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We studied the ep — ep + 2jets diffractive cross section with ZEUS phase space. Neglecting the z-
channel momentum in the Born and gluon dipole impact factors, we calculated the corresponding

contributions to the cross section differential in f =

0?
YRRV R
O M)

and the angle ¢ between the leptonic and

hadronic planes. The gluon dipole contribution was obtained in the exclusive k,-algorithm with the
exclusive cut y., = 0.15 in the small y., approximation. In the collinear approximation we canceled
singularities between real and virtual contributions to the gg dipole configuration, keeping the exact y
dependency. We used the Golec-Biernat—Wiisthoff (GBW) parametrization for the dipole matrix element
and linearized the double dipole contributions. The results give roughly % of the observed cross section for

small # and coincide with it for large f.
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I. INTRODUCTION

One of the main outcomes of the HERA research
program is the evidence and detailed study of diffractive
processes. Indeed, almost 10% of the y*p — hadrons deep
inelastic scattering (DIS) events were shown to contain a
rapidity gap in the detectors between the proton remnants Y
and the hadrons X coming from the fragmentation region of
the initial virtual photon, namely the process was shown to
look like y*p — XY. These diffractive deep inelastic
scattering (DDIS) events were revealed and extensively
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studied by H1 and ZEUS collaborations [1-8]. The
existence of a rapidity gap between the diffractive state
X and the proton remnants, with vacuum quantum numbers
in t-channel, is a natural place for a Pomeron-like descrip-
tion. Two types of approaches have been developed.
First, based on the existence of a hard scale (the
photon virtuality Q2 for DIS), a collinear QCD factoriza-
tion theorem was derived [9] and applied successfully
to diffractive processes. For inclusive diffraction, this
theorem is usually applied with so-called resolved
Pomeron models, where one introduces distributions of
partons inside the Pomeron, similarly to the usual parton
distribution functions for proton in DIS, convoluted with
hard matrix elements. In the framework of collinear
factorization diffractive dijet photoproduction was calcu-
lated in [10,11] in next-to-leading order (NLO) perturbative
QCD, where the authors observed collinear factorization
breaking. To describe the data it was necessary to introduce
a model for the suppression factor or gap survival prob-
ability. They demonstrated that a global suppression factor
or a model depending on the light cone momentum fraction

Published by the American Physical Society
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and the flavor of the interacting parton describe the HERA
data. Inclusive dijet photoproduction was also studied in
this framework and was shown to be very sensitive to the
details of nuclear PDFs in the Pb-Pb ultraperipheral
collisions in the Large Hadron Collider (LHC) kinematics
[12,13].

Second, it is natural at very high energies to view the
process as the coupling of a Pomeron with the diffractive
state X of invariant mass M. In the rest of this paper, we
generically call such descriptions as high-energy factori-
zation pictures. In the DDIS case, for low values of M 2 X
can be modeled by a ¢g pair, while for larger values of M2,
the cross section with an additional produced gluon, i.e.,
X = qqg, is enhanced. A good description of HERA data
for diffraction was achieved in such a model [14], in which
the Pomeron was described by a two-gluon exchange.

In the present paper, we study in detail the cross section
for exclusive dijet electroproduction in diffraction, as was
recently reported by ZEUS [15]. A first theoretical study of
such processes within a high-energy factorization picture
was performed in [16], in a leading order (LO) approxi-
mation in which the dijet was made of a gg pair.

Our aim is to make a description of the same process,
relying now on our complete NLO description of the direct
coupling of the Pomeron to the diffractive X state, obtained
in Refs. [17,18], and further extended to the case of a light
vector meson in Ref. [19]. In our approach, the Pomeron is
understood as a color singlet QCD shockwave, in the spirit
of Balitsky’s high energy operator expansion [20-23] or in
its color glass condensate formulation [24-32].

The exclusive diffractive production of a dijet will be a
key process for the physics at the electron-ion collider
(EIC) at small x. Indeed, it was proven to probe the dipole
Wigner distribution [33]. Several recent studies have been
performed in order to build precise target matrix elements
for EIC phenomenology [34-36] and for ultraperipheral
collisions at the LHC [37]. The gluon Wigner distributions
probed by our process can describe a cold nuclear origin for
elliptic anisotropies, as studied for dilute-dense collisions
[38,39]. Finally the (subeikonal) target spin asymmetry for
dijet production was proven to give a direct access to the
gluon orbital angular momentum in the target [40,41]. In
this paper, we are interested in building accurate descrip-
tions of the final state via a jet algorithm, to be combined
later with the target matrix elements in the aforementioned
studies for future precise EIC predictions.

We present explicit formulas for Born ep — ep’ + 2 jets
cross section allowed by HERA kinematics. We argue that
for Born production mechanism, HERA selection cuts for
diffractive DIS [15] severely reduce contributions from jets
in the aligned configuration since simultaneous restrictions
on p i > 2 GeV and My > 5 GeV forbid a jet with a
very small longitudinal momentum fraction of the photon.
As is known [42], the aligned jets give the dominant
contribution to the cross section, which in the presently

studied kinematics is cut off. Thanks to these cuts the
typical transverse energy scale in the Born jet impact factor
is greater than the #-channel transverse momentum scale set
by the saturation scale QO determined by the proton matrix
element. As a result, we can expand in the #-channel
transverse momentum in the impact factor and analytically
take integrals for the yp cross section. This naturally gives
the leading power ~Q% ~ W?* behavior of the cross section
(where 1 + 1 is the Pomeron intercept) unlike ~Q? ~ W*
for the aligned jets [42] describing large dipoles and
saturation. We called this procedure “small Q,” or
“BFKL-like” approximation.

Next, we study the real radiative corrections. According
to the exclusive k, jet algorithm [43,44] used in the ZEUS
data analysis [15], these corrections come from the ~ /y -
wide border of the Dalitz plot (see Fig. 4), with y,, = 0.15
being the algorithm parameter. One can symmetrically
divide this area into 3 subareas with predominantly
q—1(g9), g—(qg), and g— (qq) jets, where one of the
jets is made of gg, gg, or gqg correspondingly. At large
M jeis the third region gives enhanced contribution since in
such kinematics a subdiagram with a #-channel gluon has
large 5 = M3

Most of the real production matrix elements were
calculated in Ref. [18] in arbitrary kinematics. We have
obtained here the remaining ones and we present them in
Appendix B. The real production matrix elements have
soft and collinear divergencies in the first two regions while
the contribution of the third region is finite. Integrating the
singular parts over the first two regions, we cancel the
singularities with the singular contribution of the virtual
part from Ref. [18]. As a result, we have the contribution of
soft and collinear gluons to the 2 jet cross section in the k,
algorithm. Since the divergent contributions factorize as
the Born cross section times the collinear singular factor,
the validity criteria of the small Q, approximation for
such contributions are the same as for the Born cross
section. Therefore we used this approximation to take the
inner integrals in the yp cross section. The average value
of this correction is about 10%. However, we noticed that
the small y., expansion of this contribution is very
inaccurate since In? y.,, In y., and the constant contri-
butions together are of the order of the next term
~y/Yeur = 0.39, which is the true expansion parameter.
Although we calculated this contribution exactly in y,,, all
other (nonsingular) contributions are ~,/y, geometrically.
Therefore this term alone can not be a good approximation.
Instead one can look at it as a subtraction term for future
full numerical calculation.

Among the nonsingular contributions there are ones with
the gluon emitted before the shockwave. Suppose for
definiteness that it was emitted from the quark and we
consider the second, g — (gg) region. In such a contribution
the invariant mass of the gg pair is small ~,/y,, and the
only hard scale in the quark propagator between the photon
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and the gluon vertices comes from the z-channel. It means
that one cannot neglect the r-channel momentum in the
impact factor, i.e., the small Q, approximation is inappli-
cable. In other words this correction is very sensitive to Q.
In general, one can say that if one experimentally restricts
from below both the mass of the dijet system and the
transverse momentum of the jet so that the aligned jets are
cut off from the Born cross section, the radiative corrections
will greatly depend on saturation effects.

For a generic, roughly symmetric, dijet configuration in
the third region with roughly é of the photon’s longitudinal
momentum taken by the gluon and roughly taken by the
quark and antiquark each, the typical transverse energy
scale in the impact factor is determined by the same
parameters as in the Born one: the photon virtuality Q,
My jes, and the experimental cut p e min- Therefore one
can also try calculating the contribution of such gluon
dipoles in the small Q, approximation. The validity of this
approximation for the configuration when the (gg) jet itself
has the aligned structure is not justified, however, since
then the quark or antiquark’s part of the longitudinal
momentum of the pair becomes a new small parameter.
Such a situation happens in the corners of the third g — (¢g)
area in the Dalitz plot since in these corners the invariant
mass of gg or gg becomes small and we return to the
situation discussed in the previous paragraph.

Anyway in this paper we have calculated the contribu-
tion of all real radiative corrections from the third g — (¢g)
area in the Dalitz plot, i.e., the gluon dipole contribution in
the small Q, approximation, i.e., expanding the impact
factors in the f-channel momenta. The error of our result
comes from the corners of the phase space discussed above
and its numerical value will be judged from comparison of
our result to the future full numerical calculation. This
difference will be related to saturation effects.

This paper is organized as follows. The second part
discusses kinematics and yields the LO computation of
the cross section, including its leptonic part in Sec. II A,
hadronic part in Sec. II B, HERA acceptance in Sec. 11 C,
small Q approximation in Sec. II D and analysis of the
result in Sec. II E. The third part discusses the NLO real
corrections including the k,-jet algorithm in Sec. III A,
q —(qg) and g — (qg) dipoles in Sec. III B and g — (¢q)
dipole in Sec. III C. The conclusion summarizes the paper.
Appendix A contains discussion of aligned vs symmetric
jet contributions to the Born cross section. Appendix B
presents the dipole—double dipole interference impact
factors for real correction. Appendix C discusses the overall
normalization and matching to nonperturbative distribu-
tions in the Golec-Biernat—Wiisthoff formulation of DDIS.

