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We consider quark-hadron duality relations and QCD sum rules for correlators involving exotic
tetraquark currents, here specializing to the case of quark-exchange processes. We point out the differences
they exhibit with respect to the cases involving ordinary bilinear quark currents. Based on the observation
that only diagrams possessing at least four-quark singularities can contribute to the formation of tetraquark
states, we show that the quark-hadron duality relations and the corresponding sum rules split into two
nonoverlapping relations. The ultimate tetraquark-adequate QCD sum rule is concerned only with one of
these relations, in which the operator product expansion starts with diagrams of order Oðα2sÞ.
DOI: 10.1103/PhysRevD.100.074029

I. MOTIVATION

In recent years, experimental data provided increasing
evidence for near-threshold hadron resonances with a
favorable interpretation as tetraquark and pentaquark
hadrons, i.e., hadrons with minimal parton configurations
consisting of four and five quarks, respectively [1–5]. The
experimental progress has been escorted by extensive
theoretical studies aimed at understanding the possible
nature and structure of such exotic hadrons in QCD.
Numerous works deal with the application of Shifman-

Vainshtein-Zakharov (SVZ) sum rules [6] to tetraquark
and pentaquark states [7,8] (and references therein). The
method of SVZ sum rules (or QCD sum rules) makes use
of dispersion representations to calculate QCD Green
functions, or correlators, in two different ways: first, by
applying the Wilson operator product expansion (OPE),
which gives the OPE (theoretical) side of a QCD sum rule,
and second, by calculating the same Green function by the
insertion of a complete set of hadronic intermediate states;
this yields the hadron (phenomenological) side of the QCD
sum rule. For Green functions of bilinear meson or trilinear
baryon interpolating currents, the hadron continuum is
counterbalanced by the contribution of perturbative QCD

diagrams above an appropriate effective threshold. Making
use of this property, one relates parameters of the ordinary
hadrons to the low-energy region of perturbative QCD
diagrams starting at order Oðα0sÞ [hereafter referred to as
Oð1Þ diagrams, αs being the strong coupling constant] and
supplemented by appropriate condensate contributions [6].
Previous applications of SVZ sum rules to exotic states

[7,8] have followed the same route by calculating the Oð1Þ
QCD diagrams (and in some cases also radiative correc-
tions) and the corresponding power corrections and bor-
rowing the same criteria for continuum subtraction as
prescribed for the ordinary hadrons [6]. As a result, the
tetraquark or pentaquark properties have been related to
Oð1Þ QCD diagrams.1

However, the case of exotic multiquark currents has a
fundamental difference compared to the ordinary currents:
Namely, for correlators of exotic currents, the OPE side as
well as the hadron side of SVZ sum rules may be split into
two nonoverlapping classes of contributions, with respect
to their singularity structure. Moreover, diagrams of each of
these two classes on the OPE side and on the hadron side
satisfy QCD sum rules of their own; i.e., the quark-hadron
duality relation for the exotic correlator leads to two
independent SVZ sum rules for each class of contributions.
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1A caveat about subtleties in the application of the SVZ sum
rules to exotic states has been raised in [9], where it was noticed
that, depending on the way one treats the contributions of two-
hadron states on the phenomenological side of the QCD sum rule,
one arrives at different assignments of the pentaquark quantum
numbers. The origin of this problem, however, was not clarified.

PHYSICAL REVIEW D 100, 074029 (2019)

2470-0010=2019=100(7)=074029(8) 074029-1 Published by the American Physical Society

https://orcid.org/0000-0003-3904-1734
https://orcid.org/0000-0003-4654-6933
https://orcid.org/0000-0002-2958-0120
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.074029&domain=pdf&date_stamp=2019-10-25
https://doi.org/10.1103/PhysRevD.100.074029
https://doi.org/10.1103/PhysRevD.100.074029
https://doi.org/10.1103/PhysRevD.100.074029
https://doi.org/10.1103/PhysRevD.100.074029
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Exotic states contribute to only one of these sum rules,
which we name, in the case of tetraquarks, T-adequate
QCD sum rule, and do not contribute to the other sum rule.
The OPE side of the T-adequate sum rule contains
contributions of only those diagrams which may participate
in the formation of the tetraquark state. These are called
T-phile diagrams and are selected according to their
singularity structure in the Feynman diagrams of the four-
point function, Γ4j, of quark bilinear color-singlet currents.
T-phile diagrams should have a four-quark s-channel cut;
such diagrams emerge at order Oðα2sÞ and higher [10].
Obviously, in order to obtain meaningful estimates of the
parameters of exotic states, one needs to use the T-adequate
QCD sum rule.
In fact, in the context of large-Nc QCD, it is well known

