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We investigate the consequences of heavy quark spin symmetry (HQSS) on hidden-charm pentaquark
Pc states. As has been proposed before, assuming the Pcð4440Þ and the Pcð4457Þ as S-wave D̄�Σc

molecules, seven hadronic molecular states composed of D̄Σc, D̄Σ�
c, D̄�Σc, and D̄�Σ�

c can be obtained,
with the D̄Σc molecule corresponding to the Pcð4312Þ. These seven states can decay into J=ψN and
ηcN, and we use HQSS to predict ratios of partial widths of the S-wave decays. For the decays into
J=ψN, it is found that among all six Pc molecules with spin 1=2 or 3=2, at least four states decay much
more easily into the J=ψN than the Pcð4312Þ, and two of them couple dominantly to the D̄�Σ�

c. While
no significant peak around the D̄�Σ�

c threshold is found in the J=ψp distribution, these higher Pc states
either are produced with lower rates or some special production mechanism for the observed Pc states
might play an important role, such as an intricate interplay between the production of pentaquarks and
triangle singularities.

DOI: 10.1103/PhysRevD.100.074007

I. INTRODUCTION

Following the first observation of two hidden-charm
pentaquark candidates, the Pc states named Pcð4380Þ and
Pcð4450Þ, in the J=ψp invariant mass distribution of the
decay Λb → J=ψK−p [1], the LHCb Collaboration
reported three narrow peaks Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ in Ref. [2] with the full run I and run II datasets.
The Pcð4312Þ peak is new (it seems to stick out in the
background in a single bin in the coarser binning in
Ref. [1]), and the Pcð4450Þ structure is split into two finer
narrow peaks, Pcð4440Þ and Pcð4457Þ. Because these
peaks are close to the D̄Σc and D̄�Σc thresholds, the
interpretation of them as D̄ð�ÞΣc hadronic molecules is a
natural idea. A hadronic molecule is a bound state of two
color-singlet hadrons. Analogous to the deuteron and other
nuclei as proton-neutron bound states, hadronic molecules
are expected to provide rich structure in the hadron
spectrum (for a review of hadronic molecules, we refer
to Ref. [3]). One famous example of hadronic molecular
candidates in the light baryon sector is the Λð1405Þ, which

is well described as an S-wave K̄N bound state [4–7] (see
Refs. [8,9] for review articles). Hadronic molecular penta-
quarks with a hidden charm were expected to exist [10–18]
prior to the LHCb discovery. The new observation of the
three peaks in the J=ψp channel [2] has been particularly
encouraging in studies in this field [19–47] (see also
Refs. [3,48–55] for reviews of the earlier literature).
For the study of hadronic systems containing heavy

quarks, heavy quark spin symmetry (HQSS), which emerges
because of the decoupling of the heavy quark spin in the limit
of an infinitely large quark mass in the Lagrangian of
quantum chromodynamics (QCD) [56–58], is an essential
tool for making predictions. Different scenarios of the exotic
hadrons are expected to lead to HQSS predictions that can be
used to distinguish them [59]. Particularly in the Pc mass
region, there exist D̄Σc, D̄Σ�

c, and D̄�Σc thresholds. Since the
ðD̄; D̄�Þ and ðΣc;Σ�

cÞ pairs can be settled into HQSS
doublets, respectively, it is natural to investigate the

D̄ð�ÞΣð�Þ
c systems together by using HQSS. The pioneering

work using HQSS to predict hidden-charm pentaquarks is
Ref. [16] before thePc discovery, which was extended to the
hidden-charm strange sector recently [60]. After the
Pcð4450Þ discovery, HQSS was used in Ref. [61] to predict

D̄ð�ÞΣð�Þ
c molecules, and the results were updated after the

new LHCb observation in Ref. [21]. In Ref. [61], the
nonrelativistic contact term Lagrangian for the S-wave

D̄ð�ÞΣð�Þ
c interaction respecting HQSS is constructed, which

was used in Ref. [21] to predict a whole set of seven states
related to each another via HQSS. The states are generated in

*shsakai@itp.ac.cn
†jinghaojie@itp.ac.cn
‡fkguo@itp.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 074007 (2019)

2470-0010=2019=100(7)=074007(11) 074007-1 Published by the American Physical Society

https://orcid.org/0000-0002-3651-5722
https://orcid.org/0000-0002-2919-2064
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.074007&domain=pdf&date_stamp=2019-10-10
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.074007
https://doi.org/10.1103/PhysRevD.100.074007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


an S-wave by the following channels: D̄Σcð1=2−Þ,
D̄Σ�

cð3=2−Þ, D̄�Σcð1=2−; 3=2−Þ, and D̄�Σ�
cð1=2−; 3=2−;

5=2−Þ. The predictions were made by fixing the only two
parameters to reproduce the masses of the Pcð4440Þ and
Pcð4457Þ as JP ¼ 1=2− and 3=2− D̄�Σc molecular states.
The results obtained in Ref. [20] using a different formalism
are similar, and the reference also finds good agreement
between their results and measured values for the widths of
observed Pc peaks.
On the one hand, in the updated LHCb measurements

[2], the Pcð4312Þ is discovered with a significance of
7.3σ, and the most visible structure, at around 4.45 GeV,
is resolved into two narrow peaks, Pcð4440Þ and
Pcð4457Þ, with a significance of 5.4σ, while there are
no other peaking structures that can be unambiguously
distinguished from statistical fluctuations. On the other
hand, in the hadronic molecular picture, seven states are
expected to exist, with six of them being able to decay
into the J=ψN in an S-wave. Therefore, one important
question to be answered in the hadronic molecular model
is why only three Pc states were observed. To answer this
question, the decays of the Pc states into the J=ψp are an
essential ingredient.
In Ref. [19], the decays of the observed three Pc states

into J=ψp through the D̄ð�ÞΣð�Þ
c Dð�Þ triangle loops are

considered, and the obtained partial widths are of the
order of a few to 10 MeV. Since the total widths of the
Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ are 9.8þ4.6

−5.2 , 20.6
þ10.0
−11.2 ,

and 6.4þ6.0
−2.8 MeV, respectively,1 the results in Ref. [19]

would mean that the branching fractions of the J=ψN
mode are much larger than the model-dependent upper
limit set by the GlueX experiment [43].2 One notices,
however, that the partial widths obtained in Ref. [19]
depend on unknown couplings (for the J=ψDD̄, the
ΣcDN, and their HQSS related vertices) and are sensitive
to the cutoff value introduced to regularize the ultraviolet
divergent triangle loop integrals. The decays of the 1=2−

Pc states as Dð�ÞΣc hadronic molecules into J=ψN, ηcN
and D̄ð�ÞΛc were very recently discussed in Ref. [65] by
considering HQSS.
In this paper, we investigate the decays of all six Pc

hadronic molecules with JP ¼ 1=2− or 3=2− into J=ψN
and ηcN with a formulation respecting HQSS, and we
predict ratios of the partial widths, which are free of
unknown coupling constants. The paper is organized as
follows. The amplitudes are worked out in Sec. II with
details given in the Appendix. Numerical results and related
discussions are presented in Sec. III. Section IV is a brief
summary.

