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In this paper we present in greater detail previous work on the Born-Oppenheimer approximation
to treat the hydrogen bond of QCD, and add a similar treatment of doubly heavy baryons. Doubly
heavy exotic resonances X and Z can be described as color molecules of two-quark lumps, the
analogue of the H2 molecule, and doubly heavy baryons as the analog of the Hþ

2 ion, except that the
two heavy quarks attract each other. We compare our results with constituent quark model and lattice QCD
calculations and find further evidence in support of this upgraded picture of compact tetraquarks and
baryons.
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I. INTRODUCTION

Systems with heavy and light particles allow for an
approximate treatment where the light and heavy degrees of
freedom are studied separately and solved one after the other.
This is the Born-Oppenheimer approximation (BO), intro-
duced in nonrelativistic quantum mechanics for molecules
and crystals, where electrons coexist with the much heavier
nuclei. We have recently reconsidered this method for the
QCD interactions of multiquark hadrons containing heavy
(charm or bottom) and light (up and down) quarks [1],
following earlier work in [2,3], and, for lattice calculations,
in [4].
In this paper, based on our previous communication [1],

we consider tetraquarks in terms of color molecules: lumps
of two-quark colored atoms (orbitals) held together by
color forces and treated in the BO approximation. The
variety of bound states described here identifies a new way
of looking at multiquark hadrons, as formed by the QCD
analog of the hydrogen bond of molecular physics.
We restrict to doubly heavy-light systems, namely the

doubly heavy baryons, qQQ, not considered in [1], the
hidden flavor tetraquarks QQ̄qq̄ (see [5–8] for a review),
and QQq̄ q̄ systems [9–13].
The plan of the paper is the following.

Section II describes the Born-Oppenheimer approxima-
tion applied to a QCD double heavy hadron and gives the
two-body color couplings derived from the restriction that
the hadron is an overall color singlet. Section III recalls the
salient features of the constituent quark model and gives
quark masses and hyperfine couplings derived from the
mass spectra of the S-wave mesons and baryons. Section IV
introduces the string tension for confined systems and
discusses extensions beyond charmonium.
Sections V, VI, and VII illustrate the main calculations

and results for doubly heavy baryons, hidden heavy
flavor tetraquarks, and doubly heavy flavored tetraquarks,
respectively.
Results are summarized in Sec. VIII and conclusions

given in Sec. IX. Technical details are expanded in three
appendixes.

II. BORN-OPPENHEIMER APPROXIMATION
WITH QCD CONSTITUENT QUARKS

We consider doubly heavy systems with open or hidden
heavy flavor, and discuss the application of the BO
approximation along the lines used for the treatment of
the hydrogen molecule (see [14,15]).
We denote coordinates and mass of the heavy quarks by

xA, xB, andM and those of the light quarks by x1, x2, andm.
Coordinate symbols here include spin and color quantum
numbers, to be discussed later.
The Hamiltonian of the whole system is

H ¼ 1

2M

X
heavy

P2
i þ

1

2m

X
light

p2
i

þ VðxA; xBÞ þ VIðxA; xB; x1; x2Þ: ð1Þ
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We have separated the heavy quark interaction VðxA; xBÞ,
e.g., their Coulombic QCD interaction, from the general
interactions involving light-heavy and light-light quarks.
We start by solving the eigenvalue equation for the light

particles for fixed values of the coordinates of the heavy
ones

�X
light

p2
i

2m
þ VIðxA; xB; x1; x2Þ

�
fα ¼ EαðxA; xBÞfα; ð2Þ

where

fα ¼ fαðxA; xB; x1; x2Þ; ð3Þ

and focus on the lowest eigenvalue and eigenfunction,
which, dropping the subscript for simplicity of notation, we
denote by E and f. Next, we look for solutions of the
eigenvalue equation of the complete Hamiltonian (1) of
the form

Ψ ¼ ψðxA; xBÞfðxA; xB; x1; x2Þ: ð4Þ

When applying the Hamiltonian (1) to Ψ one encounters
terms of the kind

PA;BΨ ¼ ψðxA; xBÞi
∂

∂xA;B fðxA; xB; x1; x2Þ

þ
�
i

∂
∂xA;B ψðxA; xBÞ

�
fðxA; xB; x1; x2Þ: ð5Þ

The Born-Oppenheimer approximation consists of neglect-
ing the first with respect to the second term in all such
instances so that, after factorizing f, we obtain the
Schrödinger equation of the heavy particles,

�X
heavy

P2
i

2M
þ VBOðxA; xBÞ

�
ψ ¼ Eψ ð6Þ

with the Born-Oppenheimer potential given by

VBOðxA; xBÞ ¼ VðxA; xBÞ þ EðxA; xBÞ: ð7Þ

For QED in molecular physics, the parameter which
regulates the validity of the approximation is estimated
in [14] to be

ϵ ¼
�
m
M

�
1=4

: ð8Þ

We apply the same method to our case as follows.
The ratio of the first (neglected) to the second (retained)

term in (5) is given approximately by

Λ ¼ 1=a
1=b

; ð9Þ

where a and b are the lengths over which f or ψ show an
appreciable variation.
The length a is simply the radius of the orbitals, which

we determine by minimizing the Schrödinger functional of
the light quark. As will be discussed below, we typically
find 1=a ¼ A ∼ 0.3 GeV, i.e., a ∼ 0.7 fm.
The length b has to be formed from the dimensional

quantities over which the Born-Oppenheimer equation (6)
depends. In the case of double heavy baryons and hidden
heavy flavor tetraquarks, Secs. V and VI, Eq. (6) depends
on 1=M, on a, and on the string tension k, which has
dimensions of GeV2.
A quantity b with dimensions of length can be formed as

b ¼ ðMkAÞ−1=4: ð10Þ

Therefore

Λ ¼ A3=4ðkMÞ−1=4; ð11Þ

which is 0.57 for charm and 0.43 for beauty, using
k ¼ 0.15 GeV2 and the constituent masses of charm and
beauty from the tables in the next section.
We note in Sec. VII that the Born-Oppenheimer potential

for double heavy tetraquarks does not depend on the string
tension, which is screened by gluons for color octet
orbitals. In this case, we get

b ¼ ðMAÞ−1=2 ð12Þ

and

Λ ¼
�
A
M

�
1=2

; ð13Þ

giving 0.42 for charm and 0.24 for beauty. In the following,
for convenience we shall include quark masses in VBO, but
it is worth noticing that the error we are estimating is the
error on the binding energies, which turn out to be around
100 MeV or smaller in absolute value. So, the errors
corresponding to (11) and (13) may be in the order of
20–50 MeV.
We comment now about color. Treating heavy quark and/

or antiquark as external sources implies specifying their
combined SUð3Þc representation. Restriction to an overall
color singlet fixes completely the color composition of the
constituents.
Recall that the color coupling between any pair of

particles in color representation R is given by

MAIANI, POLOSA, and RIQUER PHYS. REV. D 100, 074002 (2019)

074002-2



VCðrÞ ¼ λq1q2ðRÞ
αs
r
;

λq1q2ðRÞ ¼
1

2
½C2ðRÞ − C2ðq1Þ − C2ðq2Þ�; ð14Þ

where q1;2 are the irreducible representations of the particles
in the pair and C2 are the quadratic Casimir operators.
We note the results: C2ð1Þ ¼ 0; C2ðRÞ ¼ C2ðR̄Þ;