that some classes of Feynman diagrams are not related to
exotic hadrons [11–20]. However, only recently have the
consequences of this property for the formulation of sum
rules for exotic states been worked out: In [10], we have
focused on quark-hadron duality relations for correlation
functions of the tetraquark currents and have explicitly
demonstrated for specific “direct” Green functions, corre-
sponding to processes where the initial and final states have
the same quark-antiquark bilinear flavor structures, that
the Oð1Þ and the OðαsÞ contributions on the QCD side
precisely cancel against the two-hadron continuum con-
tributions on the hadronic side, as soon as SVZ sum rules
for correlators of ordinary currents are used. The OPE side
of the T-adequate QCD sum rule has been shown to start
with specific nonfactorizable diagrams of order Oðα2sÞ.
In this paper, we derive the T-adequate QCD sum rules

for “recombination” diagrams, corresponding to quark-
exchange processes, and prove that also in this case the
OPE side of the T-adequate QCD sum rule starts with
diagrams of orderOðα2sÞ. For the sake of clarity, we discuss
the case of exotic currents composed of quarks of four
different flavors. The topology of recombination diagrams
being different from that of direct diagrams, the derivation
of T-adequate sum rules necessitates a more detailed study.
The proof given here is based on the analysis of four-quark
singularities of Feynman diagrams. This paper therefore
completes the derivation of tetraquark-adequate QCD
sum rules.
The paper is organized as follows: Section II highlights

some necessary properties of tetraquark interpolating cur-
rents and their Green functions. Section III focuses on
recombination Green functions, in which quark flavors in
the initial and final tetraquark currents are arranged differ-
ently. Our conclusions follow in Sec. IV.

II. TETRAQUARK INTERPOLATING CURRENTS
AND CORRELATION FUNCTIONS

We discuss properties of tetraquarks consisting of two
quarks of flavors a and c and two antiquarks of flavors b
and d. The Dirac structure of the currents is of no relevance

for the arguments of this paper and will not be specified;
we therefore do not explicitly write the appropriate combi-
nations of γ matrices between the quark fields.
We will exploit two properties of the exotic currents and

their Green functions:
(i) QCD sum rules adopt local multiquark interpolating

currents, and any local tetraquark current may
be brought to the form of a linear combination
of products of color-singlet combinations of
quark fields with two different flavor structures
θābc̄d ¼ jābjc̄d and θādc̄b ¼ jādjc̄b with jab ¼ q̄aqb
[21].2 For instance, a triplet-antitriplet tetraquark
current may be written as

ðϵijkq̄jaq̄kcÞðϵij0k0qj
0
b q

k0
d Þ ¼ −θābc̄d − θādc̄b; ð1Þ

and for an octet-octet current one finds

ðq̄aTAqbÞðq̄cTAqdÞ ¼ −
1

2
θādc̄b −

1

6
θābc̄d: ð2Þ

Here, TA ¼ λA=2, A ¼ 1; 2;…; 8, λA are the Gell-
Mann matrices, and we made use of the anticom-
mutativity of quark fields. Taking into account the
Dirac structure of quark bilinears, one needs to
perform also the Fierzing with respect to the spinor
indices (see e.g., Refs. [1,7]).

It is therefore sufficient to study QCD sum rules
for exotic interpolating currents taken as products of
two color-singlet quark bilinears. (When needed, the
momentum of a four-quark current will be desig-
nated by p.)

