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Hydrogen bond of QCD in doubly heavy baryons and tetraquarks
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In this paper we present in greater detail previous work on the Born-Oppenheimer approximation
to treat the hydrogen bond of QCD, and add a similar treatment of doubly heavy baryons. Doubly
heavy exotic resonances X and Z can be described as color molecules of two-quark lumps, the
analogue of the H, molecule, and doubly heavy baryons as the analog of the H; ion, except that the
two heavy quarks attract each other. We compare our results with constituent quark model and lattice QCD
calculations and find further evidence in support of this upgraded picture of compact tetraquarks and

baryons.
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I. INTRODUCTION

Systems with heavy and light particles allow for an
approximate treatment where the light and heavy degrees of
freedom are studied separately and solved one after the other.
This is the Born-Oppenheimer approximation (BO), intro-
duced in nonrelativistic quantum mechanics for molecules
and crystals, where electrons coexist with the much heavier
nuclei. We have recently reconsidered this method for the
QCD interactions of multiquark hadrons containing heavy
(charm or bottom) and light (up and down) quarks [1],
following earlier work in [2,3], and, for lattice calculations,
in [4].

In this paper, based on our previous communication [1],
we consider tetraquarks in terms of color molecules: lumps
of two-quark colored atoms (orbitals) held together by
color forces and treated in the BO approximation. The
variety of bound states described here identifies a new way
of looking at multiquark hadrons, as formed by the QCD
analog of the hydrogen bond of molecular physics.

We restrict to doubly heavy-light systems, namely the
doubly heavy baryons, gQQ, not considered in [1], the
hidden flavor tetraquarks QQqg (see [5-8] for a review),
and QQg g systems [9—13].

The plan of the paper is the following.
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Section II describes the Born-Oppenheimer approxima-
tion applied to a QCD double heavy hadron and gives the
two-body color couplings derived from the restriction that
the hadron is an overall color singlet. Section III recalls the
salient features of the constituent quark model and gives
quark masses and hyperfine couplings derived from the
mass spectra of the S-wave mesons and baryons. Section [V
introduces the string tension for confined systems and
discusses extensions beyond charmonium.

Sections V, VI, and VII illustrate the main calculations
and results for doubly heavy baryons, hidden heavy
flavor tetraquarks, and doubly heavy flavored tetraquarks,
respectively.

Results are summarized in Sec. VIII and conclusions
given in Sec. IX. Technical details are expanded in three
appendixes.

II. BORN-OPPENHEIMER APPROXIMATION
WITH QCD CONSTITUENT QUARKS

We consider doubly heavy systems with open or hidden
heavy flavor, and discuss the application of the BO
approximation along the lines used for the treatment of
the hydrogen molecule (see [14,15]).

We denote coordinates and mass of the heavy quarks by
x,,Xp, and M and those of the light quarks by x, x,, and m.
Coordinate symbols here include spin and color quantum
numbers, to be discussed later.

The Hamiltonian of the whole system is

1 1
H=—) P24+ — E 2
2M ! +2m 2 _Pi
eavy light

+ V(xa.xp) + Vi(x4.X5,%1,%,). (1)
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We have separated the heavy quark interaction V(x4,xp),
e.g., their Coulombic QCD interaction, from the general
interactions involving light-heavy and light-light quarks.

We start by solving the eigenvalue equation for the light
particles for fixed values of the coordinates of the heavy
ones

2
<Z§_’;1+ VI(anxB,xl,x2)> fa= ga(xA’xB)fm (2)

light

where

fa=fa(Xa,Xp,%1,X5), (3)

and focus on the lowest eigenvalue and eigenfunction,
which, dropping the subscript for simplicity of notation, we
denote by £ and f. Next, we look for solutions of the
eigenvalue equation of the complete Hamiltonian (1) of
the form

qj:l//(xA’xB)f(xAva7xl’x2)‘ (4)

When applying the Hamiltonian (1) to ¥ one encounters
terms of the kind

Pyg¥ = l//(xAva)ia f(xa.Xp,%1,%)
XA.B

0
" [i Ox4p W(xA’xB)} fleaxpx1, %), (5)

The Born-Oppenheimer approximation consists of neglect-
ing the first with respect to the second term in all such
instances so that, after factorizing f, we obtain the
Schrodinger equation of the heavy particles,

2
<22P];4+ VBO(xA7xB)>W:El// (6)

heavy
with the Born-Oppenheimer potential given by
VBo(*a,xp) = V(xa,xp) + E(x4.Xp). (7)

For QED in molecular physics, the parameter which
regulates the validity of the approximation is estimated

in [14] to be
1/4
= (%) : (8)

We apply the same method to our case as follows.
The ratio of the first (neglected) to the second (retained)
term in (5) is given approximately by

_1/a
=1 )

where a and b are the lengths over which f or y show an
appreciable variation.

The length a is simply the radius of the orbitals, which
we determine by minimizing the Schrédinger functional of
the light quark. As will be discussed below, we typically
find 1/a =A~0.3 GeV, ie., a~0.7 fm.

The length b has to be formed from the dimensional
quantities over which the Born-Oppenheimer equation (6)
depends. In the case of double heavy baryons and hidden
heavy flavor tetraquarks, Secs. V and VI, Eq. (6) depends
on 1/M, on a, and on the string tension k, which has
dimensions of GeV?2.

A quantity b with dimensions of length can be formed as

b= (MKA)~/4. (10)
Therefore
A = AY*(kM)™V4, (11)

which is 0.57 for charm and 0.43 for beauty, using
k = 0.15 GeV? and the constituent masses of charm and
beauty from the tables in the next section.

We note in Sec. VII that the Born-Oppenheimer potential
for double heavy tetraquarks does not depend on the string
tension, which is screened by gluons for color octet
orbitals. In this case, we get

b = (MA)~'/? (12)

and

()" -

giving 0.42 for charm and 0.24 for beauty. In the following,
for convenience we shall include quark masses in Vg, but
it is worth noticing that the error we are estimating is the
error on the binding energies, which turn out to be around
100 MeV or smaller in absolute value. So, the errors
corresponding to (11) and (13) may be in the order of
20-50 MeV.

We comment now about color. Treating heavy quark and/
or antiquark as external sources implies specifying their
combined SU(3), representation. Restriction to an overall
color singlet fixes completely the color composition of the
constituents.