C2ð3Þ ¼ 4=3; C2ð6Þ ¼ 10=3; C2ð8Þ ¼ 3.
If the pair q1q2 in the tetraquark TðqiqjqkqlÞ is in a

superposition of two SUð3Þc representations with ampli-
tudes a and b, we use

T ¼ ajðq1q2ÞR1
…i1 þ bjðq1q2ÞR2

…i1;
λq1q2 ¼ a2λq1q2ðR1Þ þ b2λq1q2ðR2Þ: ð15Þ

The different cases are as follows.
Doubly charmed baryon: cc in 3̄.— In a color singlet

baryon, all pairs are in color 3̄, and the color couplings are
distributed according to

λcc ¼ λcq ¼ −2=3: ð16Þ

Hidden flavor tetraquarks.—Color of the heavy particles
can be either 1 or 8. In the first case, the interaction between
QQ̄ and qq̄ pairs goes via the exchange of color singlets.
We are in a situation dominated by nuclearlike forces,
eventually leading to the formation of the hadrocharmo-
nium envisaged in [16]. We shall not consider QQ̄ in color
singlet any further.
QQ̄ in 8.—Suppressing coordinates

T ¼ ðQ̄λAQÞðq̄λAqÞ ð17Þ

with the sum over A ¼ 1;…; 8 understood. If we restrict to
one-gluon exchange, Eq. (17) determines the interactions
between different pairs.
Both QQ̄ and qq̄ are in color octet, and we read their

coupling from Eq. (14). The couplings of the other pairs are
found using the Fierz rearrangement formulas for SUð3Þc to
bring the desired pair in the same quark bilinear (see
Appendix B). We get in total

λcc̄ ¼ λqq̄ ¼ þ 1

6
;

λcq ¼ λc̄ q̄ ¼ −
1

3
;

λcq̄ ¼ λc̄q ¼ −
7

6
: ð18Þ

Substituting light and heavy quarks with electrons and
protons, respectively, we see that the pattern of repulsions
and attractions given by Eq. (18) is the same as that of the
hydrogen molecule.

Double beauty tetraquarks: bb in 3̄.—The lowest energy
state corresponds to bb in spin one and light antiquarks in
spin and isospin zero. The tetraquark state

T ¼ jðbbÞ3̄; ðq̄ q̄Þ3i1 ð19Þ
can be Fierz transformed into

T ¼
ffiffiffi
1

3

r
jðq̄bÞ1; ðq̄bÞ1i1 −

ffiffiffi
2

3

r
jðq̄bÞ8; ðq̄bÞ8i1 ð20Þ

with all attractive couplings

λbb ¼ λq̄ q̄ ¼ −
2

3
αS; λbq̄ ¼ −

1

3
αS: ð21Þ

Double beauty tetraquarks: bb in 6.—We start from

T ¼ jðbbÞ6; ðq̄ q̄Þ6̄i1; ð22Þ
a case also considered in [13]. We find

T ¼
ffiffiffi
2

3

r
jðq̄bÞ1; ðq̄bÞ1i1 þ

ffiffiffi
1

3

r
jðq̄bÞ8; ðq̄bÞ8i1; ð23Þ

therefore

λbb ¼ λq̄ q̄ ¼ þ 1

3
αS; λbq̄ ¼ q −

5

6
αS: ð24Þ

The situation is again analogous to the H2 molecule, with
two identical, repelling light particles.

III. QUARK MASSES AND HYPERFINE
COUPLINGS FROM MESONS AND BARYONS

The constituent quark model, in its simplest incarnation,
describes the masses of mesons and baryons as due to the
masses of the quarks in the hadron, Mi, with hyperfine
interactions added. The Hamiltonian is

H ¼ Hmass þHhf ;

Hmass ¼
X
i

Mi;

Hhf ¼
X
i<j

2κijðsi · sjÞ; ð25Þ

where s is the constituent spin and Hhf denotes the
hyperfine interaction term.
This picture gives a reasonable description of the masses

of uncharmed, single charm, and single beauty mesons,
with four well determined quark masses. It gives an equally
reasonable description of baryon masses, albeit with a set of
slightly different quark masses, as shown in Table I.
Values for κ½ðcc̄Þ1� are taken from the mass dif-

ferences of ortho- and para-quarkonia, e.g., κ½ðcc̄Þ1� ¼
1=2ðMJ=ψ −MηcÞ. Those for κ½ðccÞ3� and κ½ðbbÞ3� are
obtained multiplying by the one-gluon exchange color
factor 1=2.
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A reasonable hypothesis, advanced in [17], is that the
difference of quark masses derived from mesons and
baryons is due to the different pattern of QCD interactions
in systems with two or three constituents, which should be
apparent even in the lowest order, one-gluon exchange
approximation. We shall follow this hypothesis. Since the
basic ingredient of the BO approximation are two-body
orbitals, we feel the natural choice is to take quark masses
from the meson spectrum and leave to the QCD interactions
between orbitals the task to compensate for the difference
of quark masses from mesons with those derived from
baryons in the naive constituent quark model.

IV. QUARK INTERACTION
AND STRING TENSION

The prototype of nonrelativistic quark interaction is the
so-called Cornell potential [18] introduced in connection
with the charmonium spectrum,

VðrÞ ¼ −
4

3

αS
r
þ krþ V0 ¼ VCðrÞ þ VconfðrÞ þ V0: ð26Þ

The potential refers to the case of a heavy color triplet pair,
QQ̄, in an overall color singlet state. V0 is determined from
the mass spectrum. We shall generalize (26) to several
different cases.
The first term in (26) is obtained in the one-gluon

exchange approximation by (14). It is generalized to any
pair of colored particles in a color representation R
by Eq. (15).
The second term in (26), which dominates over the

Coulomb force at large separations, arises from quark
confinement. In the simplest picture, confinement is due
to the condensation of Coulomb lines of force into a string
that joins the quark and the antiquark. The linearly rising
term in (26) describes the force transmitted by the
string tension. In this picture, it is natural to assume that
the string tension, embodied by the coefficient k, scales
with the Coulomb coefficient

kq1q2 ∝ jλq1q2 j: ð27Þ

For color charges combined in an overall color singlet, the
assumption leads to k ∝ C2ðqÞ, whence the name of
Casimir scaling; see [19] for an extensive discussion.
Casimir scaling would give a string tension that increases

with the dimensionality of color charges. However, QCD

gluons, unlike photons in QED, may screen color charges
by lowering the dimension of the color representation. The
simplest case is color 6 charge. Since 6 ⊗ 8 ⊃ 3̄ the string
tension strength of a pair 6 ⊗ 6̄ → 1 is reduced from 10=3
to 4=3, i.e., the string tension of 3 ⊗ 3̄ → 1 [19].
Screening by an arbitrary number of gluons reduces

Casimir scaling of string tension to the simplest triality
scaling. One can see this through the following steps:
(1) Recall that a generic SUð3Þc charge is represented

by a tensor tb���a��� [a; b;… ¼ 1, 2, 3 are SUð3Þc
indices], with n upper and m lower fully sym-
metrized indices, vanishing under the contraction
of an upper and a lower index [20]. Exchanging n
and m gives the complex conjugate representation,
which has the same Casimir, so that we may assume
n ≥ m; t ¼ ðn −mÞ mod 3 ¼ 0, 1, 2 is the triality of
the representation.