(ii) Any diagram involving the tetraquark currents θābc̄d
and/or θādc̄b can be obtained from a diagram
involving only the bilinear quark currents jāb, jc̄d,
jād, and jc̄b by merging the appropriate vertices.
In particular, the two-point function of tetraquark
currents,

Πθθ ¼ hTfθðxÞθ†ð0Þgi; ð3Þ

can be obtained from the four-point function of
ordinary bilinear currents,

Γ4j ¼ hTfjðx1Þjðx2Þj†ðx3Þj†ð0Þgi; ð4Þ

by merging two pairs of vertices. The three-point
function involving one tetraquark current and two
bilinear interpolating currents,

Γθjj ¼ hTfθð0Þj†ðxÞj†ðyÞgi; ð5Þ

2More generally, any gauge-invariant multiquark operator can
be reduced to a combination of products of colorless clusters [22].
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can be obtained from the same four-point function
Γ4j by merging only one pair of vertices. The
functions Πθθ and Γθjj have been the subject of
QCD sum rule analyses extensively presented in the
literature.

According to property (ii), the quark-hadron duality
relations for Πθθ and Γθjj and the corresponding QCD
sum rules follow directly from the duality relations for Γ4j.
Analytic properties of the latter, in particular, the structure
of its four-quark singularities, relevant for the derivation
of consistent QCD sum rules for tetraquarks, have been
studied in detail in [16,17].
For a given global flavor content of the tetraquark current

āc̄bd, we have at our disposal two different flavor combi-
nations of two color singlets, θābc̄d and θādc̄b, and therefore
one should distinguish between the diagrams where quark
flavors in the initial and final states are combined in the
same way (direct diagrams) and in a different way (quark-
exchange or recombination diagrams). The Feynman dia-
grams for the corresponding four-point functions have
different topologies and structures in their four-quark
singularities and therefore necessitate separate studies.
For the case of direct diagrams, the reader is referred to
Ref. [10], where a detailed analysis has been presented.
In the following, we concentrate on the case of quark-
exchange diagrams.

III. RECOMBINATION GREEN FUNCTIONS
INVOLVING TETRAQUARK CURRENTS

We now discuss diagrams with a recombination or
quark-exchange topology, where the quark flavors in the
initial and the final currents are arranged differently.
For the direct Green functions

Γdir
4j ¼ hTfjābðx1Þjc̄dðx2Þj†ābðx3Þj†c̄dð0Þgi; ð6Þ

due to the factorization property of lowest-order QCD
diagrams, use was made of conventional SVZ sum rules for
correlators of bilinear quark currents to show the cancella-
tion of the non-T-phile diagrams on the OPE side against
factorizable two-meson contributions on the hadron side
[10]. This transparent procedure is not applicable in the
recombination case and therefore one needs to follow a
different line of argument, based on the singularity analysis
of Feynman diagrams, for the related study.
Let us focus on the quark-hadron duality relations for the

recombination four-point function

Γrec
4j ¼ hTfjābðx1Þjc̄dðx2Þj†ādðx3Þj†c̄bð0Þgi: ð7Þ

As emphasized in Sec. II, the understanding of the duality
relations for Γrec

4j immediately leads to the understanding of
the duality relations for Πθθ and Γθjj, since the diagrams for

the latter are obtained from the diagrams for Γrec
4j by

merging the appropriate vertices.
The analytic properties of the four-point functions of

bilinear currents have been studied in detail in [16,17].
Here, we would like to show one example which is
particularly important for the understanding of quark-
hadron duality relations for the recombination diagrams.
Figure 1 presents the recombination diagrams of lowest

orders in an unfolded form as box diagrams: The s-channel
singularities of the diagrams in the left column correspond
to u-channel singularities of the diagrams in the right
column. The absence of u-channel cuts (not only four-
quark cuts, but any cuts) in the diagrams in the right column
of Figs. 1(a) and 1(b) is evident; this means the absence of
s-channel singularities in the diagrams Figs. 1(a) and 1(b)
in the left column. In order to understand the structure
of singularities of the diagram with two-gluon exchanges,
Fig. 1(c), one needs to solve the Landau equations [23]. The
corresponding equations and their solutions are presented in
the Appendix. With the help of the Landau equations one
finds that the left-column diagram Fig. 1(c) has the four-
quark s-channel threshold at s ¼ ðma þmb þmc þmdÞ2;
this threshold and the corresponding four-quark cut are
related to the configuration of quark momenta when the
crossed quark lines go on their mass shell. With this
knowledge at hand, we turn to the analysis of QCD sum
rules for the recombination Green functions. Figure 2