II. FORMALISM

In this section, we describe the Pc states as hadronic
molecules which are dynamically generated from the

D̄ð�ÞΣð�Þ
c S-wave short-range interactions respecting

HQSS. The transition amplitudes for D̄ð�ÞΣð�Þ
c into J=ψN

and ηcN will also be constructed.

A. Short-range D̄ð�ÞΣð�Þ
c interactions

To describe the D̄ð�ÞΣð�Þ
c molecular Pc states, we start

with the interaction respecting HQSS. Here, following
Refs. [21,61], we consider the short-range coupled-channel
interactions3 which can be parametrized in terms of contact
terms. As a consequence of HQSS, for each total isospin

(here, I ¼ 1=2), all possible S-wave short-range D̄ð�ÞΣð�Þ
c

interactions at leading order (LO) of the nonrelativistic
expansion depend on only two parameters. The LO
potentials for the system with total spin J can be easily
worked out by using either the 9j symbol as in
Refs. [16,20] or by constructing the LO effective
Lagrangian as in Refs. [21,61], and the details can be
found in the Appendix. They are given by

vX;X0ðJÞ ¼ CacX;X0ðJÞ þ Cbc0X;X0ðJÞ�
Xð0Þ ¼ D̄Σc; D̄Σ�

c; D̄�Σc; D̄�Σ�
c; J ¼ 1

2
;
3

2
;
5

2

�
; ð1Þ

where Ca and Cb are energy-independent constants, and
cX;X0ðJÞ and c0X;X0ðJÞ are coefficients which depend on the

channels of the initial and final states as tabulated in Table I.
As one can see, the diagonal potentials depend on both Ca
and Cb, while the channel coupling is controlled by the
parameter Cb.
The T-matrix of the D̄ð�ÞΣð�Þ

c scattering, t, is obtained
by resumming the s-channel bubbles with the coupled-
channel Lippmann-Schwinger equation, which satisfies
unitarity,

t ¼ ½1 − vG�−1v; ð2Þ

where v in Eq. (1) is used as the interaction kernel,4 and G
is a diagonal matrix given by the nonrelativistic meson-
baryon loop functions. Using a Gaussian form factor
fðq=ΛÞ ¼ e−q

2=Λ2

to regularize the ultraviolet divergence
as in Refs. [21,61], the loop function GXðWÞ in channel X
as a function of the total energy, W, in the meson-baryon
c.m. frame is given by

1The statistical and systematic uncertainties in Ref. [2] are
added in quadrature here.

2The results in Refs. [62–64] indicate that the dominant decay
modes of the Pc states should be D̄ð�ÞΛc instead of J=ψN.

3Channel couplings are not considered in Refs. [21,61].
4There is a factor from the nonrelativistic normalization of the

heavy meson fields; see the Appendix.
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GXðWÞ¼ 2MX

4mXMX

Z
d3q
ð2πÞ3

e−2q
2=Λ2

W−mX−MX−q2=ð2μXÞþ iϵ
;

ð3Þ

where mX and MX denote the meson and baryon masses in
that channel, respectively, and μX ¼ mXMX=ðmX þMXÞ is
the meson-baryon reduced mass. In this work, we take

isospin averaged hadron masses, and the D̄ð�Þ and Σð�Þ
c

widths are ignored.5 Two values of the Gaussian cutoff Λ,
0.7 and 1 GeV, will be taken in order to check the
uncertainty of the results. The values are chosen such that
they are larger than the binding momenta in all of the
involved channels (much larger than that in the dominant
one) and still much smaller than the charmed hadron
masses so that no significant HQSS breaking will be
introduced by Λ. The T-matrix in Eq. (2) has poles, and
the real parts correspond to the masses of the hadronic
molecules generated from the interactions.
In Eq. (1), there are two constants, Ca and Cb, that

should be determined. We fix these two parameters so as to
reproduce the observed peak positions of the Pcð4440Þ and
the Pcð4457Þ. Following Ref. [21], we consider two cases
for the spin assignment of Pcð4440Þ and Pcð4457Þ as D̄�Σc
molecular states:

case 1: Pcð4440Þ and Pcð4457Þ have J ¼ 1=2 and 3=2,
respectively;

case 2: Pcð4440Þ and Pcð4457Þ have J ¼ 3=2 and 1=2,
respectively.

The parameters Ca and Cb in these two cases are given in
the left and right panels of Table II, respectively. In both
cases, the magnitude of Cb is much smaller than that of Ca
in order to produce poles at 4440 and 4457 MeV in the
D̄�Σc channel. From Table I, this means that the channel
coupling is rather weak, and all diagonal interactions have

similar strengths so that one expects to have seven D̄ð�ÞΣð�Þ
c

hadronic molecules.
By choosing appropriate Riemann sheets, we find

resonance and bound-state poles. As in Refs. [20,21], seven
states of D̄ΣcðJ¼1=2Þ, D̄Σ�

cðJ¼3=2Þ, D̄�ΣcðJ¼1=2;3=2Þ,
and D̄�Σ�

cðJ ¼ 1=2; 3=2; 5=2Þ are obtained as a consequence
of HQSS. These seven states are denoted by Pci (i ¼ 1–7),
and their pole positions for case 1 and case 2 are listed in
Tables III and IV, respectively. For each of these states, its
effective coupling constants to the meson-baryon channels
can be obtained from the residues of the corresponding pole
of the T-matrix elements—namely,

gieffg
j
eff ¼ lim

W→Wpole

ðW −WpoleÞtijðWÞ: ð4Þ

The so-obtained effective coupling constants are given in
TablesVandVI for case 1, and inTablesVII andVIII for case
2. As expected from jCaj ≫ jCbj, each pole couples domi-
nantly to a single channel. The binding energies defined as
the difference between the threshold of the dominant channel
and the real part of the pole are also listed in Tables III and IV.
For each spin J, the lowest state is a bound-state pole, while
the higher ones are resonance poles (Pc3;c4;c5;c6) with a small
imaginary part, which is again due to the smallness of Cb
which appears in the off-diagonal part of the interaction
kernel. The absolute value of the imaginary part can be
identified as half of the partialwidthof the decays of that state
into the channels with lower thresholds.
It is important to understand the robustness of the

predictions against the breaking of HQSS. Possible uncer-
tainties of the predicted pole positions from the higher-
order correction of the 1=mQ expansion, wheremQ denotes
the heavy quark mass, are conservatively estimated by
changing the low-energy constants, Ca and Cb, by an

TABLE I. The contact terms for the coupled-channel D̄ð�ÞΣð�Þ
c

interactions for J ¼ 1=2 (top panel), J ¼ 3=2 (middle panel), and
J ¼ 5=2 (bottom panel).