II. KINEMATICS AND LO RESULTS
A. Leptonic part

We will use hereafter the light cone vectors n; and n,,
defined as

1
ny=(1,0.,1), 55(1 0,,-1),
nf =n; =(n;-ny) = 1. (2.1)
For any vector p we note
. 1
p =p_5(p-nz)=5(p +p?).
pr=p =(p-nm)=p"-p’, (2:2)
p=pn+pn+py, (2.3)
so that
(p-k)=prk, = pTk +pkt +(pL-ki)
=pik_+p_k,—(p-k). (2.4)
The DIS kinematic variables read
s=(po+k?  gq=k-kK. 0*=-¢
(pog)  W?+0? _
y= , y=1-y, (2.5)
(Pok) s
W2 = (po + q)* = 2poq — Q%
Ak a2k, AW?dQ>
i i yel (2.6)

where pg, k, k' and ¢ are the proton, initial electron, final
electron and photon’s momenta and we integrated out the
azimuthal angle of the scattered electron with respect to the
initial electron via overall rotational invariance. The cross
section for diffractive dijet production reads

dra Ak AR

dGeﬂ = ?‘]}HJ( )32k,i 2 dG/w (27)
Here
d
do" = M Lries (2.8)

a1,

is the y*-proton cross section, obtained from the y*-proton
scattering amplitude M*, and

I

RS

ep

1.~ -
T = 5 Telly'7,) = 206,k + Kk, = (kK)g).— (29)

The photon polarization vectors read
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qpo —n?
e(x) Ee(l) :L, (210)
/_ijé
where
_ va P d
Ny = EuapPqq Pp. AN
N (Popy) ((qpq) Qz(popq)>
Pg=PgL=Pg— 4 = Po + .
fr T T (pog) (Poa)  (poq)?
(2.11)
These polarization vectors obey the identity
ot elelt = Vel — g, + q’;f“. (2.12)

Hereafter, we label the polarizations using Latin indices,
while greek letters are used for Lorentz indices. We get

b = (1)t gl

= 4(=1)"? (kel®*) (ke®)) — (=1)7Q%5%.  (2.13)
Denoting
do® = do** el e}, (2.14)
we thus have
Judoll, = J*de". (2.15)

In our light-cone frame

2

Po=Pohas g =pyn ~o, W2+ Q% =2p;pi,
14
(2.16)
)
. - [ cos¢
k= pln, + n, +ky, k’—k< ),
pelzij 1 1 ||sin¢
2
s=2pips. K= 52 v, (2.17)
7
Pg=Xpym+5— = 2xpt 2 + Pgls ps = -y
P
~, (vs)?
= 0L o

It is the frame where the photon and the proton are back-to-
back, and the z axis is along the direction of the photon
momentum, see Fig. 1.

The photoproduction cross section [18] was calculated in
this frame. Hence

lepton plane

¢ (k')

jet plane

l

FIG. 1. Definition of the lepton and jet planes in the y* — P
center-of-mass system. The jet plane contains the incoming y*
and P, as well as the two produced jets, while the lepton plane
contains the incoming y* and [P, as well as the incoming and
outgoing leptons. The direct orthonormal basis (e, e,,e.) is
defined so that e, points in the direction of the y* while e, is
orthogonal to the jet plane. The direct orthonormal basis
(uy, u}, u,) is defined so that u, = e points in the direction of
the y* while u, is orthogonal to the lepton plane.

) 2 2 4 2
J = 20 [y-i— 5 +ycos(2¢)] JOO = Q —-7.
y
(2.19)
2 2 2
=22 [y +2 - )")cos(2¢)} :
y 2
2
JO = 0 = 20° —-(2-y)\/ycos g, (2.20)
and
do Oty szsz Jabd ab
° 4x 5O rp
ab
do? = dxdp,dp,. (2.21)

r'p dxdpqdpq

B. Hadronic part

The density matrix for the cross section in our frame was
obtained in (5.21-23) of Ref. [18]. To get the proper
normalization we have to multiply all cross sections in

Ref. [18] by )4 as is discussed in Appendix C. The LO
Cross sectlons in our frame read, denoting X = 1 — x,
doy, 1 a0}
dxdp,dpg|,_, 2(271') (27)*N.,
x [((1=2x)2 = 1)eMiei — g7]
1 d? DD . 2
— / _}fl(p:{ql;)F<pl +pqql> ’
Pya p~+xxQ 2

(2.22)
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d 1 4aQ? d? a1\ |?
% - 7Q 2)_C2Q2 /_)27171__21F P +pqu . (223)
dxdp,dpg|,_, 2(2z)*(27)*N, p~+xxQ 2
doéTLegi) 1 206 Q2 xX(% — x Q/d piF(piyL -I—p""l)
dxdp,dpg|,_, 2(27)*(2x)*N. Pt + xxQ?
(P qP) Pas\]’
X -5 F ] , 2.24
Ve (m >) 024
and the total transverse cross section reads
doorr 11 aQ; 1 /dsz(ﬁ ) Paar\ |
e 1-2x)P2 4+ 1| | =5 2L -°F =1 . 2.25
xdp ;) 220m @mpn, 0 T2 s | [ e Tl T (2.25)
As a result the convolution of the electron tensor and the photon cross section reads
do® - 27 4 14+ 72 %
ab___1'P__ 1071 doorr T o5cos(29) (2.26)
dxdp,dp;|,_, > |dxdp,dp;,_, 2 1 —2xx
_ dogrr + (2= y)/Fcos¢ GOTLez(i) } (2.27)
Vs —Y)VYCOSQP——=—5— .
dxdp,dpg|,_ dxdp dpq -0
|
Here ¢ is the angle between the quark and the electron’s  and
transverse momenta in our frame, see Fig. 1. Experimen-
tally ¢ is the angle between the jet and the electron, and the doy; 1 4an2] ) 0n
jet may come from the antiquark. Then the angle between dt = 2027 N 4 / dxQ-x"x
the quark and the electron is 7 — ¢. Therefore one measures =0 ‘
the sum of the cross sections with the quark-electron angle x / d?rKo(v/xxQr)?F(7)2. (2.30)
equal to ¢ and to 7 — ¢. In this sum the interference term

by vanishes, 6, and 6yrr become twice bigger, and the
angle changes from 0 to z. Hence starting from here we will
omit the o}, contribution, understand ¢ as the angle
between the jet and the electron, ¢ € [0, z], and double
oorr and oorr.

Next, we have to substitute a model for the hadronic
matrix elements F. We will use the Golec-Biernat—
Wiisthoff (GBW) [45] parametrization, which was formu-
lated in the coordinate space. To get the proper normali-
zation we Fourier transform (2.23) and compare it with
Eq. (4.48) in Ref. [42]. Using

/ 2R () = / dFe (),

(2.28)

we have
daOLL _ 1 4(ZQq 2 2Q2
dxdﬁqdﬁq =0 2(27:) N.
= 2
« /derO(\/)aQr) ’qq;F()
2r
(2.29)

Comparing it with (4.48) in Ref. [42], the GBW para-
metrization of the forward dipole matrix element in our
normalization reads

(P(p)IT(Te(U=U" ) =N)IP(py))
FPOL[)()L (Zl) = —2
228(Piyy ) Po=Ppy
2
=F(z,)=N.o(1—e ). (2.31)
Here
1 XP>%
Ry=—1[(—], 2.32
70, (‘10 (2:32)
with
Q>+ M* -t

which describes the fraction of the incident momentum lost
by the proton or carried by the pomeron. Neglecting the
t-channel exchanged momentum, we will write
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In the above model,
0o =1GeV, 09 = 23.03 mb, A =0.288,
ag = 3.04 x 10~* (2.35)

for 3 active flavors. The nonforward matrix element can be
written totally in the impact parameter space

Fpopy, (21) = / dbe="PnoFy(z,).  (2.36)

Here one can take a simple model [46] that the
l;—dependence factorizes into a Gaussian proton profile

2

1 _ b2 _ 0 -
Fip(z) = 277306 6 Fo(zy) = 2ﬂBGe BN, 0p(1—e )
(2.37)
with
Bg = 4 Gev-2. (2.38)

We will need this function in the momentum space

Fpowo/l(PL) :/dze_izﬁ/dl—))e_i};f’u’oFE(Zl)

2 = Bg =
= Neool(27)26(p) — 4aRge 57 )e ™o

= F(p,)e *7, (2.39)
with
T=p,+ Dy (2.40)
Therefore in (2.23) and (2.25)
2 > R% —R2p?
F(p1) = (27)'N,o0 [8(5) - e P |, (2.41)
b4
Denoting
i = \/;)-E(ﬁ—p‘1>, (2.42)
x X
we thus have
M7 1
oMz _ 1 (2.43)

and

ﬁq — X7+ V/xiM. ﬁq — ¥T—/x3xM,

Bog = (x = X)7 + 2V/xEM. (2.44)
One then gets
= = o am? | dr?
dxdp,dps; = xXdxdMdzr = xfcdedqs%dqu
— 57 xkdxdM>dg. (2.45)

G

Here ¢ is the relative angle between the jet and leptonic
planes. It is useful to introduce the Bjorken variable f
normalized to the Pomeron momentum, which reads

Q2

p= P e (2.46)

Neglecting the r-channel exchanged momentum (experi-
mentally, ¢ could not be measured in ZEUS analysis, but
was presumably rather small), we will use the simplified
expression

Q2
=—, 2.47
P= G (247
and thus, denoting § = 1 — 3,
= 2l (2.48)
p
We need the differential cross section in x, f and ¢. From
dM2 Q2
—_— ==, 2.49
we thus have
oo Q’n _
dxdp,dp; — ~———xxdxdpde. (2.50)
2f°Bg

C. Experimental cuts

We will now consider the experimental setup of the
ZEUS collaboration. The HERA kinematics is such that
E,- =275 GeV and E,=920GeV, i.e., \/s = 318 GeV.
The phase space covered by the ZEUS collaboration
reads [15]

Wi, = 90 GeV < W < W, = 250 GeV,

Oumin =5 GeV < 0, (2.51)

My =5GeV <M,  xp < Xpmay = 0.01.  (2.52)

Hence, using Eq. (2.34) one has
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M? < meaxW2 - Qz(l - meax>’ (253)

For fixed f we have, using Eq. (2.48),

Xp maxﬁ W2

. 2.54
1 - meaxﬂ ( )

max < fnin,’?anm> < Q%<
p
A careful study shows that

2
Qmin
2 2 ’
meax(Wmax + Qmin)
2 2
Wmaxmeax -M

min_ 2.55
meax(Wrznax - Mz ( )

min)

ﬂmin =

ﬁmax =

On the other hand, Eq. (2.54) leads to

P\ 1= Xpmaxf
max |:Wilin’ max < r2nin’ Mrzninz xp mazl;x

< W? < W2,,. (2.56)

The inelasticity restriction reads

Ymin = 0.1 < Y < Ymax = 0.65,

i, YminS < 0% + W? < yues. (2.57)