(a)

(b)

(c)

FIG. 1. Singularities of Feynman diagrams describing Γrec
4j . The

left-column (right-column) diagrams (a) and (b) do not contain a
four-particle s-channel (u-channel) cut. The lowest-order dia-
gram that has the four-particle s-channel cut is the left-column
diagram (c). This cut [and the corresponding u-channel cut in the
diagram (c) in the right column] emerges when the crossed quark
propagators go on the mass shell.
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presents in diagrammatic form the quark-hadron duality
relations for Γrec

4j .
Several remarks are in order.
(i) All QCD diagrams for Γrec

4j may be divided into two
nonoverlapping classes according to the structure of
their s-channel singularities: The diagrams of the
first class, referred to as non-T-phile diagrams, do
not have a four-quark s-channel cut. All diagrams
that contain a four-quark s-channel cut belong to the
second class, referred to as T-phile diagrams. If a
tetraquark pole emerges in the s channel, then it can
emerge only through the infinite set of T-phile
diagrams. Any s-channel singularity in the set of
non-T-phile diagrams is not related to the tetraquark.

(ii) If we look at the representation of Green functions in
the hadron picture, then Green functions of the non-
T-phile class do not contain two-meson s-channel
intermediate states, whereas the hadron representa-
tion for T-phile contributions does contain such
two-meson intermediate states and also a possible
tetraquark state.

(iii) Quark-hadron duality relations are fulfilled for
non-T-phile diagrams and for T-phile diagrams
separately. It is therefore straightforward to write
down the corresponding QCD sum rules, as in
Fig. 2.

In Fig. 2(a), the non-T-phile diagrams on the OPE side
are dual to the specific meson diagrams without two-meson
s-channel cuts and without a possible tetraquark pole on the
hadron side of the QCD sum rule for Γrec

4j . (Two-meson cuts
appear in the t and u channels.) Obviously, non-T-phile
diagrams cannot be related to the tetraquark properties.
In Fig. 2(b), the QCD sum rule for the T-phile part of Γrec

4j
represents the desired T-adequate QCD sum rule.

Having at hand the latter relation, one easily constructs
T-adequate QCD sum rules for Πrec

θθ and Γrec
θjj by merging

the appropriate vertices in Γrec
4j , as shown in Figs. 3 and 4.

In the end, only the T-phile diagrams with, at least, two
gluon exchanges of the type shown in Figs. 3(c) and 4(c)

(b)

(a)

FIG. 2. Duality relations for two classes of contributions to Γrec
4j : (a) OPE representation for those contributions to Γrec

4j that do not
contain four-quark s-channel cuts (non-T-phile contributions) and the corresponding representation for such contributions using hadron
degrees of freedom (d.o.f.): The dashed rectangle denotes the sum of all contributions to Γrec

4j that do not have two-meson s-channel cuts.
(b) OPE representation for those contributions to Γrec

4j that do have four-quark s-channel cuts (class-T contributions) and the
corresponding representation for class-T contributions using meson d.o.f.: The solid blue rectangle denotes the sum of all hadronic
contributions to Γrec

4j that have two-meson s-channel cuts. A possible isolated T pole has been added.

(a)

(b)

(c)

FIG. 3. Feynman diagrams for a recombination two-point
function of tetraquark currents (rhs). They are obtained by
merging vertices in the recombination four-point function of
bilinear quark currents (lhs). Diagram (c) on the lhs is the lowest-
order diagram that contains a four-quark s-channel cut. Diagrams
(a) and (b) on the lhs do not contain four-quark singularities in the
s channel. Only diagram (c) on the lhs is a T-phile diagram.
Similarly, among the diagrams on the rhs, it is only diagram
(c) that contributes to the OPE side of the tetraquark SVZ sum
rule (8).
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appear in the T-adequate QCD sum rules for the tetraquark
properties.
Here, one should bear in mind a subtlety related to the

difference between confined (compact) tetraquarks and
molecular tetraquark states: The compact tetraquarks are
poles in full QCD Green functions, but they do not emerge
in the effective low-energy theory described in terms of
meson d.o.f.; molecular states, on the contrary, are not only
poles in full QCDGreen functions, but also emerge as poles
in the effective meson low-energy theory. Therefore, in the
case of a molecular tetraquark state, the corresponding pole
is contained in the infinite sum of diagrams denoted by the
solid blue rectangle of Fig. 2(b). The decomposition in the
rhs of Fig. 2(b) should then be understood as the sum of
meson diagrams, from which the T pole has already been
subtracted. In case the tetraquark pole emerges as a compact
four-quark state, it is not present in the effective meson
theory and should be added separately, as in Fig. 2(b).
As a final step, assuming that the high-momentum tail