(2) Saturating the tensor t with gluon fields: tb���a���Aa
b � � �,

we reduce to tensors which have only n −m upper
indices.

(3) 8 ⊗ 80 ⊃ 10; 10 as can be seen from the simple
composition of two (different) octets:

Gfabcg ¼ ½ðAÞdaðA0Þebϵcde�abc symmetrized ∈ 10: ð28Þ
(4) Saturating t with Gfabcg, we reduce the upper indices

to those of the lowest triality representations, namely
ð1; t ¼ 0Þ; ð3; t ¼ 1Þ; ð6; t ¼ 2Þ, equivalent to1

ð3̄; t ¼ −1Þ.
The upshot is that, for conjugate charges combined to a
singlet, we have only two possibilities for the string
tension:

(i) t ¼ 0 charges, e.g., 8 ⊗ 8 → 1, have k ¼ 0 and are
not confined.

(ii) t ≠ 0 charges have k ¼ kð3Þ, equal to the charmo-
nium string tension.

For other cases, e.g., qQ, we adopt (27) and write

Vq1q2ðrÞ ¼ λq1q2
αS
r
þ 3jλq1q2 j

4
krþ V0; ð29Þ

where k is the string tension taken from the charmonium
spectrum.
In the numerical applications, we take αS and k at the

charmonium scale from the lattice calculation in [21]:

αSð2McÞ ¼ 0.30; k ¼ 0.15 GeV2: ð30Þ

At the Bc meson and bottomonium mass scales we take the
same string tension and run αS with the two loops beta
function, to get

αSðMc þMbÞ ¼ 0.24; αSð2MbÞ ¼ 0.21: ð31Þ

TABLE I. Constituent quark masses (MeV) from S-wave
mesons and baryons (see [6,8]) (q ¼ u, d).

Quark flavors q s c b

Quark mass (MeV) from mesons 308 484 1667 5005
Quark mass (MeV) from baryons 362 540 1710 5044

1Indeed, t ¼ ðn −mÞ mod 3≡ ðn −mÞ − 3bn−m
3
c.
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V. THE DOUBLY CHARMED BARYON

The baryon Ξcc ¼ qcc is analogous to the Hþ
2 ion [15],

except that the two heavy quarks attract each other,
Eq. (16).
The interaction Hamiltonian is

HI ¼ −
2

3
αS

1

jxA − xBj

−
2

3
αS

�
1

jx − xAj
þ 1

jx − xBj
�
: ð32Þ

We consider the orbital made by cq, with c located in xA.
The perturbation Hamiltonian that remains is

Hpert ¼ −
2

3
αS

1

jx − xBj
: ð33Þ

The cq orbital.—As potential, we take the Coulombic
interaction from (32) and a linear term with the string
tension rescaled according to Eq. (29),

Vcq ¼ −
2

3

αS
r
þ 1

2
krþ V0: ð34Þ

We assume a radial wave function RðrÞ of the form

RðrÞ ¼ A3=2ffiffiffiffiffiffi
4π

p e−Ar ð35Þ

and determine A by minimizing the Schrödinger functional

hHðAÞi ¼
ðRðrÞ; ð− 1

2Mq
Δþ Vcq − V0ÞRðrÞÞ

ðRðrÞ; RðrÞÞ : ð36Þ

We take quark masses from the meson spectrum, Table I, αS
and k from (30).We findA¼ 0.32GeV;hHimin ¼ 0.48GeV.
We consider as unperturbed ground state the symmetric

superposition of the two orbitals with q either attached to
cðxAÞ, which we denote by ψðxÞ, or attached to cðxBÞ,
denoted by ϕðxÞ:

fðxÞ ¼ ψðxÞ þ ϕðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ SÞp ¼ Rðjx − xAjÞ þ Rðjx − xBjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ SÞp : ð37Þ

The denominator in (37) is needed to normalize fðxÞ, and it
arises because ψ and ϕ are not orthogonal (see
Appendix A) with the overlap S defined as (ψ and ϕ real)

SðrABÞ ¼
Z

d3ξψðξÞϕðξÞ ð38Þ

and rAB ¼ jxA − xBj.
The energy corresponding to fðxÞ is given by the quark

constituent masses plus the energy of the orbital

E0 ¼ 2Mc þMq þ hHimin þ V0: ð39Þ

Perturbation theory.—To first order in the perturbation
(33), the BO potential is given by

VBOðrABÞ ¼ −
2

3
αS

1

rAB
þ E0 þ ΔEðrABÞ; ð40Þ

ΔEðrABÞ ¼ hfjHpertjfi

¼ −
2αS
3

1

1þ S
½I1ðrABÞ þ I2ðrABÞ�: ð41Þ

I1;2 are functions of rAB defined in terms of ψ and ϕ:

I1ðrABÞ ¼
Z

d3ξjψðξÞj2 1

jξ − xBj
; ð42Þ

I2ðrABÞ ¼
Z

d3ξψðξÞϕðξÞ 1

jξ − xBj
; ð43Þ

where the vector ξ originates from A, taken in the origin,
and jxBj ¼ rAB.
Analytic expressions for S; I1;2 are given in [15] for the

hydrogen wave functions. We evaluate them numerically
for the orbitals corresponding to the potential (34).
Boundary condition for rAB → 0.—The perturbation

Hamiltonian (33) embodies the interaction of the light
quark when the other charm quark is far from the orbital. If
we let rAB vanish, the charm pair reduces to a single 3̄
source generating the same interaction that q would see
inside a qc̄ charmed meson. This is in essence the heavy
quark-diquark symmetry (see [22–24]).
The symmetry means that E0 þ ΔEðrABÞ, when we

subtract Mc from it and let rAB → 0, has to reproduce
the spin independent mass of a D̄ meson, which, by
definition, is Mc þMq. In formulas

E0 þ ΔEð0Þ −Mc ¼ Mc þMq þ V0 þ hHimin þ ΔEð0Þ
¼ Mc þMq: ð44Þ

The condition determines the value of the a priori
unknown V0,

V0 þ hHimin þ ΔEð0Þ ¼ 0 ð45Þ
and

VBOðrABÞ ¼ −
2

3
αS

1

rAB
þ ΔEðrABÞ þ C;

C ¼ 2Mc þMq − ΔEð0Þ: ð46Þ
Numerically, we find from (41)

ΔEð0Þ ¼ −65 MeV: ð47Þ
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The cq orbital is confined.—The interactions embodied
in Eq. (46) originate from one gluon exchange and vanish at
large separations. However, the orbital cq and the external c
quark carry 3̄ and 3 colors combined to a color singlet and
are confined. To take this into account we add a linearly
rising term to the BO potential in (46), determined by the
string tension k of charmonium (see Sec. IV) and the onset
point, R0. The complete Born-Oppenheimer potential reads

V totðrÞ ¼ VBOðrÞ þ VconfðrÞ; ð48Þ

VconfðrÞ ¼ k × ðr − R0Þ × θðr − R0Þ ð49Þ

with R0 ≥ 2A−1. For orientation, we start with R0 ∼
8 GeV−1 ∼ 1.6 fm, where we may assume that c sees
the orbital as a point source and study the results for
different values of R0.
The Schrödinger equation for the charm pair with

potential VðrÞ ¼ V totðrÞ − C is solved numerically [25].
Results are reported in Fig. 1. For R0 ¼ 8 GeV−1, we plot
VðrÞ, the radial wave function χðrÞ, and the lowest
eigenvalue E ¼ −0.041 GeV. The average distance of
the charm pair is ∼0.9 fm. The eigenvalue has an appreci-
able dependence from R0. We find