Equations (2.54) and (2.57) thus result in the following
constraints for Q2:

B
max < 2 anm/:},ymins - w2

Xp maxﬂ
1- meaxﬁ

< Q% < min ( W2, Yimaxs — WZ) (2.58)

One should note that in Eq. (2.58),

. ( meaxﬂ
min 17

WZ’ YmaxS — W2> = YmaxS — w2 (259)
- meax:B

would mean that

! <]_ W2><ﬂ<ﬂmax

(2.60)

X P max Ymax$

and thus, using the expression of S, see Eq. (2.55), that

ymaxs < Wrznax + Q?nin' (2'61)

For the experimental values of ZEUS, this is not satisfied,
and one can thus simplify the constraints (2.58) on Q? as

Xp maxﬁ W2.
1- Xp maxﬂ
(2.62)

max < Iznin’Mrzning’ymins - W2> < Q2 <

Similarly, Egs. (2.54) and (2.57) result in the following
constraints for W?:

2 2
Qmin M min

, <W2< W23 .
meaxﬂ meaxﬂ) "

(1 - meaxﬂ) max <yminsv

(2.63)

Additionally, there is a restriction on the transverse
momentum of the jet

D > Pmin = 2 GeV. (2.64)

In the =0 limit, ie., T = 6 we have from Eq. (2.44)
p =1|byl = |Psl = VxXM. Thus, the constraint (2.64)
reads

p* = xxM? = x)_chz > p2. (2.65)

and leads to the following restrictions on x:

) 1 1 painB 1 L _ Poinf?
X € [Xmin> Xmin] = [2_ \/4_ 02p ’§+ \/4_ Qzﬁ].

(2.66)

There is one more experimental cut imposed in Ref. [15].
It is the restriction on the jet rapidity #,,.x = 2, where the
rapidity is defined in the detector frame with the z axis
along the proton and electron velocities in the proton beam
direction. One can rewrite this cut as cut on x,;, as well.
Indeed, one can transform momenta from the proton-
photon frame (2.16)—(2.18) to the detector frame. For
any vector /

Ipet = R AR AL (2.67)
A It = AT, I~ - Il_’
1
cos sin
Ry = , ’ / . (2.68)
’ —sin¢g cos¢
1
vy Pr 1
cosa —sina
A= Pr v R = ’
1 1
1 sina cosa
(2.69)

where
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. 1
p = —sina, y = ,
cosa

(2.70)

sina = ——.
2Apt

Above, A, is a boost along the z axis to reach the
y*—P CM frame, R,, is the transition matrix from
(uy,uy) to (e, ey), see Fig. 1, A, is a boost along the
x axis to make the incoming proton and electron collinear,
and R, is the transition matrix from (u,,u,) to a frame
(t.,t,) in which the incoming electron points along the
z direction.
After this transformation one gets

sy
Pobet = =1,
) (24yps)* — 0%
1 -
ko = 5~/ (2Aypd)? = Q% (2.71)
1 +)2 25
dpet = 5 (24ypd)? = O°yn,
Q%y _
=y — QVye,,  (2.72)
(24yps)* — 0%
_* 2 2o
Pgpet = 5 (2Aypg)” — Q%9
P2 —2xp,0/y cos p + Q*x?y
x\/(24ypf)? — 0%
+ (pycosp — Qx\/y)e, — p,singe, . (2.73)
In the detector frame
1
Kpo =51/ (QAypl)’ = Q*F = E, =215 GeV.  (274)
y

ZEUS
z
Yy
= 7@\
€:|: p
x

FIG. 2. Conventions used by the ZEUS collaboration.

This condition fixes pJ or A, the remaining parameter
representing freedom in z-boosts in the y-proton frame.
Then p,pe’s rapidity reads

B 1lrl 4E2x%y? -
”qDet - 2 1—52 _ 2quQ\/§COS¢ I szz)_] Mmax >
(2.75)

where we changed the sign to take into account the
propagation along the negative z direction. Indeed the z
axis in the ZEUS frame and in our frame are opposite, see
Fig. 2 for the axis conventions used by ZEUS.

Obviously, this constraint should be fulfilled for both
quark and the antiquark jets, i.e., Eq. (2.75) with x — X.
A careful inspection then shows that these two constraints
turn into

PEEY? = 2t cos by [3((C52) — e 3sin ) + e o (5 + 5 cos(24)

X, )'c>x0:/37

The minimal value for x is thus

Xmin = max(xmin’ x0>’

2B5 (72 foos(2) = BEGE)?) + e (P B + B + e

(2.76)

(2.77)

with the additional constraint that ¥,,;, < % However as we will show later, numerically this rapidity restriction is negligible.
Therefore we will include it only in the discussion of the final result.

Finally, one has to calculate

doorL .

daep o a /Wmax
dpde ﬁzBG (1=Xp maxB) MaX (VyninS %in M

XP max/"xp max /'

doory

*Pmaxf 2
dw? / s do’
) 2S max(Q;inngﬂn%stins_Wz) y

X " xxdx |y —
/ { dxdp,dp,

where ¢ € [0, 7] and

—o dxdp,dp,

{1 4;&2 _ 1232; cos(2¢)H , (2.78)
t=0
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doy . 1 1 4“Q§ 2-2 2/ Pqg 1 g
— | = d*p ,F 991 , 2.79
dxdp,dps| o (heP202n) 2ayN, " © P\ PLt o ) S P (2.79)
dogrr | _ 111 a0y 50y /aﬂp F(p, +Par)_Pab) P g
dxdp,dp,|_,  (hc)?2(27)*2 (27)*N, *2 T 2 ) PP axQ? '
with

Pyg = 2Vxxme™) =24 x)"czQE(x>, (2.81)

R ., N 50
F(p.) = (27)’N,0 {%) —] = —(n2 R R T (2.82)

z /3 op

Here we used the fact that F(p) is the kernel of an integral operator which acts on the impact factor as in Egs. (2.79), (2.80).
The second equality in Eq. (2.82) holds for the integral kernels as can be checked by integration by parts.
The t-channel integrals can be simplified

JZ +o0
_4PL p P+ pqu_ F(p)dp (2.83)
p2 + xeZ 2 ﬁ Pyg\2
052 + p? o+ (B2)2 - 4p?(T)
+oo 2-’2 a 2 2
= _NCGO/ dp e_R a ( ﬂi) = N (284)
’ s+ By - ap gy
d? - oo dp? e, 5 —Pa
/ Pl pqql; <pl + pqql) _ / P F( )/d¢ (6 _ P 2 ) (285)
Paal /] P*+x3Q 2 o 2 (B — L2 1 xzQ?
JF $02 + p? — (Pa)2
:ﬂ/ dp? fpp)| 0 r - (7 ~1 (2.86)
0 258\ (302 + p? + (B2)? — ap2(Tg)?
N.oy [+ 5 0 . — (Puy?
= —(21)> ‘;"j / dpze—R%zﬂW a0+t - (3 — (2.87)
255 s+t Oy - ap )
These integrals will be calculated numerically.
D. BFKL-like approximation
In our kinematics the saturation scale is much lower than all other scales. Indeed, we have
2 M2
M_ 0.0008 < xp < 0.01, (2.88)
Qmin Wmax
1
0? = 2 < 0.8 GeV? < p2. =22 GeV? <« 02, M? € [52,25%] GeV>. (2.89)
0
It means that neglecting p? in the denominator in (2.87) gives the error
202 (x30? — (Pa)2 22

(302 + (P)2)? |~ XQ% 4 prn
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. 2 . . .
Therefore at least with O(-%-) precision one can neglect the 7-channel momentum in the integrals and calculate them

min

analytically to get

&’ Pai N.oy (F2)? —xxQ?
[ (a2 ) - np g
P a0 RS (G2 302y

(2n)’N.oy M*-Q° N.oy(B-P)B’

== | =—(2n) : 291
RiG? 00 Y oty 290
and
/dsz(ﬁqqﬁ) F(p, +24*) _ Ny (27r)22@x5cQ2
1_52 + XXQZ |qu’ R(z) ((qu) +xe2)
(27)*N.0y 2mQ? (207 Ncao2\/3 > (2.92)
= — _(2p)2 e00eNV PP .
R}(x%): (M*+ Q%) O3R3(xx)?
In this approximation the ep cross section (2.78) reads
do,) _ 20> QN .07 /W%ax dW? /%Wz 40>
dﬂd¢ Born (277:)4BG(hC)2 (l—me“/f) max (y"““‘v'a'm;:;!f’xp;%) S max (Qi““ Mimﬂ)mins_wz) yRé Q6
Yoo (- ﬂ)2ﬂ2 [(1=2x)2+1] B (143> 2yxx
- 2 . 2.93
. /m { XX 2 x| 2 1-2xx cos(24) (2.93)
Then the integral with respect to x can be performed analytically
dﬁep o 4a2Q2Nca(2) /W,me sz/]Yf;‘;’:fﬂWZ dQZ
- 2 2
dﬂdd) Born (2ﬂ)4BG(flC)2 (1=xp max3) max (ym‘“sXP,r:a‘;/iivf::;:/x) S max(lenm Mrznm/j VminS—W?) yR4Q6
1Y = 20y,
{ (B~ )" ln(x“"“> +ﬂﬂ3{%ﬂ— 25 1n< “““) cos<2¢>}] (2.94)

[
The results integrated with respect to ¢ € [0,z] are in  is the Bjorken variable. Since
Fig. 3. As one can see the approximation errors are smaller
than the experimental ones.

x7 dap
dxg = —Q—Bzdwz, dxp = g (2.98)

E. Analysis of the LO result

Following Ref. [42], we rewrite (2.94) in terms of  one gets
diffractive structure functions FP. These functions are

defined through £00) Q?, N, 0(2) BA 1 —2x (299)
Xptr = 7 2 H2pd — .
dgeﬂ _ 477:02 1 +y ( ) + F D(4) (2 95) (277) BG(hC) Q R() Xmin*min
dxpdQ*dxpdt — x3Q* 2 , ' QN2 (B-pPp>. [*
D(33) gV 00 - Xmin
P (x5, 0% xp 1) = drF?, _ 0? d"}%{)L xpFp ™ = (27)*Bg(hc)?  Q°R? In (xmm>, (2.100)
TL B2 2 U pdt  Anladxpdt’
0 . . . 2 2 .
F?,(LB) _ / th1T)’(L4)’ (2.96) which gives in the small g (M* > Q~) region
2 g4 2
(3) o %0 ﬂ Q
Q2 Q2 D@3 ) 0(2) ﬂ3 < Q2 )
Xp = = = fx 2.97 xpF; In . 2.101
B 200 W2 Q02 Pxp ( ) P Q2R4 l%nin ( )
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LO

dao,
eE
dB (pb)

200 -

150 -

100 -

50 -

— L, small Qs approximation

L, exact

T+L, small Qs approximation

® T+L, exact

FIG. 3.