(corresponding to the s integration above an effective
threshold seff [24–26]) of the T-phile Feynman diagrams
on the OPE side of QCD sum rules cancels against the
hadron continuum contributions on the hadron side of QCD

sum rules, we arrive at the ultimate T-adequate QCD sum
rules for recombination Green functions:

fābc̄dT fādc̄bT expð−M2
TτÞ

¼
Z

seff

ð4mqÞ2
ds expð−sτÞρrecT ðsÞ þ BPC; ð8Þ

fābc̄dT AðT → jādjc̄bÞ expð−M2
TτÞ

¼
Z

seff

ð4mqÞ2
ds expð−sτÞΔrec

T ðsÞ þ BPC; ð9Þ

fābc̄dT ¼ hTjθābc̄dj0i; fādc̄bT ¼ hTjθādc̄bj0i; ð10Þ

where BPC is short for Borelized power corrections,
4mq ≡ma þmb þmc þmd, and AðT → jādjc̄bÞ is the
amplitude h0jTfjādðxÞjc̄bð0ÞgjTðpÞi in momentum space;
ρrecT ðsÞ andΔrec

T ðsÞ are the spectral densities in the variable s
of the Oðα2sÞ diagrams with two-gluon exchanges, of the
type shown in the rhs of Figs. 3(c) and 4(c), respectively.
Power corrections in the rhs of Eqs. (8) and (9) correspond
to condensate insertions in these diagrams. The typical
lowest-order diagrams contributing to the OPE side of
Eq. (9) are shown in Figs. 5(a)–5(c); the power correction
given by Fig. 5(d) does not depend on p2 and thus vanishes
under the Borel transformation and does not contribute to
the Borel sum rule (9).
Typical diagrams that do not contribute to the OPE side

of the T-adequate QCD sum rules for Γrec
θjj are shown in

Fig. 6. These have often been considered in the literature as

(a) (b)

(c) (d)

FIG. 5. Typical T-phile Oðα2sÞ perturbative diagram (a) and the
corresponding power corrections of order OðαshαsGGiÞ
(b), (c) which contribute to the OPE side of the T-adequate
sum rule for the T → MādMc̄b coupling. Diagram (d), of order
Oðhα2sGGGGiÞ, has at most a polynomial dependence on p2

and thus does not contribute to the Borel sum rule for the
T → MādMc̄b coupling.

(a)

(b)

(c)

FIG. 4. Feynman diagrams for a recombination three-point
function (rhs). They are obtained by merging vertices in the four-
point function of bilinear quark currents (lhs). Diagram (a) in
the rhs has at most a polynomial dependence on the variable p2

(p, the momentum of the four-quark current) and does not have a
four-quark cut in it. Diagram (b) in the rhs has a nontrivial p2

dependence, but it drops out from the T-adequate QCD sum rule:
Its contribution cancels against the hadron contributions not
related to the tetraquark properties by virtue of the duality
relations for Γrec

4j . Therefore, diagrams (a) and (b) are not related
to tetraquark properties. Only the diagram with the two-gluon
exchange (c) is a T-phile diagram, contributing to the tetraquark
SVZ sum rule (9).
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the appropriate OPE diagrams for the coupling of a
tetraquark to two mesons, T → MādMc̄b [7]. However,
as it is clear from the duality relation depicted in Fig. 2(a),
in spite of a nontrivial p2 dependence of the diagram in
Fig. 6(a), it does not contribute to the T-adequate QCD sum
rule for Γrec