J ¼ 1
2

D̄Σc D̄�Σc D̄�Σ�
c

D̄Σc Ca
2ffiffi
3

p Cb −
ffiffi
2
3

q
Cb

D̄�Σc
2ffiffi
3

p Cb Ca − 4
3
Cb −

ffiffi
2

p
3
Cb

D̄�Σ�
c −

ffiffi
2
3

q
Cb −

ffiffi
2

p
3
Cb Ca − 5

3
Cb

J ¼ 3
2

D̄Σ�
c D̄�Σc D̄�Σ�

c

D̄Σ�
c Ca

1ffiffi
3

p Cb
ffiffi
5
3

q
Cb

D̄�Σc
1ffiffi
3

p Cb Ca þ 2
3
Cb −

ffiffi
5

p
3
Cb

D̄�Σ�
c

ffiffi
5
3

q
Cb

−
ffiffi
5

p
3
Cb Ca − 2

3
Cb

J ¼ 5
2

D̄�Σ�
c

D̄�Σ�
c Ca þ Cb

TABLE II. Parameters Ca andCb fixed in case 1 (top panel) and
case 2 (bottom panel) with Λ ¼ 0.7 and 1 GeV.

Λ (GeV) Ca (GeV−2) Cb (GeV−2)

0.7 −33.0 6.6
1 −20.0 2.9

Λ (GeV) Ca (GeV−2) Cb (GeV−2)

0.7 −37.2 −5.8
1 −21.9 −2.6

5The widths of the Σ�
c states are around 15 MeV [66], similar to

the measured widths of the Pc states. The decays of the Σ�
cD̄ð�Þ

molecules through the decays of the Σ�
c into Λcπ might contribute

an important portion of the total widths of these states.
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TABLE III. Poles in units of MeV in case 1. The channel which has the largest coupling is given in the second column. The binding
energies with respect to that channel are shown in parentheses in the last two columns. The uncertainties of the Pc1;2;5;6;7 poles are
evaluated by changing the parameters Ca and Cb by 25%. The poles marked with “(V)” move into a wrong Riemann sheet that is not
directly connected to the physical region by crossing the cut at the energy of the real part. The poles Pc2 and Pc3 are used as input to fix
the parameters and thus do not have such an uncertainty.

Dominant channel Λ ¼ 0.7 GeV Λ ¼ 1 GeV

Pc1 D̄Σc (J ¼ 1=2) 4311.1þ8.5
−13.5 (9.7þ13.5

−8.5 ) 4311.8þ8.9
−19.2 (8.9þ19.2

−8.9 )

Pc2 D̄Σ�
c (J ¼ 3=2) 4374.9þ9.0

−14.2 (10.5þ14.2
−9.0 ) 4375.5þ9.7

−20.3 (9.9þ20.3
−9.7 )

Pc3 D̄�Σc (J ¼ 1=2) 4440.3 − i1.0 (21.8) 4440.3 − i1.2 (21.8)

Pc4 D̄�Σc (J ¼ 3=2) 4457.3 − i0.5 (4.8) 4457.3 − i0.5 (4.8)

Pc5 D̄�Σ�
c (J ¼ 1=2) 4501.0þ16.4

−19.8 þ ið−0.9Þþ0.5
−0.7 (25.7þ19.8

−16.4 ) 4500.6þ20.3
−27.9 þ ið−1.1Þþ0.7

−0.8 (26.0þ27.9
−20.3 )

Pc6 D̄�Σ�
c (J ¼ 3=2) 4513.1þ10.2

−13.6 þ ið−1.9Þþ1.1
−1.1 (13.6þ13.6

−10.2 ) 4512.9þ12.4
−19.9 þ ið−2.2Þþ1.6

−1.4 (13.8þ19.9
−12.4 )

Pc7 D̄�Σ�
c (J ¼ 5=2) 4523.9ðVÞ−11.6 (2.8þ11.6

ðVÞ ) 4523.8ðVÞ−16.3 (2.9þ16.3
ðVÞ )

TABLE IV. Poles in units of MeV in case 2. The channel which has the largest coupling is given in the second column. The binding
energies with respect to that channel are shown in parentheses in the last two columns. The errors are the same as those in Table III.

Dominant channel Λ ¼ 0.7 GeV Λ ¼ 1 GeV

Pc1 D̄Σc (J ¼ 1=2) 4305.9þ11.5
−16.1 (14.8þ16.1

−11.5 ) 4306.8þ12.9
−22.5 (13.9þ22.5

−12.9 )

Pc2 D̄Σ�
c (J ¼ 3=2) 4369.8þ11.9

−16.5 (15.5þ16.5
−11.9 ) 4370.5þ13.7

−23.3 (14.9þ23.3
−13.7 )

Pc3 D̄�Σc (J ¼ 1=2) 4457.3 − i0.5 (4.8) 4457.3 − i0.6 (4.8)

Pc4 D̄�Σc (J ¼ 3=2) 4440.3 − i0.2 (21.8) 4440.3 − i0.2 (21.8)

Pc5 D̄�Σ�
c (J ¼ 1=2) 4523.3ðVÞ−15.1 þ ið−0.2Þþ0.2

−0.2 (3.3þ15.1
ðVÞ ) 4523.2ðVÞ−20.3 þ ið−0.3Þþ0.3

−0.3 (3.5þ20.3
ðVÞ )

Pc6 D̄�Σ�
c (J ¼ 3=2) 4518.1ðVÞ−16.3 þ ið−1.2Þþ0.8

−0.7 (8.6þ16.3
ðVÞ ) 4517.9ðVÞ−22.2 þ ið−1.4Þþ1.2

−1.0 (8.8þ22.2
ðVÞ )

Pc7 D̄�Σ�
c (J ¼ 5=2) 4501.6þ16.2

−20.1 (25.0þ20.1
−16.2 ) 4501.3þ20.0

−28.3 (25.3þ28.3
−20.0 )

TABLE V. Coupling constants in case 1 with Λ ¼ 0.7 GeV. The coupling constants are dimensionless.