Recall that the color coupling between any pair of
particles in color representation R is given by
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Ay
VC(r) = ﬂqlqz(R)T’

’Iqlqz(R) = % [C2(R) = Ca(q1) — Ca(q2)], (14)

where ¢q , are the irreducible representations of the particles
in the pair and C, are the quadratic Casimir operators.

We note the results: C,(1) =0; C,(R) = C,(R);
C>(3) =4/3; C,(6) =10/3; C,(8) = 3.

If the pair q,q, in the tetraquark T(q;q,q,q,) is in a
superposition of two SU(3), representations with ampli-
tudes a and b, we use

T =al(q:192)g,---)1 + bI(9192)r, - )15

Agrgs = @A 0, (RY) + b2y 4 (Ry). (15)

" Q1612(

The different cases are as follows.

Doubly charmed baryon: cc in 3.— In a color singlet
baryon, all pairs are in color 3, and the color couplings are
distributed according to

Aee = Ao = =2/3. (16)

Hidden flavor tetraquarks.—Color of the heavy particles
can be either 1 or 8. In the first case, the interaction between
QQ and ¢g pairs goes via the exchange of color singlets.
We are in a situation dominated by nuclearlike forces,
eventually leading to the formation of the hadrocharmo-
nium envisaged in [16]. We shall not consider QQ in color
singlet any further.

QQ in 8.—Suppressing coordinates

T = (04" 0)(g4'q) (17)

with the sum over A = 1, ..., 8 understood. If we restrict to
one-gluon exchange, Eq. (17) determines the interactions
between different pairs.

Both QQ and gg are in color octet, and we read their
coupling from Eq. (14). The couplings of the other pairs are
found using the Fierz rearrangement formulas for SU(3).. to
bring the desired pair in the same quark bilinear (see
Appendix B). We get in total

1
ACZ‘ :l,{qq - +6,
1
A’Cq :A'EZI = —g’
7
/10[1 :/15(] = _6 (18)

Substituting light and heavy quarks with electrons and
protons, respectively, we see that the pattern of repulsions
and attractions given by Eq. (18) is the same as that of the
hydrogen molecule.

Double beauty tetraquarks: bb in 3.—The lowest energy
state corresponds to bb in spin one and light antiquarks in
spin and isospin zero. The tetraquark state

T = |(bb)3,((‘121)3>1 (19)

can be Fierz transformed into

1

T =1/=1(gh)y, (@b);)1 —

3 (gb)s, (gb)g)1  (20)

o

with all attractive couplings

2

1
App = ﬂqq = —gas, ﬂbq = —gas- (21)

Double beauty tetraquarks: bb in 6.—We start from

T = |(bb)s. (3 9)g)1- (22)

a case also considered in [13]. We find

T= %Kéb)lv (b)) + \/;(‘_Ib)s’ (gb)s)1;  (23)

therefore

5

3

The situation is again analogous to the H, molecule, with
two identical, repelling light particles.

III. QUARK MASSES AND HYPERFINE
COUPLINGS FROM MESONS AND BARYONS

The constituent quark model, in its simplest incarnation,
describes the masses of mesons and baryons as due to the
masses of the quarks in the hadron, M;, with hyperfine
interactions added. The Hamiltonian is

H = Hmass + th’
= M
Hye = ZZKij(Si "8;), (25)

i<j

Hmass

where s is the constituent spin and H,; denotes the
hyperfine interaction term.

This picture gives a reasonable description of the masses
of uncharmed, single charm, and single beauty mesons,
with four well determined quark masses. It gives an equally
reasonable description of baryon masses, albeit with a set of
slightly different quark masses, as shown in Table I.

Values for «|[(cc),] are taken from the mass dif-
ferences of ortho- and para-quarkonia, e.g., x[(cc),] =
1/2(M;,, — M, ). Those for k[(cc);] and «[(bb);] are
obtained multiplying by the one-gluon exchange color
factor 1/2.
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TABLE 1. Constituent quark masses (MeV) from S-wave
mesons and baryons (see [6,8]) (¢ = u, d).

Quark flavors q S c b
Quark mass (MeV) from mesons 308 484 1667 5005
Quark mass (MeV) from baryons 362 540 1710 5044

A reasonable hypothesis, advanced in [17], is that the
difference of quark masses derived from mesons and
baryons is due to the different pattern of QCD interactions
in systems with two or three constituents, which should be
apparent even in the lowest order, one-gluon exchange
approximation. We shall follow this hypothesis. Since the
basic ingredient of the BO approximation are two-body
orbitals, we feel the natural choice is to take quark masses
from the meson spectrum and leave to the QCD interactions
between orbitals the task to compensate for the difference
of quark masses from mesons with those derived from
baryons in the naive constituent quark model.

IV. QUARK INTERACTION
AND STRING TENSION

The prototype of nonrelativistic quark interaction is the
so-called Cornell potential [18] introduced in connection
with the charmonium spectrum,

4
V(r) = —ga—: ke + Vo = Ve(r) + Vet (r) + Vo. (26)

The potential refers to the case of a heavy color triplet pair,
QOQ, in an overall color singlet state. V, is determined from
the mass spectrum. We shall generalize (26) to several
different cases.

The first term in (26) is obtained in the one-gluon
exchange approximation by (14). It is generalized to any
pair of colored particles in a color representation R
by Eq. (15).

The second term in (26), which dominates over the
Coulomb force at large separations, arises from quark
confinement. In the simplest picture, confinement is due
to the condensation of Coulomb lines of force into a string
that joins the quark and the antiquark. The linearly rising
term in (26) describes the force transmitted by the
string tension. In this picture, it is natural to assume that
the string tension, embodied by the coefficient k, scales
with the Coulomb coefficient

k

z (27)

49192 X ﬁhfh|'

For color charges combined in an overall color singlet, the
assumption leads to k o« C,(q), whence the name of
Casimir scaling; see [19] for an extensive discussion.
Casimir scaling would give a string tension that increases
with the dimensionality of color charges. However, QCD

gluons, unlike photons in QED, may screen color charges
by lowering the dimension of the color representation. The
simplest case is color 6 charge. Since 6 ® 8 O 3 the string
tension strength of a pair 6 ® 6 — 1 is reduced from 10/3
to 4/3, i.e., the string tension of 3 ® 3> 17[19].
Screening by an arbitrary number of gluons reduces
Casimir scaling of string tension to the simplest triality
scaling. One can see this through the following steps:

(1) Recall that a generic SU(3), charge is represented
by a tensor 12 [a.b,...=1, 2, 3 are SU(3),
indices], with n upper and m lower fully sym-
metrized indices, vanishing under the contraction
of an upper and a lower index [20]. Exchanging n
and m gives the complex conjugate representation,
which has the same Casimir, so that we may assume
n>m;t=(n—m)mod 3 =0, 1, 2 is the triality of
the representation.