θjj. For the same reason, the condensate diagram
Fig. 6(b) also cannot contribute to the T → MādMc̄b
coupling. [Moreover, the diagram Fig. 6(b) does not
depend on p2 at all and thus its Borel transform vanishes.]
We have discussed the case of flavor-exotic tetraquark

currents. It is clear, however, that the same arguments apply
also to the case of crypto-exotic flavor structure of the
tetraquark current (i.e., q̄aqbq̄bqc, with a, b, c denoting
quark flavors). Compared to the flavor-exotic case, the
crypto-exotic case exhibits an extended set of T-phile
diagrams (see a detailed discussion in [17]). Apart from
this feature, the splitting of all diagrams in the OPE for Γ4j

into two nonoverlapping classes of non-T-phile and T-phile
diagrams is valid also in the crypto-exotic case. Obviously,
the arguments given in this section remain unchanged;
the only modification appears in the way of selecting the
appropriate set of T-phile diagrams.
Considering tetraquark interpolating currents in the form

of products of two color-singlet bilinears allowed us to
formulate a clear criterion for selecting T-phile diagrams
that contribute to the tetraquark-adequate QCD sum rules
for Πθθ and Γθjj. One may use other color structures of the
quark bilinears forming colorless local tetraquark interpo-
lating currents: For instance, one may work with the triplet-
antitriplet, i.e., diquark-antidiquark, structure D̄iDi with
Di ¼ ϵijkqjqk, i, j, k ¼ 1, 2, 3 being color indices, or the
octet-octet structure q̄λAqq̄λAq, λA being the Gell-Mann
matrices, A ¼ 1;…; 8. However, for such color structures
of the tetraquark interpolating currents, it is difficult to
provide explicit criteria for selecting the appropriate T-
phile diagrams. A consistent way to select such T-phile
diagrams is to rearrange the diquark-antidiquark or octet-
octet local currents into the singlet-singlet color structures
and make use of the criteria for selecting the T-phile
diagrams already formulated for this case. In this way, the
derivation of the tetraquark-adequate QCD sum rules also

works for other choices of the color structure of the local
tetraquark interpolating currents.

IV. CONCLUSION

We have considered the SVZ sum rules for correlation
functions involving exotic tetraquark currents θ, namely,
the two-point function Πθθ and the three-point function
Γθjj, specifically related in the present paper to quark-
exchange processes.
It turns out that the duality relations and QCD sum rules

for these correlators have different properties compared
with the duality relations for the correlators of bilinear
quark currents. The OPE part as well as the hadron part of
the sum rules split into two nonoverlapping classes of
contributions; each of them satisfies its own QCD sum rule:
One QCD sum rule contains, on the OPE side, tetraquark-
concerning diagrams, also named T-phile diagrams, which
start at order Oðα2sÞ, and, on the hadron side, the tetraquark
contribution. This sum rule has been named T-adequate
sum rule. The second QCD sum rule, which contains non-
T-phile diagrams on the OPE side, does not contain the
tetraquark contribution on the hadron side and therefore has
no relation to the tetraquark properties.
The T-phile diagrams for any correlator involving the

tetraquark currents can be obtained from the corresponding
T-phile diagrams of the four-point function Γ4j of quark
color-singlet bilinear currents; the latter are defined as
those diagrams which have four-quark s-channel cuts. The
T-phile diagrams can be identified by solving the Landau
equations [23].
The present work completes the proof provided in [10]

for direct-type processes, where the quark flavors are
arranged in color-singlet bilinears in the same way in
the initial and in the final states.
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APPENDIX: LANDAU EQUATIONS FOR
RECOMBINATION DIAGRAMS

A generic expression of a Feynman diagram has the form

IðpÞ ¼
Z YL

l¼1

d4kl
ð2πÞ4

YI
i¼1

1

ðq2i −m2
i þ iϵÞ ; ðA1Þ

(a) (b)

FIG. 6. A typical perturbative OðαsÞ diagram and OðhαsGGiÞ
power correction that both do not contribute to the OPE side of
the T-adequate QCD sum rule for the T → MādMc̄b coupling, as
these diagrams are obtained by merging vertices in the non-T-
phile diagram for Γrec

4j .
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where p represents a set of external momenta and qi are
linear functions of the p’s and of the independent loop
variables k.
The Landau equations are [23]