D̄Σc D̄Σ�
c D̄�Σc D̄�Σ�

c

Pc1 (J ¼ 1=2) 2.34 � � � −0.90 0.54
Pc2 (J ¼ 3=2) � � � 2.39 −0.53 −1.03
Pc3 (J ¼ 1=2) −0.26 − i0.24 � � � 3.34þ i0.09 0.75 − i0.10
Pc4 (J ¼ 3=2) � � � −0.11 − i0.19 1.82þ i0.06 0.60þ i0.12
Pc5 (J ¼ 1=2) 0.28þ i0.12 � � � 0.03þ i0.20 3.61þ i0.07
Pc6 (J ¼ 3=2) � � � −0.28 − i0.26 0.10þ i0.26 2.71þ i0.18
Pc7 (J ¼ 5=2) � � � � � � � � � 1.50

TABLE VI. Coupling constants in case 1 with Λ ¼ 1 GeV. The coupling constants are dimensionless.

D̄Σc D̄Σ�
c D̄�Σc D̄�Σ�

c

Pc1 (J ¼ 1=2) 2.08 � � � −0.69 0.40
Pc2 (J ¼ 3=2) � � � 2.14 −0.42 −0.79
Pc3 (J ¼ 1=2) −0.15 − i0.26 � � � 2.94þ i0.08 0.61 − i0.09
Pc4 (J ¼ 3=2) � � � −0.05 − i0.19 1.70þ i0.06 0.49þ i0.11
Pc5 (J ¼ 1=2) 0.18þ i0.16 � � � −0.003þ i0.19 3.16þ i0.07
Pc6 (J ¼ 3=2) � � � −0.15 − i0.28 0.03þ i0.25 2.45þ i0.16
Pc7 (J ¼ 5=2) � � � � � � � � � 1.44
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amount ofΛQCD=mc ≃ 25%. It is noticeable that Pc1, which
is associated with Pcð4312Þ, and Pc2, a D̄Σ�

c molecule, are
stable in this range of uncertainty. Furthermore, at least one
or two of the three poles around the D̄�Σ�

c threshold, Pc5;6;7,
remain even if one changes the parameters Ca and Cb by
25%. Within the uncertainties, the other poles may move
into a “wrong” Riemann sheet that is not directly connected
to the physical region by crossing the cut at the energy of
the real part [the physical region can be reached by
bypassing the threshold branching point; see, e.g.,
Ref. [67], and see also a recent analysis of the Pcð4312Þ
in Ref. [24]]. Such situations are marked “(V),” meaning
virtual state, in the tables. In that case, the poles are still
close to the threshold, and they can still show up in
invariant mass distributions as a peak with a pronounced
cusp structure at the D̄�Σ�

c threshold. For simplicity, in the
following discussions of decays, we will neglect the
uncertainties and keep in mind that the results are obtained
assuming exact HQSS for the interaction vertices.

B. Transition amplitudes of D̄ð�ÞΣð�Þ
c into J=ψN and ηcN

Next let us consider the transition amplitudes of the

D̄ð�ÞΣð�Þ
c into the J=ψN. Using the 9j symbol to recombine

the angular momenta (see the Appendix), we write the

S-wave D̄ð�ÞΣð�Þ
c → J=ψN amplitude with spin J as

follows,

tX;J=ψNðJÞ ¼ g1hXðJÞ; ð5Þ

where g1 is a coupling constant, and

hD̄Σcð1=2Þ ¼−
1

2
ffiffiffi
3

p ; hD̄Σ�
cð3=2Þ ¼−

1ffiffiffi
3

p ; hD̄�Σcð1=2Þ ¼
5

6
;

hD̄�Σcð3=2Þ ¼
1

3
; hD̄�Σ�

cð1=2Þ ¼
ffiffiffi
2

p

3
; hD̄�Σ�

cð3=2Þ ¼
ffiffiffi
5

p

3
: ð6Þ

The D̄�Σ�
c with J ¼ 5=2 does not couple to the S-wave

J=ψN. One notices that all of the S-wave transition
amplitudes depend on the same parameter g1 due to
HQSS. As a result, one can make parameter-free predic-
tions for the ratios of partial widths.
Because the ηc and the J=ψ form a doublet of HQSS

(see, e.g., Ref. [68] and the references therein), we can also
relate the partial decay widths of the Pc into J=ψN and

ηcN. In the same manner as the D̄ð�ÞΣð�Þ
c → J=ψN ampli-

tude, for the D̄ð�ÞΣð�Þ
c → ηcN, one has

tX;ηcNðJ¼1=2Þ ¼ g1h̃Xð1=2Þ; ð7Þ

h̃D̄Σcð1=2Þ ¼
1

2
; h̃D̄�Σcð1=2Þ ¼−

1

2
ffiffiffi
3

p ; h̃D̄�Σ�
cð1=2Þ ¼

ffiffiffi
2

3

r
;

ð8Þ

where the ηcN couples only to the states with J ¼ 1=2
in an S-wave. The ratios h̃D̄Σcð1=2Þ=hD̄Σcð1=2Þ ¼ −

ffiffiffi
3

p
and

h̃D̄�Σcð1=2Þ=hD̄�Σcð1=2Þ ¼ −
ffiffiffi
3

p
=5 agree with those derived

in Ref. [65].

C. Pc → J=ψN and Pc → ηcN decay amplitudes

The mechanism for the decay Pc → J=ψN for the Pc as

D̄ð�ÞΣð�Þ
c hadronic molecules is shown in Fig. 1. The Pc

TABLE VII. Coupling constants in case 2 with Λ ¼ 0.7 GeV. The coupling constants are dimensionless.

D̄Σc D̄Σ�
c D̄�Σc D̄�Σ�

c

Pc1 (J ¼ 1=2) 2.79 � � � 0.73 −0.48
Pc2 (J ¼ 3=2) � � � 2.83 0.48 0.81
Pc3 (J ¼ 1=2) 0.20þ i0.17 � � � 1.83þ i0.07 −0.25 − i0.04
Pc4 (J ¼ 3=2) � � � 0.04þ i0.13 3.35þ i0.02 −0.70þ i0.05
Pc5 (J ¼ 1=2) −0.13 − i0.08 � � � −0.05 − i0.10 1.60þ i0.04
Pc6 (J ¼ 3=2) � � � 0.25þ i0.21 −0.06 − i0.19 2.26þ i0.13
Pc7 (J ¼ 5=2) � � � � � � � � � 3.57

TABLE VIII. Coupling constants in case 2 with Λ ¼ 1 GeV. The coupling constants are dimensionless.