(2) Saturating the tensor ¢ with gluon fields: ZZIIZAg RN
we reduce to tensors which have only n — m upper
indices.

(3) 8®8 510,10 as can be seen from the simple
composition of two (different) octets:

G{abc} = [(A)Z(A,>Ii€cd2]abc symmetrized € E (28)

(4) Saturating 7 with Gy,,.}, we reduce the upper indices
to those of the lowest triality representations, namely
(1,t=0); (3,t=1); (6,r=2), equivalent to!
(3,t=-1).

The upshot is that, for conjugate charges combined to a
singlet, we have only two possibilities for the string
tension:

(i) t =0 charges, e.g., 8 ® 8 — 1, have kK = 0 and are
not confined.

(i) t# 0 charges have k = k(3), equal to the charmo-
nium string tension.

For other cases, e.g., gQ, we adopt (27) and write

ag  3|Ag.0.]
Vqlqz(r) = (111127S+ Zlqz kr+v0’ (29)

where k is the string tension taken from the charmonium
spectrum.

In the numerical applications, we take ag and k at the
charmonium scale from the lattice calculation in [21]:

as(2M ) = 0.30, k=0.15 GeV2. (30)

At the B, meson and bottomonium mass scales we take the
same string tension and run ag with the two loops beta
function, to get

as(M.+ M) =024,  ag(2M,) =021. (31)

lIndeed, t= (n - m) mod 3 = (n — m) _ 3Ln;mj'
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V. THE DOUBLY CHARMED BARYON

The baryon E.. = gcc is analogous to the H; ion [15],
except that the two heavy quarks attract each other,
Eq. (16).

The interaction Hamiltonian is

1 1
a + . 32
S<|x—xA| |x—x3|> (32)

We consider the orbital made by cq, with ¢ located in x,.
The perturbation Hamiltonian that remains is

2 1
pert = —gasm- (33)
The cq orbital—As potential, we take the Coulombic
interaction from (32) and a linear term with the string
tension rescaled according to Eq. (29),

2“5 1
ch = —§7+§kr—|— V(). (34)

We assume a radial wave function R(r) of the form

3/2
R(r) = j—4_ﬂe-f" (35)

and determine A by minimizing the Schrédinger functional

(R(r). (g A+ V.~
(R(r).R(r))

We take quark masses from the meson spectrum, Table I, ag
and k from (30). We find A =0.32 GeV, (H) ,;, = 0.48 GeV.

We consider as unperturbed ground state the symmetric
superposition of the two orbitals with ¢ either attached to
¢(x4), which we denote by w(x), or attached to c¢(xp),
denoted by ¢(x):

_wx) + o) _ R(x —xa]) + R(|lx — xp])
M= pnrs T e

The denominator in (37) is needed to normalize f(x), and it
arises because yw and ¢ are not orthogonal (see
Appendix A) with the overlap S defined as (y and ¢ real)

Vo)R(r))

(H(A)) = (36)

S(rap) = / Pey(Ep(E) (38)

and ryp = x4 —xp|.
The energy corresponding to f(x) is given by the quark
constituent masses plus the energy of the orbital

EO = 2MC + Mq + <H>min + VO‘ (39)

Perturbation theory.—To first order in the perturbation
(33), the BO potential is given by

2 1
Vio(ras) = —gasa+Eo+AE(’”AB)y (40)

AE(rAB) = <f|Hpert|f>
20 1
:_TSH—S[Il(rAB)+12(rAB)]' (41)
I, , are functions of r,p defined in terms of y and ¢:

1
_ (42)
Xp

Hras) = [ @

1
|§—x3

where the vector € originates from A, taken in the origin,
and |x3| = T'AB-

Analytic expressions for S, I, ; are given in [15] for the
hydrogen wave functions. We evaluate them numerically
for the orbitals corresponding to the potential (34).

Boundary condition for r,z — 0.—The perturbation
Hamiltonian (33) embodies the interaction of the light
quark when the other charm quark is far from the orbital. If
we let 745 vanish, the charm pair reduces to a single 3
source generating the same interaction that g would see
inside a g¢ charmed meson. This is in essence the heavy
quark-diquark symmetry (see [22-24]).

The symmetry means that Ey+ AE(r,z), when we
subtract M, from it and let r,p — 0, has to reproduce
the spin independent mass of a D meson, which, by
definition, is M. + M. In formulas

I(rag) = / PEr(EPE) L W

Eo+AE0) =M. =M, + M, + Vo + (H)pin + AE(0)
=M. +M,. (44)

The condition determines the value of the a priori
unknown V),

Vo + (H) iy + AE(0) =0 (45)
and
2 1
Veo(rag) = —3% + AE(rsp) + C,
T'AB
C =2M, + M, — AE(0). (46)

Numerically, we find from (41)

AE(0) = —65 MeV. (47)
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The cq orbital is confined.—The interactions embodied
in Eq. (46) originate from one gluon exchange and vanish at
large separations. However, the orbital cq and the external ¢
quark carry 3 and 3 colors combined to a color singlet and
are confined. To take this into account we add a linearly
rising term to the BO potential in (46), determined by the
string tension k of charmonium (see Sec. IV) and the onset
point, Ry. The complete Born-Oppenheimer potential reads

Vtot(r) = VBO(r) + Vconf(r)’ (48)
Vconf(r) =kx (r - RO) X Q(r - RO) (49)
with Ry, > 2A~'. For orientation, we start with R~

8 GeV~! ~ 1.6 fm, where we may assume that ¢ sees
the orbital as a point source and study the results for
different values of R,.

