math. Phys. 13, 721
(2009).

[6] B. Assel and A. Tomasiello, J. High Energy Phys. 06 (2018)
019.

[7] Y. Terashima and M. Yamazaki, J. High Energy Phys. 08
(2011) 135.

[8] O. J. Ganor, N. P. Moore, H.-Y. Sun, and N. R. Torres-
Chicon, J. High Energy Phys. 07 (2014) 010.

[9] D. Gang, N. Kim, M. Romo, and M. Yamazaki, J. High
Energy Phys. 10 (2016) 062.

[10] E. D’Hoker, J. Estes, and M. Gutperle, J. High Energy Phys.
06 (2007) 021.

[11] G. Inverso, H. Samtleben, and M. Trigiante, Phys. Rev. D
95, 066020 (2017).

[12] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, Adv.
Theor. Math. Phys. 8, 711 (2004).

[13] M. Cvetic, H. Lu, D. N. Page, and C. N. Pope, Phys. Rev.
Lett. 95, 071101 (2005).

[14] D. Martelli and J. Sparks, Phys. Lett. B 621, 208
(2005).

[15] S. Benvenuti, S. Franco, A. Hanany, D. Martelli, and J.
Sparks, J. High Energy Phys. 06 (2005) 064.

[16] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and
B. Wecht, J. High Energy Phys. 01 (2006) 128.

[17] S. Benvenuti and M. Kruczenski, J. High Energy Phys. 04
(2006) 033.

[18] A. Butti, D. Forcella, and A. Zaffaroni, J. High Energy Phys.
09 (2005) 018.

[19] D. Cassani, G. Dall’Agata, and A. F. Faedo, J. High Energy
Phys. 05 (2010) 094.

[20] K. Skenderis, M. Taylor, and D. Tsimpis, J. High Energy
Phys. 06 (2010) 025.

[21] J. P. Gauntlett and O. Varela, J. High Energy Phys. 06
(2010) 081.

[22] S. S. Gubser, C. P. Herzog, S. S. Pufu, and T. Tesileanu,
Phys. Rev. Lett. 103, 141601 (2009).

[23] J. T. Liu, P. Szepietowski, and Z. Zhao, Phys. Rev. D 82,
124022 (2010).

[24] A. Clark and A. Karch, J. High Energy Phys. 10 (2005) 094.
[25] E. D’Hoker, J. Estes, and M. Gutperle, Nucl. Phys. B757, 79

(2006).
[26] M. Suh, J. High Energy Phys. 09 (2011) 064.
[27] A. Guarino and C. Sterckx, arXiv:1907.04177.
[28] D. Lust and D. Tsimpis, J. High Energy Phys. 09 (2009)

098.
[29] N. Bobev, F. F. Gautason, K. Pilch, M. Suh, and J.

van Muiden (to be published).
[30] More general hyperbolic elements of SLð2;ZÞ were con-

sidered in Refs. [6,11], which could also be incorporated
into our setup.

[31] We use the same type IIB supergravity conventions as in
Ref. [32], which agree with the ones in Ref. [33].

[32] N. Bobev, F. F. Gautason, and J. Van Muiden, J. High
Energy Phys. 04 (2018) 148.

[33] J. Polchinski, String Theory. Vol. 2: Superstring Theory and
Beyond, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2007).

[34] J. Sparks, Surv. Diff. Geom. 16, 265 (2011).
[35] The J-fold solution must be uplifted separately, since the

global SLð2;RÞ transformation carried out in (20) slightly
changes how we parametrize the scalar manifold.

[36] We note that in ten dimensions the periodic identification is
accompanied with the SLð2;ZÞ action ðJ−1

n ÞT.
[37] T. Robb and J. G. Taylor, Phys. Lett. 155B, 59 (1985).

BOBEV, GAUTASON, PILCH, SUH, and VAN MUIDEN PHYS. REV. D 100, 081901 (2019)

081901-6

https://doi.org/10.1088/1126-6708/2003/05/072
https://doi.org/10.1088/1126-6708/2003/05/072
https://doi.org/10.1103/PhysRevD.71.066003
https://doi.org/10.1016/j.nuclphysb.2006.07.001
https://doi.org/10.1016/j.nuclphysb.2006.07.001
https://doi.org/10.1007/JHEP06(2010)097
https://doi.org/10.1007/JHEP06(2010)097
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://doi.org/10.4310/ATMP.2009.v13.n3.a5
https://doi.org/10.1007/JHEP06(2018)019
https://doi.org/10.1007/JHEP06(2018)019
https://doi.org/10.1007/JHEP08(2011)135
https://doi.org/10.1007/JHEP08(2011)135
https://doi.org/10.1007/JHEP07(2014)010
https://doi.org/10.1007/JHEP10(2016)062
https://doi.org/10.1007/JHEP10(2016)062
https://doi.org/10.1088/1126-6708/2007/06/021
https://doi.org/10.1088/1126-6708/2007/06/021
https://doi.org/10.1103/PhysRevD.95.066020
https://doi.org/10.1103/PhysRevD.95.066020
https://doi.org/10.4310/ATMP.2004.v8.n4.a3
https://doi.org/10.4310/ATMP.2004.v8.n4.a3
https://doi.org/10.1103/PhysRevLett.95.071101
https://doi.org/10.1103/PhysRevLett.95.071101
https://doi.org/10.1016/j.physletb.2005.06.059
https://doi.org/10.1016/j.physletb.2005.06.059
https://doi.org/10.1088/1126-6708/2005/06/064
https://doi.org/10.1088/1126-6708/2006/01/128
https://doi.org/10.1088/1126-6708/2006/04/033
https://doi.org/10.1088/1126-6708/2006/04/033
https://doi.org/10.1088/1126-6708/2005/09/018
https://doi.org/10.1088/1126-6708/2005/09/018
https://doi.org/10.1007/JHEP05(2010)094
https://doi.org/10.1007/JHEP05(2010)094
https://doi.org/10.1007/JHEP06(2010)025
https://doi.org/10.1007/JHEP06(2010)025
https://doi.org/10.1007/JHEP06(2010)081
https://doi.org/10.1007/JHEP06(2010)081
https://doi.org/10.1103/PhysRevLett.103.141601
https://doi.org/10.1103/PhysRevD.82.124022
https://doi.org/10.1103/PhysRevD.82.124022
https://doi.org/10.1088/1126-6708/2005/10/094
https://doi.org/10.1016/j.nuclphysb.2006.08.017
https://doi.org/10.1016/j.nuclphysb.2006.08.017
https://doi.org/10.1007/JHEP09(2011)064
https://arXiv.org/abs/1907.04177
https://doi.org/10.1088/1126-6708/2009/09/098
https://doi.org/10.1088/1126-6708/2009/09/098
https://doi.org/10.1007/JHEP04(2018)148
https://doi.org/10.1007/JHEP04(2018)148
https://doi.org/10.4310/SDG.2011.v16.n1.a6
https://doi.org/10.1016/0370-2693(85)91032-9