D̄Σc D̄Σ�
c D̄�Σc D̄�Σ�

c

Pc1 (J ¼ 1=2) 2.45 � � � 0.56 −0.36
Pc2 (J ¼ 3=2) � � � 2.49 0.39 0.62
Pc3 (J ¼ 1=2) 0.11þ i0.18 � � � 1.71þ i0.07 −0.20 − i0.04
Pc4 (J ¼ 3=2) � � � 0.01þ i0.12 2.94þ i0.01 −0.57þ i0.04
Pc5 (J ¼ 1=2) −0.07 − i0.09 � � � −0.02 − i0.10 1.53þ i0.04
Pc6 (J ¼ 3=2) � � � 0.14þ i0.23 −0.01 − i0.19 2.09þ i0.12
Pc7 (J ¼ 5=2) � � � � � � � � � 3.13
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resonance first couples to D̄ð�ÞΣð�Þ
c , and the D̄ð�ÞΣð�Þ

c pair
turns into the J=ψN via rescattering. The momentum
exchange for the rescattering is much larger than the
binding momentum, and thus the rescattering is of short
range and can be parametrized using the amplitude in
Eq. (5).6 The decays into ηcN are similar. The decay
amplitudes of Pci with spin J into the J=ψN and the ηcN,
AiðJÞ and ÃiðJÞ, respectively, are written as

AiðJÞ ¼
X
X

gPci;XG̃Xg1hXðJÞ; ð9Þ

ÃiðJÞ ¼
X
X

gPci;XG̃Xg1h̃XðJÞ; ð10Þ

with X ¼ D̄Σc; D̄�Σc; D̄�Σ�
c (J ¼ 1=2), X ¼ D̄Σ�

c; D̄�Σc;
D̄�Σ�

c (J ¼ 3=2), and X ¼ D̄�Σ�
c (J ¼ 5=2). Here, the

coupling constants gPci;X are those defined in Eq. (4). The
meson-baryon loop function in channel X, G̃X, is given by

G̃XðWÞ¼ 2MX

4mXMX

Z
d3q
ð2πÞ3

e−q
2=Λ2

W−mX−MX−q2=ð2μXÞþ iϵ
;

ð11Þ

where theGaussian form factor e−q
2=Λ2

is introduced only for

thePc → D̄ð�ÞΣð�Þ
c vertex, and the cutoffΛ is chosen to be the

same as that in the D̄ð�ÞΣð�Þ
c scattering T-matrix.

With these amplitudes and taking into account the
nonrelativistic normalization factors, the partial decay
widths are given by

Γi ≡ ΓPci;J=ψN ¼ mN

2πmPci

pJ=ψ jAiðJÞj2;

pJ=ψ ¼ 1

2mPci

λ1=2ðm2
Pci
; m2

N;m
2
J=ψÞ; ð12Þ

Γ̃i ≡ ΓPci;ηcN ¼ mN

2πmPci

pηc jÃiðJÞj2;

pηc ¼
1

2mPci

λ1=2ðm2
Pci
; m2

N;m
2
ηcÞ; ð13Þ

with the Källén function λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy
−2yz − 2zx. Note that the spin averaging has been taken
into account in the amplitudes given by Eqs. (9) and (10)
(see the Appendix), derived using the 9j symbol technique,
and there is no need to introduce an additional factor of
1=ð2J þ 1Þ to calculate the decay width.

III. RESULTS

A. Considering only the dominant channel

First, we show the results of the Pc decay into J=ψN
with a simplification in Eq. (9); i.e., we approximate the
sum over X for the intermediate states by considering only
the channel which has the largest coupling to Pci (as listed
in Tables III and IV for case 1 and case 2, respectively).
Then the decay amplitude is

AiðJÞ ¼ gPci;XG̃Xg1hXðJÞ; ð14Þ

with X ¼ D̄Σc (i ¼ 1), D̄Σ�
c (i ¼ 2), D̄�Σc (i ¼ 3, 4), and

D̄�Σ�
c (i ¼ 5, 6).

A few remarks are in order here. In the single-channel
case, the effective coupling constant of the Pci state to the
constituent channel X is related to the binding energy
EBi ≡mX þMX −MPci

, withmX andMX being the meson
and baryon masses in channel X, and MPci

being the mass
of Pci, as g2Pci;X

∝
ffiffiffiffiffiffiffiffi
EB;i

p
[69] (see, e.g., Secs. III.B and

VI.B of Ref. [3]). The nonrelativistic loop integral G̃X is
linearly divergent; working out the regularized integral in
Eq. (3), one gets

G̃X ∝ −
Λffiffiffi
π

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μXEB;i

p þOðΛ−1Þ: ð15Þ

If we keep only the LO term in the expansion in powers offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μXEB;i

p
=Λ, the Λ-dependence can be absorbed by g1,

which needs to scale as 1=Λ, via a multiplicative renorma-
lization. As a result, at LO, the productGXg1 is independent
of Λ, and we obtain the following factorization formula,7

jAiðJÞj2 ∝
ffiffiffiffiffiffiffi
EBi

p
h2XðJÞ; ð16Þ

where the factor ∝ g1=Λ encoding the short-distance
physics is not shown, and the factor

ffiffiffiffiffiffiffi
EBi

p
encodes the

long-distance physics from the hadronic molecular nature.
Its physical meaning is as follows: decreasing the binding

FIG. 1. Diagram of the Pc decay into J=ψN with intermediate

D̄ð�ÞΣð�Þ
c .

6The rescattering is modeled by charmed-meson exchanges in
Ref. [19].