The Schrodinger equation for the charm pair with
potential V(r) = Vi, (r) — C is solved numerically [25].
Results are reported in Fig. 1. For Ry, = 8 GeV~!, we plot
V(r), the radial wave function y(r), and the lowest
eigenvalue £ = —0.041 GeV. The average distance of
the charm pair is ~0.9 fm. The eigenvalue has an appreci-
able dependence from R,. We find

E=—417)" MeV for Ry =842 GeV~'. (50)

The contribution of hyperfine interactions to the J = 1/2%

e 18
_ 1
th(':‘CC) = _2ch +§KCC = —16 MeV (51)

with the numerical value from Table II. Finally

1
M(E. ), =2M. + M, — AE(0) + E — 2k, + ke (52)

2

leading to

M(E.. ), = 3655717 MeV (53)

—cc)Th — -7
05,' )((;) (a) ' [qcc]' 05' x(;> (b) ' [scc]' 1
0. 0.
E E
-0.5- -0.5|
o v <ra>=0.86 fm ot v <rw>=087 fm |
155 3 10 s 5% 3 10 15
r(Gevl) r(Gev)

FIG. 1. Born-Oppenheimer potential + confinement in the

(a) gcc and (b) scc baryons. Eigenfunction y(r) = rR(r) and
eigenvalue E in the fundamental state are shown. Here and in
the following, on the y axes energies are in GeV and y in
arbitrary units.

TABLE II.  S-wave mesons and baryons: spin-spin interactions
of the lightest quarks with the heavier flavors [6,8]. For the hf
couplings of c¢, cc, and similar ones for b quarks see text.

Mesons (9q), (g5); (q2); (sT); (qE)1 (c2), (bE)l
k MeV) 318 200 70 72 23 56 30
Baryons  (qq); (gs); (qc)5 (sc)5 (gb)s (cc)s (bb)y

kK (MeV) 98 59 15 50 25 28" 15
Ratio ig"ﬁ 32 3.4 4.7 1.6 9.2 X

a0.51<[(CE_) "
°0.5k[(bb),].

to be compared with the LHCb value [26]
M(Ecc)Expt =3621.2 £0.7 MeV. (54)

We do not attempt to give an overall theoretical error to
the result in Sec. (53), which cannot be less than =30 MeV.

It is interesting to compare our calculation with the
calculation presented in [17]. These authors obtain the c¢
binding energy from charmonium using quark masses from
the meson spectrum (particle names denote their masses in
MeV)

Bee = (nc+30/y) = 2M, = =271, (55)
where the first term is charmonium mass subtracted of its
hyperfine interaction. The cc binding energy is obtained by
multiplication of the color factor 1/2, and the result is used
as the binding energy of the cc quarks in E.., to be
subtracted from cc quark mass derived from the baryon
spectrum. Adding hyperfine interactions, they obtain [17]

B.. = 3628 + 12. (56)

The consistency of results derived by two alternative
routes with themselves and with the experimental value is
worth noticing.

Q..—Replacing the light quark mass with the strange
quark mass in (36) and inserting the appropriate hyperfine
couplings, we obtain the mass of the strange-doubly
charmed baryon, [scc], denoted by Q...

Mass of cb and bb baryons.—With similar methods we
may compute M[E.], M[E.] (see Appendix C), and
MIE,).

Comparisons.—Our results are summarized in Table III,
fourth column, and compared to the results in Refs. [17,27],
reported in the fifth column. We differ for bc and bb by 50
and 150 MeV, which perhaps points to a significant
discrepancy.

Predictions of the masses of doubly heavy baryons, based
on different methods, have appeared earlier in the literature
[30—42]. Numerical values are summarized in [17] and
spread in a typical range of 100-200 MeV around our values.
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TABLE III.  Our results on doubly heavy baryon masses, fourth
column, compared to quark model and lattice QCD results, fifth
and sixth columns. E — A E represents the correction to the
constituent quark mass formula, with quark masses taken from
meson spectrum.

—AE(0) E  M[Ey| (17,27 [28,29]
B.  +65  —41 3656 3628412  3634(20)
Q. +75 44 3769 3692416 3712(11)(12)
B, 450 =37 6961 6920413  6945(22)(14)
B, 450 =37 6993 6935+ 12 6966(23)(14)
B, 444 =53 10311 10162+ 12

The results of recent lattice QCD calculations [28,29] are
reported in the last column. Reference [29] reviews the
results of today’s available lattice calculations for doubly
heavy baryons.

Experimental results are eagerly awaited.

VI. HIDDEN HEAVY FLAVOR

We consider the hidden heavy flavor case, specializing to
the hidden charm and following closely the approach to the
H, molecule in [15] (see Appendix A).

With c¢ and gg taken in color 8 representation, Eq. (17),
we describe the unperturbed state as the product of two
orbitals, bound states of one heavy and one light particle
around x4 or xp, and treat the interactions not included in
the orbitals as perturbations.

Two subcases are allowed: (i) cq and ¢ g or (ii)) cg
and cq.

The cq orbital—We take the Coulombic interaction

given by 4., in (18) and rescale the string tension from the
charmomum one, according to Eq. (29): thus®
la S 1
ch = —§7+Zkr+‘/0 (57)

As the previous case, we assume an exponential form for
radial wave function R(r),

A3/2

Vi

and determine A by minimizing the Schrédinger functional
(36) for the potential (57), with quark masses from the
meson spectrum, Table I, and parameters of the potential
from (30). We find A = 0.27 GeV, (H),,;, = 0.30 GeV.
The wave function of the two noninteracting orbitals is

w(1)$(2)

R(r) e, (58)

f(1,2) = = R(|x; —xa)R(Jx2 —x5]). (59)

In our previous analysis [1], string tension 1/4k was
considered as an alternative possibility to string tension k.