E ¼ −41þ17
−7 MeV for R0 ¼ 8� 2 GeV−1: ð50Þ

The contribution of hyperfine interactions to the J ¼ 1=2þ
Ξcc is

HhfðΞccÞ ¼ −2κqc þ
1

2
κcc ¼ −16 MeV ð51Þ

with the numerical value from Table II. Finally

MðΞccÞTh ¼ 2Mc þMq − ΔEð0Þ þ E − 2κqc þ
1

2
κcc ð52Þ

leading to

MðΞccÞTh ¼ 3655þ17
−7 MeV ð53Þ

to be compared with the LHCb value [26]

MðΞccÞExpt ¼ 3621.2� 0.7 MeV: ð54Þ

We do not attempt to give an overall theoretical error to
the result in Sec. (53), which cannot be less than�30 MeV.
It is interesting to compare our calculation with the

calculation presented in [17]. These authors obtain the cc̄
binding energy from charmonium using quark masses from
the meson spectrum (particle names denote their masses in
MeV)

Bcc̄ ¼
1

4
ðηc þ 3J=ψÞ − 2Mc ¼ −271; ð55Þ

where the first term is charmonium mass subtracted of its
hyperfine interaction. The cc binding energy is obtained by
multiplication of the color factor 1=2, and the result is used
as the binding energy of the cc quarks in Ξcc, to be
subtracted from cc quark mass derived from the baryon
spectrum. Adding hyperfine interactions, they obtain [17]

Ξcc ¼ 3628� 12: ð56Þ

The consistency of results derived by two alternative
routes with themselves and with the experimental value is
worth noticing.
Ωcc.—Replacing the light quark mass with the strange

quark mass in (36) and inserting the appropriate hyperfine
couplings, we obtain the mass of the strange-doubly
charmed baryon, ½scc�, denoted by Ωcc.
Mass of cb and bb baryons.—With similar methods we

may compute M½Ξcb�, M½Ξcb�0 (see Appendix C), and
M½Ξbb�.
Comparisons.—Our results are summarized in Table III,

fourth column, and compared to the results in Refs. [17,27],
reported in the fifth column. We differ for bc and bb by 50
and 150 MeV, which perhaps points to a significant
discrepancy.
Predictions of the masses of doubly heavy baryons, based

on different methods, have appeared earlier in the literature
[30–42]. Numerical values are summarized in [17] and
spread in a typical range of 100–200MeVaround our values.

(a) (b)

FIG. 1. Born-Oppenheimer potentialþ confinement in the
(a) qcc and (b) scc baryons. Eigenfunction χðrÞ ¼ rRðrÞ and
eigenvalue E in the fundamental state are shown. Here and in
the following, on the y axes energies are in GeV and χ in
arbitrary units.

TABLE II. S-wave mesons and baryons: spin-spin interactions
of the lightest quarks with the heavier flavors [6,8]. For the hf
couplings of cc̄, cc, and similar ones for b quarks see text.

Mesons ðqq̄Þ1 ðqs̄Þ1 ðqc̄Þ1 ðsc̄Þ1 ðqb̄Þ1 ðcc̄Þ1 ðbb̄Þ1
κ (MeV) 318 200 70 72 23 56 30
Baryons ðqqÞ3̄ ðqsÞ3̄ ðqcÞ3̄ ðscÞ3̄ ðqbÞ3̄ ðccÞ3 ðbbÞ3
κ (MeV) 98 59 15 50 2.5 28a 15b

Ratio κMES
κBAR

3.2 3.4 4.7 1.6 9.2 � � � � � �
a
0.5κ½ðcc̄Þ1�.
b
0.5κ½ðbb̄Þ1�.
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The results of recent lattice QCD calculations [28,29] are
reported in the last column. Reference [29] reviews the
results of today’s available lattice calculations for doubly
heavy baryons.
Experimental results are eagerly awaited.

VI. HIDDEN HEAVY FLAVOR

We consider the hidden heavy flavor case, specializing to
the hidden charm and following closely the approach to the
H2 molecule in [15] (see Appendix A).
With cc̄ and qq̄ taken in color 8 representation, Eq. (17),

we describe the unperturbed state as the product of two
orbitals, bound states of one heavy and one light particle
around xA or xB, and treat the interactions not included in
the orbitals as perturbations.
Two subcases are allowed: (i) cq and c̄ q̄ or (ii) cq̄

and c̄q.
The cq orbital.—We take the Coulombic interaction

given by λcq in (18) and rescale the string tension from the
charmonium one, according to Eq. (29): thus2

Vcq ¼ −
1

3

αS
r
þ 1

4
krþ V0: ð57Þ

As the previous case, we assume an exponential form for
radial wave function RðrÞ,

RðrÞ ¼ A3=2ffiffiffiffiffiffi
4π

p e−Ar; ð58Þ

and determine A by minimizing the Schrödinger functional
(36) for the potential (57), with quark masses from the
meson spectrum, Table I, and parameters of the potential
from (30). We find A ¼ 0.27 GeV; hHimin ¼ 0.30 GeV.
The wave function of the two noninteracting orbitals is

fð1; 2Þ ¼ ψð1Þϕð2Þ ¼ Rðjx1 − xAjÞRðjx2 − xBjÞ: ð59Þ

Unlike the H2 case, light particles are not identical and the
unperturbed ground state is nondegenerate.
The energy of fð1; 2Þ is given by

E0 ¼ 2ðMc þMq þ hHimin þ V0Þ: ð60Þ

Perturbation theory.—The perturbation Hamiltonian of
this case is

Hpert ¼ −
7

6
αS

�
1

jx1 − xBj
þ 1

jx2 − xAj
�

þ 1

6
αS

1

jx1 − x2j
: ð61Þ

To first order in Hpert, Eq. (61), the BO potential is

VBOðrABÞ ¼ þ 1

6
αS

1

rAB
þ E0 þ ΔEðrABÞ; ð62Þ

where rAB ¼ jxA − xBj.
ΔE ¼ hfjHpertjfi evaluates to

ΔE ¼ −
7

6
αS2I1ðrABÞ þ

1

6
αSI4ðrABÞ ð63Þ

in terms of the function I1, Eq. (42), and

I4ðrABÞ ¼
Z

d3ξd3ηjψðξÞj2jϕðηÞj2 1

jξ − ηj ; ð64Þ

where the vector ξ originates from A, taken in the origin,
and jxBj ¼ rAB.
cq orbitals are confined.—The orbitals cq and c̄ q̄ carry

nonvanishing color and are confined. Similar to Sec. V, we
add a linearly rising term to the BO potential in (63),
determined by a string tension kT and the onset point R0.
The complete Born-Oppenheimer potential reads

VðrÞ ¼ VBOðrÞ þ VconfðrÞ;
VconfðrÞ ¼ kT × ðr − R0Þ × θðr − R0Þ: ð65Þ

For orientation, we choose R0 ¼ 10 GeV−1, greater than
2A−1 ∼ 7.4 GeV−1, where the two orbitals start to separate.
In principle, R0 should be considered a free parameter, to be
fixed on the phenomenology of the tetraquark, as we
discuss below.
As for kT, we note that the tetraquark T ¼ jðc̄cÞ8ðq̄qÞ8i1

can be written as

T ¼
ffiffiffi
2

3

r
jðcqÞ3̄ðc̄ q̄Þ3i1 −

ffiffiffi
1

3

r
jðcqÞ6ðc̄ q̄Þ6̄i1: ð66Þ

At large distances the diquark-antidiquark system is a
superposition of 3̄⊗ 3→ 1 and 6 ⊗ 6̄ → 1. Equation (66)
and the hypothesis of strict Casimir scaling of kT would give

TABLE III. Our results on doubly heavy baryon masses, fourth
column, compared to quark model and lattice QCD results, fifth
and sixth columns. E − ΔE represents the correction to the
constituent quark mass formula, with quark masses taken from
meson spectrum.