7This is similar to the factorization formula for the production
of the Xð3872Þ in B decays discussed in Ref. [70].
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energy, the size of the hadronic molecule increases; then its
decay by recombining the quark contents in the two
constituent hadrons becomes more difficult, and the decay
rate decreases with a speed proportional to the square root
of the binding energy.
With the above formula, one can easily work out ratios of

the partial widths of different Pc states into the J=ψN.
However, we notice that different phase space factors
should be taken into account for different Pc, and there
are cases with a binding energy as large as about 20 MeV
such that the binding momentum is about 0.2 GeV. Then
the higher-order terms in Eq. (15) can have sizable
contributions. Thus, we use the full expression of
Eq. (3) and take two values of Λ, 0.7 and 1 GeV, as
discussed below that equation, to check the cutoff depend-
ence. Defining ri with ri ¼ Γi=Γ1 (i ¼ 2;…; 6), we obtain

case 1∶ r2 ¼ð4.6;4.6Þ; r3 ¼ð14.6;15.3Þ; r4¼ð1.2;1.2Þ;
r5 ¼ð5.4;5.8Þ; r6 ¼ð10.3;10.9Þ;

case 2∶ r2 ¼ð4.5;4.6Þ; r3 ¼ð6.2;6.3Þ; r4¼ð1.9;2.0Þ;
r5 ¼ð1.8;1.9Þ; r6 ¼ð7.0;7.3Þ; ð17Þ

where the first and second numbers in parentheses are
obtained using Λ ¼ 0.7 GeV and Λ ¼ 1 GeV, respec-
tively. One sees that the dependence of the results on
the cutoff value is weak. The values given above are in line
with the simple expectation in Eq. (16). Numerical
differences can be traced back to the difference of binding
energies and phase space factors for the Pc states as
mentioned above.

B. Including all channels

When all of the coupled channels are included, the
qualitative features of the ratios are the same as those in the
above single-channel calculation, though the numerical
values change to

case 1∶ r2 ¼ð4.4;4.4Þ; r3 ¼ð9.3;9.6Þ; r4¼ð1.2;1.2Þ;
r5 ¼ð2.7;2.8Þ; r6 ¼ð5.1;5.4Þ;

case 2∶ r2 ¼ð4.6;4.7Þ; r3 ¼ð10.1;10.5Þ; r4¼ð1.9;1.9Þ;
r5 ¼ð3.3;3.5Þ; r6 ¼ð13.9;14.4Þ; ð18Þ

where again the first and second numbers in parentheses are
obtained using Λ ¼ 0.7 GeV and Λ ¼ 1 GeV, respectively.

C. Discussions

Note that Pc3 [Pc4] is assigned as the Pcð4440Þ
½Pcð4457Þ� in case 1, and Pc4 [Pc3] is assigned as the
Pcð4440Þ [Pcð4457Þ] in case 2; in both cases, Pc1 refers to
the Pcð4312Þ. From the above numerical results, one finds
that the partial widths of Pc3 and Pc4, i.e., Pcð4440Þ and
Pcð4457Þ, into the J=ψN are very different, and at least one

of them is much larger than that of the Pcð4312Þ. In the
measured J=ψp invariant mass distribution of the Λ0

b →
K−J=ψp decay [2], there are only three clear peaks corre-
sponding to the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ. The
ratio of branching fractionsBðΛ0

b→K−Pþ
c ÞBðPþ

c →J=ψpÞ=
BðΛ0

b→K−J=ψpÞ was measured to be 0.30þ0.35
−0.11 , 1.11

þ0.40
−0.34 ,

and 0.53þ0.22
−0.21 for Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ,

respectively, where the statistical and systematic errors in
Ref. [2] have been added in quadrature. Using the values

in Eq. (18), we obtain the ratios
BðΛ0

b→K−Pcð4457ÞþÞ
ΓðPcð4457ÞþÞ ∶

BðΛ0
b→K−Pcð4440ÞþÞ
ΓðPcð4440ÞþÞ ∶ BðΛ0

b→K−Pcð4312ÞþÞ
ΓðPcð4312ÞþÞ as

case 1∶ 1.5∶0.4∶1; case 2∶ 0.2∶1.9∶1; ð19Þ

where only the central values are shown. One sees that the
ratio of BðΛ0

b → K−Pþ
c Þ=ΓðPþ

c Þ can differ by 1 order of
magnitude in case 2.
The production mechanism of the Pc states from Λ0

b
decays in the hadronic molecular model is shown in Fig. 2.
Using the same arguments leading to Eq. (16), one gets the
factorization formula for the production rate as the product
of a short-distance part and a long-distance part. The long-
distance part is proportional to the square root of the
binding energy, as is that for the decay; see Eq. (16).
However, the short-distance part differs for different Pc
states even though some of them couple dominantly to the

same Σð�Þ
c D̄ð�Þ pair, as can be seen from the fact that

different partial waves are involved in the decays of the Λ0
b

into K− and Pþ
c with different spins. This makes it difficult

to relate the productions of different Pc states to each
another. For a model calculation of the Λb decays into the
three observed Pc states, see Ref. [40].
Moreover, one finds that the partial widths of the Pc3,

Pc5, and Pc6 are all much larger than that of Pc1, i.e.,
Pcð4312Þ. However, no visible Pc peaks around 4.50 to
4.52 GeV (the mass region of Pc5;c6 in both case 1 and
case 2) can be seen in the J=ψp invariant mass distribution.
This indicates that either the Pc5 and Pc6 states are much
more difficult to produce than the Pcð4312Þ or there are
other mechanisms for producing the observed three Pc
states. One possibility is that the observed peaking

FIG. 2. (Left panel) Production of the Pc from the Λb decay in

the hadronic molecular picture through intermediate D̄ð�ÞΣð�Þ
c

states. (Right panel) A possible quark-level diagram for the weak

decay Λ0
b → K−Σð�Þ

c D̄ð�Þ.
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structures are a result of an intricate interplay between the
D̄ð�ÞΣc hadronic molecules and the triangle singularities
discussed in Refs. [71–74] (see also the Appendix of
Ref. [2]), with the latter providing an enhancement at
around 4.45 GeV.

D. Decays into ηcN

The partial decay widths of Pci into ηcN (i ¼ 1, 3, 5)
normalized to the Pc1 → J=ψN partial width can also be
obtained in the same way. Letting r̃i ¼ Γ̃i=Γ1, with Γi and
Γ̃i in Eqs. (12) and (13), we get

case 1∶ r̃1 ¼ð2.9;2.9Þ; r̃3 ¼ð0.4;0.4Þ; r̃5¼ð9.8;10.3Þ;
ð20Þ

case 2∶ r̃1 ¼ð4.0;4.0Þ; r̃3 ¼ð2.4;2.5Þ; r̃5¼ð10.2;10.7Þ:
ð21Þ

One finds that the partial width of the Pcð4312Þ → ηcN is
larger than that of the J=ψN mode (see also Ref. [65]).8

In both cases, we expect significant peaks to appear around
4.3 GeV from Pcð4312Þ and around 4.5 GeV from a D̄�Σ�

c
molecule if the background is of the same order as in the
J=ψN case and the productions are similar. The ratio r̃3 is
smaller (larger) than 1 in case 1 (case 2) [recall that Pc3
refers to the Pcð4440Þ decay in case 1, and to the Pcð4457Þ
decay in case 2]. Thus, a search of hidden-charm penta-
quarks in the ηcN channel can shed light on the origin of the
Pc states.