Unlike the H, case, light particles are not identical and the
unperturbed ground state is nondegenerate.
The energy of f(1,2) is given by

Ey=2(M,+ M, + (H)yn + Vo). (60)

Perturbation theory.—The perturbation Hamiltonian of
this case is

o 7 1 4 1
=——a
pert 6° ey —xp| | —x,]

+1 1
—Qg——.
6 " |x; —x,]

(61)
To first order in H ., Eq. (61), the BO potential is

1 1
:+*(157+E0+AE(I”AB), (62)

VBO(rAB) 6" r1g

where ryp = |x4 —xp|.
AE = (f|Hen|f) evaluates to

7 1
AE = _gaSZIl (rag) + EaSI4(rAB) (63)
in terms of the function /7, Eq. (42), and

L(rag) = / PePrlp (@ PIPmPE—— . (64)

1
& -
where the vector € originates from A, taken in the origin,
and |xB| = T'AB-

cq orbitals are confined—The orbitals cq and ¢ g carry
nonvanishing color and are confined. Similar to Sec. V, we
add a linearly rising term to the BO potential in (63),
determined by a string tension k7 and the onset point Ry.
The complete Born-Oppenheimer potential reads

V(r) = VBO(r) + Vconf(r)’
Vconf(r) = kT X (}" - RO) X 9(}" - RO)' (65)

For orientation, we choose R, = 10 GeV~!, greater than
2471 ~ 7.4 GeV~!, where the two orbitals start to separate.
In principle, R, should be considered a free parameter, to be
fixed on the phenomenology of the tetraquark, as we
discuss below.

As for k7, we note that the tetraquark 7' = |(¢¢)g(gq)g)1
can be written as

7= \/3a)s(@a); \/|cq @) (66)

At large distances the diquark-antidiquark system is a
superposition of 3®3 —1 and 6 ® 6 — 1. Equation (66)
and the hypothesis of strict Casimir scaling of k7 would give
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T T 0.7F
08 (a)

0.6 0.5F V)

r(Gev) r(Gev)

FIG. 2. (a) Dominant c¢g and cq attraction + confinement;
(b) dominant gg repulsion + confinement, letting +1/6ag ~
0.05 — 3.3 in Eq. (18). Eigenfunction y(r) = rR(r) and eigen-
value E of the tetraquark in the fundamental state are shown.
Diquarks are separated by a potential barrier, and there are two
different lengths: R, ~ 0.4 fm and the total radius R ~ 1.5 fm, as
in [43].

ky = @ + % giEng = 1.5k. (67)

However, as discussed in [19] and in Sec. IV, gluon screening
gives the 6 diquark acomponent over the 3 bringing k; closer
to k. For simplicity, we adopt k; = k.

The potential V(r) computed on the basis of Eq. (65) is
given in Fig. 2(a). Also reported are the wave function and
the eigenvalue obtained by solving numerically the radial
Schrodinger equation [25].

As is customary for a confined system such as charmo-
nia, we fix V, to reproduce the mass of the tetraquark, so
the eigenvalue is not interesting. However, the eigenfunc-
tion gives us information on the internal configuration of
the tetraquark. In Fig. 2(a), with one-gluon exchange
couplings, a configuration with ¢ close to ¢ and the light
quarks around is obtained, much like the quarkonium
adjoint meson described in [2].

Figure 2(b) is obtained by increasing the repulsion in the
qq interaction associated with the function 14, letting
1/6ag = 0.05 — 3.3. The corresponding c¢ wave function
clearly displays the separation of the diquark from the
antidiquark suggested in [43] and further considered
in [44].

The presence of a barrier that ¢ has to overcome to reach
¢, apparent in Fig. 2(b), explains the suppression of the
J/w + p/w decay modes of X(3872), otherwise favored
by phase space with respect to the DD* modes. With
the parameters in Fig. 2(b), we find |R(0)|*> = 1.6 x 1073
with respect to |R(0)|?> = 1.9 x 1072 with the perturbative
parameters of Fig. 2(a).

The tetraquark picture of X(3872) and the related
Z(3900) and Z(4020) have been originally formulated in
terms of pure 3 ® 3 diquark-antidiquark states [6,7,43].
The 6 ® 6 component in (66) results in the opposite sign of
the gg hyperfine interactions vs the dominant cq and ¢ g
one, and it could be the reason why X(3872) is lighter
than Z(3900).

The cg orbital.—One obtains the new orbital by replac-
ing —1/3ag — —7/6ag in Eq. (57) and string tension

k(cg) = = k. (68)

Correspondingly A = 0.40 GeV, (H),,i, = 0.66 GeV. The
perturbation Hamiltonian appropriate to this case is

" 1 ( 1 n 1 >+1 1
pert 3 ey —xp| ey — x4 6 " |x; —x,|

(69)
and
1 1
Vo = +zas—+ Eo+ AE(rap) (70)
6 r'AB
with
1 1
AE = —5(152]1 +ga514. (71)

The tetraquark state is

- \/§|<(—;q>l<q6>l>l - leas@n. (1)

At large |x, —xp| the lowest energy state (two color
singlet mesons) has to prevail, as concluded in Sec. IV on
the basis of the triality scaling due to gluon screening of
octet charges. Therefore there is no confining potential to
be added to the BO potential in (70).

Boundary condition for rup — co.—For ryp — oo,
Veo = (H)min + Vo. Including constituent quark masses,
the energy of the state at r4p = 0o is E, = 2(M, + M, +
(H)min + Vo) and it must coincide with the mass of a pair
of noninteracting charmed mesons, with spin-spin inter-
action subtracted. Therefore we impose

<H>min +Vy=0. (73)

A minimum of the BO potential is not guaranteed. If there
is such a minimum, as in Fig. 3(a), it would correspond to a

06
(a) (b)

0.5F

0.3

0.2 X()
0.1 04p

03

0.1

Vi) 0af Vo)
0.2
03 5 10 15 20 25 30 5 01 2 4 6
r(Gev) r(Gev!)
FIG. 3. Born-Oppenheimer potential V(r) vs Rup for cg

orbitals. Unit length: GeV~! ~ 0.2 fm. (a) Using the perturbative
parameters; (b) with repulsion enhanced.
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configuration similar to the quarkonium adjoint meson in
Fig. 2(a).

If repulsion is increased above the perturbative value,
e.g., changing +1/6ag ~ 0.05 to a coupling > 1 in analogy
with Fig. 2(b), the BO potential has no minimum at all,
Fig. 3(b).