λiðq2i −m2
i Þ ¼ 0; i ¼ 1;…; I; ðA2Þ

XI

i¼1

λiqi ·
∂qi
∂kl ¼ 0; l ¼ 1;…; L; ðA3Þ

where the λ’s are parameters (Lagrange multipliers) to be
determined.
This system of equations may have independent sub-

systems, corresponding to the vanishing of a certain
number of parameters λ.
Here, we present the Landau equations for the Feynman

diagrams shown in the left column of Fig. 1. We are
interested in the singularities produced by the quark
propagators. We therefore do not consider gluon propa-
gators in the Landau equations; this amounts to taking the
corresponding λ’s equal to zero.
We start with the recombination diagram of leading order

of Fig. 7(a). The external momenta are pab, pcd, pad, pcb,
with

P ¼ pab þ pcd ¼ pad þ pcb; s ¼ P2;

t ¼ ðpab − padÞ2; u ¼ ðpab − pcbÞ2: ðA4Þ

The Landau equations read

λaðk2 −m2
aÞ ¼ 0;

λbððk− pabÞ2 −m2
bÞ ¼ 0;

λcððpcd − pad þ kÞ2 −m2
cÞ ¼ 0;

λdððk− padÞ2 −m2
dÞ ¼ 0;

λakþ λbðk− pabÞ þ λcðkþ pcd − padÞ þ λdðk− padÞ ¼ 0:

ðA5Þ

This system of equations has several independent subsys-
tems. Choosing λb ¼ λd ¼ 0, one obtains u ¼ ðma �mcÞ2.
(Only physical singularities, corresponding to þ signs
between the masses, are relevant.) Choosing λa¼ λc ¼ 0,
one obtains t ¼ ðmb �mdÞ2. Choosing λc ¼ λd ¼ 0, one
obtains p2

ab ¼ ðma �mbÞ2, and so forth. The property that
the singularities in u and t involve only two quark masses
shows that there are no four-quark singularities in this
diagram. In the variable s no singularities at all are found.
The second diagram, Fig. 7(b), is a two-loop (the loops

shown in different colors) diagram with one-gluon
exchange between quarks a and c. It contains seven
propagators and thus the full system of Landau equations
includes seven parameters λi. One has two four-momentum
conservation laws related to two loops. The full system of

Landau equations splits into several subsystems related to
setting to zero some of the parameters λi. These subsystems
lead to thresholds at p2

ij ¼ ðmi �mjÞ2, t ¼ ðmb �mdÞ2
and u ¼ ðma �mcÞ2 (only physical singularities related
to þ signs between the masses are relevant). None of
the subsystems leads to the solution corresponding to the
threshold in the variable s, indicating the absence of s cuts.
Finally, we turn to the diagram Fig. 7(c) with two-gluon

exchanges between quarks a and c, and b and d. It is a
three-loop diagram (each loop shown in a different color),
containing three independent integration momenta k, k0,
and k00, and ten propagators. Therefore, the general system
of Landau equations contains ten parameters λi (equal to
the number of the propagators) and three independent
momentum conservation relations, equal to the number
of loops. We present a subsystem of Landau equations
corresponding to the crossed propagators in Fig. 7(c) (i.e.,
all other λ’s are set to zero) which leads to the four-quark
threshold in the variable s:

λaððpab−kÞ2−m2
aÞ¼0; λbððk−k00Þ2−m2

bÞ¼0;

λcððk0 þk00Þ2−m2
cÞ¼0; λdððpcd−k0Þ2−m2

dÞ¼0; ðA6Þ

(a)

(b)

(c)

FIG. 7. Diagrams of Fig. 1 with explicit momentum flow.
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λaðpab − kÞ − λbðk − k00Þ ¼ 0;

λcðk0 þ k00Þ − λdðpcd − k0Þ ¼ 0;

−λbðk − k00Þ þ λcðk0 þ k00Þ ¼ 0: ðA7Þ

This system of four equations can be solved and leads
to a nontrivial solution P2 ¼ s ¼ ðma þmb þmc þmdÞ2,
thus indicating the presence of an s-channel four-quark
threshold. (The unphysical singularities, corresponding to
changes of sign in front of the masses, exist as well.)
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