IV. SUMMARY

We investigate in this paper the decays of the D̄ð�ÞΣð�Þ
c

molecular Pc states into the J=ψN and ηcN final states with
a setup respecting HQSS. We use the coupled-channel

(D̄ð�ÞΣð�Þ
c ) Lippmann-Schwinger equation, and the Pc states

are obtained as poles of the T-matrix. Following
Refs. [20,21], model parameters are fixed to reproduce
the peak positions of the Pcð4440Þ and the Pcð4457Þ, and
five additional states with binding energies ranging from a
few to about 20 MeV are obtained as a consequence of
HQSS [16,20,21]. Some of the seven poles may move into
a wrong Riemann sheet within a 25% uncertainty of the
low-energy constants accounting for the HQSS breaking
effects. Here, we stress that the poles of D̄Σc and D̄Σ�

c
molecules always exist in the correct Riemann sheet, and
one or two of three poles close to the D̄�Σ�

c threshold
remain as well. The lowest pole has a mass consistent with

that of the Pcð4312Þ, and it couples dominantly to the D̄Σc

with JP ¼ 1=2−. The Pcð4440Þ and Pcð4457Þ couple
dominantly to the D̄�Σc, and their quantum numbers are
1=2− and 3=2−. Two possible assignments of Pcð4440Þ and
Pcð4457Þ are considered as in Ref. [21]: in one case, the
spins of Pcð4440Þ and Pcð4457Þ are 1=2 and 3=2, respec-
tively, and in the other case, the ordering is reversed.
Among all seven Pc states, six (with JP ¼ 1=2−, 3=2−) can
decay into the J=ψN in an S-wave, and three (with
JP ¼ 1=2−) can decay into the ηcN in an S-wave. HQSS
allows us to predict parameter-free ratios of the partial
widths of these decays. It is found that five Pc states with
JP ¼ 1=2−, 3=2− decay into the J=ψN more easily than the
Pcð4312Þ, and the Pcð4312Þ decays into the ηcN with a
partial width 3 times that of the J=ψN mode. We find that
the partial widths into the J=ψN for the JP ¼ 1=2− D̄Σ�

c

molecule with a mass around 4.37 GeVand the JP ¼ 1=2−

and 3=2− D̄�Σ�
c molecules with masses in the range of 4.50

to 4.52 GeV are all larger than that for the Pcð4312Þ. The
nonobservation of any of them could be because they have
smaller production rates from the Λb decays, or because the
observed peaks receive contributions from other mecha-
nisms such as triangle singularities in addition to the
hidden-charm pentaquarks. In order to reveal the nature
of the observed pentaquark candidates, more measurements
and a detailed amplitude analysis considering both reso-
nances and kinematical singularities are called for. The
results in this paper provide useful input into the search for
more Pc states in the J=ψp and ηcp final states.
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APPENDIX: D̄ð�ÞΣð�Þ
c INTERACTION

The construction of interaction vertices by rearranging
the heavy quark and light quark spins respecting HQSS
using the 9j symbol is used in, e.g., Refs. [3,16,75]. In the
D̄ð�Þ meson, the heavy quark component has spin
sD̄

ð�Þ
H ¼ 1=2, and the light quark component has spin sD̄

ð�Þ
L ¼

1=2; in the Σð�Þ
c baryon, the heavy quark component has

8In the pioneering works predicting the existence of hidden-
charm pentaquarks [10,11], Wu et al. already noticed that the ΣcD̄
hadronic molecule decays more easily into the ηcN than into the
J=ψN. Since not all of the HQSS related channels were considered
therein, the predicted ratio differs a lot from our result.
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spin sΣ
ð�Þ
c

H ¼ 1=2, and the light quark component has spin

sΣ
ð�Þ
c

L ¼ 1. The D̄ð�ÞΣð�Þ
c system with spin J can be specified

with the spins of its constituents as

jD̄ð�ÞΣð�Þ
c iJ ¼

���sD̄ð�Þ
H ; sD̄

ð�Þ
L ; jD̄

ð�Þ
; sΣ

ð�Þ
c

H ; sΣ
ð�Þ
c

L ; jΣ
ð�Þ
c ; J

E
; ðA1Þ

where jD̄
ð�Þ

and jΣ
ð�Þ
c are the spins of the D̄ð�Þ and the Σð�Þ

c ,
respectively. Using the 9j symbol, this state can be rewritten
with a linear combination of the eigenstates of the spin of cc̄,
sH, and that of the light degrees of freedom, sL;

���sD̄ð�Þ
H ; sD̄

ð�Þ
L ; jD̄

ð�Þ
; sΣ

ð�Þ
c

H ; sΣ
ð�Þ
c

L ; jΣ
ð�Þ
c ; J

E

¼
X
sL;sH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2sL þ 1Þð2sH þ 1Þð2jD̄ð�Þ þ 1Þð2jΣð�Þ

c þ 1Þ
q

×

8>><
>>:

sD̄
ð�Þ

L sΣ
ð�Þ
c

L sL

sD̄
ð�Þ

H sΣ
ð�Þ
c

H sH

jD̄
ð�Þ

jΣ
ð�Þ
c J

9>>=
>>;
���sD̄ð�Þ

L ; sΣ
ð�Þ
c

L ; sL; sD̄
ð�Þ

H ; sΣ
ð�Þ
c

H ; sH; J
E
;