VII. DOUBLE BEAUTY TETRAQUARKS

We consider bb tetraquarks, analyzing in turn the two
options for the total color of the bb pair.

bb in 3. We recall from Sec. II that the lowest energy
state corresponds to bb in spin one and light antiquarks
in spin and isospin zero. The tetraquark state is 7 =
|(bb)3. (g q)s);, whence one derives the attractive color
couplings reported in (21) and

k(bg) = %k. (74)

There is only one possible orbital, namely bg, but the
unperturbed state now is the superposition of two states
with the roles of g; and g, interchanged, such as electrons
in the H, molecule (see Appendix A),

1,2) = w(Dg(2) + o(Dy(2)
’ I

f( (75)

The denominator needed to normalize f(1,2) includes the
overlap function S defined in (38).
The perturbation Hamiltonian is

H 1 1 . 1 2 1
=——a ——g——————
pert 377 ey —xp| |, — x4 3 S|x1—x2|
(76)

and
2 1
Veo(rag) = 2((H)min + Vo) 3%, —+ AE,  (77)
T'AB
where AE = (f|H ex|f) evaluates to

1 1 2
E— T [—30@2(11 + SI,) —505(14 +1g)|. (78)

I, 54 were defined previously, whereas [15]

b
E—n|

For the orbital bg we find A=0.26GeV,(H),;,=0.32GeV.

The BO potential, wave function, and eigenvalue for the
bb pair in color 3 and the one-gluon exchange couplings
are reported in Fig. 4. There is a bound tetraquark with a

Is(rap) = / Py ()b n)p(n) (79)

0.6 [bb]

cc
X® fec]

0.5 X(r)
04

0.2 0.0}

0.0

-0.5¢

02
V@)

04 Vi) -Lof

-0.6

[N S S R R SR S A 3 10 15

r(GevV") r(Gev)

FIG. 4. Left panel: BO potential, eigenfunction, and eigenvalue
(bb)3q g tetraquark. Right panel: Same for (cc)3g g.

tight bb diquark, of the kind expected in the constituent
quark model [10,11,13].

The BO potential in the origin is Coulomb-like, and it
tends to zero, for large r,p, due to (73). The (negative)
eigenvalue E of the Schrodinger equation is the binding
energy associated with the BO potential. The masses of the
lowest tetraquark with (bb)g_,,(gg)s_y. and of the B
mesons are

1 3
M(T):2(Mh +Mq)+E+§Kbb_§qu’ (80)
3
M(B):Mb +Mq_§KbZ]- (81)

The hyperfine interactions are taken from Table II,
and E = —67 MeV is the eigenvalue shown in Fig. 4(a)
with a,(2M,,) = 0.20.

The Q value for the decay 7' — 2B + y is then

1 3
be = E+§Kbb —Equ + 3Kb(? = —138(—156) MeV

(82)

for the string tension (74) (in parentheses with string
tension k).

Results for Q..,. are reported in Table IV using the
values of ag in (31).

Equation (82) underscores the result obtained by Eichten
and Quigg [11] that the Q value goes to a negative constant
limit for My — o0: Q = —150 MeV + O(1/M,).

Double beauty tetraquarks: bb in 6.—Color charges are
given in (24) and

k(bg) = %k. (83)

The situation is entirely analogous to the H, molecule, with
two identical, repelling light particles. For the orbital bg,
we find A = 0.43 GeV and (H),,;, = 0.72 GeV. The BO
potential with the one-gluon exchange parameters admits
a very shallow bound state with £ = —30 MeV, quantum
numbers: (bb)gs_o and (§§)gs—o—1» J'¢=07", and
charges -2, —1, 0.
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TABLEIV. Q values in MeV for decays into meson + meson + y obtained with string tension 1/4k in Eq. (57), in
parentheses with string tension k. Models in [10,11,13] are different elaborations of the constituent quark model we
use throughout this paper, and more details are found in the original references. In the last column are the lattice

QCD results [45-48].

00'ud This work [10] [11] [13] Lattice QCD
ccid +7(=10) +140 4102 +39 —23 + 11 [45]
chiud —60(=74) ~0 +83 —108 +8 423 [46]
bbud —138(=156)  —170  —121 75 —143 434 [45] —143(1)(3) [47]—82 +24 + 10 [48]

As shown in Fig. 5, the potential is so shallow as to raise
doubts whether a bound tetraquark will indeed result. We
register nonetheless the Q value for the decay T — BB. For
the string tension (83) we find

3 3
th = E—EK‘M, —EK'qq + 31(';7@ = —131(—133) MCV,

(84)

in parentheses the result with string tension k.

VIII. SUMMARY OF RESULTS

The present paper gives an extensive discussion of
doubly heavy hadrons, baryons, and tetraquarks, within
the BO approximation. The paper is an expansion of the
shorter communication [1], with the discussion of doubly
heavy baryons added, a case where we can compare
directly theory to experimental results [26].

In analogy with the QED treatment [15] of the H; ion
(the analog of a doubly heavy baryon) and the H, molecule
(analog of a doubly heavy tetraquark), we start our
discussion from orbitals: two-body, heavy-light, quark-
quark, or quark-antiquark lumps held together by the
QCD Coulomb-like interaction plus a linear confining term
with the appropriate string tension.

The wave functions of the orbitals, obtained from the
two-body Schrodinger equation, are taken as zeroth order
approximation of the light constituents wave function
inside the hadron. QCD Coulomb-like interactions with
the other constituents of the light quarks or antiquarks

0.7

0.6
05E
04f
03
028
0.1f
0.0

-0.1

5 10 15 20
r (Gev1)

FIG. 5.
channel.

A shallow bound state might be present in the color 6

inside the orbitals are treated as perturbations, to obtain the
first order BO potential that goes into the Schrodinger
equation of the heavy constituents.

The non-Abelian nature of QCD produces a number of
peculiarities. Given that the hadron is a color singlet and
given the representation of the heavy constituents, one can
deduce, for each pair, the coefficient of the Coulomb-like
interaction and the strength of the string tension. The pair
forming an orbital, except for the case of the baryon, is
general in a superposition of color representations with the
same triality, e.g., 3 and 6. Orbitals with nonvanishing
triality have to be confined, and we add to the BO potential
the appropriate linearly rising potential. Triality zero
orbitals are not confined, as discussed in Sec. IV and
in [19], and the BO potential vanishes for large separation
of the heavy constituents.

A feature of the QCD Cornell potential, Sec. IV, is that it
contains an additive constant V| that in charmonium
physics is determined from one physical mass of the
spectrum. We are able to determine V, (i) in the baryon
case from a boundary condition related to the heavy quark-
diquark symmetry [22-24], Sec. V, and (ii) in QQggq
tetraquarks from the condition that, at infinity, the potential
gives rise to a meson-meson* pair, Sec. VII. For these
reasons, we get in these two cases an absolute prediction of
their mass, which can be compared with the experimental
value in the case of E,., and which allows us to judge the
stability of bbg g against strong or electromagnetic decays
into DB* or DB + .