Longitudinal (L) and both transverse and longitudinal photon contributions to the dijet cross section calculated exactly from

LO formulas (2.84)—(2.87) and in the small Q, approximation (2.91)-(2.92).

This behavior contradicts the known one [42]

a3pp -p3) 05 P

7D(3)
xpF ~ , xpF ~ ,

where we introduced F to distinguish them from our result.

First, let us emphasize that our transverse structure
function F° ? 3 is correctly proportional to . Indeed, since
the final ¢g pair has opposite helicities, it carries angular
momentum as orbital momentum and its wave function
scales like p; ~ M. Therefore it should vanish at M = 0,
ie, f=1.

Next, FLT)(B) is a higher twist correction compared to
(2.102) as it has an extra power of Q’Rj>1 in its
denominator. The origin of this suppression lies in the
fact that the dominant contribution to the transverse
cross section comes from the aligned jet configuration,

i.e., the region of xﬁm« 1. We discuss it
in Appendix A. However in our kinematics (2.60),

(2.88)—(2.89)

4 GeV?

1 0.8 GeV?

M2R% < M2 < Xmin 3 -

’

FN—

(2.103)

which for the largest M? ~25% GeV? gives

~0.001 < X, = 0.006. (2.104)

MR}
Therefore the current experimental setup does not let us
probe the leading twist contribution to the transverse cross
section. In other words the experimental cuts kill the
leading twist aligned jets which come from the saturation
region. As a result we are left with the subleading twist
perturbative BFKL-like (¢ ~ s**) behavior (2.94). One can
also feel that the experiment sees only the subleading twist
contribution from Fig. 6(d) in Ref. [15] where they cut off
the p, distribution peak.

The longitudinal structure function is subleading to the
transverse one in twist (2.102). The whole 0 < x < 1 range
contributes to it. Therefore the experimental cuts only
change the f-dependence of the result.

III. REAL CORRECTIONS IN THE k,
JET ALGORITHM

A. Exclusive k; jet algorithm for three partons

Let us recall the parametrization of the momenta of
the 3 outgoing partons. For the 3 particles with the
momenta

074020-11
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—»2
Pq=XqPym + 512+ pgi,
q qry *1 2xqpy q
52
Pa:xal’?”1+2 Tmy+ pgLs (3.1)
XgqPy
1-52
P Zpynl+2 +n2+pgl_7 p:pq+pt?+p9’
M2:p2, (32)
in the c.m.f.
tn, 4 20 PSRN EE)
= n — Ny, = —. .
P =Dy 2P;r 2 Dy 2

The distance between two particles according to the k,
algorithm [43] reads

I_COSQU . Ei Ej 2plp/
———— =min |\ -, =
M2 E,'E;) M

. (plp P,p) 2pip;
= min 5 -
pjp pir)] M

d;; =2 min(E}, E7)

(3.4)

Here E; ;, 0;; are the particle’s energies and the relative
angle between them in c.m.f. Two particles belong to one
jet if d;j < yey. In our case yq, = 0.15 [15].
One introduces the variables
E; _2pp;

Xi:2_:
M

e <1, (3.5)

which satisfy

. X
d;; = min Cz— , X—f) (1-x,) (3.6)
J i
In our variables
(xt']ﬁq _xqﬁ?])z —1-x = (p - pg)z
x,xgM? g M?
_(pq+p1})2_2pqpq 37
oM MR (37)
(xqﬁg_zﬁé)z —1-x (Zﬁq_xqﬁg>2 N
zx[-IMZ q xsz2 7
(3.8)
and using
X, +X;+X,=1 (3.9)

In the c.m.f. we also have

X, +x;+z=1, Pg+ Dy + Dz =0. (3.11)

B. Quark + gluon or antiquark + gluon in one jet

The integral over the area covered by regions 1-4 in
Fig. 4 gives the contribution of configurations where the
antiquark and the gluon form one jet, jet i.e., when the
gluon and the antiquark are almost collinear to each other.
The other jet is then formed by the quark. So we have

Pj =Py Xj = Xg» Pj =Py + Py
- x—[_5 _Zﬁ‘
s . A =479 =74 3.12
X;=x5+2 q o ( )
X ~52x—§ T < f(xg) ~ O(am)
cut/»
T 2 -2) pf?
_ g 1/4
%y =+ Oil) (3.13)
J
X, =2+ 0O/ M2 = P O(\yet 3.14
Xg* _+ (ycut) [ + ( ycut)]v ( )
Xj XjXj

which follows from (3.7)—(3.10). Here f describes the inner
border of Regions 1-4 along the curve connecting the
points (1,1), A, B, C, (1,0).

The cross section for ggg production has a contribution
doy with 2 dipole operators, a contribution doy with a
dipole operator and a double dipole operator, and a
contribution dos with 2 double dipole operators (see
(6.5-6.8) in Ref. [18]),

da(q?{y) = d03 + d64 + d05. (315)
Here do; describes final state interaction and contains
collinear and soft singularities while do, and dos are finite.
Collinear singularities lie at x, = 1 and x; = 1 and the soft
one is in the corner X, = X5 = 1 in Fig. 4. In this paper we

will work only with the singular part of dos, where (see
(7.8) of Ref. [18])

(1—e)N? - L
T(@dmte 2N,
(3.16)

d63(xq’ ﬁq)‘col = d6<xj’ ﬁj)'Bom
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2/3-jet events, y.,1=0.15

1 01 -soft gluon || antiquark, 1-y?0<xq<xq<1

2
4 Xz Yout+X: =X
:! g Yeut+Xg q
2 - gluon || antiquark, yﬂ—zﬂ <Xg <1—y421, 0<Xg <

2

X
[7] 3 - gluon || antiquark, yg< Xg <Mﬂ, 0<Xq < Yout
2 Xg~Yeut

X,
[7] 4 - gluon || soft antiquark, 0< Xg <yo.1- —2q-< xq <1

1 [ 5 - quark || antiquark
[] 6 - quark || gluon

®A-= {xg.xg.xg} = {1—%)', 1—%"1}’0), YO=%(\] Yeut (Yeut *8) —Yeut)

cutt? Yeutt1

@8- {xq.xq.xg} = {1_ycutvy 9 § P }
Yo Yo
C = {xg.xg.Xg} = {1-=—,y0, 1-=—
(q q g} { 2 Yo 2)

2 [
Xg —3xg+2 1 2
AB: xz = v Xg = —|3=-x5—_[4x +(xz—1
q =g +Yeut q 2[ q q Yeut (17 ) )

.= (Xa ‘z)ycut*'xq
1=Xq+ycut Xg—Yeut

Xq2—3Xq+2

BC: xq=2—xq—

Xq

FIG. 4. Dalitz plot for 2-3 jet separation in the exclusive k, algorithm [43]. Regions 1-4 comprise the area of q — (Gg) dipole
configuration, i.e., collinear antiquark and gluon. The dissection of the ¢ — (gg) dipole area covering the curved polygon with the
vertices (1,1),A, B, C, (1,0) into regions is arbitrary. We found the tessellation depicted here convenient for integration.

and the collinear factor n; (see (7.9) in [18]) reads

—2¢e X3 d e dZ2 + 4X" X~z
n}' = Mid/ j _Z/ xi—z_ 2(x5-2) 5,2 dqu i(z : ) ) (317)
F(l _e)jﬂ a Z &Lz]<f( j._~>w,’v2~,:’-./:xf X%Aq

3 J

*3 X

Here we modified the integration area in n; according to k, jet algorithm whereas in Ref. [18] we used cone algorithm. After
integration we get

M? 1 X X5 3 1 X X3 1 X;
- =4 (In| = ) 22L4) =2 ) =22 224} = Zn2 (22 318
e =4 () +0) (o() 2) -2 () -3 () v e

where
W(yew) = 2Lis (— a ) —Li2< J% ) +2Li2< ! _y°> + Lin(yew)
2ycut 4ycut 1_ycut
5y2 9\ 222
£ 2Liy(1—yo) = 222 4 In2( 21n(1 = yg) = 2 4 7y —2 ) =22
2 2 2) 73
2 4 2y —3y2 4 6y, —3 24 2y 43
+111ycu[ y0+ Yo ycut+ Yeut —|—21n(1—y0) _y0+ y0+ lny_O
2 2 2
2 2
cu+2cu_ +2 3_ cu_2u
TR ‘zyO(yO  in(yt — yeu) + 2 2ot = B 5 T (1 = ye)
N 6y2u + Yeu (Vo = 20) 4 2y (V5 + 7o + 16) + yo(y5 + 10yo + 14)
4(2ycut+y0)
1= yeu) 3 1
102 (422 20—y 025+ 0) + 503 + 250 = a1 = 30), (3.19)
- )0
Here
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ycut(ycul + 8) — Yeut
2 .

Yo = (3.20)

This result cancels soft and collinear singularities in the
virtual part and we get instead of (7.24) in Ref. [18]

1 X; n?
=4 |:——11’12 (_]) + W(ycut) +3- _:|
2 Xj 6 Yeu=0.15
=4|—-=1 1.33 3.22
2w () ) 52
In the small y., approximation
1 X; 1 3
Sg=4|—=In*(~2 ) —=In?y,, — =1
R |: n <x]> 2 N Yeut 2 N Yeut
7 13
—1—”2+7—1n8] N m) (3.23)

The remaining contributions of doz, doy, and dos are
suppressed in y.,.. Therefore the contribution of the soft
|

and collinear gluons to the cross section after cancellation
of divergencies with the virtual part reads

a, N? —
d63<xq’ pq)'col - dO'O(x]’ p]) 4z 2N SR =+ O(vycut)‘

(3.24)

Nevertheless O(y/yey) corrections for y., = 0.15 are
substantial, e.g., the next (numerically largest) correction
to Sy reads

SR_4|:_§1n( ) 0294—4\/5;1: +0ycut)
X3
J

44/ 2y = 2.19. (3.25)

It means that leading in y,,, contribution is numerically of
the same order as O(,/yy) corrections. But corrections of
this order come from all other contributions to the cross
section, i.e., the remaining part of dos, doy, and dos
integrated over the whole 3—jet area (regions 1-6).
Therefore the result for S alone can not be a good
approximation. It has importance rather as a subtraction
term for future full numerical calculation.
Nevertheless using Eq. (2.93),

doy | 20°Q2N.6} a,N2—1 [Win dwW? /#”ﬁwz dQ?
dﬂd¢ col (27[)4BG(hC) T 2Nc (1=xp max$) max (0.1s %%) s max (Q2 Qfmnﬁo 1s—W?) yR Q6
Xmm 2 2 1 - 2 3 1 _2 2_ X
" / (ﬁ B)’p [( x)? + 1] ﬂ@ i +5° PEos24)
o xX 2 (xX) 2 1 —2xx
7 1 X
32 " n2(Z2)]. 3.26
X |:W(ycut) + 6 2 n <x>:| ( )
dJe
TBP' (Pb)
401
30 ;
I Born
L Born+col
20 -
10 ;
0%2 ‘ ‘ ‘ Of4 0%6 ‘ ‘ ‘ 0%8 —

FIG. 5.