� � � −ΔEð0Þ E M½ΞQQ� [17,27] [28,29]

Ξcc þ65 −41 3656 3628� 12 3634(20)
Ωcc þ75 −44 3769 3692� 16 3712(11)(12)
Ξcb þ50 −37 6961 6920� 13 6945(22)(14)
Ξ0
cb þ50 −37 6993 6935� 12 6966(23)(14)

Ξbb þ44 −53 10311 10162� 12 � � �

2In our previous analysis [1], string tension 1=4k was
considered as an alternative possibility to string tension k.
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kT ¼
�
2

3
þ 1

3

C2ð6Þ
C2ð3Þ

�
k ¼ 1.5k: ð67Þ

However, as discussed in [19] and in Sec. IV, gluon screening
gives the 6 diquark a component over the 3̄ bringing kT closer
to k. For simplicity, we adopt kT ¼ k.
The potential VðrÞ computed on the basis of Eq. (65) is

given in Fig. 2(a). Also reported are the wave function and
the eigenvalue obtained by solving numerically the radial
Schrödinger equation [25].
As is customary for a confined system such as charmo-

nia, we fix V0 to reproduce the mass of the tetraquark, so
the eigenvalue is not interesting. However, the eigenfunc-
tion gives us information on the internal configuration of
the tetraquark. In Fig. 2(a), with one-gluon exchange
couplings, a configuration with c close to c̄ and the light
quarks around is obtained, much like the quarkonium
adjoint meson described in [2].
Figure 2(b) is obtained by increasing the repulsion in the

qq̄ interaction associated with the function I4, letting
1=6αS ¼ 0.05 → 3.3. The corresponding cc̄ wave function
clearly displays the separation of the diquark from the
antidiquark suggested in [43] and further considered
in [44].
The presence of a barrier that c has to overcome to reach

c̄, apparent in Fig. 2(b), explains the suppression of the
J=ψ þ ρ=ω decay modes of Xð3872Þ, otherwise favored
by phase space with respect to the DD� modes. With
the parameters in Fig. 2(b), we find jRð0Þj2 ¼ 1.6 × 10−3

with respect to jRð0Þj2 ¼ 1.9 × 10−2 with the perturbative
parameters of Fig. 2(a).
The tetraquark picture of Xð3872Þ and the related

Zð3900Þ and Zð4020Þ have been originally formulated in
terms of pure 3̄ ⊗ 3 diquark-antidiquark states [6,7,43].
The 6 ⊗ 6̄ component in (66) results in the opposite sign of
the qq̄ hyperfine interactions vs the dominant cq and c̄ q̄
one, and it could be the reason why Xð3872Þ is lighter
than Zð3900Þ.

The cq̄ orbital.—One obtains the new orbital by replac-
ing −1=3αS → −7=6αS in Eq. (57) and string tension

kðcq̄Þ ¼ 7

8
k: ð68Þ

Correspondingly A ¼ 0.40 GeV; hHimin ¼ 0.66 GeV. The
perturbation Hamiltonian appropriate to this case is

Hpert ¼ −
1

3
αS

�
1

jx1 − xBj
þ 1

jx2 − xAj
�
þ 1

6
αS

1

jx1 − x2j
ð69Þ

and

VBO ¼ þ 1

6
αS

1

rAB
þ E0 þ ΔEðrABÞ ð70Þ

with

ΔE ¼ −
1

3
αS2I1 þ

1

6
αSI4: ð71Þ

The tetraquark state is

T ¼
ffiffiffi
8

9

r
jðc̄qÞ1ðq̄cÞ1i1 −

1ffiffiffi
9

p jðc̄qÞ8ðq̄cÞ8i1: ð72Þ

At large jxA − xBj the lowest energy state (two color
singlet mesons) has to prevail, as concluded in Sec. IV on
the basis of the triality scaling due to gluon screening of
octet charges. Therefore there is no confining potential to
be added to the BO potential in (70).
Boundary condition for rAB → ∞.—For rAB → ∞,

VBO → hHimin þ V0. Including constituent quark masses,
the energy of the state at rAB ¼ ∞ is E∞ ¼ 2ðMc þMq þ
hHimin þ V0Þ and it must coincide with the mass of a pair
of noninteracting charmed mesons, with spin-spin inter-
action subtracted. Therefore we impose

hHimin þ V0 ¼ 0: ð73Þ

A minimum of the BO potential is not guaranteed. If there
is such a minimum, as in Fig. 3(a), it would correspond to a

(a) (b)

FIG. 2. (a) Dominant cq̄ and c̄q attractionþ confinement;
(b) dominant qq̄ repulsionþ confinement, letting þ1=6αS ∼
0.05 → 3.3 in Eq. (18). Eigenfunction χðrÞ ¼ rRðrÞ and eigen-
value E of the tetraquark in the fundamental state are shown.
Diquarks are separated by a potential barrier, and there are two
different lengths: Rqc ∼ 0.4 fm and the total radius R ∼ 1.5 fm, as
in [43].

(a) (b)

FIG. 3. Born-Oppenheimer potential VðrÞ vs RAB for cq̄
orbitals. Unit length: GeV−1 ∼ 0.2 fm. (a) Using the perturbative
parameters; (b) with repulsion enhanced.
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configuration similar to the quarkonium adjoint meson in
Fig. 2(a).
If repulsion is increased above the perturbative value,

e.g., changingþ1=6αS ∼ 0.05 to a coupling ≥ 1 in analogy
with Fig. 2(b), the BO potential has no minimum at all,
Fig. 3(b).

VII. DOUBLE BEAUTY TETRAQUARKS

We consider bb tetraquarks, analyzing in turn the two
options for the total color of the bb pair.
bb in 3̄. We recall from Sec. II that the lowest energy

state corresponds to bb in spin one and light antiquarks
in spin and isospin zero. The tetraquark state is T ¼
jðbbÞ3̄; ðq̄ q̄Þ3i1, whence one derives the attractive color
couplings reported in (21) and

kðbq̄Þ ¼ 1

4
k: ð74Þ

There is only one possible orbital, namely bq̄, but the
unperturbed state now is the superposition of two states
with the roles of q̄1 and q̄2 interchanged, such as electrons
in the H2 molecule (see Appendix A),

fð1; 2Þ ¼ ψð1Þϕð2Þ þ ϕð1Þψð2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ S2Þ

p : ð75Þ

The denominator needed to normalize fð1; 2Þ includes the
overlap function S defined in (38).
The perturbation Hamiltonian is