ðA2Þ

where f� � �g denotesWigner’s 9j symbol. Then, the D̄ð�ÞΣð�Þ
c

stateswith spin J ¼ 1=2, 3=2, and5=2 are expressed in terms
of the sH and sL eigenstates as follows:

jD̄Σci1=2 ¼
1

2
j1=2L; 0H; 1=2Ji −

1

2
ffiffiffi
3

p j1=2L; 1H; 1=2Ji

þ
ffiffiffi
2

3

r
j3=2L; 1H; 1=2Ji; ðA3Þ

jD̄Σ�
ci3=2 ¼

1

2
j3=2L; 0H; 3=2Ji −

1ffiffiffi
3

p j1=2L; 1H; 3=2Ji

þ 1

2

ffiffiffi
5

3

r
j3=2L; 1H; 3=2Ji; ðA4Þ

jD̄�Σci1=2 ¼ −
1

2
ffiffiffi
3

p j1=2L; 0H; 1=2Ji þ
5

6
j1=2L; 1H; 1=2Ji

þ
ffiffiffi
2

p

3
j3=2L; 1H; 1=2Ji; ðA5Þ

jD̄�Σci3=2 ¼ −
1ffiffiffi
3

p j3=2L; 0H; 3=2Ji þ
1

3
j1=2L; 1H; 3=2Ji

þ
ffiffiffi
5

p

3
j3=2L; 1H; 3=2Ji; ðA6Þ

jD̄�Σ�
ci1=2 ¼

ffiffiffi
2

3

r
j1=2L; 0H; 1=2Ji þ

ffiffiffi
2

p

3
j1=2L; 1H; 1=2Ji

−
1

3
j3=2L; 1H; 1=2Ji; ðA7Þ

jD̄�Σ�
ci3=2 ¼

1

2

ffiffiffi
5

3

r
j3=2L; 0H; 3=2Ji þ

ffiffiffi
5

p

3
j1=2L; 1H; 3=2Ji

þ 1

6
j3=2L; 1H; 3=2Ji; ðA8Þ

jD̄�Σ�
ci5=2 ¼ j3=2L; 1H; 5=2Ji: ðA9Þ

On the right-hand side of these equations, the trivial argu-

ments sD̄
ð�ÞðΣð�Þ

c Þ
LðHÞ are suppressed; i.e., only sL, sH, and J are

shown explicitly.
In the heavy quark limit, the spins of heavy quarks

decouple from the dynamics, and the interaction only
depends on the spin of light degrees of freedom sL (both
sL and sH are conserved). We can write the matrix element
hsL; sH; JjV intjs0L; s0H; J0i ¼ Cð2sLþ1Þ=2δJ;J0δsH;s0HδsL;s0L (now
we suppress the isospin index because we consider the I ¼
1=2 case only). With the substitution of C1 ¼ Ca − 2Cb
and C2 ¼ Ca þ Cb, one can obtain the transition amplitude

from channel X to X0 ðX;X0 ¼ D̄ð�ÞΣð�Þ
c Þ, vX;X0ðJÞ in Eq. (1),

as summarized in Table I.
Here, we note that the meson fields are normalized in the

nonrelativistic way, and the interaction v in Eq. (2) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2mXÞð2mX0 Þp
vX;X0ðJÞ with vX;X0ðJÞ in Eq. (1) (mX is the

meson mass in channel X). Then, Ca;b have a dimension
mass−2 and v has mass−1 in our calculation.
One can also start from the effective Lagrangian given in

Ref. [61],

L
D̄ð�ÞΣð�Þ

c ;D̄ð�ÞΣð�Þ
c

¼ −CaS⃗
†
c · S⃗cTr½H̄†

cH̄c�
− CbiϵjikðS†cÞjðScÞkTr½H̄†

cσiH̄c�; ðA10Þ

where σi (i ¼ 1, 2, 3) are the Pauli matrices, and S⃗c and H̄c

are the heavy quark spin doublets of ðΣc;Σ�
cÞ and ðD̄; D̄�Þ in

the two-component notation [76] (see, e.g., Refs. [77–79] for
the four-component notation),

S⃗c ¼
1ffiffiffi
3

p σ⃗Σc þ Σ⃗�
c; ðA11Þ

H̄c ¼
1ffiffiffi
2

p ð−D̄þ σ⃗ · ⃗D̄
�Þ: ðA12Þ

This Lagrangian, Eq. (A10), gives the D̄ð�ÞΣð�Þ
c S-wave

interaction which is the leading order of the momentum
expansion. The Ca and Cb terms come from the vector and
axial-vector currents.
To see the relationship to the coefficient obtained with

the 9j symbol, we perform a spin projection and average
over polarizations. Writing the amplitude of the X → X0

transition ðXð0Þ ¼ D̄Σc; D̄Σ�
c; D̄�Σc; D̄�Σ�

cÞ given by the

Lagrangian equation (A10) as tðλ
0s0;λsÞ

X0;X [sðs0Þ and λðλ0Þ
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denote the third components of the spins of the baryon and
meson in the initial (final) state, respectively], we give the
projection of the amplitude on spin J as

tðJjÞX0;X ¼
X

λ;λ0;s;s0
CðjD̄ð�Þ

X0 ; jΣ
ð�Þ

X0 ; J; λ0; s0; jÞ

× CðjD̄ð�Þ
X ; jΣ

ð�Þ
X ; J; λ; s; jÞtðλ0s0;λsÞX0;X ; ðA13Þ

where j is the third component of spin J, C is the Clebsch-

Gordan coefficient, and jD̄
ð�ÞðΣð�Þ

c Þ
Xð0Þ is the spin of D̄ð�ÞðΣð�Þ

c Þ in
the channel Xð0Þ. The polarization average of the amplitude
is given by

t̄ðJÞX0;X ¼ 1

2J þ 1

X
j

tðJjÞX0;X: ðA14Þ

This spin averaged amplitude provides the same result as
that obtained using the 9j symbol given by Eq. (1).
For the transition of D̄ð�ÞΣð�Þ

c into ηcN or J=ψN, we
provide the decomposition of the ηcN and J=ψN:

jηcNi1=2 ¼ j1=2L; 0H; 1=2Ji; ðA15Þ

jJ=ψNi1=2 ¼ j1=2L; 1H; 1=2Ji; ðA16Þ

jJ=ψNi3=2 ¼ j1=2L; 1H; 3=2Ji: ðA17Þ

The matrix element h1=2L;0Hð1HÞ;1=2JjV intj1=2L;0Hð1HÞ;
1=2Ji is denoted by the parameter g1 in Eqs. (5) and (7),
which is independent of sH.
The coefficients of the X → J=ψN and ηcN transitions,

hXðJÞ and h̃XðJÞ in Eqs. (5) and (8), can be obtained by using
the following effective Lagrangian respecting HQSS with
projection on spin and average over polarizations in the
same manner as in Eqs. (A13) and (A14):

L
D̄ð�ÞΣð�Þ

c ;J=ψN
¼ g1ffiffiffi

6
p N†σiH̄cJ†ðScÞi; ðA18Þ

where N denotes the nucleon field, and J ¼ −ηc þ σ⃗ · ψ⃗ is
a doublet composed of ηc and J=ψ [68,80].
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