Born (2.94) and collinear correction (3.27) to e-p cross section.
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Then the x integral is doable analytically, see Eq. (2.94)

do, a,N2 -1 7] do,
y - |:W(ycut) +3- _:| y
dpde|., 7 2N, 6 | dfdd|som
20°Q2N .0} /wa dW? /%Wz do?
)2 2

(271')4BG (flc)z (1=Xp max/B) max (O'IS’—;::S(/?’X?:::/?) N max(lemn.anin%,O.ls—Wz) ng Q6
g N% -1 1 X i _ = _ >
— | =3I’ (= | (5(B = B)** = 25 B cos(2¢))
T ZNC 3 min

- 1+ )_72 2(1 - meinxmin) ln(%) - (1 - 2xmin)(ln2(%) + 2):|

+ pp? 5

The result is given in Fig. 5. One may notice a sharp
corner of the graph at # = 0.5. It is related to the change of
the functional dependence on f in the limits of Q and W

(3.27)

Xmin¥min

In this picture collinear gg configurations cover regions
1-4, where

integrations of the cross section at = 0.5, which is a  Pj = Py =% Pj =Pzt Py
consequence of the HERA cuts. ~  XzDg— XDz
q x; — x(’l + xl]’ Aq == qpq qpq ) (328)
: Xz + x4
C. Quark + antiquark in one jet
. . . 2
The integral over the area covered by regions 14 in _ - x5 X5X;
Fig. 6 is ~,/y..- These regions cover the configurations Xy~ 4y o =7 < f(xg) ~ O(V/yew):
. TV Yeut . . \ xq(X5 = X4) P,
with a collinear quark-antiquark pair. However, this con-
tribution may be enhanced in the large produced mass M X, = 14+ 0( il{f ), (3.29)
limit thanks to the 7-channel gluon in the impact factor. Xj
2/3—jet events, Yeut = 0.15 O region 1:
10F — — ———— s 0< Xq <Y0
) L Xq <Xg<1
region 2:
t 1+yeut
08 | | yO < Xq < 2
[ 0<Xg < Yeut¥q
Xqg—Yeut
L D region 3:
0.6 ] o < Yot
L Yo <Xg 2
& 0<%g < Yout¥q
L Xq‘}’cut
0.4r i D region 4:
I 0< Xg <¥0
Xg <xg <1
02r 1 [ regions:
gluon || antiquark
D region 6:
[ gluon || quark
0'0 7\ L L L 1 L L L 1 L L L 1 L 1 L L L \7
0.0 0.2 0.4 0.6 0.8 1.0

*g

FIG. 6. Dalitz plot for 2-3 jet
configuration.

. 1
YO=E(\/ Yeut Weut +8) -Yeut)

separation in k, exclusive algorithm [43]. Regions 1-4 comprise the area of gluon—(qq) dipole
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~ 52 dﬁ(qqg) = d63 + d64 + d0'5. (331)
%, =21+ 00t). M=l

q x- X Xe [1 + O(Vycut)]’ (330)
J 7 Since the photon in the initial state can appear with different
which follows from (3.7)~(3.10). polarizations, the various cross sections are labeled as

The cross section for ggg production has a contribution do,; doyy
doy with 2 dipole operators, a contribution do, with a do; = (

dipole operator and a double dipole operator, and a con-

tribution dos with 2 double dipole operators (see (6.5-6.8)

in Ref. [18]), see Appendix C for proper normalization,

, d = do’ ;. 3.32
doy, dO'TT) oTL orr ( )

The dipole x dipole contribution reads
|

N=1 1  amQ> (p7)? dzd®
c equ (po) glrzgjﬂdququzpqidzpqi ng

N, 2(27)*(27)*N, s*x,x; z(27)?

dosy = a

x6(1 —x, —x5—2) / dpy dPpy & dPph (P + Pt + PyL)

a % P * Pry
X 8(pryy + Par )L (prL. P2 )P (D) P/M)F<%>F ( 122 l)' (3.33)

The dipole x double dipole contribution reads

doyy =

1 nQi (p)? ded
demQ5 (Py) (elaé’jﬂ)dququzqu_dzpfll apg1

as
2(2z)* 7 (27)* N, s7x,x, z(27)?

(1 =x,—x;—2)

d2p dzp/
X /dZPudzPudzp/udZP/u #&Pqu + PgarL + P )d(PriL + Poyi + P3yi)

a % p Tk p 2/
X {q%(Pu,Pu)q)g (Pﬁuplu’l’,u)F(%)F ( 122l717/3¢)5<173¢>

. « 151 ~ p « p 151
+CD4(P1L»P2¢,P3L)‘I’/3} (p”l)F(%,Pu)F ( 12L>5(P/3¢)]- (3.34)

2 2

The double dipole x double dipole contribution to the 3 jet cross section reads

ddeng_
z(27)?

1 a aemQé (P6)2 (elaejﬂ)
2(2z)* 7 (27)* sPxuxy N2—1

dos; = dx,dx;d*p, d*pg, §(1—x,—x;—2)

dzp dzp/
x [ d®pyd*py, d*p d*ph, Lﬁ&lhu + Pgar + P )0(PrirL + Payi + P3yi)
(27)

X = P21 S P21
T I N S L (335)

Here the impact factors are given in Ref. [18] and in Appendix B, whereas the hadronic matrix elements are given by
Eq. (5.3) of Ref. [18]. Changing variables

ﬁqaﬁq’ﬁgv-xqv Z_)ﬁ:ﬁq—i_ﬁq—i_ﬁg’ﬁj’ Agﬂxq7-xj’ (336)
one gets
N=1 1 a0 (p;)? dx,dp,dpdA,  dx;
d _ c emxq 0 * q-rJ g J /d2 JZ aa ! d2 LS g 2 _ 7
03y1 = Oy N2 2(2;;)4 (2ﬂ)4 2 (8Ia€jﬁ)xq(1 —xq—xj)xj(2n:)2 p11d°pyidpy d°py 8(p1 + P2 — D)
o * P121 \ e Pra1
0P+ o )OO (P (22 B, (P54). (.37
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1 aeng/ (Pa)z (glagj/j) dxq de
2(27)* 2m)*  5? N. x,(1-x,—x;)x;(2x)?

d04j[ = Oy dﬁ]dﬁd&g

2 2 21 2 d2p3id2p/u - - > -
X | &°py11d°py &P &Py ———5=8(p1 + P2+ P3 = D)d(p11r1 + Prri + PayL)

(27)?
P121 \ Pr2y
X {q’ PiieP2)®) (P P DY) oy o <T>Fm.pm—m <T»P§L>5(P3L)

P21\ & P21 " P21
+ @f (Puqu’Pu)‘Dﬂ <T>Fpm,pm—pL <T’I?u)FpM,pM—pL (T>5(P%¢)] (3.38)

1 aequ ( )2 (glasjﬁ) dxq d
*2(27)* (27)* 52 NZ—1x,(1-x;— )x](27z)

szud P3L5
(27)*

* = P2l e Proy
< V(1o 2V (0 P P50 (P25 B, (P50 ). 039)

X /dzpudzpudzphdzplu (P1+ P2+ P3=D)o(prry + Py + P3x1)

The hadronic matrix elements can be written as (see (5.2-5.8) in Ref. [18])
N P2l
2ﬂ5(p00/)FpOLp[)L (T 5 p3J_>

_ . D1 - p: = 14
— 2ﬂ5(p00/)Nc(27r)2 {ﬁpz)F!’th < lzu) + 5(1’1)1‘11,0M,2u < ;zl> — 5(193)Fp0u,6L < 122L>}

" / didye P

<Pl | (1e(vstt,) =) (10 (U0 ) - ) 190 (340

As a first approximation one may neglect the nonlinear term. Then we have

= P21 - P31 P31 - P12l
Fp()lpéu (771931_) = Nc(zﬂ)z |:5(172>Fp(upz)l < D) ) + 6( )Fpmp(u <T> - 5(103)15"pw116L <T>:| (341)

= Nl (P54) + ol R (73 ) - apw (P8 )| (3.42)

=1

P3)]

~|

(3.43)

= —4rn(27)>N2oy [5(ﬁ2)e P1i+5( e Rib: 9 5= 8(ps)eRoP> a} —
apl ap3 apz

Intrinsically this assumes large N, approximation so that we will neglect 1 in N2 — 1. Integrating with respect to p via
/ B g = (3.44)
Bg
and substituting

dp] /3

dx;dp; = dx;d¢—= (3.45)

one gets
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do, 1 a0 (py ) Q2 L [ dx,dA
L — ~N26} L 02 5 (e,aem)/ x;dxj/ A —_q z
dﬂd¢ 2 (271') BG S ﬂ Xomin Regions 1-4 )Cq(l Xq )Cj)

o 0 ~n 0 "
X /dzPllfpﬁle_R%p?W®g(P1L,—Pu)e_Rgp‘z ap? q)é’ (PiL>—=P1L)s (3.46)
1 i

doy; 1 Ayt 02 (p )2 0 . dx, dA
= —-N2o} 4270 E1,E" xsdx; — 4 9
dpdgp 2 0 (27[)730 Szﬁz ( ! Jﬁ) Y Regions 1-4 xq(l —Xg— X')

Xmin J
- — =) a - _ 312 a - — nd (9 %
[ | (e 0t a3 = a3 O ()
1 3 2

w5 0 e O gpe(Proy
X e api (P11, p21)d(p31) + el Wq)é ( 5 )8(PsL)
250 O 250 O 2o O
x [ 6(p e_Rop? — 4+ D e_R0p3 —5(p e—R0p2 [ , ,
( (P2) 8p% (P1) 8p§ (P3) 8p§ (P11 P21sP31)