Hpert ¼ −
1

3
αS

�
1

jx1 − xBj
þ 1

jx2 − xAj
�
−
2

3
αS

1

jx1 − x2j
ð76Þ

and

VBOðrABÞ ¼ 2ðhHimin þ V0Þ −
2

3
αS

1

rAB
þ ΔE; ð77Þ

where ΔE ¼ hfjHpertjfi evaluates to

ΔE ¼ 1

1þ S2

�
−
1

3
αS2ðI1 þ SI2Þ −

2

3
αSðI4 þ I6Þ

�
: ð78Þ

I1;2;4 were defined previously, whereas [15]

I6ðrABÞ ¼
Z

d3ξd3ηψðξÞϕðξÞψðηÞϕðηÞ 1

jξ − ηj : ð79Þ

For the orbital bq̄ we find A¼0.26GeV;hHimin¼0.32GeV.
The BO potential, wave function, and eigenvalue for the

bb pair in color 3̄ and the one-gluon exchange couplings
are reported in Fig. 4. There is a bound tetraquark with a

tight bb diquark, of the kind expected in the constituent
quark model [10,11,13].
The BO potential in the origin is Coulomb-like, and it

tends to zero, for large rAB, due to (73). The (negative)
eigenvalue E of the Schrödinger equation is the binding
energy associated with the BO potential. The masses of the
lowest tetraquark with ðbbÞS¼1; ðq̄ q̄ÞS¼0, and of the B
mesons are

MðTÞ ¼ 2ðMb þMqÞ þ Eþ 1

2
κbb −

3

2
κqq; ð80Þ

MðBÞ ¼ Mb þMq −
3

2
κbq̄: ð81Þ

The hyperfine interactions are taken from Table II,
and E ¼ −67 MeV is the eigenvalue shown in Fig. 4(a)
with αsð2MbÞ ¼ 0.20.
The Q value for the decay T → 2Bþ γ is then

Qbb ¼ Eþ 1

2
κbb −

3

2
κqq þ 3κbq̄ ¼ −138ð−156Þ MeV

ð82Þ

for the string tension (74) (in parentheses with string
tension k).
Results for Qcc;bc are reported in Table IV using the

values of αS in (31).
Equation (82) underscores the result obtained by Eichten

and Quigg [11] that the Q value goes to a negative constant
limit for MQ → ∞: Q ¼ −150 MeVþOð1=MQÞ.
Double beauty tetraquarks: bb in 6.—Color charges are

given in (24) and

kðbq̄Þ ¼ 5

8
k: ð83Þ

The situation is entirely analogous to theH2 molecule, with
two identical, repelling light particles. For the orbital bq̄,
we find A ¼ 0.43 GeV and hHimin ¼ 0.72 GeV. The BO
potential with the one-gluon exchange parameters admits
a very shallow bound state with E ¼ −30 MeV, quantum
numbers: ðbbÞ6;S¼0 and ðq̄ q̄Þ6̄;S¼0;I¼1, JPC ¼ 0þþ, and
charges −2;−1, 0.

FIG. 4. Left panel: BO potential, eigenfunction, and eigenvalue
ðbbÞ3̄q̄ q̄ tetraquark. Right panel: Same for ðccÞ3̄q̄ q̄.
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As shown in Fig. 5, the potential is so shallow as to raise
doubts whether a bound tetraquark will indeed result. We
register nonetheless theQ value for the decay T → BB̄. For
the string tension (83) we find

Qbb ¼ E −
3

2
κbb −

3

2
κqq þ 3κbq̄ ¼ −131ð−133Þ MeV;

ð84Þ

in parentheses the result with string tension k.

VIII. SUMMARY OF RESULTS

The present paper gives an extensive discussion of
doubly heavy hadrons, baryons, and tetraquarks, within
the BO approximation. The paper is an expansion of the
shorter communication [1], with the discussion of doubly
heavy baryons added, a case where we can compare
directly theory to experimental results [26].
In analogy with the QED treatment [15] of the Hþ

2 ion
(the analog of a doubly heavy baryon) and theH2 molecule
(analog of a doubly heavy tetraquark), we start our
discussion from orbitals: two-body, heavy-light, quark-
quark, or quark-antiquark lumps held together by the
QCD Coulomb-like interaction plus a linear confining term
with the appropriate string tension.
The wave functions of the orbitals, obtained from the

two-body Schrödinger equation, are taken as zeroth order
approximation of the light constituents wave function
inside the hadron. QCD Coulomb-like interactions with
the other constituents of the light quarks or antiquarks

inside the orbitals are treated as perturbations, to obtain the
first order BO potential that goes into the Schrödinger
equation of the heavy constituents.
The non-Abelian nature of QCD produces a number of

peculiarities. Given that the hadron is a color singlet and
given the representation of the heavy constituents, one can
deduce, for each pair, the coefficient of the Coulomb-like
interaction and the strength of the string tension. The pair
forming an orbital, except for the case of the baryon, is
general in a superposition of color representations with the
same triality, e.g., 3̄ and 6. Orbitals with nonvanishing
triality have to be confined, and we add to the BO potential
the appropriate linearly rising potential. Triality zero
orbitals are not confined, as discussed in Sec. IV and
in [19], and the BO potential vanishes for large separation
of the heavy constituents.
A feature of the QCD Cornell potential, Sec. IV, is that it

contains an additive constant V0 that in charmonium
physics is determined from one physical mass of the
spectrum. We are able to determine V0 (i) in the baryon
case from a boundary condition related to the heavy quark-
diquark symmetry [22–24], Sec. V, and (ii) in QQq̄ q̄
tetraquarks from the condition that, at infinity, the potential
gives rise to a meson-meson* pair, Sec. VII. For these
reasons, we get in these two cases an absolute prediction of
their mass, which can be compared with the experimental
value in the case of Ξcc, and which allows us to judge the
stability of bbq̄ q̄ against strong or electromagnetic decays
into DB� or DBþ γ.
On the other hand, V0 remains undetermined for QQ̄qq̄

tetraquarks and orbitals with nonvanishing triality and the
hadron mass cannot be predicted, at least for the ground
state. However, the QQ̄ wave function provides interesting
information on the tetraquark internal structure, with
significant phenomenological implications.
We now summarize the results of Secs. V–VII
Doubly heavy baryon.—Our results are summarized in

Table III, fourth column. We findMðΞccÞTh¼3652þ17
−7 MeV

to be compared with the LHCb value [26] MðΞccÞExpt ¼
3621.2� 0.7 MeV. The difference is within the theoretical
uncertainty of our approach [see Eq. (11)]. For the heavier
baryons, our results differ from the results in Refs. [17,27]
by 50 and 150 MeV for bc and bb baryons, respectively.
Recent lattice QCD results [28,29], where available, are
intermediate between us and [17,27] (see Table III).

TABLE IV. Q values in MeV for decays into mesonþmesonþ γ obtained with string tension 1=4k in Eq. (57), in
parentheses with string tension k. Models in [10,11,13] are different elaborations of the constituent quark model we
use throughout this paper, and more details are found in the original references. In the last column are the lattice
QCD results [45–48].