On the other hand, V, remains undetermined for 0Qgg
tetraquarks and orbitals with nonvanishing triality and the
hadron mass cannot be predicted, at least for the ground
state. However, the QQ wave function provides interesting
information on the tetraquark internal structure, with
significant phenomenological implications.

We now summarize the results of Secs. V-VII

Doubly heavy baryon.—OQur results are summarized in
Table I1, fourth column. We find M (2, ), =3652"1" MeV
to be compared with the LHCb value [26] M(E,.)gyy =
3621.2 £ 0.7 MeV. The difference is within the theoretical
uncertainty of our approach [see Eq. (11)]. For the heavier
baryons, our results differ from the results in Refs. [17,27]
by 50 and 150 MeV for bc and bb baryons, respectively.
Recent lattice QCD results [28,29], where available, are
intermediate between us and [17,27] (see Table III).
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Overall, the general consistency of results derived by
alternative routes with themselves and with the experimen-
tal value is very encouraging. Experimental results on
heavier baryons will allow a more significant comparison
and are eagerly awaited.

Hidden charm tetraquark: c¢q orbitals.—The interaction
between the light quarks, ¢ and g is repulsive. Combined
with the existence of a raising confining potential between
the orbitals, this leads to envisage two regimes, exemplified
in Figs. 2(a) and 2(b).

For the low value of the repulsive coupling, +1/6ag ~
0.05, implied by one gluon exchange, the equilibrium
configuration obtains for ¢ and ¢ relatively close to each
other, in a quarkonium adjoint meson configuration [2,3];
see Fig. 2(a).

Increasing the repulsion, orbitals are split apart and
equilibrium obtains for a diquark-antidiquark configuration,
Fig. 2(b), with well separated diquarks. As an example,
letting +1/6as ~0.05 — 3.3 in Eq. (18), diquarks are
separated by a potential barrier and there are two different
lengths: the diquark radius R ~ 0.4 fm and the total radius
R ~ 1.5 fm. A dominant, nonperturbative gg repulsion plus
confinement gives the dynamical basis to the emergence of
the repulsive barrier between diquarks and antidiquarks
suggested in [43]. The need to tunnel under the barrier
explains why decays into charmonia occur at a lower rate
with respect to decays into open charm mesons, as observed
in X and Z resonances. Diquark-antidiquark separation
may also be the reason why charged partners of the X have
not (yet) been observed and there is an almost degenerate
doublet of X9 , neutral states [43,44].

Hidden charm tetraquark: ¢q orbitals.—The BO poten-
tial goes to +oco at zero separation, due to cc repulsion, and
it vanishes at infinity, due to the zero triality of orbitals. The
existence of a minimum is not guaranteed. The situation is
shown in Figs. 3(a) and 3(b). For the one gluon exchange
parameters, there is indeed one minimum, Fig. 3(a), and a
second tetraquark, in the quarkonium adjoint meson
configuration.

If the ¢g repulsion is increased, letting e.g., +1/6ag ~
0.05 to a value > 1, there is no minimum, Fig. 3(b). The
lack of a second resonance with the same features of,
but well separated from, X(3872) would speak in favor
of Figs. 2(b) and 3(b) supporting the enhancement of gg
repulsion.

Double heavy tetraquarks: (QQ)z.—Our results for the
Q value of the lowest [bb] tetraquark against decays into
DB* + y are shown in Table IV and found to compare well
with previous estimates done with quark model,
Refs. [10,11,13], and, remarkably, with lattice QCD results
[45-48], where available.

Given the error estimate following Eq. (13), we support
the proposal that the lowest [bb] and perhaps [bc] tetra-
quarks may be stable against strong and electromagnetic
decays [10,11]; see also [49,50].

Double heavy tetraquarks: (QQ)s—The Vg potential
for bb has a repulsive behavior at the origin, and it vanishes
at large separations with a very shallow minimum.

The binding energy E = —30 MeV is at the limit of our
visibility. If it exists, the bound state would make a second
bb tetraquark, possibly stable. Its existence needs con-
firmation by lattice QCD calculations.

IX. CONCLUSIONS

The BO approximation gives a new insight on the multi-
quark hadron structure and provides new opportunities for
theoretical progress in the field of exotic resonances.

The restriction to a perturbative treatment followed here
is, at the moment, a necessity for any analytical approach.
Nonetheless, the consistency of the results we have found
for doubly heavy baryons and doubly heavy tetraquarks
with lattice QCD calculations seems to show that the
perturbative approach is sufficiently robust (as it was for
the hydrogen ion and molecule) to provide useful, quanti-
tative indications.

A critical case, where nonperturbative calculations are
called for, is in the QQqg tetraquarks. As we have shown
here, the strength of gg repulsion is the critical parameter
to determine the internal configuration of the tetraquark,
from a quarkonium adjoint meson to a diquark-antidiquark
configuration. The latter configuration is indicated by the
pattern of decay modes of X(3872) and is compatible with
the existence of charged partners of the X(3872) not to be
observed in open charm decays but only in final states
containing charmonia, X* — p*J/w. The B meson may
have a smaller branching fraction than expected for decays
that involve the charged X, and this requires some dedi-
cated experimental effort to go beyond the bounds which
have been set years ago.

Nonperturbative investigations along these lines should
be provided by lattice QCD, following the growing interest
shown for doubly heavy tetraquarks.
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APPENDIX A: QED ORBITALS
AND MOLECULES

We review here the Born-Oppenheimer approximation
for the hydrogen molecule and sketch the perturbative
method starting from the hydrogen orbitals [15] which
provides the basis of our treatment of heavy-light tetra-
quarks in QCD.