S dzp1LdzpudzPudzP/udzp/udnglé(ﬁ1 + P2+ P3)6(p1ry + Payy + P3v)s (3.47)

dx,dA,
xjdxj/ — 7

Regions 1-4 Xq(l —Xj— xq)
0 0

=2 5 5 a
X 8(Py)e Rl —— + 8(B,)e kP — 6(p5)e R ol Do
/ [ (P2) (9p% (P1) ap% (P3) 8p% 4(Pu P2i.P3L)

dos; 1
dpdp 2

2 2
060

asaeng (P6)2Q2 (81 & ) Kmax
(27)'Bg  s*p? P Xumin

- _p2an a N _p2an a N _p2=n (9 B «
X |:5(p/2)e Ropl W,lz—’_é(p/l)e ROP3 6pg2 _5(17,3)6 ROPZ 5/22:|q)£<p/]L7 pIZLﬂ pgl)
X dzpudzpudzpuaap'lLdzpludngﬂs(ﬁl + P2+ 133)509111 + poyi + P33'L)- (3-48)

First, one has to integrate these expressions over the area covered by Regions 1-4 in the Dalitz plot (Fig. 6). In terms of the
plot variables x the integral reads

dx dx, = dx dx; = dx, dx,+ | dX, g, + (x, < x;)
Regions 1-4 Regions 1-4 1=y 0 et 0
1+ Yeut Iyeu g
2 2 X _
- dx dx,. (3.49)
- q g
,;cul 0

Since the impact factor is symmetric with respect to ¢ <> g interchange, one can rewrite the latter expression as

1 XTq 1 - YeutXg 1 +,‘2'cul 1 +}2'cul —%
— — — Xg—Y — — q —
/ dquxqzz/ dxq/ dxq—i-Z/ dxq/" o dxq—/ dxq/ dx,. (3.50)
Regions 1-4 1y, 0 ' yeu 0 ' Iyew 0 '

The impact factors are not singular as A, = |&g| — 0 and &(2] ~ X ,. Therefore to get the leading in ,/y, contribution, one
can put Ay =0 in them and integrate with respect to A,

=22
- p X (X" —x )
/ dx,dA, = _f,,x] dx ,dx q\j ; q
Regions 1-4 x]xj Regions 1-4 x}
p2 j s — = —
—o P [T 15— xg x4 (%7 — X,)
o =X : q - 2
XjXj Jx5(1=v0) 2 Xj X5
X5—X
72 1 —2i7a ~
Pj %5(1=yo) Xxj xq(xj —_xq)
+27 - Iy dqucut Xi~% + O(ycut)- (351)
.Xj.Xj et T — Veut x}
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Next, we will work in the small Q, approximation as we did for the LO impact factor [see Eqgs. (2.88)—(2.92)]. It means that
after integrating out delta-functions and calculating derivatives in Eqs. (3.46)—(3.48), one takes the angular integrals of the
9

remaining 7-channel momenta ( 1—52/), Dy, Or ﬁg’)) and neglects their absolute values everywhere except in the exponents.

Then the exponential integrals are calculated straightforwardly giving [,"° d p? e Rt = —2 As a result one has the
0

following cross sections

dO‘LL 1 N2 asaeng \/m

— SN2 Blem g VEVew gy 3.52
dﬂd¢ 2 0y (2”)4BG R3Q4 a—+ (ycut) ( )

dofr 1 5 ®0n0i V2w, i i ()]
_1 sFem@q V2ZVeu (i i) 4 Oy ), 3.53
dﬁd(ﬁ 2 CO'O (27T>4BG R3Q4 (Cgi + be e ) + (ycut) ( )
a:a3+a4+a5, b:b3+b4+b5, C:C3+C4+C5. (354)

Here a;, b;, ¢;, i =3, 4, 5 are the contributions coming from Egs. (3.46)—(3.48) correspondingly.
We demonstrate this procedure on the example of the longitudinal photon contribution to ¢5. The impact factor for
longitudinal photon x longitudinal photon was calculated in Ref. [18] (B.1). It reads

(P)?

2 era @3 (P11, Pu,Pu)*‘?Zﬁ‘Dg(P/u’Plzg Py) =40°

(X2 + (x, +2)%)x3 - _
R IV ,(p1.p3)V,(P}. PS)

qu,—izz
(x5 + 2)x, + (x, + 2)x5 - -
—402 1 ng . LV ,(p1.P3)V4(Ph. Py)
+(xq’pl7p,1?vq ex[]ﬁPZsplza V[])a (355)
where
= XgDg3 = ZDg1
v, (p1, s E . 3.56
q(Pl p3) = (x +Z)((pﬁﬂyq,) +pngerq, +Q2)( iﬁjlj:zl +Q2) ( )
(1
As was outlined above, using small Q, and small y., approximations, one can take z-channel integrals
- =g a - 232 8 232 a
S(F2e 8 Dt 5516 0 = )i
/ { op7 ap3 op3
X 8(py + pr + P3)‘7q(P11P3)d2Pud pai1d*py1
a - 232 a - 222 a
= [ [pme 7 2 ot 2 o 2]
/ [ api ap3 op3
X 8(py + pa + P%)V (P2 P3)d2P1Ld2P2J_J2P3J_|xq_>xq:1_xl._xq
N ”ﬁ3l_5j ((ﬂ + l)xq + 2xj(x] - xq) 3 4 ) (3 57)
R(2)Q6 (xj(x} - xq) +ﬂxq)2 XX

Then one integrates over regions 1-4 via Eq. (3.51) and calculated in Ref. [18], see Eq. (B.16). The integration
with respect to x; according to Eq. (3.45). Keeping only the  in this case is similar to the previous case, albeit with

leading contribution y.,, one gets more cumbersome expressions. Therefore we do not
~ present the intermediate results giving only the final
_ X
as = 84°f* In—"2 (3.58)  answer
Xmin
_ Yo
. The product of Fhe transverse photjen j( trar/lsver/se photon bs = 2B (4% — 1) In=min | (3.59)
impact factor ®}(py..pri.p3)P4(PlL.Ph . PsL)" Was *min
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B 2
CsZ%(Sﬂﬁ3 26— 1) " Emin | 5ags1)n

xmln

(3.60)

X min xmm

The longitudinal photon x longitudinal photon impact
factor @3 (py1, pr1)®5 (P}, p5)" was calculated in
Egs. (B.2—4) and the transverse one in Egs. (B.17-19)
in Ref. [18]. They lead to

=ﬂ2<(4ﬂ(2ﬂ ~3) 4 7)1

min

(1- 2xmin)>, (3.61)

=B +47 =9I (14 )1 20) ).
(3.62)
B (24885 =3
C3 B @ (ﬁZ xmin)_cmln - 1) (1 - 2xmin)
+§(4ﬂ2 +1)(1-2p)In ;C“““ (3.63)
J
do,, _ aa, Q7 \/mNzgz /W?mx
dpdq gluon BG(flc)2 (27)° oo (1

*Pmaxh 12 2
/ P ma?” dQ
L pi6
max(Qﬁnm szmzo 15—W?) yR Q

To get the distribution in f one has to integrate this
equation with respect to ¢ from O to z because jets are
treated as identical. The results are in Figs. 7, 8, 9. As
one can see, the interference term do,; iS negative,
which significantly diminishes the leading power asymp-
totics of dosr. In addition, the large N, approximation

—Xp max}) max (0. 1s,

The remaining cross section doy;; contains @4(p;,,
P21.P31)P3(py . Ph )" We present these convolutions
in the Appendix B. Integrating them according to the
guidelines discussed above we get

—pRG - (e
—2B(6 — 85 — 1) 1nii?“, (3.65)
B 2 min
C4 ﬂTﬁ( 6ﬂ Sﬁz) xmm;mln
B Xmin
P8P~ DI ()

D. Results

We first recall the relation between the y* P and eP cross
sections (2.21) and write, see Eqs. (3.52)—(3.54),

dw?
2. o2

min min ) S
XP maxAxp max P

1 52
{2_ + +y

|
On the other hand the rapidity cut (2.75)—(2.76) depend-
ence is very low.

The major contribution to the region 0.2 < f < 0.5
comes both from LO and the gluon dipole configura-
tion. Reduction of the phase space for LO contribution
leads to its decrease as shown in Eq. (2.101) compared
to Eq. (2.102). Moreover, the dominant gluon dipole

(b—2c)+ybcos(2¢)|. (3.67)

—— doy, (Born)
doy 5 (double—dipole * double-dipole)
—— doyL4 (double—dipole * dipole)
—— doy 3 (dipole = dipole)
— Sum

. 4
decreases dosr for ~10% since we expand leil ~ N2

p

dO’Le
TGS
10:
sl
6l
4
2
n 1 n n n 1 n 1 n n
02 0.4 06 0.8
FIG. 7.

B

ep — ep + 2jets cross section in the case of a longitudinal photon. Born and gluon dipole contributions.
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40l

20[
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FIG. 8.

contribution in this region numerically turned out to be only
roughly about 50 nb while non-enhanced contributions are
of order 10 nb and the interference may be negative and of
order 20 nb. (see Figs. 7, 8). Since there are other non-
enhanced contributions from the finite part of virtual correc-
tions and the remaining part of the real corrections we may
estimate them also as giving a contribution of 10-20 nb.
Therefore we consider the flatness of this region accidental.

To make the comparison of our result with the results of
other models, as discussed in Ref. [15], we display our
result in log-linear scale in Fig. 10. In the large ff region, our
result is closer to the data, while in the small f region, it is
comparable with the two-gluon exchange models displayed
in Ref. [15].

Moreover, we would like to comment on the two-gluon
exchange model predictions in Fig. 17 (upper-left panel) of

do,
——ep
4B (pb)

2001

1501

1001

— dorr (Born)

dotrs (double-dipole * double-dipole)
—— dorr4 (double-dipole = dipole)
—— dorrs (dipole * dipole)

—— Sum

ep — ep + 2jets cross section in the case of a transverse photon. Born and gluon dipole contributions.