QQ0ū d̄ This work [10] [11] [13] Lattice QCD

ccū d̄ þ7ð−10Þ þ140 þ102 þ39 −23� 11 [45]
cbū d̄ −60ð−74Þ ∼0 þ83 −108 þ8� 23 [46]
bbū d̄ −138ð−156Þ −170 −121 −75 −143� 34 [45] −143ð1Þð3Þ [47]−82� 24� 10 [48]

FIG. 5. A shallow bound state might be present in the color 6
channel.
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Overall, the general consistency of results derived by
alternative routes with themselves and with the experimen-
tal value is very encouraging. Experimental results on
heavier baryons will allow a more significant comparison
and are eagerly awaited.
Hidden charm tetraquark: cq orbitals.—The interaction

between the light quarks, q and q̄ is repulsive. Combined
with the existence of a raising confining potential between
the orbitals, this leads to envisage two regimes, exemplified
in Figs. 2(a) and 2(b).
For the low value of the repulsive coupling, þ1=6αS ∼

0.05, implied by one gluon exchange, the equilibrium
configuration obtains for c and c̄ relatively close to each
other, in a quarkonium adjoint meson configuration [2,3];
see Fig. 2(a).
Increasing the repulsion, orbitals are split apart and

equilibrium obtains for a diquark-antidiquark configuration,
Fig. 2(b), with well separated diquarks. As an example,
letting þ1=6αS ∼ 0.05 → 3.3 in Eq. (18), diquarks are
separated by a potential barrier and there are two different
lengths: the diquark radius Rqc ∼ 0.4 fm and the total radius
R ∼ 1.5 fm. A dominant, nonperturbative qq̄ repulsion plus
confinement gives the dynamical basis to the emergence of
the repulsive barrier between diquarks and antidiquarks
suggested in [43]. The need to tunnel under the barrier
explains why decays into charmonia occur at a lower rate
with respect to decays into open charm mesons, as observed
in X and Z resonances. Diquark-antidiquark separation
may also be the reason why charged partners of the X have
not (yet) been observed and there is an almost degenerate
doublet of X0

u;d neutral states [43,44].
Hidden charm tetraquark: c̄q orbitals.—The BO poten-

tial goes to þ∞ at zero separation, due to cc̄ repulsion, and
it vanishes at infinity, due to the zero triality of orbitals. The
existence of a minimum is not guaranteed. The situation is
shown in Figs. 3(a) and 3(b). For the one gluon exchange
parameters, there is indeed one minimum, Fig. 3(a), and a
second tetraquark, in the quarkonium adjoint meson
configuration.
If the qq̄ repulsion is increased, letting e.g., þ1=6αS ∼

0.05 to a value > 1, there is no minimum, Fig. 3(b). The
lack of a second resonance with the same features of,
but well separated from, Xð3872Þ would speak in favor
of Figs. 2(b) and 3(b) supporting the enhancement of qq̄
repulsion.
Double heavy tetraquarks: ðQQÞ3̄.—Our results for the

Q value of the lowest ½bb� tetraquark against decays into
DB� þ γ are shown in Table IV and found to compare well
with previous estimates done with quark model,
Refs. [10,11,13], and, remarkably, with lattice QCD results
[45–48], where available.
Given the error estimate following Eq. (13), we support

the proposal that the lowest ½bb� and perhaps ½bc� tetra-
quarks may be stable against strong and electromagnetic
decays [10,11]; see also [49,50].

Double heavy tetraquarks: ðQQÞ6.—The VBO potential
for bb has a repulsive behavior at the origin, and it vanishes
at large separations with a very shallow minimum.
The binding energy E ¼ −30 MeV is at the limit of our

visibility. If it exists, the bound state would make a second
bb tetraquark, possibly stable. Its existence needs con-
firmation by lattice QCD calculations.

IX. CONCLUSIONS

The BO approximation gives a new insight on the multi-
quark hadron structure and provides new opportunities for
theoretical progress in the field of exotic resonances.
The restriction to a perturbative treatment followed here

is, at the moment, a necessity for any analytical approach.
Nonetheless, the consistency of the results we have found
for doubly heavy baryons and doubly heavy tetraquarks
with lattice QCD calculations seems to show that the
perturbative approach is sufficiently robust (as it was for
the hydrogen ion and molecule) to provide useful, quanti-
tative indications.
A critical case, where nonperturbative calculations are

called for, is in the QQ̄qq̄ tetraquarks. As we have shown
here, the strength of qq̄ repulsion is the critical parameter
to determine the internal configuration of the tetraquark,
from a quarkonium adjoint meson to a diquark-antidiquark
configuration. The latter configuration is indicated by the
pattern of decay modes of Xð3872Þ and is compatible with
the existence of charged partners of the Xð3872Þ not to be
observed in open charm decays but only in final states
containing charmonia, X� → ρ�J=ψ . The B meson may
have a smaller branching fraction than expected for decays
that involve the charged X, and this requires some dedi-
cated experimental effort to go beyond the bounds which
have been set years ago.
Nonperturbative investigations along these lines should

be provided by lattice QCD, following the growing interest
shown for doubly heavy tetraquarks.
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APPENDIX A: QED ORBITALS
AND MOLECULES

We review here the Born-Oppenheimer approximation
for the hydrogen molecule and sketch the perturbative
method starting from the hydrogen orbitals [15] which
provides the basis of our treatment of heavy-light tetra-
quarks in QCD.
The Hamiltonian of two protons in xA and xB and two

electrons in x1 and x2 is
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H ¼
X
A;B

P2
i

2M
þ
X
1;2

p2
i

2m
þ α

�
1

jxA − xBj
�

− α

�
1

jxA − x1j
þ 1

jxB − x2j
þ ð1 ↔ 2Þ

�

þ α
1

jx1 − x2j
¼ HAB þHA;1 þHB;2 þHpert; ðA1Þ

where

HAB ¼
X
A;B

P2
i

2M
þ α

�
1

jxA − xBj
�
;

HA;1 ¼
p2
1

2m
− α

1

jxA − x1j
;

HB;2 ¼ same with∶ A → B; 1 → 2;

Hpert ¼ −α
�

1

jxA − x2j
þ 1

jxB − x1j
�
þ α

1

jx1 − x2j
: ðA2Þ

We denote by ψðxÞ the lowest energy eigenfunction of
HA;1 and by ϕðxÞ the similar eigenfunction of HB;2, both
being real functions. Since they belong to two different
Hamiltonians, ψðxÞ and ϕðxÞ are not orthogonal, and we
denote by S the overlap function

SðrABÞ ¼
Z

d3xψðxÞϕðxÞ ðA3Þ

with rAB ¼ jxA − xBj. ψ and ϕ are usually called the
orbitals of the H2 molecule. Neglecting Hpert, there are
two degenerate lowest energy eigenstates, namely
ψðx1Þϕðx2Þ and ψðx2Þϕðx1Þ, which may be combined in
the symmetric or antisymmetric combinations. When Hpert

is turned on, the antisymmetric combination turns out to
have a higher energy and we restrict to the symmetric
combination (ψ and ϕ normalized to unity)

f0 ¼
ψðx1Þϕðx2Þ þ ψðx2Þϕðx1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ S2Þ
p ðA4Þ

with energy

E0 ¼ 2EH ¼ −α2m; ðA5Þ

i.e., twice the hydrogen ground level. Electrons being
fermions, the symmetric combination (A4) is associated
with electron spins in the singlet combination, S ¼ 0.
To first order in Hpert we find [15]

E ¼ E0 þ ΔEðrABÞ;
ΔE ¼ hf0jHpertjf0i

¼ α

ð1þ S2Þ ½−2ðI1 þ SI2Þ þ I4 þ I6�: ðA6Þ

I1 to I6 as functions of rAB are defined as

I1 ¼
Z

d3xψðxÞ2 1

jxB − xj ;