The Hamiltonian of two protons in x, and xp and two
electrons in x; and x, is
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P? p2 1
H=Y g+ S v )
~2M Z;Zm lx, —xp|

B 1
1 1
—a( + +(1 <—>2)>
a — x| g —xs
1
ta————=Hpp+Hp+Hpy+Hpr, (Al
ey — x5
where
2 1
HA ! (X( )
b A.B 2M |xA_xB|
2 1
Hy :ﬂ—ai,
’ 2m |xA — X
Hp, = same with: A — B, 1 — 2,
1 1
Hper = —a + +a—. (A2)
s = x| g —x] X — x;|

We denote by y(x) the lowest energy eigenfunction of
H, and by ¢(x) the similar eigenfunction of Hp,, both
being real functions. Since they belong to two different
Hamiltonians, y(x) and ¢(x) are not orthogonal, and we
denote by S the overlap function

S(ras) = [ dxu(x) (A3)
with r4p = x4 —xp|. w and ¢ are usually called the
orbitals of the H, molecule. Neglecting H,., there are
two degenerate lowest energy eigenstates, namely
w(x1)p(x,) and w(x,)p(x;), which may be combined in
the symmetric or antisymmetric combinations. When H .,
is turned on, the antisymmetric combination turns out to

have a higher energy and we restrict to the symmetric
combination (y and ¢ normalized to unity)

w(x1)p(x2) +w(xy)p(x;)
2(1+ 57

Jo= (A4)

with energy
Ey=2Ey = —a’m, (AS5)

i.e., twice the hydrogen ground level. Electrons being
fermions, the symmetric combination (A4) is associated
with electron spins in the singlet combination, S = 0.

To first order in H ., we find [15]

E = Ey+ AE(rap).
AE = <f0|Hpert|f0>

=% [=2(1, + SL) + I, + I).

(1+5?%) (46)

I, to I as functions of r,p are defined as

1
I —/d3xw(x)2|xT_x|;
1
L= Pxy(h(x)
L= [ @07

(A7)

1
I = [ Exaxip@pWlwe)s0),
with r = |x —y|. Explicit expressions of the integrals are
given in [15].
The Born-Oppenheimer potential is

1
Vio(rap) = +a———a’m + AE(ryp).
'AB

(A8)

The potential diverges to oo for ryz — 0 and tends to
—a?m (the energy of two hydrogen atoms) for 45 — co. A
numerical evaluation of the previous formulas shows that
the potential has one minimum for

min ™~ 1.5(am)_1 =0.79 A(076 A),
[VBO)min ~ 0.23Ey = 3.1 eV(4.4 eV),

which compare favorably with the experimental numbers
given in parentheses.

Computed along the same lines, the BO potential for the
antisymmetric combination (and electrons in the triplet
state) shows no minimum.

APPENDIX B: FIERZ IDENTITIES
The basic Fierz identity, in SU(3),, reads

1 1

5aby = 3 5300 + 3 (A543, (B1)
where from we derive
5, — 8% = — 283 + - (VLN (B2)
atp pla 3 pra 2 Y/ a’
4 1
Gl + 8 = + 30400 +5 (W40 (B3)

Saturating with the products ¢*0”Q,g;, we obtain the
identities
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(09)(30Q) - (00)(39)
( 0)(39) (04" 0)(g1"q)
+2v2 o

W

x (09)(7Q) + (20)(79)
4(00)(@9) |, 5 ( /V‘Q)(qﬂ/‘ )

and factors in the denominators are introduced to have
quadrilinear forms normalized to unity.’
In terms of normalized kets, we have

(Q9)3(09)3), :—I(QQ) (@9)ih

* Proou
(09)6(07)5)1 = \/;|(QQ)1(QQ)1>1

The combination with QQ in pure octet is therefore

T =(00)s(q9)s)1

_ \/§|<Qq>3<é D91 -5 (00 2)0),

+%|<Qg>s<qq>s>1-

so that

2 2 11 1
AQq = /IQ(} = |:§ <—§> +§§:| g = —gag. (B4)

Saturating (B2) and (B3) with the combination:
0°¢" 0,45, we express the diquark-antidiquark states in
terms of the bilinears with the pairs Qg and §Q and finally
express the latter in terms of the state 7

_ \/§|(Qq)1(QQ)1>1 -5 0aa0))  (B)

and

APPENDIX C: MASS AND MIXING
OF E,, AND Z/,

For identical cc or bb flavors, color antisymmetry and
Fermi statistics require the pair to be in spin 1, and there is

*For an expression of the form 7' ® T’ with T and 7’ matrices
in color space, we require Tr(TT") = Tr(T'T'") = 1. If we have a
sum >, T4 ® T"",A = 1, ..., N, with each term normalized to
unity, we divide by an additional factor V/N.

only one state for total spin J = 1/2. In the case of ¢b, there
are two states with / = 1/2 and S, = 0, 1. It is customary
to classify the states according to the spin of the lighter
quarks, namely

[Eeslo

where the subscript 0 on brackets refers to states before
mixing and the subscript 0,1 inside kets refers to the total
spin of the lighter pair.

The hyperfine Hamiltonian is

[Eeplo = |(qc)0;b>1/2, = |<C]C)1§b>1/2v (C1)

th = 2ch(sq SC> + 2qu(s ) + 2K6b( Sb) (C2)

and to compute the matrix elements we need to know what
is the spin if the gb and cb pairs in the states (C1); see
e.g., [8].

An elementary calculation gives (we drop for simplicity
the subscript cb)

V3

2 = *Cll(ab)iclia) +31(ab)oe)

V3 I
= —7‘[(Cb)1“]1/2> _§|(Cb)0”>’

= = —2il(abhel, )+ (bl

= +%\[(cb)1q]1/2> —gKCb)oCI)- (C3)

Scalar products (s; -§;) commute with the total spin S;
and we find

lj’

- _ 3 _ _ 1
<':‘O|Sq'sc|:‘0> = _5’ <‘:6|Sq *S¢ *56> :+§7
and
(Eols, - 8pE0) = (Eols. - 85|Z0) = 0,
(Eplsg - sp|20) = (Bblsc - sp|EL) = —1,
- . V3
(B0 |Hie|Eo) = N (Kgp = Kep)-

The mixing matrix in the (Zo, E) basis is

3 V3
M(E) _ _ich 2 (qu - ch) ‘ (C4)
\/75 (qu - Kch) + %ch - qu — Kep

Numerically, we use Tables I and II. Noting that k;; o
(M;M;)~" (see [8]), we take

Kpe = vV KecKpb

to obtain the eigenvalues: (—35,-2.9) MeV and the E,,
and E/, masses reported in Table III.
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