Ref. [15]. They were obtained with pr ., = 1.75 GeV
while the actual experiment was done with py ., = 2 GeV.
This value of p7 ., = 1.75 GeV is obtained from a fit, see
Fig. 16 of Ref. [15], while we put the real experimental cut
in our calculation, thus making our results much less model
dependent. Furthermore, we want to insist that the cross
section is very sensitive to p7., since the dominant
contribution to the LO cross section comes from the aligned
jet configuration governed by the small longitudinal
momentum fraction of the jet x, which is given by
Xmin ~ p%‘,cut/MZ’ see Eq. (2.65).

We now display the ¢ dependence of the cross section
corresponding the ZEUS bins in /3, in accordance to Fig. 17
of Ref. [15], in the five first panels of Fig. 11. We note that
our results, when compared to ZEUS data, are rather close

—— W/o rapidity cutoff
—— With rapidity cutoff

02 04

06 ] 0.8

FIG. 9. Born and total gluon dipole contributions to cross section vs experimental data from [15]. Rapidity cut is defined in

(2.75)-(2.76).
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ddep
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d

PR B B PR B B
0.2 0.4 0.6 0.8 k

FIG. 10. Born and total gluon dipole contributions to cross
section vs experimental data from [15], in log-linear scale.

to experimental points for f > 0.4. This region is domi-
nated by Born cross sections. It is thus an indication that
GBW model describes rather well the data in this large j
region. In the small f region, neither we agree with the
overall value of the measured cross section nor with its ¢
dependence. This is an indication that one should include
all the nonenhanced contributions (the nonsingular part of

the virtual corrections, and the remaining part of the real
corrections, which we did not consider in the present work).

Finally, from our formulas (2.94) and (3.69), we can
write the ¢ dependence as

do,, ldo

Jdd~ ndp [1+ Acos2¢],

(3.68)

where ¢ varies in the range [0, z]. Experimentally, because
of the symmetry in ¢, Fig. 17 of Ref. [15] displays the ¢
angle in the range [0, ], therefore including the two bins ¢
and 7 — ¢ in the same bin in this figure. Thus,

do, exp _ 2 do

dpdp — ndp

[14 Acos2d], (3.69)

where ¢ varies in the range [0, 5]. We display the coefficient
A in Fig. 11, last panel. Unfortunately, it does not agree
with the ZEUS experimental points, even in the large f
region, which is surprising in view of the agreement of the
overall normalization and shape of the ¢ distribution with
the data in the panel 5 of Fig. 11, which corresponds to
0.5 < <0.7. We do not have an explanation for this
disagreement.

0.04<B<0.15 0.15<B<0.3
ddep/d@ (pb/rad) d0ep/d@ (pb/rad)
25t
15 20F
10l +++ 15F +++
10F
5¢
5
0.0 0‘.5 110 115 ¢rad) 0.0 015 110 115 $rad)
0.3<6<0.4 0.4<B<0.5
ddep/d@ (pb/rad) d0ep/d@ (pb/rad)
12 7
10 6
8E 5
4
ot 3
aF 2
2 1
0.0 0‘.5 110 115 ¢rad) 0.0 015 110 115 $rad)
0.5<B<0.7 dJep/(dBd@) ~ 1+A Cos 2¢
ddep/d@ (pb/rad) A
6 0.3¢
5 0.2F =
0.1F T
4
3 ‘ '_I:'er—' o5 os P
2 -0.1F ' ) ’
! o} -
0.0 0‘.5 110 115 ¢rad) -04¢t

FIG. 11.
coefficient A.

First 5 panels: dependence of the cross section on ¢,

for each experimental # bin. Last panel: f dependence of the
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IV. CONCLUSION

This paper discussed the exclusive diffractive dijet
electroproduction with HERA selection cuts [15]. We
started from the analytic formulas from Ref. [18] for
fully differential Born cross section and its real correc-
tion with dipole x dipole and double dipole x double
dipole configurations. In addition, in Appendix B we
calculated the remaining interference real production
impact factor with dipole x double dipole configuration.
We used the GBW parametrization for the dipole matrix
element between the proton states and the large N,
approximation for the double dipole matrix elements.
We constructed the differential ep — ep + 2jets cross

section in f = and in the angle ¢ between the

Q2
QMM
leptonic and hadronic planes with HERA acceptance.
We argued that HERA selection rules [15] suppress the
aligned jet contribution indicative of saturation to the
Born cross section. These cuts allowed us to neglect
the 7-channel momentum in the Born impact factor and
integrate the yp cross section analytically. The result is
in Eq. (2.94).

Next, we cancelled the singularities from soft and
collinear gluons between real and virtual corrections in
the collinear approximation by integrating the singular
contributions over the ¢ — (gg) and g — (qg) areas in the
Dalitz plot of Fig. 4 within the k, jet algorithm. As the Born
cross section, the resulting correction was analytically
integrated in the small Q, approximation in Ref. (3.27).
It gives ~10% of the Born result.

Finally, we integrated all real corrections in the small Q,
and small y., approximations over the g — (¢g) area in
the Dalitz plot of Fig. 6 within the k, jet algorithm. This
configuration gives the dominant contribution in the
small # region thanks to Regge enhancement because
of the diagram with #-channel gluon at large s = Mﬁjet.

The results for this gluon dipole configuration are in
Egs. (3.52)-(3.54) and Egs. (3.58)—(3.69). Results for
Born and gluon dipole in the small Q approximation
together give about % of the measured cross section.

We noted that first, the small Q; approximation works
for Born, collinearly enhanced radiative corrections to gg
dipole configuration, and for a generic gluon dipole
configuration since the HERA cuts O, My > 5 GeV,
My <25 GeV and p pip > 2 GeV effectively remove
jets with very small longitudinal momentum fraction x. It
means that the typical hard scale in the impact factor is of
order of p3 . atleast, which is larger than Q2. So we can
expand the impact factor in Q. However the validity of this
remark is due to the fact that for Born, the region x <

Q?/max(Qz, M%jets
saturation, which means that this saturation region is
not accessible at HERA kinematics at Born level. At the

future EIC or LHeC, different experimental cuts could

) is the aligned jet region indicative of

invalidate this approximation, making saturation effects
already accessible at Born level.

Second, this approximation fails for other NLO cor-
rections to the ¢g dipole configuration since O, may be
the largest scale in the impact factor. It also fails for gluon
dipole configuration when the gg pair forming one
of the jets is in the aligned configuration itself since
the longitudinal momentum fraction of g or ¢ may be the
small parameter making the impact factor scales smaller
than Q.

Third, we nevertheless calculated the gluon dipole
contribution in the small Q; approximation neglecting that
it may be incorrect in the aforementioned corners of the
phase space. Therefore comparison of our answer to the full
numerical result will show how important these contribu-
tions are. This is left for future studies.

Finally, we noted that the corrections in y.,, may be
significant since the real expansion parameter is

Ve = V0.15 =~ 0.39. Therefore the O(,/yqy) corrections
to g¢g dipole configuration which we did not calculate may
give sizable corrections. However we expect these correc-
tions as well as the nonsingular virtual corrections to be
peaked at moderate f as the Born term.
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APPENDIX A: SCALING OF THE ALIGNED
VERSUS SYMMETRIC JET CONTRIBUTIONS

As was discussed in the text, F?m is a higher twist
correction when compared to Ref. (2.102) as it has an extra
power of Q>R > 1 in its denominator. The origin of this
suppression lies in the fact that the dominant contribution to
the transverse cross section comes from the aligned jet
configuration, i.e., the region of x < WM)R% < 1. One
can see it from Eq. (2.87):
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A=20 [" gprerir O Q4 p? - (3
Paal Jo O\ xx0 + p2 + By - apt (2

/1 p 6oMQ*R3x3
~ a
0 [(x(M?+ Q*)R} + a)? — 4M*R}ax]?

o (M2—92 1+ xR3(Q® - M?) )
TE\ME QT R0 = M) 7 RGOS+ M)

where we approximated e RP ~ O(Ry? — p*). Then we get the known behavior of Eq. (2.102)

Q4

4 M262 B2
XPFLT)(B)|Q2>>M2 N[E/QZRZ 0 A2xdx ~ 0 Oy _ ﬂao

P*Bg Q°R;  BGRj'

4 I 4
D(3) 0 M2IRZ 4D 0 0() ﬁUO
F ~ o [ A2k

*rFr s ~ g A T BB MIR2 T BGRZ

It is easier to observe in the coordinate space (following Ref. [42]), where Eqgs. (2.79)—(2.80) can be cast into

aM® 4353 Q% ([ rdrlo(v/XEMr)Ko(v/XXQr)5(r))?
D@3 o* dof; . =
xPFT,(L) = pwEpy TR 6(r) = oo(l —e ).

In the large f§ region Q?R§ > 1, Q% >> -1, >> M? the longitudinal cross section reads
0

/rerO(\/HMr)KO(\/EQr (/ /“Q )dr &(r)

where neglecting logarithms

Jo(VxxMr) ~ 1, Ko(vVxxQr) ~ (1 = v/xxQr).

doi’ [V .4 1 1 1 \2
am? NA (&%) deQ“RZ) " 9<x - Q2R0> <xQ4Ré>
0 1 1 2 0 1 1 1
T\ er)\eor) T\ T o) 07 o'R

1 1 2
- 9<x < Q2R2> <XQ2> }
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dol? 1 1 1 1\ 1 1
~ 1 . Al2
"ok O°Ry R \o'R) OB O°R} (A12)

Soat f~1, xpF f( ) Q4 5 and this dominant contribution comes from the whole region in x.

The transverse cross section in the large f region Q?Rj > 1, 0% > - >> M? reads
0

/ rdrd, (VMK (VR0r)5(r) gg:( / / >dra

M (Q) 1 - r2
~— —dr2+6?<x>—> /”Q —dr?
Q </o R O’R3) Jir B3

R 2 -
gL w f7)")
QZR2 ‘2 R?

M| 1 1 1 1
5w o> Q2R3> em o)

where

T (VXIMr) ~ VxiMr, K, (VxXQr) ~ m;—x—\;{g@)' (Al14)

de??  M?* (1 1 \2 1 1 1 \2
dMTZN§A (xx)deKQ“R(%) +9<x>Q2R2> <Q4R2>
+0(v> o) (oom) (< om) () &
1 1 \2
#0(r < gig) (i) | (A1)

de’??  M? 1 Q2R(2) 1 2 1 1 1
~— — . Al6
e~ gl [QSRB‘ Torit (Q2R3> o°r; " 0 QzR%J (AL6)

D(3 ) 1 . . .
Soat f~1, xpFy Q4 % and this dominant contribution comes from x < R i.e., aligned jets.