I2 ¼
Z

d3xψðxÞϕðxÞ 1

jxA − xj ;

I4 ¼
Z

d3xd3xψðxÞ2ϕðyÞ2 1
r
;

I6 ¼
Z

d3xd3x½ψðxÞϕðxÞ�½ψðyÞϕðyÞ� 1
r

ðA7Þ

with r ¼ jx − yj. Explicit expressions of the integrals are
given in [15].
The Born-Oppenheimer potential is

VBOðrABÞ ¼ þα
1

rAB
− α2mþ ΔEðrABÞ: ðA8Þ

The potential diverges to þ∞ for rAB → 0þ and tends to
−α2m (the energy of two hydrogen atoms) for rAB → ∞. A
numerical evaluation of the previous formulas shows that
the potential has one minimum for

rmin ∼ 1.5ðαmÞ−1 ¼ 0.79 Åð0.76 ÅÞ;
½VBO�min ∼ 0.23EH ¼ 3.1 eVð4.4 eVÞ;

which compare favorably with the experimental numbers
given in parentheses.
Computed along the same lines, the BO potential for the

antisymmetric combination (and electrons in the triplet
state) shows no minimum.

APPENDIX B: FIERZ IDENTITIES

The basic Fierz identity, in SUð3Þc, reads

δγαδδβ ¼
1

3
δγβδ

δ
α þ

1

2
ðλAÞγβðλAÞδα; ðB1Þ

where from we derive

δγαδδβ − δγβδ
δ
α ¼ −

2

3
δγβδ

δ
α þ

1

2
ðλAÞγβðλAÞδα; ðB2Þ

δγαδδβ þ δγβδ
δ
α ¼ þ 4

3
δγβδ

δ
α þ

1

2
ðλAÞγβðλAÞδα: ðB3Þ

Saturating with the products qαQβQ̄γq̄δ, we obtain the
identities
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ðQ̄qÞðq̄QÞ − ðQ̄QÞðq̄qÞ

¼ −2
ðQ̄QÞðq̄qÞ

3
þ 2

ffiffiffi
2

p ðQ̄λAQÞðq̄λAqÞ
4

ffiffiffi
2

p

× ðQ̄qÞðq̄QÞ þ ðQ̄QÞðq̄qÞ

¼ 4
ðQ̄QÞðq̄qÞ

3
þ 2

ffiffiffi
2

p ðQ̄λAQÞðq̄λAqÞ
4

ffiffiffi
2

p

and factors in the denominators are introduced to have
quadrilinear forms normalized to unity.3

In terms of normalized kets, we have

jðQqÞ3̄ðQ̄q̄Þ3i1¼
1ffiffiffi
3

p jðQ̄QÞ1ðq̄qÞ1i1

−
ffiffiffi
2

3

r
jðQ̄QÞ8ðq̄qÞ8i1;

jðQqÞ6ðQ̄q̄Þ6̄i1¼
ffiffiffi
2

3

r
jðQ̄QÞ1ðq̄qÞ1i1þ

1ffiffiffi
3

p jðQ̄QÞ8ðq̄qÞ8i1:

The combination with QQ̄ in pure octet is therefore

T ¼ jðQ̄QÞ8ðq̄qÞ8i1

¼
ffiffiffi
2

3

r
jðQqÞ3̄ðQ̄ q̄Þ3i1 −

1ffiffiffi
3

p jðQqÞ6ðQ̄ q̄Þ6̄i1

so that

λQq ¼ λQ̄ q̄ ¼
�
2

3

�
−
2

3

�
þ 1

3

1

3

�
αS ¼ −

1

3
αS: ðB4Þ

Saturating (B2) and (B3) with the combination:
QαqβQ̄γq̄δ, we express the diquark-antidiquark states in
terms of the bilinears with the pairs Q̄q and q̄Q and finally
express the latter in terms of the state T:

T ¼
ffiffiffi
8

9

r
jðQ̄qÞ1ðq̄QÞ1i1 −

1ffiffiffi
9

p jðQ̄qÞ8ðq̄QÞ8i1 ðB5Þ

and

λQ̄q ¼ λq̄Q ¼ −
7

6
:

APPENDIX C: MASS AND MIXING
OF Ξcb AND Ξ0

cb

For identical cc or bb flavors, color antisymmetry and
Fermi statistics require the pair to be in spin 1, and there is

only one state for total spin J ¼ 1=2. In the case of cb, there
are two states with J ¼ 1=2 and Scb ¼ 0, 1. It is customary
to classify the states according to the spin of the lighter
quarks, namely

½Ξcb�0 ¼ jðqcÞ0; bi1=2; ½Ξ0
cb�0 ¼ jðqcÞ1; bi1=2; ðC1Þ

where the subscript 0 on brackets refers to states before
mixing and the subscript 0,1 inside kets refers to the total
spin of the lighter pair.
The hyperfine Hamiltonian is

Hhf ¼ 2κqcðsq · scÞ þ 2κqbðsq · sbÞ þ 2κcbðsc · sbÞ; ðC2Þ
and to compute the matrix elements we need to know what
is the spin if the qb and cb pairs in the states (C1); see
e.g., [8].
An elementary calculation gives (we drop for simplicity

the subscript cb)

Ξ0 ¼
ffiffiffi
3

p

2
j½ðqbÞ1c�1=2i þ

1

2
jðqbÞ0ci

¼ −
ffiffiffi
3

p

2
j½ðcbÞ1u�1=2i −

1

2
jðcbÞ0ui;

Ξ0
0 ¼ −

1

2
j½ðqbÞ1c�1=2i þ

ffiffiffi
3

p

2
jðqbÞ0ci

¼ þ 1

2
j½ðcbÞ1q�1=2i −

ffiffiffi
3

p

2
jðcbÞ0qi: ðC3Þ

Scalar products ðsi · sjÞ commute with the total spin Sij,
and we find

hΞ0jsq · scjΞ0i ¼ −
3

2
; hΞ0

0jsq · scjΞ0
0i ¼ þ 1

2
;

and

hΞ0jsq · sbjΞ0i ¼ hΞ0jsc · sbjΞ0i ¼ 0;

hΞ0
0jsq · sbjΞ0

0i ¼ hΞ0
cjsc · sbjΞ0

ci ¼ −1;

hΞ0
0jHhf jΞ0i ¼

ffiffiffi
3

p

2
ðκqb − κcbÞ:

The mixing matrix in the (Ξ0;Ξ0
0) basis is

MðΞÞ ¼

0
B@ − 3

2
κqc

ffiffi
3

p
2
ðκqb − κcbÞffiffi

3
p
2
ðκqb − κcbÞ þ 1

2
κqc − κqb − κcb

1
CA: ðC4Þ

Numerically, we use Tables I and II. Noting that κij ∝
ðMiMjÞ−1 (see [8]), we take

κbc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
κccκbb

p

to obtain the eigenvalues: ð−35;−2.9Þ MeV and the Ξcb
and Ξ0

cb masses reported in Table III.

3For an expression of the form T ⊗ T 0 with T and T 0 matrices
in color space, we require TrðTT†Þ ¼ TrðT 0T 0†Þ ¼ 1. If we have a
sum

P
A T

A ⊗ T 0A; A ¼ 1;…; N, with each term normalized to
unity, we divide by an additional factor

ffiffiffiffi
N

p
.
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