In the small § region QZR2 > 1, MPRG> 1, M> > 0* > 4 for the longltudmal cross section we have

/ rdrdo(VXXMr)Ko(VxxQr)6( < / / ”M2>dr 6

() r? Mzr R r? 2
N/O R—(z)dr +0<x>M2R2)/ —dr +9(X<M2R2> (/ A )

1 1 1 1 1
~N——4Ox> 5= |55+ x <555 | —5, Al7
R (x M2Rg> MR (x M2R3> xM? (A17)
where again neglecting logarithms
Jo(VxxMr) ~0(1 — VxxMr), Ko(VxxQr) ~ 1. (A18)
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det’ 1 ., 1 \2 1 1 )\2

~ x| (=] +0(x> =) =0
dM> /o Cxydx | {gge ) + 00> 2ewe ) onwe
cofes ) 1 )2 cofve L 1 1

X X

M?R3) \x>M*R} M?R3) \xM*) M*R}
1 1 \2

+ 9<X < M2R2) <W> :| s (A19)

dof 111 11 (A20)
~ n .
dM? " MPRY " m*RE MPR2 T \M?R3) M°R3 " M®R}

1.e.,

Therefore

pe) P
xpFPY ~ (A21)

0

and this contribution comes from the whole region in x. In the small § region Q?Rj > 1, M?R§ > 1, M? > 0? > 1, for the

transverse cross section we have

/rdr]l(\/ﬁMr)Kl(\/EQr)?f( \/}}Qr (/ /“M2>dr 6

M /M) < 1 >/Mz I" ( 1 )/# 2)
~— —dr +0| x> M __dr2 + 6 dr
0 ( o M?Rj) Jzp R§ M?R} &2

M 1 1 1 1 1
e 5+ 0 =, A22
0 [M“Rg+ <x>M2R(2)) MR <x<M2R(2)) xMZ} (A22)
where
1
JL(VXIMr) ~ VXEMrO(1 — VxXMr), K (VxEQr) ~ ——=—. (A23)
VxxQr
det’  M* [1, _ 1 \2 11/ 1 \2
v |, () o> ) o)
cofxs ] 1 2+ ol o] 1 1
TR \ MR SRz \am?) MR
+0x<—1 L)’ (A24)
x<—= =] |
M?R} ) \xM?
1.€.,
do?? M?[ 1  M’R} 1 \2 1 11
GTzN_z sp3 T 82 2p2 522 T ARz (A25)
dM? Q% [MPR} " MPRY W \M?R}) MOR} M*M>R}
4 gohXr 11
xpFP®) = & _4or b (A26)

4z’ap dM?>  BMR} R}

Again this dominant contribution comes from x < i.e., aligned jets.

1
2p2
MR
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APPENDIX B: DIPOLE-DOUBLE DIPOLE INTERFERENCE TERMS

Unfortunately [18] does not contain expressions for interference terms necessary for calculation of do4. We present them
here. The calculation is straightforward and goes along the lines described in [18]. In the notation of that paper the result
reads

D (p11. P21 p3) Py (P Ph) = PF (P11, Pas. P3) @y (P, Ph . 0) + CTF, (B1)
o p: (x5 + 22~ d2))(Fy = £ ) (5gFs — )
= 2 - 5 \2/ P
(g +9) (s + 02) (R + 24 24 02) (703 (st @
2 —_
xXq(dz® +4x,(xg +2))(Py =35 Pg) (Pp =3 Pg1)
_ 5 x" + (pg < pq,pgl) VAN p(zl),xq < xg). (B2)

N P
(pg qu) (x,,(xq Q2)

q
@ (pi1.par. p3L) PP Py )" = @i, par. p3)PE(P) L P, 0)F + CF, (B3)

i _ 2p;” [«d ~2)z-2x,)x,
. N 7y
B2+ Iy Baygry Tyl (et
xq(((d - 4)Z - zxq)(gT(ﬁzﬂ’Aq) =+ pfp/J_Agl) + pgz/LA;L(dZ + 2xq)<1 - 2x6_1))
(z+x)%(z + )

(o} (B By) + Pa'i A1 ¥+ pap M8, /(1 = 2x7)

1
- = {z((d=4)z+2)
2 202 P’

Z(Z + xq) x;I(Z + x[]) (Q + JC,](Z{{FXq))
X [qui((ﬁqz’Aq)Pli - (Pﬁqz/)Aq’i)(qu - 1) - (Pﬁqz’)(gf(ﬁmAq) + Pq1]iAqi)
— P ((Pg1Bg) P2’y = (P Paz ) Ay )] + 4x42(1 = 2x) pgt’ (P Ag) PR — (PPa) A
+2(1 = 2x5) (dz + 4x, = 2) g (BB )P = (PBy)A, ) — z((d — 4)z = 2)

[(QT(Pqu) + PJ_pqlJ_)(quA )+ ((qul)l?qz'l - (ﬁqlﬁqz’)Pi)Aqi]
+ ( PA )pqllpiﬂ’l( - 2xq>( - ZXEI)(Z(dZ - 2) - 4qut?>

— (PR (Bg1Par) + Pyt P’ ) (2(2 = (d = 4)2) + 4x,05)}
_ — 7 {z(dz + 4x5 — 4)[(1 — 2x;)

Z(Z + xq) (Q + (z+xq)xq)xq
X (pg* (BB Wi = (WHg)AG) + pan’ (Whga) A = (Baw by )WH))
i (1_5 A )qu’ (quﬁqz’)Aqi) + ((ﬁqzﬁqz’)wﬂ_ - (Wﬁqz)qu’i)Aqﬁ_

+ WH (
+ g (WP ) (Bnly) = (Wh) (Bar Bg)) + Pak (WP ) A, = (BawAg) W)

+ (WAq)(ququz’]i(l - 2xq)2 - gﬁ(ﬁqzﬁqz’) quLqu’ )(dZ —4x ( a— 1)}
o0 (1) ~ B4
+(pq<_>pqvpl <_>p2 7xq<_>xq)7 ( )
where

Wi = xqpf,u - ZPZu’ P = xqp_f;u - pr'{ZJ_' (BS)
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APPENDIX C: NORMALIZATION

In this Appendix we discuss the overall normalization of
the cross section and the relation of our matrix elements F
defined in (5.2-8) of Ref. [18] to the GBW dipole cross
section.

The density matrix for the LO cross section in our frame
(5.21-23) was obtained in Ref. [18]. To get the proper
normalization we have to multiply all cross sections in
Ref. [18] by ) Indeed, the factor 1 > comes from the
normalization of As in Eq. (5.11) of Ref. [18]. The in and
out proton states are normalized there to have

1 1 1

1
\/ZITE\/%_V“EO\/“—%_E\QEO\/E.

(C1)

Since the S-matrix does not depend on state normalization,
Az is two times bigger than the standard amplitude
normalized to 1 As a result, the cross section

\/2Eg\/2E)
should have an extra i to compensate for it, i.e., in (5.1) of
Ref. [18] we should have had

— Po)|As|*dps.
(C2)

11
do =~ (22)*6W (p, + po — Py — Py

The same correction must be done in Eq. (6.1) of Ref. [18].
The 2z power must be corrected in Eq. (5.11) of
Ref. [18] in the overall factor

— . (C3)

Indeed, the amplitude A5 is exactly the matrix element (3.1)
of Ref. [I8] after removing (27)*6*(p, + po— Py~
pg — Pp)- In this matrix element transverse and (=) delta
functions appear together with (27)? and 27 as Egs. (5.7-8)
and Eqs. (5.2-3) of Ref. [18] correspondingly. Only the (+)
delta function is without 2z in Eq. (3.1). Therefore we must
have an extra 2z in the denominator in A in addition to

(2”)% from Eq. (3.1) of Ref. [18]. This gives us the

aforementioned substitution. The same misprint was done
in Eq. (6.4) of Ref. [18]. After these corrections we get
Egs. (2.22)—(2.25).

Next, we have to substitute a model for the hadronic
matrix elements F. We will use the Golec-Biernat—
Wiisthoff (GBW) [45] parametrization, which was formu-
lated in the coordinate space. To get the proper normali-
zation we Fourier transform Eq. (2.23) and compare it with
Eq. (4.48) in ref. [42]. Using

1 K 2o > o
_/er Oz(ar)e_llr’ F(k)—/d?e_’krF(7),
/3

?—i—az

(C4)
we have
dGOLL _ 1 4aQq 2 2Q2
dxdp,dp,|,_,  2027)* N,
K X ‘ML* 2
2KV e ()
P
and
doorr — ! 440(Q%,ﬂ / dxQ’x*x?
dt |,_, 2(27)* N.
x / PrKy(VIRQPF(FR.  (C6)

Comparing it with Eq. (4.48) in Ref. [42], the GBW
parametrization of the forward dipole matrix element in
our normalization reads

. (P/(P6)|T(TY(U%UT_%)—Nc)|P(Po)>
pOLPOL(ZJ— - 2”5(]960’) /
Po— Py
_Z
=F(z1)=N.oo(1—e *5). (C7)

One can check the consistency of this normalization by
deriving the inclusive y*p cross section with the same
matrix elements. Using propagators in the shockwave
background (2.19-20) from Ref. [18], one gets for the
y*p — y*p amplitude

iA = \/2p52p6‘Q‘2](—ie)2/dx
x/dyTr[élG(x—y)ézG(y—x)}e_ipV"““ip/ry (C8)
SaQqu 5(pl+ p;)/desz)'czKo(rlz\/;;Q‘f)
xK0<r12\/xch$,) \/2p52p6‘/dD‘2r2l

X /dD_27u_<P/(P6)‘T<Tr[U1U;] = Ne)IP(po))-

(€9)

Extracting the dependence on the overall momentum
transfer

(PEITTU VP (po)
= (pple= P SETTU, UL )25 py)

: (ritr)y
= e'PooL™ 2

<p0|TTI'[Ur1uU ’1u]|p0> (ClO)
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we get

P
A = (2r)%8(p — p)S(puos)d(pry) / P

(P6)|T(TY[U§U¥] =N )|P(po))
278(pyy)

X 1/2p52p6_4a”¢/de2x2552K0<z@)Ko(z\/xfc7Q§,). (C11)
Then, using the optical theorem
ImA,, (P'(P)IT(Te[USU] = N[ P(po))
ot = T2 . 278(pyy) Ph=po
x ‘;—ﬂf / A4 Q> K} <Z\/)7Q}%> (C12)

Comparing this result to Egs. (3.7-9) in Ref. [42], we get the same result (C7) for F as before.
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